Chapter 4: Equilibrium of Rigid Bodies

A (rigid) body is said to in equilibrium if the vector sum of ALL forces and all their moments taken about any (and all) points is zero.

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F})=0
\end{aligned}
$$

In $\mathrm{x}, \mathrm{y}, \mathrm{z}$ components:

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

These equations give 6 independent equations in 3D space for each (rigid) body.

4.2 Free Body Diagrams

The free body diagram is a depiction of an object or a body along with all the external forces acting on it.
Steps in drawing a FBD of a body:

- Choose and draw the body (with dimensions). Carefully define its boundaries.
- Imagine the body in its current state and how it interacts with its surroundings.
- Draw ALL the external forces acting on the body (including self-weight).
- Any unknown forces acting on the body (required to keep it in equilibrium) must also be drawn.

Examples

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Usually a body is constrained against motion using supports.
The forces from these supports, acting on the body are external to the body and must be included in the FBD.

The magnitude of these support forces are usually unknown and are obtained by solving the equilibrium equations.

Some examples of these support reactions are:

It is very important to correctly estimate the number and type of reactions that a support can provide.

One way to determine that is:

- Imagine yourself in the position of the body ().
- Now ask the question:
"If I wanted to move in the x or y or z direction, would the support be able to stop my movement in that direction?"
- If the answer is "yes" then there will be an unknown reaction force from the support acting on the body in that direction.
Conversely if the support cannot stop my motion in some direction, then there will not be a reaction force in that direction.
- Same thing holds true for rotations. "If I wanted to rotate in the x or y or z direction, would the support be able to stop my rotation in that direction?"
- If the answer is "yes" then there will be an unknown reaction moment acting on the body in that direction. Conversely if the support cannot stop my rotation in some direction, then there will not be a reaction moment in that direction.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

| Support or Connection | Rumber of
 Unknowns |
| :---: | :---: | :---: | :---: |
| Roaction | |
| Collers | |
| Crictionless rod | |

4.4 Equilibrium in 2 dimensions

In the $x-y$ plane

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{A}=0
$$

Note:

$$
F_{z}=0 \quad M_{x}=M_{y}=0 \quad M_{z}=M_{O}
$$

$0 \longrightarrow x$

Example:

$$
\begin{aligned}
& \sum_{x} F_{x}=0 \Rightarrow 5-A_{x}=0 \Rightarrow A_{x}=5 \mathrm{kN} \\
& \sum_{1} F_{y}=0 \Rightarrow-35+A_{y}+B_{y}=0 \Rightarrow A_{y}=12.5 \mathrm{kN} \\
& \sum_{1} M_{A}=0 \Rightarrow+B_{y} \times 10-50-150-25=0 \Rightarrow B_{y}=22.5 \mathrm{kN}
\end{aligned}
$$

Interestingly:

- The 3 equilibrium equations above can also be replaced with the following equivalent equations: (only for 2 dimensions)
(A) $\quad \sum F_{x}=0 \quad \sum M_{A}=0 \quad \sum M_{B}=0$
(where the line AB is not perpendicular to the x -axis)
OR

$$
\begin{equation*}
\sum M_{A}=0 \quad \sum M_{B}=0 \quad \sum M_{C}=0 \tag{B}
\end{equation*}
$$

(where A, B and C are not all along the same line)
Reason is:
Consider the equivalent force \& moments at points A, B and C :

- If we show that $\mathrm{M}_{\mathrm{A}}=0$ and $\mathrm{M}_{\mathrm{B}}=0$, then the only thing remaining to check would be $\Sigma \mathrm{F}=0$ along AB .
- If in addition we say that $\mathrm{M}_{\mathrm{C}}=0$ then that possibility is ruled out as well.

Example 4.1

A fixed crane has a mass of 1000 kg and is used to lift a 2400 kg crate. It is held in place by a pin at A and a rocker at B. The center of gravity of the crane is located at G.

Determine the components of the reactions at A and B.

EBD

$$
\begin{align*}
& \sum F_{x}=0 \Rightarrow A_{x}+B_{x}=0 \tag{1}\\
& \sum F_{y}=0 \Rightarrow A_{y}-9.81-23.5=0 \tag{2}\\
& \sum_{1}^{1} M_{A}=0 \Rightarrow B_{x} \times 1.5-9.81 \times 2-23.5 \times 6=0
\end{align*}
$$

$$
2400 \times 9.81
$$

$$
=23.5 \mathrm{kN}
$$

Example 4.2
$\mathrm{P}=15 \mathrm{kips}$, Find reactions at A \& B.

