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Aerodynamic Model for Flight Dynamics and Control Software

A. Nonlinear Aerodynamic Model

A.l. Body Axis System has unit vectors (; ,}' JE) (not stability axis system). Let

~ ~

I,s], ,lzw be wind axis system unit vectors with 7, directed into the wind, igw in
the plane of symmetry but perpendicular to fw, }w perpendicular to fw ,éw n a

right hand rule sense (generally out the right wing)

 A2. Definitions of Angle of Attack and Sideslip

v

V:IVIiW = uib +V§/b +Wﬁb

. v
sinf =
w? +v? +w?
w
tanQ =—
u

Asgsume still air.

Roskam notation is V = Ui + Vj + Wk



A.3. Force Analysis

Fp =—Drag §w —Lift ﬁw +Side Force }W
D T Y

F ) - ~
§—§=—sz,“ -Cik,+C, j,

We will use the transform between wind axis system and body axis system. This

involves wind angles o and B (angle of attack and sideslip angle).

See Stevens and Lewis page 63, equations 2.3-2
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where
tanct=w/u
sinfB=v /|

‘i}“ =W +v*+ wz)m‘
A.4. Examples of Usiﬁg the Transformation Between Wind and Body Axis System
V=ui +vj+ wk =¥,
u 7] lcosacos B
v =T"*2 )1 0 l=||sin f

w 0 v|sinocos B
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%:—CD.!W +C,j,-Ck,
=Ci+C,j+Ck
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A.5. Moment Analyses

MA =MAX{+MA),3+MAZR
=§S[bCﬁ+ECM}+bCNI::J

b is wing span ¢ mean aerodynamic chord

'A6. Aerodynamic Force Coefficient Model (Wind Axis Systern)
Dra_g Polar L '

Drog Plar
Cm‘ \

G

bar

C,,, 1slift for minimum drag coefficient

C,y 15 minimum drag coefficient

C,= k(C e TCL, )2 +Cpuy <<Drag Polar

Often &, C; and C,,, are functions of Mach number.



Static Lift Coefficient

C, = CL0 +C, o+ CL&6B

We will use only the linear form for lift. Although to model still we need to use a

different form

oc Qc
CL = CL.:mrh.- + CLck 5'1:7—| + CLQ ‘él—f)_'l‘
i

: Pb Rb
| C, =C, +C, [3+C\L6r+c 6a+Cy 2]VI+C“ 2"’]
—

Yebyamic

CY.rrauc

AT Aerodynamlc Moment Model about cg (body axis system)
Rolling Moment
C,=C,, +C,,B+C, ba+C, br+ %[C,_,PP +C, K]
“ > s 1

Lstatic

4 L dynamic

Pitching Moment about ¢g

. ref xn_,f xcg
aboutcg C,, =C,, +C;|—/——-—=
c ¢

about arbitrary reference point.

CMmJ:

C = C +C a+C, 6e

+ == CMQ

o . 08
H‘”“ 2]
;.—.—....._v_......._._.-l

CMdyuamic

often Cpp, Cy, Cwm,, are functions of Mach number. We will ignore this.



Yawing moment

about arbitrary reference point

e b
Ci =Cy, +Cy, B+Cy, Sa+Cy, 5r + ﬁ(CNPP+ Cy,R)

—
CN.ilmir: v

C‘V dynamic

about cg
c . [x X
Cu =C§f—icy(—:i—+g}
b c €

A.8. C. G. Different from Moment Reference Point

Assume there is a moment reference point located behind the cg

Ignore pitching moments due to drag and y-force

x, X
- about cg C,=Cg +C2[ﬁ—%J
Z [H




Ignore yawing moments due to lift and drag forces

Body axis component of aero force in Y direction

X
Cy =CRf —c%(_xfbef -—%}

= cref _ECY Xref _Xeg
b C C

Summary of Unknown Aerodynamic Parameters

Expression Symbol Name Importance
Drag k Big
C Lift at minimum drag Big
Lpm - Bi
C Minimum drag coefficient. g
DM
Lift Cr, Lift coefficient at zero o big
CrL, | Lift curve slope big
CLae Lift due to elevator big
Cp, Lift due to & medium size
CLQ Lift due to pitch rate medium size
Side Force CYO Side forcewhen B=0r=8a=P=R=0 Usually zero
Cyﬁ Side force due to slideslip big
C Side force due to rudder big
Yo
C Side force due to aileron small
Y8a
C Side force due to roll rate small
Yp
C}’R Side force due to yaw rate medium
Cg location Xeg/C
Xref /€




