
Chapter 9: Distributed Forces: Moments of Inertia

Centers of Areas, Volumes, Mass�

Recall from Chapter 5, we considered

The resultant Force was obtained by summing or integrating over the areas or volumes.•

The resultant Moment of the force about any axis was determined by computing the 
first moments of the areas or volumes about that axis.

•

We considered distributed forces which were proportional to the area or volume over which 
they act. 

Now we will consider forces which are not only proportional to the area or volume over which 
they act but also vary linearly with distance from a given axis.
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first moment of the force distribution with respect to the axis.

The magnitude of the resultant Force is proportional to the •

SECO D  moments of the areas about that axis.

The magnitude of the resultant Moment is given by the •

The point of application of the resultant force also depends on the second moment of the 
distribution with respect to the axis.

•

It can be shown that, when the force distribution varies linearly with distance from axis, 
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9.3 Second Moment of area by Integration

Second moments of area with respect to the x and y axes, 
are defined as:

Evaluation of the integrals is simplified by choosing dΑ to be a thin strip parallel 
to one of the coordinate axes.
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Example 

Find the second moment of Area and the radii of gyration 
about the x-axis and the y-axis.
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9.5 Radius of Gyration

9.4 Polar moment of Inertia

For problems involving torsion (or twisting), the resisting forces are 
proportional to the polar moment of inertia, defined as: 

∫= dArJ 2
0

The polar moment of inertia is related to the rectangular 
moments of inertia:

0 y xJ I I= +

Radius of gyration (k) is the distance from the axis where an area can be thought of as 
being concentrated for purposes of evaluating the second moment of area / moment of 
inertia.

(Similar to the concept of center of area: where one can think of the area as being 
concentrated for evaluating the first moment of area)

For example, consider the triangle:
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Note:
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9.6 Parallel Axis Theorem

Consider moment of inertia I of an area A with respect to 
the axis AA’

∫= dAyI
2

This moment of inertia can be calculated using the moment of inertia about the centroidal axis:

2AdII +=

9.7 Moment of Inertia of a composite Areas

The moment of inertia of a composite area A about a given axis is obtained by adding the 
moments of inertia of the component areas A1, A2, A3, ... , with respect to the same axis.

You may have to refer to Tables 9.12 and 9.13 A & B in your book to find the individual areas 
and moment of inertias.

Example 9.4

only if BB' is  a centroidal axis

The strength of a W14x38 rolled steel beam is increased by attaching a plate to 
its upper flange. 

Determine the moment of inertia and radius of gyration with respect to an axis 
which is parallel to the plate and passes through the centroid of the section.
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Determine location of the centroid of composite section with respect to a coordinate 
system with origin at the centroid of the beam section.

1)

Apply the parallel axis theorem to determine moments of inertia of beam section and 
plate with respect to composite section centroidal axis.

2)

Calculate the radius of gyration from the moment of inertia of the composite section.3)

SOLUTION:
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