Chapter 6: Analysis of Structures

Some of the most common structures we see around us are buildings & bridges. In addition to these, one can also classify a lot of other objects as "structures."

For instance:
- The space station
- Chassis of your car
- Your chair, table, bookshelf etc. etc.

Almost everything has an internal structure and can be thought of as a "structure".

The objective of this chapter is to figure out the forces being carried by these structures so that as an engineer, you can decide whether the structure can sustain these forces or not.

Recall:
- **External forces**: "Loads" acting on your structure.
 Note: this includes "reaction" forces from the supports as well.
- **Internal forces**: Forces that develop within every structure that keep the different parts of the structure together.

In this chapter, we will find the internal forces in the following types of structures:
- Trusses
- Frames
- Machines
6.2-6.3 Trusses

Trusses are used commonly in Steel buildings and bridges.

Definition: A truss is a structure that consists of
- All straight members
- connected together with pin joints
- connected only at the ends of the members
- and all external forces (loads & reactions) must be applied only at the joints.

Note:
- Every member of a truss is a 2 force member.
- Trusses are assumed to be of negligible weight (compared to the loads they carry)

Types of Trusses

Simple Trusses: constructed from a "base" triangle by adding two members at a time.

Note: For Simple Trusses (and in general statically determinate trusses)

\[2n = m + r \]

\(n \): members
\(r \): reactions
\(m \): joints

Note: This is a necessary condition for statical determinancy.

This is not sufficient condition. So even if a truss satisfies the above relation it may not be determinate.

But if it is determinate then it satisfies the above relation.
6.4 Analysis of Trusses: **Method of Joints**

Consider the truss shown. Truss analysis involves:

(i) Determining the **EXTERNAL** reactions.
(ii) Determining the **INTERNAL** forces in each of the members (tension or compression).

(i) **External Reactions**:

\[F_x = 0 \Rightarrow A_x + 10 = 0 \Rightarrow A_x = -10 \text{N} \]

\[F_y = 0 \Rightarrow A_y - 10 - 10 = 0 \Rightarrow A_y = 20 \text{N} \]

\[M_A = 0 \Rightarrow (10 \times 5) - (10 \times 5) + D_y \times 5 = 0 \Rightarrow D_y = 20 \text{N} \]

(ii) **Internal Forces**:

Joint C:

\[F_x = 0 \Rightarrow -BC = 0 \Rightarrow BC = 0 \]

\[F_y = 0 \Rightarrow AB - 10 = 0 \Rightarrow AB = 10 \text{N} \text{ (Tension)} \]

\[F_x = 0 \Rightarrow -BC - AC \cos 45° + 10 = 0 \Rightarrow AC = 10 \sqrt{2} = 14.14 \text{N} \text{ (Tension)} \]

\[F_y = 0 \Rightarrow -10 - AC \sin 45° - CD = 0 \Rightarrow CD = -10 \text{N} - 10 = -20 \text{N} \text{ (Compression)} \]
Exercise 6.13

(i) External Reactions

\[\sum F_x = 0 \]
\[\Rightarrow A_x + C_x = 0 \]

\[\sum F_y = 0 \]
\[\Rightarrow A_y - 4 \times 12.5 = 0 \Rightarrow A_y = 50 \text{ kN} \]

\[\sum M_A = 0 \]
\[\Rightarrow E_x (2.5) - 12.5 (2 + 4 + 6) = 0 \Rightarrow E_x = 60 \text{ kN} \Rightarrow A_x = -60 \text{ kN} \]

Joint D:
\[\sum F_x = 0 \Rightarrow -C_D - G_D \cos \theta = 0 \Rightarrow C_D = -32.5 \times \frac{12}{13} = \frac{30 \text{ kN}}{12} \]
\[\sum F_y = 0 \Rightarrow -12.5 - G_D \sin \theta = 0 \Rightarrow G_D = -12.5 \times \frac{5}{12} \]

Joint G:
\[\sum F_x = 0 \Rightarrow C_G = 0 \]
\[F_G = G_D = -32.5 \text{ kN} \]

Similarly, solve joints C, F and B in that order and calculate the rest of the unknowns.
6.5 Joints under special loading conditions: Zero force members

Many times, in trusses, there may be joints that connect members that are "aligned" along the same line.

Consider joint E:

\[\begin{align*}
\triangle F_x &= 0 \\
\Rightarrow -DE\cos\theta + EF\cos\theta &= 0 \\
\Rightarrow DE &= EF \\
\triangle F_y &= 0 \\
\Rightarrow AE &= EG
\end{align*} \]

Similarly, from joint E: DE=EF and AE=0

Exercise 6.32

Identify the zero-force members.
6.6 Space Trusses

Generalizing the structure of planar trusses to 3D results in space trusses.