ROH Mom_ Cfo Roll mom when ﬁ=6f =fa=P=R=0 USHaHy Zero
Cip Rolling mom. due to slideslip, | Big
(dihedral effect)
P Rolling mom. due to aileron, )
& . ! Big
aileron effectiveness
fa Rolling mom. due to rudder Medium
c Rolling mom. due to roll rate,
£r damping in roll Big
c Rolling mom. due to yaw rate | Small
fr
Pitch Mom. Cm, Pitch mom. when ot =8e=0=Q =0, big
Cm, Pitch mom. due to o big
CMg, Pitch mom. due to de, elevator effectiveness big
Cym, Pitch mom. due to ¢&¢ , lag of downwash deriv. big
CMQ Pitch mom. due to Q, damping in pitch big
Yawing Mom. Cy, Yaw mom. when B=da==P=R=0 usually zero
| Cy, Yaw mom. due to sideslip, weathercock stab. big
Ch, Yaw mom. due to aileron, _ medium
Cr, Yaw mom. due to rudder, rudder effectiveness big
Cr, Yaw mom. due to roll rate ~ small
C, Yaw mom. due to yaw rate, damping in yaw big
B. A Minor Problem wifh o
B.1. Definition
since
w
tangy = —
u
. UW-WU
= w2
U +w

An approximation to this equation is sometimes used. Since U>>W and U>>V

U2 +w? ~ U?




1.€.
Vand W typically small compared to U
also U>>W so
UW >> WU
Therefore

W
0L = —
U



B.2. The Problem
Notice that C, and C,,a function of & or equivalently W . This makes Fa, FAy

and F,  functions of W ,i.e. F5 (W, ...). The equations of motion for body axis
AZ Z

force have W on the left hand side and on the right hand side, i.e.

W = QU—PV + g cos pcos+—LZ(W, ..
m

We would like to solve for the W term on the right hand side, move it to the left
hand side, combine terms on the LHS and divide through by the multiplier of W .

Suppose
Fa, (W, 0, 8, Q=F(W)+F,_(a, 8¢, Q)

where
F(W)=aW
T some multiplier of W

Then |

W(l——a—J= QUQPV+ 20 cosq)c059+—li(0t, 8., Q)

m m

and

W= ——}—-E-;—[QU-—PV+ £0 cos¢cosﬁ+f—n‘;‘—(a, 8, Q):l

-

Now we have a diff. eqn. where W only appears on the LHS.
When we go to solve the moment equation we have the following problem
Q=CPR—-Cgx(PZ-R%)+C,M(W, , 8¢, Q)
.But this problem is simpler because we have an explicit equation for W above that
we can use on the RHS of the Q equation. Therefore we can determine Q

It turns out that g =—§ch L__l_
m " 2p|U

Recall
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W =QU-PV+gpcospcosf+—4
m

but a portion of F, is a function of ¢ and therefore W. Let’s examine this term
. . W
separately. Use the approximation that ¢ = T

FAJ TW toB _CD
F, |=7 +C
F, —C,

z

but CL = fl (dc)+f2(0€, ae: Q)

o
0)=C, —
hL@=C, 2]
c w
e CW
hn =0, 2R U
oc
f2=CLn+CLma+CL&&+CLQ-ﬁ
F,, 0 —Cp
F, |=gsT""" 0 |+gST""”+C,
F, —f/i(W), ~f
+sina  f,(W) -Cp,
=q. 0 +38 TV "% +C,
—cos  f,(W) -f,

T ignore this term since it is small.