Example 4.3

A loading car is at rest on an inclined track. The gross weight of the car and its load is 5500 lb , and it is applied at at G. The cart is held in position by the cable.

Determine the tension in the cable and the reaction at each pair of wheels.

$\sum F_{x}=0 \Rightarrow-T+1 N \cos 25^{\circ}=0$
$\sum_{1} F_{y}=0 \Rightarrow R_{1}+R_{2}-W \sin 25^{\circ}=0$
$\sum_{1} M_{A}=0 \Rightarrow T \times 24+50 \times R_{2}-W \sin 25^{\circ} \times 25-W \cos 25^{\circ} \times 30=0$

Example 4.4

The frame supports part of the roof of a small building. The tension in the cable is 150 kN .

Determine the reaction at the fixed end E.

$$
\begin{aligned}
\sqrt{4 \cdot 5^{2}+6^{2}} & =7.5 \\
\cos \theta & =\left(\frac{4.5}{7.5}\right)
\end{aligned}
$$

$$
\sin \theta=\left(\frac{6}{7.5}\right)
$$

$$
\sum_{1} f_{y}=0 \Rightarrow-80-T\left(\frac{6}{7.5}\right)+E_{y}=0
$$

$$
\sum_{1}^{\infty} M_{E}=0 \Rightarrow 20(1.8+3.6+5.4+7.2)-T \cos \theta \times 6+M_{E z}=0
$$

4.5 Statically INDETERMINATE Reactions

Case 1: Indeterminate

- More unknowns; Not enough equations

(a)

(b)

Case 2: Partially Restrained

- Fewer unknowns than equations

(a)

(b)

Case 3: Improperly Restrained

Both:

- Indeterminate AND
- Partially restrained

IMPORTANT:

In this case, ALL the reactions are either concurrent or parallel.

(a)

(b)

Exercise 4.59
1). Determinate -OK
(2) 11
(3) IN determinate (Case I)
(4) IMPROPER (CaseIII)
(5) Partial Restrained (CasitI)
(6) Determinate -OK
(7) Partial Restraint (Case II)
(8) Indeterminate (Case I)

4.6-4.7 Two Force members \& Three Force members

Sometimes, there are bodies (or parts of bodies) that have EXACTLY TWO or THREE external forces acting on them. For such cases, the equilibrium equations are much more simplified.

Case 1: $\mathbf{2}$ force member

Case 2: 3 Force member

> Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Exercise 4.66 \& 4.67

Determine the reactions at B and D

- $b=60 \mathrm{~mm}$
- $b=120 \mathrm{~mm}$

FED

From the equilibrium of Member $A B C$:

$$
\sum F_{x}=0 \Rightarrow-F_{C D} \cos 45^{\circ}+B_{x}=0
$$

$$
\sum F_{y}=0 \Rightarrow-80+F_{C D} \sin 45^{\circ}+B_{y}=0 \Rightarrow B_{y}=
$$

$$
\Rightarrow M_{B}=0 \Rightarrow+(80 \times 250)+\left(F_{C D} \cos 45^{\circ} \times b\right)-\left(F_{C D} \sin 45^{\circ} \times 90\right)=0
$$

$$
\Rightarrow F_{C D}=\frac{80 \times 250}{\left(90 \sin 45^{\circ}-b \cos 45^{\circ}\right)}=\begin{array}{ll}
+942.8 \mathrm{~N} & \text { for } b=60 \mathrm{~mm} \\
-942.8 \mathrm{~N} & \text { for } b=120 \mathrm{~mm}
\end{array}
$$

$$
\Rightarrow B x=F_{C D} \cos 45^{\circ}=\begin{array}{ll}
+666.7 \mathrm{~N} & \text { for } b=60 \mathrm{~mm} \\
-666.7 \mathrm{~N} & \text { for } b=120 \mathrm{~mm}
\end{array}
$$

$$
\Rightarrow B_{y}=80-F_{C D} \sin 45^{\circ}=\begin{array}{ll}
-586.7 \mathrm{~N} & \text { for } b=60 \mathrm{~mm} \\
-746.7 \mathrm{~N} & \text { for } b=120 \mathrm{~mm}
\end{array}
$$

50 kg crate is attached to a trolley beam as shown. Given $\mathrm{a}=1.5 \mathrm{~m}$.

