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Chapter 5: Distributed Forces: Centroids and Centers of Gravity

What are distributed forces?

= Forces that act on a body per unit length, area or volume

» They are not discrete forces that act at specific points. Rather they act over a continuous region
Examples:
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5.2 Center of Gravity

Gravity pulls each and every particle of a body vertically downwards

What is the location of the equivalent single force that replaces all the distributed forces
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Example

it

Find the Center of Gravity of the area shown below. . ) .
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Example:
Centroid of a Quarter or Semi Ellipse. b O(A - é/ d/l.
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AM
Centroids of Lines
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Exercise 5.45

Find the Centroid of the wire shown.
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Wednesday, October 14, 2009
12:13 PM

5.3 - 5.4 Centroids and First Moments of Areas & Lines.

Definition:

Definition: . .
cunition First Moment of a Line

First Moment of an Area
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Properties of Symmetry

e An area is symmetric with respect to an axis BB’ if for
every point P there exists a point P’ such that PP’ is
perpendicular to BB’ and is divided into two equal

parts by BB".
= The first moment of an area with respect to a line of |B B
symmetry is zero. 5 (a)
= [f an area possesses a line of symmetry, its centroid /5\
lies on that axis l
4

= [f an area possesses two lines of symmetry, its
centroid lies at their intersection.

e An area is symmetric with respect to a center O if for
every element dA4 at (x,y) there exists an area d4’ of

equal area at (-x,-y). ]
= The centroid of the area coincides with the center of i
symmetry. — T

NOTE:
¢ Centroid of any area always exists.
e But, a center of symmetry may or may not exist.
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Friday, October 16,2009

5.5 Composite Areas and Lines

The Centroid of an area (or line) that is made up of several simple shapes
can be found easily using the centroids of the individual shapes.
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Note:

If an area is composed by adding some shapes and subtracting other shapes, then the
moments of the subtracted shapes need to be subtracted as well.
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lay, October 16, 2009
9:04 AM

Find the centroid of the figure shown. v

Find the reactions at A & B. h
(specific weight y = 0.28 Ib/in 3; thickness = 1 in)
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Exercise 5.28 o oo 8 Conpan . e e icin o

A uniform circular rod of weight 8 Ib and radius r=10 in is shown.
Determine the tension in the cable AB & the reaction at C.

2 :3 =27 _-6-3L62 in
m

é’ﬁ?O—% T1(y =0
?F\/>O=7 -W+C\, =0 3|C=8

2M =0 =5 ~T, 10+ W(l%) -0

5| T=5093| |Cx=-5092

CE297-FAQ09-Ch5 Page 8



Sunday, October 18, 2009
3:55PM

5.7 Surfaces & Volumes of Revolution: Theorems of Pappus-Guldinus

Surfaces of revolution are obtained when one "sweeps" a 2-D curve about a fixed axis.

I

2 /
Theorem 1

Area of a surface of revolution is equal to the length of the generating curve times
the distance traveled by the centroid through the rotation.
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Surface areas of revolution

Rotating about y-axis: A= 21T, [_.
Rotating about x-axis: | A = Zﬂg L

General 3D surfaces (aside)

The concepts of area, centers of areas, and Moments of areas can also be extended to general
3D surfaces.

The same integral formulas still hold: ’)C/gL )
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Sunday, October 18, 2009
8:00 PM

Theorem 2
Volume of a body of revolution is equal to the generating area times the distance

traveled by the centroid through the rotation.
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Volumes of Revolution
Rotating about y-axis: ||/ = 217 7 A
Rotating about x-axis: \/ = 2"1‘]"8 A
Exercise 5.59

Find the internal surface area and the volume

of the punch bowl. .
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Wednesday, October 21, 2009 . .
933 AM 5.8 Distributed Loads on Beams

In several applications, engineers have to design beams
that carry distributed loads along their length.
w(x) is weight per unit length.

Simply supported beam.

Cantilever Beam

Total weight:

Point of action:
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Exercise 5.70

Find the reactions at the supports.
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Friday, October 23, 2009
7:51 AM

5.9 Distributed forces on submerged surfaces.

Objects that are submerged in water (or in any liquid) are subjected to distributed
force per unit area which is called pressure.

In water, this pressure always acts perpendicular (normal) to the submerged surface
and its magnitude is given by:

P f;\\m "

Wl lonl
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COTC W) — 4000 )o?,/w?
= Y =19 624 1bjg?

The buoyancy force is the resultant of all these distributed forces acting on the
body. Recall the buoyancy force is equal to the weight of the water displaced.

Aside: If the liquid is viscous, then in addition the normal pressure the viscous fluid may also apply a tangential traction
to the body. This traction is also a force per unit area and is a more general form of pressure.

Resultant force

To obtain the resultant force acting on a submerged surface:

A
Exercise 5 . 82 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display
o T C B
3m x 4m wall of the tank is hinged at A and held by rod BC. ‘ >
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Friday, October 23, 2009
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For Curved Surfaces:

Forces on curved submerged surfaces can he obtained J4 <—>v h\l

by using equilibrium of a surrounding portion of water. % — n,
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5.10 Center of Gravity in 3D space; Center of volume

The formulas for center of gravity in 2 D can be easily
generalized to 3D as follows:
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5.11 Composition of Volumes
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Examples 5.11 and 5.12 in the book.
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11:04 AM

5.12 Center of Volume by integration.

Voltme V= fffmdym

Center of Vol : A
% = | N ?——f‘d\‘;w 2 Jedy /

For complex 3D shapes, triple integrals can be difficult to evaluate exactly.

For some special cases one can find the centroid as follows:
(i) Bodies of revolution
(i1) Volume under a surface
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Read Example 5.13

Exercise 5.126
Find the centroid of the volume obtained by rotating
the shaded area about the x-axis.
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