The most elementary 3D space truss structure is the tetrahedron. The members are connected with ball-and-socket joints.

Simple space trusses can be obtained by adding 3 elements at a time to 3 existing joints and joining all the new members at a point.

Note: For a 3D determinate truss:

\[3n = m + r \]

where:
- \(n \): joints
- \(m \): members
- \(r \): reactions

\[\Rightarrow 3n \text{ equilibrium equations} \left(\sum F = 0 \right) \]

If the truss is "determinate" then this condition is satisfied. However, even if this condition is satisfied, the truss may not be determinate. Thus this is a necessary condition (not sufficient) for solvability of a truss.

Exercise 6.36

Determine the forces in each member.

\[\sum F_x = 0 \Rightarrow B_x + D_x = 0 \]

\[\sum F_y = 0 \Rightarrow B_y + D_y + C_y - 2184 = 0 \]

\[\sum F_z = 0 \Rightarrow B_z = 0 \]

Symmetry \(B_y = D_y \)

\(B_x = D_x = 0 \)

Joint A:

\[2184 \text{ N} \]

\[\sum F = 0 \Rightarrow \vec{F}_{AB} + \vec{F}_{AC} + \vec{F}_{BD} - 2184 \hat{j} = 0 \]

\[\vec{F}_{AB} = \frac{F_{AB}}{|AB|} \left(\frac{-0.8 \hat{i} - 4.8 \hat{j} + 2.1 \hat{k}}{\sqrt{(0.8)^2 + (4.8)^2 + (2.1)^2}} \right) \rightarrow 5.3 \]

\[\vec{F}_{AC} = \frac{F_{AC}}{|AC|} \left(\frac{2 \hat{i} - 4.8 \hat{j} + 0 \hat{k}}{\sqrt{2^2 + (4.8)^2}} \right) \rightarrow 5.2 \]

\[\vec{F}_{BD} = \frac{F_{BD}}{|BD|} \left(\frac{-0.8 \hat{i} - 4.8 \hat{j} - 2.1 \hat{k}}{\sqrt{(0.8)^2 + (4.8)^2 + (2.1)^2}} \right) \rightarrow 5.3 \]
Similarly find the 3 unknowns F_{BD}, F_{BC} and B_Y at joint B.

\[
\begin{align*}
\sum F_x &= 0 \Rightarrow -0.8 \cdot \frac{5.3}{5.3} F_{AB} + 2 \cdot \frac{5.2}{5.2} F_{AC} - 0.8 \cdot \frac{5.3}{5.3} F_{AD} = 0 \\
\sum F_y &= 0 \Rightarrow -4.8 \cdot \frac{5.3}{5.3} F_{AB} - 4.8 \cdot \frac{5.2}{5.2} F_{AC} - 4.8 \cdot \frac{5.3}{5.3} F_{AD} - 2184 = 0 \\
\sum F_z &= 0 \Rightarrow 2.1 \cdot \frac{5.3}{5.3} F_{AB} - 2.1 \cdot \frac{5.3}{5.3} F_{AD} = 0
\end{align*}
\]

\[
\begin{align*}
F_{AB} &= -861.25 N \\
F_{AC} &= -676 N
\end{align*}
\]

Similarly find the 3 unknowns F_{BD}, F_{BC} and B_Y at joint B.
6.7 Analysis of Trusses: Method of Sections

The method of joints is good if we have to find the internal forces in all the truss members. In situations where we need to find the internal forces only in a few specific members of a truss, the method of sections is more appropriate.

Method of sections:
- Imagine a cut through the members of interest
- Try to cut the least number of members (preferably 3).
- Draw FBD of the 2 different parts of the truss
- Enforce Equilibrium to find the forces in the 3 members that are cut.

For example, find the force in member EF:

EXTERNAL (Entire Truss)

\[\sum F_x = 0 \Rightarrow D_x = 0 \]
\[\sum F_y = 0 \Rightarrow D_y + G_y = 0 \]

Symmetry \(\Rightarrow D_y = G_y = 20 \text{kN} \)

INTERNAL (Cut ---)

Body (1):

\[\sum F_x = 0 \Rightarrow EF + EB \sin \theta + AB = 0 \]
\[\sum F_y = 0 \Rightarrow EB \sin \theta + 20 \text{kN} - 10 \text{kN} = 0 \]
\[\sum M_B = 0 \Rightarrow EFx9 - 10x9 + 10x6 = 0 \]

\[\Rightarrow EF = 30 \text{kN} \]

Read Examples 6.2 and 6.3 from the book.

