2.1-2.3 Forces as Vectors \& Resultants

- Forces are drawn as directed arrows. The length of the arrow represents the magnitude of the force and the arrow shows its direction. Forces on rigid bodies further have a line of action.

- Forces (and in general all vectors) follow the parallelogram law of vector addition. In fact, vectors are defined as quantities that follow the parallelogram law.

$$
\mathbf{R}=\mathbf{P}+\mathbf{Q}
$$

- Vector addition is represented by the same symbol +

The meaning of plus will be clear from the context it is used in.
Note:
Vector addition is independent of any chosen coordinate system.
Two vectors are equal if they have the same magnitude and direction.

The negative of a vector \mathbf{F} is simply -F denoted by arrow of the same size in the opposite direction.

$$
\mathbf{F}+(-\mathbf{F})=\mathbf{0}
$$

2.4-2.5 Addition of Vectors, Force resultants

- Vector Addition Parallelogram law:
- Commutative property

$$
\mathbf{P}+\mathbf{Q}=\mathbf{Q}+\mathbf{P}=\mathbf{R}
$$

- Vector Addition Triangle law (tip-to-tail):

Derives from the parallelogram law.

- Subtraction of a vector from another vector:
(Addition of the negative vector)

$$
\mathbf{P}-\mathbf{Q}=\mathbf{P}+(-\mathbf{Q})
$$

- Addition of multiple vectors
- Associative property

$$
\mathbf{P}+\mathbf{Q}+\mathbf{S}=(\mathbf{P}+\mathbf{Q})+\mathbf{S}=\mathbf{P}+(\mathbf{Q}+\mathbf{S})=\mathbf{S}+\mathbf{Q}+\mathbf{P}
$$

Alternatively

(2)

- Using tip-to-tail rule (Polygon Law):

(3)
- Product of a scalar \& a vector
"Scales" the length of the vector.

Sine and Cosine Laws

Sine Law:
$\frac{\sin (\mathrm{a})}{\mathrm{A}}=\frac{\sin (\mathrm{b})}{\mathrm{B}}=\frac{\sin (\mathrm{c})}{\mathrm{C}}$
Cosine Law:

$\frac{A^{2}=B^{2}+C^{2}-2 \times B \times C \times \cos (a)}{B^{2}=A^{2}+C^{2}-2 \times A \times C \times \cos (b)}$
$\mathrm{C}^{2}=\mathrm{A}^{2}+\mathrm{B}^{2}-2 \times \mathrm{A} \times \mathrm{B} \times \cos (\mathrm{c})$

Rectangular Components

Sine and Cosine of a Sum of Angles

$$
\begin{aligned}
& \operatorname{Sin}(A \pm B)=\operatorname{Sin}(A) \operatorname{Cos}(B) \pm \operatorname{Sin}(B) \operatorname{Cos}(A) \\
& \operatorname{Cos}(A \pm B)=\operatorname{Cos}(A) \operatorname{Cos}(B) \mp \operatorname{Sin}(A) \operatorname{Sin}(B)
\end{aligned}
$$

Examples

- Read Example 2.1 in book.
- Exercise 2.1

$$
\begin{aligned}
& \mathrm{P}=75 \mathrm{~N} \\
& \mathrm{Q}=125 \mathrm{~N}
\end{aligned}
$$

Determine the resultant using
(1) Parallelogram Law,
(2) Triangle Rule,
(3) Trigonometry.

Using trigonometry
Length $A C=b$ (unknown)
Angle \propto of $A C$ with vertical (unknown)

Length $A B=C=125 \mathrm{~N}$
Length $B C=a=75 \mathrm{~N}$

Using the cosine Law :-

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \cos B \\
& =75^{2}+125^{2}-2 \times 75 \times 125 \cos \left(125^{\circ}\right)
\end{aligned}
$$

solving:

$$
b=178.8982 \mathrm{~N} \approx 179 \mathrm{~N}
$$

Now using Sine Law:

$$
\begin{aligned}
\frac{\sin B}{b} & =\frac{\sin A}{a}=\frac{\sin C}{c} \\
\frac{\sin (125)}{178.8982} & =\frac{\sin (35-\alpha)}{75}=\frac{\sin (20+\alpha)}{125} \\
\Rightarrow \sin (20+\alpha) & =\frac{125}{178.8982} \times \sin \left(125^{\circ}\right)=0.5724 \\
\Rightarrow 20+\alpha & =\sin ^{-1}(0.5724)=34.9149 \\
\Rightarrow \alpha & =14.9149 \approx 15^{\circ}
\end{aligned}
$$

2.6 Resolving Forces into Components

- Reverse process of vector addition. Split a force into two (or more) components.

$$
\mathbf{F}=\mathbf{P}+\mathbf{Q}
$$

Given \mathbf{F}, \quad Find \mathbf{P} and \mathbf{Q} ?