Determine
(a) Tension in the cable CD
(b) Reaction at B

3 force member

FBD

2 Unknowns: T, B
$\begin{aligned} & \text { 2 Equations } \\ & \sum F_{x}=0 ;\end{aligned} \quad F_{y}=0$
($\sum M=0$ is already in the " 3 force" member concept.)

Exercise 4.90 (HW-13):

Find an equation in R, L and θ that governs Equilibrium.

At this point θ can be found simply from geometry.

Alternatively:
Without using the fact that this is a 3-force member:

ABD

$\begin{aligned} & \text { Geometry: } \\ & {[\text { Lime } \theta}=R \sin \alpha] \\ &+\end{aligned} \quad$ (gives α in terms of θ)

$$
\left[\begin{array}{l}
\sum C_{x}=0 \\
\sum F_{y}=0 \\
\sum M_{B}=0
\end{array}\right] \begin{gathered}
\text { 3 equations } \\
\text { unknowns } \\
(A x, B, \theta)
\end{gathered}
$$

4.8-4.9 Equilibrium of Bodies in 3D space

- Draw the FBD
- Equations of equilibrium are given by:

$$
\begin{aligned}
& \sum \vec{F}=0 \\
& \sum \vec{M}_{O}=\sum(\vec{r} \times \vec{F})=0
\end{aligned}
$$

- 6 scalar equations are required to express the conditions for the equilibrium of a rigid body in the general three dimensional case.

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

- 6 unknown reactions can be solved for.

Some unknown reactions in 3D:

	Cable Foree with known line of action (one unlawnu)
	 Two force components

Copynight O The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Univenal joint

Thice force components and one couple

Examples 4.7

$$
\begin{aligned}
\text { Given } \mathrm{W} & =\text { Ladder }+ \text { Person } \\
& =100 \times 9.81=981 \mathrm{~N}
\end{aligned}
$$

The wheels at A \& B are flanged while the wheel at C is unflanged.
Determine reactions at A, B and C

Example 4.8

Given $\mathrm{W}=270 \mathrm{lbs}$
Determine

- Tensions in AE and BD.
- Reactions at A.

Note: Unrestrained in rotation about x.
 Unknowns: $A_{x}, A_{y}, A_{z}, T_{E C}, T_{B D}$

$$
\begin{aligned}
\sum \vec{F} & =0 \\
& \left.\Rightarrow A_{x} \underline{i}+A_{y} \underline{j}+A_{z} \underline{k}+\vec{T}_{E C}+\vec{T}_{B D}-270 \underline{j}=0\right] \quad 3 \text { equations } \\
\sum \vec{M} & =0 \\
& \left.\Rightarrow\left(\vec{\gamma}_{A E} \times \vec{T}_{E C}\right)+\left(\vec{\gamma}_{A B} \times \overrightarrow{T_{B D}}\right)+(4 \underline{i} \times(-270 \underline{j}))=0\right] \text { 2 equations } \\
& \Rightarrow\left(6 \underline{i} \times \vec{T}_{E C}\right)+\left(8 \underline{i} \times \vec{T}_{B D}\right)+(4 \underline{i} \times-270 \underline{j})=0
\end{aligned}
$$

Example 4.9

Given mass of the cover: 30 kg Assume no axial reaction at B.

Find Tension in CD and reactions at $\mathrm{A} \& \mathrm{~B}$.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$
\vec{T}_{D C}=T_{D C} \frac{\overrightarrow{D C}}{|D C|}
$$

$$
\left.\overrightarrow{\vec{G} \vec{F}}=\stackrel{0}{\Rightarrow}\left(A_{x} \underline{i}+A_{y} \underline{j}+A_{z} \underline{k}\right)+\left(B_{x} \underline{i}+B y \underline{j}\right)+\vec{T}_{D C}-30 \times 9.81 \underline{j}=0\right] \text { 3 equations }
$$

$$
\sum \vec{M}_{A}=0
$$

$$
\left.\begin{array}{rl}
\vec{M}_{A}=0 \\
\Rightarrow & {\left[\gamma_{A B} \times\left(B_{\times} \underline{i}+B_{y} \underline{j}\right)\right]+} \\
& \left.\left[\vec{\gamma}_{w} \times(-30 \times 9 \cdot 81 \underline{j})\right]+\left(\vec{\gamma}_{A D} \times{\overrightarrow{T_{D C}}}\right)\right] \text { 3equations } \\
& \left(M_{A x} \underline{j}\right)+\left(M_{B \times \underline{i}}+M_{B y}, j\right)=0
\end{array}\right] .
$$

Unknowns: $\underbrace{A_{x}, A_{y}, A_{z}, B_{x}, B_{y}, T_{D C}}_{\text {Forces }} \underbrace{M_{A x}, M_{A y}, M_{B x}, M_{B y}}_{\text {Moments. }}$
Note: The book assumes that $M_{A X}=M_{A Y}=M_{B X}=M_{B Y}=0$. This is not a good assumption.