Exercise 6.63

Find forces in the members EH and GI.

\[\sum M_A = 0 \text{ (for entire truss)} \]
\[\Rightarrow -36 \times 60 + 10 \times 9 = 0 \]

\[\Rightarrow B_y = \frac{36 \times 60}{9 \times 10} = 24 \text{kips} \]

\[\Rightarrow A_y = 12 \text{kips} \]

Cut ---

\[\sum M_e = 0 \Rightarrow -12 \times 30 + G1 \times 16 = 0 \Rightarrow G1 = \frac{360}{16} = 22.5 \text{kips} \]

\[\sum F_x = 0 \Rightarrow EH + GI = 0 \Rightarrow EH = -22.5 \text{kips} \]
\[\sum F_x = 0 \Rightarrow EH + GI - F_1 \cos \theta + F_1 \cos \theta = 0 \]
\[\sum F_y = 0 \Rightarrow 12 - F_1 \sin \theta - F_1 \sin \theta = 0 \]
\[\sum M_F = 0 \Rightarrow -12 \times 30 - EH \times 8 + GI \times 8 = 0 \]

\[GE = \frac{12 \times 30}{16} = 22.5 \text{ kips} \]

\[GH = -22.5 \text{ kips} \]
6.8 Compound Trusses; Determinate vs. Indeterminate Trusses

Trusses made by joining two or more simple trusses rigidly are called Compound Trusses.

- $2n > m + \gamma$ \iff Partially constrained
- $2n < m + \gamma$ \iff Overly constrained, Indeterminate
- $2n = m + \gamma$ \iff Determinate

Exercise 6.69 Classify the trusses as:

Externally: Completely / Partially / Improperly constrained

Internally: Determinate / Indeterminate. (if completely constrained)

$$n = 10 \Rightarrow 2n = 20$$
$$m = 16$$
$$\gamma = 4 \Rightarrow 20$$

\Rightarrow Partially restrained

$$n = 10 \Rightarrow 2n = 20$$
$$m = 16$$
$$\gamma = 4 \Rightarrow 20$$

\Rightarrow Determinate

$$n = 10 \Rightarrow 2n = 20 \text{ equations}$$
$$m = 17$$
$$\gamma = 4 \Rightarrow 21$$

\Rightarrow Indeterminate
6.9 - 6.11 Frames

Frames are structures with at least one multi-force member, i.e. at least one member that has 3 or more forces acting on it at different points.

Frame analysis involves determining:

(i) External Reactions

(ii) Internal forces at the joints

Note:
- Follow Newton's 3rd Law

Frames that are not internally Rigid

When a frame is not internally rigid, it has to be provided with additional external supports to make it rigid.

The support reactions for such frames cannot be simply determined by external equilibrium.

One has to draw the FBD of all the component parts to find out whether the frame is determinate or indeterminate.
Example 6.4

\[\begin{align*}
& f_y = 0 \\
& \Rightarrow A_x + B_x = 0 \\
& f_x = 0 \\
& A_y = 480 \\
& M_A = 0 \\
& \Rightarrow -480 \times 0.16 = 0 \\
& B_y \times 0.16 = 0 \\
& \Rightarrow B_y = \frac{480}{0.16} = 300 \text{N} \\
& \Rightarrow A_x = -300 \text{N}
\end{align*} \]

Read examples 6.5 and 6.6

Exercise 6.101

\[\begin{align*}
& f_y = 0 \\
& \Rightarrow E_x + F_x = 0 \\
& f_y = 0 \\
& \Rightarrow E_y + F_y = 12 \\
& \Rightarrow M_B = 0 \\
& \Rightarrow -E_y \times 1.8 - 12 \times 0.3 = 0 \\
& \Rightarrow E_y = -2 \text{ kN} \\
& \Rightarrow F_y = 14 \text{ kN}
\end{align*} \]

Fig. P6.101

Exercise 6.120
Fig. P6.120

(a) \[T_1 = \begin{cases} \text{if } F_x = 0 \Rightarrow A_x + T_1 + T_2 = 0 & \\ \text{if } F_y = 0 \Rightarrow A_y = P & \\ \text{if } M_A = 0 \Rightarrow -P_2a_2 - T_1 a = 0 & \\ \Rightarrow T_1 = \frac{-P}{2} & \\ \Rightarrow \text{Completely constrained & Determinate} \end{cases} \]

(b) 3-force member

\[\Rightarrow \text{Now consider the whole thing:} \]

\[\begin{cases} A_x = P_2a \Rightarrow \frac{P}{2} = 0 & \\ \text{Thus the structure cannot support any load} & \\ \Rightarrow \text{Partially constrained} \end{cases} \]

OR (long way)