F, 0 -C,
F, |= 0 HgST"?R+C,
F, ~gScosoC, —C:Jﬂ —f,
‘ “ZplUJ y 7
FAx
F
Ay
FA%
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F,, =
. Ww=QU-PV + g} cospcosf+ _gw g ,_E:l‘i
m ‘*2|v|U

Fa;

m

W(l—i]z QU -PV + g, cosdpcosO+
m

. 1 , Far
Ww=|—— [=| QU-PV+g,cosdcosO+—=
m

)
m

and then ¢ = hud
U

11 , Fa,
=—| —— | QU-PV+gycosdcosO+

u,_2 m
m

and we can substitute this into the pitching moment equation at the Cma term.

- C. Propeller Thrust Model

dy is the thrust offset distance

¢ is the thrust offset angle

12



T is the magnitude of the thrust

T=550Bhp N,/V; (Ibf)

Bhp is the brake horsepower of the engine (hp)

N, is the propelier efficiency (non-dimensional)

V; is the aircraft speed  (ft/sec)

Thrust is assumed to act in the x-z plane.
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110 MODELING THE AIRCRAFT

TABLE 2.5-1: The Flat-Earth, Body-Axes 6-DOF Equations

FORCE EQUATIONS
U =RV — QW —gpsinf + (X, + X7)/m
V = —RU 4+ PW +gpsing cosé + (¥4 + Yr)/m
W=QU— PV +gpcos¢ cos@+(Z4+ Z7)/m

KINEMATIC EQUATIONS
¢ =P +tand (Q sing + R cos¢)
f =0 cos¢— R sing
¥ = (Q sin¢g + R cos¢)/cosé

MOMENT EQUATIONS
PP = oy [V = By + J] PO =[5l = 1) + JL) QR + Jot + e
JyQ=(Je— x)PR—JxZ(P2_R2)+m S R
ri= [U ~ I+ ] PO = e[ =Ty + 1] OR +Ji+ b
Clr= Jx L-J2 G AR

| _' i-‘NAVIGATION EQUATIGNS

. pn= Ucecwp 4 V(—cpsy + s¢s9c¢) + W(s¢s¢ + cqbsBcdr)

pr = Ucesﬂf + V{cgeyr + s¢vs€s¢) + W( 3q5c1/f +: c¢58s1,(r)
h = Us@ — Vsgef — Weped
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Introduction
The software described here allows for six degree of freedom simulation of the arbitrary

motion of a rigid aircraft. The nonlinear differential equations are of the form

X =g(x,u), x(0)
y=h(x,w
u(t) = specified
where x, y and u are the state, output and control vectors respectively and x(0) is the

initial condition.

Files created for Simulink are Matlab version dependent. Simulink files provided below

work in Matlab 6 and 7.

Two different ways of getting the solution to these nonlinear differential equations are
provided. The first method is by numerical integration. SIMULINK is used for this. The
second method uses linearization to obtain the total approximate solution. These
methods are depicted in Figure 1. On the figure afe the names of MATLAB scripts
(ending with .m) and SIMULINK model files (ending with .mdl) that implement the

various functions in each block.



Exact
Nonlinear
Solution (x(1))
(e.g., from numerical
integration)

Step3_Simulink_SimMATLAB7.m
FlatEarth MATLAB7.mdl
Step4_Plot_Nonlinear_Sim.m

Nonlinear Differential

Equations
X =g(x,u), x(0)
y=h(Z,m)

u(t)= specified

The differential equations
are in the function
aircraft7.m. constants are

defined in
Stepl_MPX5_Model.m

Nonlinear Reference
Problem

Xy = E(Xp,lig)
X, (0), u, specified

where typically x; and ug
are constants

v

Step2_Trim.m uses QuickTrim2.m

8%(0) =X(0)— %, (0)

Linear Small
Perturbation Probiem

%) 5x+%E | om
ou
ah

8y=a—h 3 |, du

= I, 8x+

du(t)=u(t) -0,

Nonlinear Reference
Solution
(e.g., constant
solution)
Xg,Ug

v

'

Linear
Solution
(i.e., from Laplace
Transforms)

dX(t), dy(t)

lStGDS Linearize MATLAB7.m

Total Approximate Solution

X(t) =X_+OX(t)
y(t) =y, +0y(t)
x(0)==x_+0%(0)
u(t) =1, +9u(t)