Example 4.10

Given $\mathrm{W}=450 \mathrm{lb}$.
Find

- Location of G so that the tension EG is minimum
- This minimum value of tension

Note: Determinate/Indeterminate

$$
\begin{aligned}
& \overrightarrow{A D}=12 \underline{i}+12 \underline{j}-6 \underline{k} \\
& \overrightarrow{\lambda_{A D}}=2 / 3 \underline{i}+\frac{2}{3} \underline{j}-\frac{1}{3} \underline{k} \\
& \overrightarrow{E G}=(x-6) \underline{i}+(y-12) \underline{j}-6 \underline{k} \\
& \overrightarrow{T E G}=T \overrightarrow{\lambda E G}=T \frac{\overrightarrow{E G}}{|E G|}
\end{aligned}
$$

Moment about AD:

$$
\begin{aligned}
\sum M_{A D} & =\vec{\lambda}_{A D} \cdot\left[\left(\overrightarrow{\gamma_{A E}} \times \vec{T}_{E G}\right)+\left(\overrightarrow{\gamma_{A C}} \times \vec{W}\right)\right]=0 \\
& ={\overrightarrow{\lambda_{A D}}}^{2} \cdot\left(\vec{\gamma}_{A E} \times \vec{T}_{E G}\right)+\frac{\overrightarrow{A D}}{|A D|} \cdot[(12 \underline{i}+12 j) \times(-450 j)]=0 \\
& =\vec{\lambda}_{A D} \cdot\left(\vec{\gamma}_{A E} \times \vec{T}_{E G}\right)+\left(\frac{2}{3} \underline{i}+2 / 3 \underline{j}-\frac{1}{3} k\right) \cdot(-5400 \underline{k})=0 \\
& =\lambda_{A D} \cdot\left(\vec{\gamma}_{A E} \times \overrightarrow{T_{E G}}+1800=0\right.
\end{aligned}
$$

$$
\text { ie } \quad \overrightarrow{T_{E G}} \cdot\left(\overrightarrow{\lambda_{A D}} \times \vec{\gamma}_{A E}\right)=-1800
$$

(Cyclic Permutation)

$$
T \vec{\lambda}_{E G} \cdot\left(\frac{2}{3} \underline{i}+\frac{2}{3} \underline{j}-\frac{1}{3} \underline{k}\right) \times(6 \underline{i}+12 \underline{j})=-1800
$$

$$
T \overrightarrow{\lambda_{E G}} \cdot\left|\begin{array}{ccc}
i & j & k \\
2 / 3 & 2 / 3 & -1 / 3 \\
6 & 12 & 0
\end{array}\right|=-1800
$$

$$
\Rightarrow \underbrace{T}_{\eta} \underbrace{\overrightarrow{\lambda_{E q}} \cdot(4 \underline{i}-2 j+4 k)}_{\hat{E}}=-1800
$$

i.e. we can express

$$
\begin{gathered}
\overrightarrow{E G}=c(4 \underline{i}-2 \underline{j}+4 \underline{k}) \quad\left\{\begin{array}{l}
\text { for some } \\
\text { unknown } c
\end{array}\right\} \\
\Rightarrow(x-6) \underline{i}+(y-12) \underline{j}-6 \underline{k}=c(4 \underline{i}-2 \underline{j}+4 \underline{k})
\end{gathered}
$$

Equating " k " components: $-6=c .4 \Rightarrow c=-3 / 2$

$$
\begin{array}{ll}
\Rightarrow & x-6=(-3 / 2) 4 \\
\Rightarrow & y-12=(-3 / 2)(-2)
\end{array} \Rightarrow \begin{aligned}
& x=0 \\
& y=15 \mathrm{ft}
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow \text { From (1) } T\left(\frac{-6 \underline{i}+3 \underline{j}-6 \underline{k}}{\sqrt{81}}\right) \cdot(4 \underline{i}-2 \underline{j}+4 \underline{k})=-1800 \\
\Rightarrow T\left(\frac{-54}{9}\right)=-1800 \Rightarrow T=300 \mathrm{lb}
\end{array}
$$