Many Possibilities

- Special cases:
- One component (say \mathbf{P}) is known:

- The line of action of both components is known

Example 2.2 in book:

In class exercise.

2.7 Rectangular Components of Vectors; Unit vectors

- For ease in mathematical manipulation, forces (and vectors) can be resolved into rectangular components along predefined x, y (and z) directions.

$$
\mathbf{F}=\mathbf{F}_{\mathbf{x}}+\mathbf{F}_{\mathbf{y}} \quad=\quad \mathbf{F}_{\mathbf{x}^{\prime}}+\mathbf{F}_{\mathbf{y}^{\prime}}
$$

- One can choose any coordinate system $[\mathrm{O}, \mathbf{i}, \mathbf{j}, \mathbf{k}]$ and resolve forces and vectors along these directions.

\mathbf{i}, \mathbf{j}, (and $\mathbf{k})$ are unit vectors. (magnitude $=1$)

Note:

$$
\begin{aligned}
& \mathbf{i}^{\prime}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j} \\
& \mathbf{j}^{\prime}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{i}^{\prime} \\
\mathbf{j}^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\mathbf{i} \\
\mathbf{j}
\end{array}\right]
$$

Useful in converting one coordinate system to another.

- Using the unit vectors:

Examples

- Read examples $1,2 \& 3$ in section 2.7 of the book.
- Exercise 2.21

Determine the x, y components of the 3 forces.

$$
\text { (i) } F=800 \mathrm{~N}
$$

$$
\text { Note: } \tan \theta_{1}=\frac{600}{800}=\frac{3}{4}
$$

$$
\begin{aligned}
\Rightarrow F_{x} & =F \cos \theta_{1} \\
& =800 \times \frac{4}{5}=640 \mathrm{~N}
\end{aligned}
$$

$$
\Rightarrow \underline{F}_{\underline{x}}=640 \underline{i} \mathrm{~N}
$$

$$
F_{y}=F \sin \theta_{1}
$$

$$
=800 \times \frac{3}{5}=480 \mathrm{~N} \Rightarrow F_{y}=480 \underline{\mathrm{j}} \mathrm{~N}
$$

$$
\Rightarrow \underline{F}=F_{x}+\underline{F}_{y}
$$

$$
\underline{E}=640 \underline{i}+480 \underline{j} \mathrm{~N}
$$

Similarly solve for the other two forces.

2. 8 Addition of forces in x - y components

- The vector sum of two or more forces can be obtained by
- Resolving each force into $x-y$ components
- Simply adding the individual components
$E=\underline{F}_{1}+F_{2}+\underline{F}_{3}$
$\begin{aligned} \underline{E}= & \left(F_{1 x}+F_{2 x}+F_{3 x}\right) \underline{i} \\ & +\left(F_{1 y}+F_{2 y}+F_{3 y}\right) \underline{j}\end{aligned}$

$$
\underline{F}=F_{x} \underline{i}+F_{y} \underline{j}
$$

where

$$
\begin{aligned}
& F_{x}=F_{1 x}+F_{2 x}+F_{3 x} \\
& F_{y}=F_{1 y}+F_{2 y}+F_{3 y}
\end{aligned}
$$

Example

- Read example 2.3 in book.
- Exercise 2.36

Note: $\sin \theta_{1}=\frac{5}{13} ; \cos \theta_{1}=\frac{12}{13}$

$$
\begin{array}{ll}
\sin \theta_{2}=\frac{800}{1160} ; \quad \cos \theta_{2}=\frac{840}{1160} \\
\sin \theta_{3}=\frac{4}{5} ; \quad \cos \theta_{3}=\frac{3}{5}
\end{array}
$$

$$
\left.\begin{array}{l}
F_{1 x}=F_{1} \cos \theta_{1}=780 \times \frac{12}{13}=720 \mathrm{~N} \\
F_{1 y}=(-) F_{1} \sin \theta_{1}=-780 \times \frac{5}{13}=-300 \mathrm{~N}
\end{array}\right]
$$

$$
\left.\begin{array}{l}
F_{2 x}=(-) F_{2} \cos \theta_{2}=-725 \times \frac{840}{1160}=-525 \mathrm{~N} \\
F_{2 y}=F_{2} \sin \theta_{2}=725 \times \frac{800}{1160}=500 \mathrm{~N} \\
F_{3 x}=(-) F_{3} \cos \theta_{3}=-500 \times \frac{3}{5}=-300 \mathrm{~N} \\
F_{3 y}=(-) F_{3} \sin \theta_{3}=-500 \times \frac{4}{5}=-400 \mathrm{~N}
\end{array}\right]
$$

