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ABSTRACT 
 
 
 
Young, Jeffrey A.  Ph.D.,  Purdue University, May 2006.  Systematic Performance 
Comparison of Narrow-Band Interference Rejection Algorithms for Direct Sequence 
Spread Spectrum Reception.  Major Professor:   James S. Lehnert. 
 

The capacity of Direct Sequence Spread-Spectrum (DSSS) modulation to reject 
narrow-band interference can be significantly improved by eliminating narrow-band 
energy at the receiver (frequency excision) using algorithms that operate on the Real 
Time Discrete Fourier Transform of the received signal (RT-DFT-Based).  These 
algorithms have the potential to adapt very quickly to a changing interference spectrum 
and eliminate multiple tones, but to do this the decision of which frequency bins to excise 
must be made based on a very short observation time.  Under these circumstances, the 
number of bins excised can be much larger than the number of bins containing narrow-
band interference.   

The receive signal strength loss due to "over-excision" can be very significant and 
limits receive sensitivity.  This work shows theoretical over-excision losses of several 
heuristic algorithms using a new analysis technique that accurately describes the 
performance of alternative non-linear time varying algorithms over a broad class of 
possible conditions.  The sensitivity loss due to time weighting (or windowing) is 
presented for variable overlap and several different windows.  These theoretical results 
are confirmed with simulation results and can be used to project sensitivity of PN spread 
spectrum systems that are located in a band that is also used by narrow-band systems.  
These results are instrumental in predicting the performance of systems which operate in 
the presence of multiple narrow-band interference, comparing the relative merits of 
alternative algorithms for arbitrary interference spectrum, and determining hardware 
requirements necessary to support a given level of system performance. 
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4.  ANALYSIS OF EXCISION WITH WINDOWING AND 

OVERLAPPING IN AWGN AND TONES 

 
The analytical technique proposed in chapters 2 and 3 allows the performance of 

spectrum mapping algorithms to be compared when applied in conjunction with widely 
known properties of windows [33].  This chapter expands the scope of the analytical 
technique to derive performance for a general class of windows, and proposes a 
linearized model of excision that allows the loss for the overlap-and-add architecture to 
be derived.  Section 4.1 shows how the suggested technique can be applied to predict 
performance in windowed Additive White Gaussian Noise (AWGN).  A general form 
that gives the performance of at least ten different commonly used alternative windows is 
provided.  Section 4.2 shows how the suggested technique can be applied to predict 
performance in windowed AWGN and multiple tone interference.  Section 4.3 presents a 
linear equivalent circuit model of the RT-DFT excision algorithm that allows the 
sensitivity performance of the overlap-and-add architecture to be computed in general.  
Closed form results are given for the class of windows indicated in section 4.1.  
Simulation results confirm the utility of the linearized model over a large class of 
spectrum mapping algorithms. 

 
4.1   Over-Excision Loss In Windowed AWGN 

 
For the analysis of this section, the input signal to the architecture defined in 

Figure 4.1 contains only spread spectrum signal and AWGN.  Numerical subscripts on 
the signal variables usually indicate the node of Figure 4.1. 

Section 3.3 explicitly states Eb/No at node 4 in Figure 4.1 for a general class of 
spectrum mapping algorithms when no window is applied (node 1 is the same as node 2). 
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Fig. 4.1   Windowed RT-DFT architecture. 

This result can be restated in terms of a loss from the signal strength expected when no 
excision is performed.  The symbol LE denotes the loss due to excision and can be written 
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Widely known window analysis techniques [33] define performance for a window 

w(n) in terms of the noise power gain and peak power gain which can be defined as 
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Table 4.1 

The caption should come before the table. 
 

 A B C 
1.1 2.2 3.3 4.5 
X Z Z Ω 

 
This result is good for all spectrum mapping algorithms that operate on the rank 

ordered magnitude of the frequency spectrum and map the L+M largest magnitude 
samples in the frequency domain into the same magnitude, denoted by r, while leaving 
the remaining N-M magnitudes unchanged.  
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A. MOMENTS OF RANK ORDER STATISTICS 

 
The analytical technique proposed in chapters 2 and 3 allows the performance of 
spectrum mapping algorithms to be compared when applied in conjunction with widely 
etc, 
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