Tuesday, November 17, 2009

- Chapter 9: Distributed Forces: Moments of Inertia

Recall from Chapter 5, we considered
= (Centers of Areas, Volumes, Mass

We considered distributed forces which were proportional to the area or volume over which
they act.

¢ The resultant Force was obtained by summing or integrating over the areas or volumes.

¢ The resultant Moment of the force about any axis was determined by computing the
first moments of the areas or volumes about that axis.

Total Ava® A * foLA»_f'OL% ) fﬁ“m y, T

Firck Momedt @, = (odA = [ryda X o
alrouk Y ~owis ' ch _.;r%\j

Combroidh @ 3= &

A

Now we will consider forces which are not only proportional to the area or volume over which
they act but also vary linearly with distance from a given axis.

It can be shown that, when the force distribution varies linearly with distance from axis,
¢ The magnitude of the resultant Force is proportional to the
first moment of the force distribution with respect to the axis.
¢ The magnitude of the resultant Moment is given by the
SECOND moments of the areas about that axis.

¢ The point of application of the resultant force also depends on the second moment of the
distribution with respect to the axis.
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9.3 Second Moment of area by Integration

Yy
Second moments of area with respect to the x and y axes,
are defined as:

dA = dxdy
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Evaluation of the integrals is simplified by choosing dA to be a thin strip parallel
to one of the coordinate axes.
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9.4 Polar moment of Inertia

For problems involving tersion (or twisting), the resisting forces are
proportional to the polar moment of inertia, defined as:
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The polar moment of inertia is related to the rectangular \\
moments of inertia:
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9.5 Radius of Gyration

Radius of gyration (k) is the distance from the axis where an area can be thought of as

being concentrated for purposes of evaluating the second moment of area / moment of
inertia.

(Similar to the concept of center of area: where one can think of the area as being
concentrated for evaluating the first moment of area)

Avvakogotﬂ-d o !
I —
I, = k)% A ky = jx Radius of gyration about x-axis O\x = YA.
i . . . _
_ 7.2 _ |7y Radius of gyration about y-axis _ A
1, =kyA |k, = y Qy =X
‘]0 _ k% A kO _ JiO Polar Radius of gyration
A
Note:
2 42 2
kB = k2 + k2
For example, consider the triangle: EG[/\MWM WWM ol ~FD'Y
y If;@ Iy NS

CE297-FA09-Ch9 Page 3



Monday, December 07, 2009
10:58 AM

9.6 Parallel Axis Theorem

Consider moment of inertia / of an area 4 with respect to y' / dA
the axis A4’ B
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9.7 Moment of Inertia of a composite Areas

The moment of inertia of a composite area 4 about a given axis is obtained by adding the
moments of inertia of the component areas 41, A, 43, ... , with respect to the same axis.

You may have to refer to Tables 9.12 and 9.13 A & B in your book to find the individual areas
and moment of inertias.

Example 9.4

The strength of a W14x38 rolled steel beam is increased by attaching a plate to
its upper flange.

Determine the moment of inertia and radius of gyration with respect to an axis
which is parallel to the plate and passes through the centroid of the section.
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SOLUTION:

1) Determine location of the centroid of composite section with respect to a coordinate
system with origin at the centroid of the beam section.

2) Apply the parallel axis theorem to determine moments of inertia of beam section and
plate with respect to composite section centroidal axis.

3) Calculate the radius of gyration from the moment of inertia of the composite section.

Step (1) Section A, in? y,in. | VA, in’
Plate 6.75 7.425 | 50.12
Beam Section | 11.20 0 0
> 4=17.95 > y4=50.12

7o ZIA _ 50.12in°

Y>S A=Y y4 S 4" 170502 =2.792in.
Step (2)
L beamsection = Ly + AV 2 =385+ (11.20)(2.792)
=4723in*
Lo e = I + Ad* = LOY3T +(6.75)(7.425 - 2.792)?
=145.2in*
I =1y beam section + L' plate = 472.3+145.2 I, =618in"
Step (3)
ko= | _6175in” ky =5.87 in.
A 17.95in?
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