Thus the resultant is:

$$
\begin{aligned}
& \underline{F}=(720-525-300) \underline{i}+(-300+500-400) \underline{j} \\
& \underline{F}=-105 \underline{i}-200 \underline{j} \quad \frac{-105}{1}
\end{aligned}
$$

2.9-2.11 Equilibrium of a Particle; Free Body Diagrams

- If the resultant of all the forces acting on a particle is zero, the particle is said to be in equilibrium.

$$
\begin{aligned}
& \mathbf{R}=\Sigma \mathbf{F}=\mathbf{0} \\
& \Sigma \mathrm{F}_{\mathrm{x}}=0 ; \quad \Sigma \mathrm{F}_{\mathrm{y}}=0
\end{aligned}
$$

- Recall, Newton's 1st Law.
- Choose the particle judiciously.
- FREE BODY DIAGRAMS
- A diagram showing all the forces acting on a particle or an object.

In 2 dimensions, we have two equations of equilibrium, thus the maximum number of unknowns we can solve for is two.

Examples:

- Unloading a truck.

(a) Space diagram

- Read Examples 2.4, 2.5 and 2.6 in book.
- Exercise 2.46:

Determine $T_{A C}$ and $T_{B C}$

$$
\begin{aligned}
& T_{A C}=\frac{1962}{\sin \left(60^{\circ}\right)} \cdot \sin \left(15^{\circ}\right)=586.3604 \approx 586 \mathrm{~N} \\
& T_{B C}=\frac{1962}{\sin \left(60^{\circ}\right)} \cdot \sin \left(105^{\circ}\right)=2188.3 \approx 2188 \mathrm{~N}
\end{aligned}
$$

Pulleys

- The tension on both sides of a frictionless pulley is the same (under Equilibrium).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Equilibrium of the pulley A :

$$
\sum F_{x}=0
$$

$$
\begin{array}{r}
\Rightarrow(-) P \cos \alpha+2 P \cos \left(70^{\circ}\right)=0 \\
\Rightarrow \cos \alpha=2 \cos \left(70^{\circ}\right) \\
\Rightarrow \alpha=46.84^{\circ}
\end{array}
$$

$$
\sum_{1} F_{y}=0
$$

$$
\Rightarrow=W+P \sin \alpha+2 P \sin \left(70^{\circ}\right)=0
$$

$$
\Rightarrow P=\frac{W}{\left(\sin \alpha+2 \sin \left(70^{\circ}\right)\right)}
$$

$$
\Rightarrow P=601.6486 \approx \quad P=601.65 \mathrm{~N}
$$

(b)

- Resolve \vec{F} into horizontal and vertical components.

$$
F_{y}=F \cos \theta_{y}
$$

$$
F_{h}=F \sin \theta_{y}
$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(c)

- Resolve F_{h} into rectangular components

F_{x}	$=F_{h} \cos \phi$
	$=F \sin \theta_{y} \cos \phi$
$F_{\mathbf{Z}}$	$=F_{h} \sin \phi$
	$=F \sin \theta_{y} \sin \phi$

Note:

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}
$$

Example:

$$
\begin{aligned}
& F_{h}=F \sin 30^{\circ}=5 \mathrm{~N} \\
& \text { Thus } F_{x}=F_{h} \cos 45^{\circ}=5 \times \frac{1}{\sqrt{2}}=3.54 \mathrm{~N} \\
& F_{z}=F_{h} \sin 45^{\circ}=5 \times \frac{1}{\sqrt{2}}=3.54 \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
F_{y}=F \cos 30^{\circ} & =10 \times \frac{\sqrt{3}}{2} \mathrm{~N} \\
& \Rightarrow F_{y}=8.66 \underline{j} \mathrm{~N} \\
F_{h} & =F \sin 30^{\circ}=5 \mathrm{~N}
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& \underline{F}_{x}=3.54 \underline{i} \mathrm{~N} \\
& \underline{F}_{z}=3.54 \underline{\mathrm{k}}
\end{aligned}
$$