Figure 1 Solution Procedures for Nonlinear Differential Equations



Software Availability

Wed Address

http:/froger.ecn. purdue.edu/%7Eandrisan/Courses/ AAES65_52006/Buffer/

All MATLAB Scripts and models for the nonlinear simulation of a MPX5 UAV
in a single zip file can be downloaded in a single zipped file (FlatEarth_9.2.zip).
Alternately, you can view and save each file separately using a link to the folder that has
all the individual MATLAB scripts and models.

SIMULINK Models

FlatEarth MATLAB7.mdl

Matlab 6 Version: Flat Earth Aircraft Simulation With Steady Winds

Run Pradater Inilialize 7. m befors runnning this simulation Yarslon 7.0,:0/8/02
Qulputs

deltaE

To Workspace2
Inputs

P (rat/sec) fol rale

dellas
To Workspaced

Alleron Perturbation [rad)
To Workspaced

u|i:(zJE

» 3
_‘Il—'i] @ (rad/sec) pilch rate

T

R (radfsec) yaw rate

- Alleron Trim (rad) » detlabhy Fhi {rady roll
Thela {ad) pich
Ta Workspaces N il Psi (rad) yaw
| alrcrang I
§-Funclion "D@ LD@
Steady Winds Alrcrafl with
sleady winds v () X
VI (sec)
alpha frad) angle of attack
To Woikspacal _‘h_||
flight path angle :l
vz (Usec) I ] o]
» beta (rad) sTda skp
E']l Xdot (s)
dot {fi's)

Horsepower Tiim (p)

2Zdot {sec) =

To Workspace Yace (fsec~z)

1alrcraft

Ciock
Be sure thal "constant,” }C and uIC ere defined in the MATLAB workspace befors running.
Aircratt specific constants are all In the array callad “conslant” in the MATLAB workspace.




FlatEarth_ports_MATLAB7.mdl

Matlab B Version: Flat Earth Aireraft Simulation With Steady Winds
Wersion 7.0,10/8/02

Inputs

in1

n2

| aircrafi8

S-Function
Alreraft with utt]
- steady winds

SEECAES

=3
[

§

=
&

0

Qut1?




MATLAB Scripts
Step0_ReadMe.m Version 8.0 1/23/03

These MALAB scripts are designed to analyze and simulate arbitrary rigid aircraft over
the flat earth. A vehicle description file called Basic_Constants. MPX5 is included
allowing analysis of the MPX5 UAV.

It is important that these MATLAB scripts be run in order.
Stepl_MPX5_Model.m
Step2_Trim.m
Step3_Simulink_SImMATLABS.m or Step3_Simulink_SimMATLAB6.m
Step4_Plot_Noninear_Stm.m (optional step)
Step5_Linearize. MATLABS5.m or StepS_Linearize. MATLAB6.m
Step6_Longitudinal_Design.m
Step7_Lateral_Design.m (can be run after Step5)

MATLAB 5 and 6 versions of several files are provided allowing users of either version
of MATLAB to use the software.

Stepl_MPX5_Model.m Version 8.0 1/23/03

OBIJECTIVE: Develop the acrodynamic and thrust model for a particular aircraft.
INPUTS: a file of basic vehicle constants, ¢.g. Basic_Constants_ MPX5.m

OUTPUTS: In the MATLAB workspace will be defined an array called constant.

Note: memory is cleared at the start of this script.

Step2_Trim.m Version 8.0 1/23/03

OBIJECTIVE: Trim the aircraft and develop initial conditions for the
SIMULINK nonlinear simulation.

INPUTS: the array called constant
OUTPUTS: In the MATILAB workspace will be defined initial conditions

on the state and controls (xIC and ulC). The array constant, xIC and uIC
are all required by the SIMULINK nonlinear simulation.



Step3_Simulink_SimMATLA.Bx.m Version 8.0 1/23/03

OBJECTIVE: Simulate an aircraft in 6 degree of freedom motion
with nonlinear equations of motion and nonlinear
aerodynamic and thrust models. A flat earth and
rigid body dynamics are assumed.