FBD 1:

\[\begin{cases} F_x = 0 \Rightarrow A_x + T_1 \cos 45^\circ + T_2 \cos 45^\circ = 0 & \\ F_y = 0 \Rightarrow A_y - T_1 \sin 45^\circ + T_2 \sin 45^\circ = 0 & \\ M_a = 0 \Rightarrow A_x 0.5a - A_y 2.5a + P_2 0.5a = 0 & \\ \end{cases} \]

5 equations

5 unknowns

\[(A_x, A_y, T_1, T_2, B) \]

FBD 2:

\[\begin{cases} F_x = 0 \Rightarrow -T_1 \cos 45^\circ - T_2 \cos 45^\circ - B \cos \Theta = 0 & \\ F_y = 0 \Rightarrow T_1 \sin 45^\circ - T_2 \sin 45^\circ - B \sin \Theta = 0 & \\ \end{cases} \]

Try to solve for all unknowns.

You will see that you can't (unless \(P = 0 \)). \Rightarrow \text{Partially constrained.}
6.12 Machines

- Machines are structures designed to transmit and modify forces. Their main purpose is to transform input forces into output forces.

- Machines are usually non-rigid internally. So we use the components of the machine as a free-body.

- Given the magnitude of P, determine the magnitude of Q.

Exercise 6.143

6.143 The tongs shown are used to apply a total upward force of 45 kN on a pipe cap. Determine the forces exerted at D and F on tong ADF.

\[M_{F} = 0 \]
\[-22.5 \times 100 \]
\[+ C_{x} \times 75 = 0 \]
\[C_{x} = \frac{22.5 \times 4}{75} = 30 \text{ kN} \]
\[\frac{1}{2} f_{y} = 0 \Rightarrow -C_{x} - f_{x} \Rightarrow f_{x} = -30 \text{ kN} \]
\[f_{y} = -22.5 \text{ kN} \]
Determinate vs. Indeterminate Structures

Structures such as Trusses and Frames can be broadly classified as:

- **Determinate:**
 When all the unknowns (external reactions and internal forces) can be found using "Statics" i.e. Drawing FBDs and writing equilibrium equations.

- **Indeterminate:**
 When, not all the unknowns can be found using Statics.
 Note: Some/most unknowns can still be found.

Structures can also be classified as:
- Completely restrained
- Partially restrained
- Improperly restrained

For trusses, we have been using "formulas" such as \(2n = m + r\) for planar trusses, and \(3n = m + r\) for space trusses to judge the type of structure. For frames, this can be much more complicated. We need to write and solve the equilibrium equations and only if a solution exists, we can conclude that the structure is determinate. Otherwise the structure may be partially constrained or indeterminate or both.

IMPORTANT:

One of the best ways (and mathematically correct way) to conclude determinacy of any structure is by using **Eigen-values**. Eigen-values tell us how many independent equations we have and whether can or can’t solve a system of equations written in the form of matrices.

\[
[A] \mathbf{x} = \mathbf{b}
\]

To do this,
- Draw the FBDs of all rigid components of the structure
- Write out the all the possible equilibrium equations.

Case 1: Number of Equations \(E\) \(<\) Number of Unknowns \(U\) \(<=>\) **INDETERMINATE**

Case 2: Number of Equations \(E\) \(>\) Number of Unknowns \(U\) \(<=>\) **PARTIALLY RESTRAINED**

Case 3: Number of Equations \(E\) \(=\) Number of Unknowns \(U\)
 - Find the number of non-zero Eigen-values \((V_1)\) of the square matrix \([A]\).
 - Find the number of non-zero Eigen-values \((V_2)\) of the rectangular matrix \([A|b]\).

<table>
<thead>
<tr>
<th>Case 3(a):</th>
<th>(V_1 = E = U)</th>
<th>(<=>) Unique Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 3(b):</td>
<td>(V_1 < E)</td>
<td>(<=>) Improperly constrained</td>
</tr>
<tr>
<td></td>
<td>Number of INDEPENDENT equations = (V_1 < U)</td>
<td>Indeterminate & Partially constrained</td>
</tr>
<tr>
<td></td>
<td>(i) (V_1 = V_2 < U)</td>
<td>(<=>) Infinitely many solutions possible</td>
</tr>
<tr>
<td></td>
<td>(ii) (V_1 < V_2)</td>
<td>(<=>) No solution exists</td>
</tr>
</tbody>
</table>

Note: In this procedure, it is better not to reduce the number of unknowns or number of equations by using properties of 2-force or 3-force members.
Examples:

Completely constrained and indeterminate

(Infinitely many solutions possible)

Partially constrained

Solution exists

ND solution

(D = 0?)

Determinate

Improperly restrained

(Infinitely many solutions possible)

ND solution

Improperly restrained

ND solution