Direction Cosines

(a)

(b)

(c)

$$
\cos ^{2} \theta_{x}+\cos ^{2} \theta_{y}+\cos ^{2} \theta_{z}=1
$$

$$
\begin{aligned}
& F_{x}=F \cos \theta_{x} \\
& F_{y}=F \cos \theta_{y} \\
& F_{z}=F \cos \theta_{z}
\end{aligned}
$$

Example:
For the example shown above in figure 1:

$$
\begin{aligned}
& \cos \theta_{x}=\frac{F_{x}}{F}=\frac{3.54}{10} \Rightarrow \theta_{x}=69.3^{\circ} \\
& \cos \theta_{y}=\frac{F_{y}}{F}=\frac{8.66}{10} \Rightarrow \theta_{y}=30^{\circ} \\
& \cos \theta_{z}=\frac{F_{z}}{F}=\frac{3.54}{10} \Rightarrow \theta_{z}=69.3^{\circ}
\end{aligned}
$$

General 3-dimensional Unit Vector

A general 3-D unit vector can be used to represent the line of action of a 3-D force.

$$
\lambda=\cos \theta_{\mathrm{x}} \mathbf{i}+\cos \theta_{\mathrm{y}} \mathbf{j}+\cos \theta_{\mathrm{z}} \mathbf{k}
$$

$$
\begin{aligned}
& F=F \lambda \\
& \underline{F}=F \underline{\lambda}
\end{aligned}
$$

Example

For the example in figure 1:

$$
\begin{aligned}
& \lambda=0.354 \mathbf{i}+0.866 \mathbf{j}+0.354 \mathbf{k} \\
& \mathbf{F}=10 \lambda \mathrm{~N}
\end{aligned}
$$

Addition of forces (vectors) in 3-D space

Simply add the x, y, and z components.

$$
\begin{aligned}
\mathbf{R}=\Sigma \mathbf{F} & R_{x}=\sum F_{x} \\
\text { ie. } & R_{y}=\sum F_{y} \\
& R_{z}=\sum F_{z} \\
& R=\sqrt{R_{x}^{2}+R_{y}^{2}+R_{z}^{2}}
\end{aligned}
$$

2.15 Equilibrium of Particles in 3D Space

$$
\mathbf{R}=\Sigma \mathbf{F}=\mathbf{0}
$$

$$
\Sigma \mathrm{F}_{\mathrm{x}}=0 ; \quad \Sigma \mathrm{F}_{\mathrm{y}}=0 ; \quad \Sigma \mathrm{F}_{\mathrm{z}}=0
$$

Note:
3 Independent equations. Thus 3 unknowns can be solved for.

- Example 2.7 in book

Tension in wire $=2500 \mathrm{~N}$ Find F_{x}, F_{y}, F_{z} at A and $\theta_{x}, \theta_{y}, \theta_{z}$.

Approach:
If we know the "direction" of E, we can find F_{x}, F_{y}, F_{z}.

Direction \leftrightarrow Unit Vector λ

$$
\begin{aligned}
& \underline{\Lambda}=-40 \underline{i}+80 \underline{j}+30 \underline{k} \mathrm{~m} 30 \mathrm{~m} \\
&|\underline{\Lambda}|=\Lambda=\sqrt{(-40)^{2}+(80)^{2}+(30)^{2}} \\
&=94.34 \mathrm{~m}
\end{aligned}
$$

Z
\Rightarrow Unit Vector

$$
\begin{aligned}
\underline{\lambda} & =\frac{\Lambda}{\Lambda}=\frac{-40}{94.34} \underline{i}+\frac{80}{94.34} j+\frac{30}{94.34} \underline{k} \\
& \Rightarrow \underline{\lambda}=-0.424 \underline{i}+0.848 \underline{j}+0.318 \underline{k}
\end{aligned}
$$

Recall:

$$
\begin{aligned}
\underline{E}=F \underline{\lambda} & =2500(\underline{\lambda}) \mathrm{N} \\
\underline{F} & =\underbrace{-1060}_{F_{x}} \underline{i}+\underbrace{2120}_{F_{y}} \underline{j}+\underbrace{795}_{F_{z}} \underline{k}
\end{aligned}
$$

Also recall:

$$
\begin{aligned}
\Rightarrow \quad \underline{\lambda} & =\underbrace{-0.424}_{\cos \theta_{x}} \underline{i}+\underbrace{0.848}_{\cos \theta_{y}} \underline{j}+\underbrace{0.318} \underline{k} \\
\Rightarrow \theta_{x} & =\cos ^{-1}(-0.424) \\
\theta_{y} & =\cos ^{-1}(0.848)=115.1^{\circ} \\
\theta_{z} & =\cos ^{-1}(0.318)=32^{\circ}
\end{aligned}
$$

Free body diagram of point O :

Note:

$$
\begin{aligned}
& \underline{T}=T_{1} \underline{\lambda}_{1} \\
& \underline{T_{2}}=T_{2} \underline{\lambda_{2}} \\
& \underline{T}=T_{3} \underline{\lambda}_{3}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{O A} & =-4 \underline{i}+3 \underline{j}+3 \underline{k} m \\
& \Rightarrow|O A|=\sqrt{4^{2}+3^{2}+3^{2}}=5.83 \mathrm{~m} \\
& \Rightarrow \text { Unit vector } \lambda_{1}=\frac{\overrightarrow{O A}}{|O A|}=\frac{-4}{5.83} \underline{i}+\frac{3}{5.83} \underline{j}+\frac{3}{5.83} \underline{k}
\end{aligned}
$$

$\underset{\rightarrow B}{\text { Similarly }}$

$$
\begin{aligned}
& \overrightarrow{O B}=-4 \underline{i}+3 j-3 \underline{k} m \\
& \Rightarrow|O B|=\sqrt{4^{2}+3^{2}+3^{2}}=5.83 m \\
& \Rightarrow \lambda_{2}=\frac{\overrightarrow{O B}}{|O B|}=\frac{-4}{5.83} \underline{i}+\frac{3}{5.83} j-\frac{3}{5.83} k
\end{aligned}
$$

and

$$
\begin{aligned}
& \overrightarrow{O C}=4 \underline{i}+3 \underline{j} \mathrm{~m} \\
& \Rightarrow|O C|=5 \mathrm{~m} \\
& \Rightarrow \underline{\lambda}_{3}=0.8 \underline{i}+0.6 \underline{j}
\end{aligned}
$$

Finally enforcing equilibrium of point 0:-

$$
\begin{align*}
& \sum F_{x}=0 \Rightarrow T_{1}\left(\frac{-4}{5.83}\right)+T_{2}\left(\frac{-4}{5.83}\right)+T_{3}(0.8)=0 \\
& \sum T_{1}\left(\frac{3}{5.83}\right)+T_{2}\left(\frac{3}{5.83}\right)+T_{3}(0.6)-981=0 \tag{1}\\
& \sum F_{z}=0 \\
& \Rightarrow T_{1}\left(\frac{3}{5.83}\right)+T_{2}\left(\frac{-3}{5.83}\right)=0 \quad \Rightarrow T_{1}=T_{2}
\end{align*}
$$

From (1):-

$$
T_{3}=2 T_{1}\left(\frac{5}{5.83}\right) \Rightarrow T_{1}=0.583 T_{3}
$$

Substituting into (2):-

$$
T_{3}\left(\frac{0.583}{5.83} \times 3+\frac{0.583}{5.83} \times 3+0.6\right)=981 \Rightarrow T_{3}=817.5 \mathrm{~N}
$$

Thus the force $E=817.5$ i N

In Class Assignment 2:

Side View:
Top View:

Find:
(i) Is the pole OD in "tension" or "compression".
(ii) Magnitude of the force in the pole OD.

Consider point O :

Resolving the 3 forces into "vertical" and "horizontal" components, rather than $\mathrm{x}, \mathrm{y}, \mathrm{z}$.

Each of the 3 triangles will be "similar".

$$
\begin{aligned}
& \sum_{1 y} F_{y}=0 \\
& \Rightarrow F_{1 y}+F_{2 y}+F_{3 y}+C=0 \\
& \Rightarrow C \cdot C=20
\end{aligned}
$$

On the $\mathrm{x}-\mathrm{z}$ plane:

$$
\begin{aligned}
& \sum_{x} F_{x}=0 \\
& \left.\Rightarrow-60+60 \cos \left(60^{\circ}\right)+60 \cos 60^{\circ}\right)=0 \\
& \quad \text { satified! } \\
& \sum_{\neq Z}=0 \\
& \Rightarrow \quad 60 \sin \left(60^{\circ}\right)-60 \sin \left(60^{\circ}\right)=0 \\
& \quad \text { satisfied! }
\end{aligned}
$$

$$
C=240 N
$$

Free body diagram of the pole:
\Rightarrow Compression