INPUT: In the MATLAB workspace will be defined initial conditions
on the state and controls (XIC and ulC). The array constant, XIC and ulC
are all required by this SIMULINK nonlinear simulation.

OUTPUT: Arrays in the MATLAB workspace called taircraft and yaircraft
that contain an aray of time values and a matrix of output state
time histories.

Stepd_Plot_Noninear_Sim.m Version 8.0 1/23/03
OBJECTIVE: Plot results from the nonlinear flat earth simulation.

INPUTS: In the MATLAB workspace must be an array of simulation times (taircraft)
and a matrix of simulation outputs (yaircraft). These are generally
created by the SIMULINK simulations FlatEarth. MATLABx.mdl.

OUTPUTS: Four figures, each with three subplots.

Step5_Linearize. MATLABx.m Version 8.0 1/23/03

OBJECTIVES: 1. Script to linearize the aircraft system assuming the nonlinear

aircraft model in SIMULINK model FlatEarth MATLABx.mdl.

2. Perform a linear simulation for the same conditions as
used in the SIMULINK nonlinear simulation.

3. Overplot the nonlinear simulation results and the linear simulation
results in order to verify the accuracy of the linearization.

4. Split the 12th order system into the smaller longitudinal
and lateral-directional subsystems.

5. Save to binary files the longitudinal and lateral-directional
state space subsystems (modelLong.mat, modelLat. mat).

6. Determine if we are on the frontside or the backside of
the power required curve.

- INPUTS: 1. In the MATLAB workspace must be an array of simulation times (taircraft)
and a matrix of simulation outputs (yaircraft). These are gencrally
created by the SIMULINK simulations FlatEarth. MATLABx.mdl.
2. In the MATLAB workspace will be defined initial conditions



on the state and controls (xIC and ulC) andthe array constant.

OUTPUTS: 3 figures of overplots,
plot of the power required curve,
2 output files (modelLong.mat, modellat.mat),
transfer functions, poles, natural frequencis and damping ratios in the
command window. ;

Step6_Longitadinal_Design.m Version 8.0 1/23/03

OBJECTIVE: Set up linear models for use in linear control system design
for the longitudinal subsystem

INPUTS: The file modell.ong.mat created by Step5_Linearize. MATLABx.m

OUTPUTS: Many transfer functions, poles, natural frequencies and
damping ratios in the MATLAB command window. Also several linear
time invariant systems are created in the MATLAB workspace f
or subsequent analysis (Lsys, Ltfsys, Lzpksys).

NOTES: 1. This code can be run after StepS_Linearize_ MATLABx.m has been run.
2. This code clears memory at the start if execution

Step7_lateral_Design.m Version 8.0 1/23/03

OBJECTIVE: Set up linear models for use in linear control system design
for the lateral-directional subsystem

INPUTS: The file modelLat.mat created by Step5_Linearize. MATLABx.m

OUTPUTS: Many transfer functions, poles, natural frequencies and
damping ratios in the MATLAB command window. Also several linear
time invariant systems are created in the MATLAB workspace f
or subsequent analysis (LDsys, LDifsys, LDzpksys).

NOTES: 1. This code can be run after Step5_ILinearize_ MATIL.ABx.m has been run.
- 2. This code clears memory at the start if execution



Basic_Constants_ MPX5.m

CL_0.M
CL_alpha.m

CL_alpha_dot.m

CL._de.m
CL_g.m

Check_Constants.m

Complete Listing of Scripts and Model Files

Make_Constants.m
NameScript.m
QuickTrim2.m

Step0_ReadMe.m
Stepl_MPX5_Model.m
Step2_Trim.m

Cl_beta.m Step3_Simulink_SimMATLABS.m
Cl_dam Step3_Simulink_SimMATLABG.m
Cl dr.m Step4_Plot_Nonlinear_Sim.m
Cl_p.m StepS_Linearize MATLABS5.m
Cl_rm Step5_Linearize_ MATLAB6.m
Cm_0.m Step6_Longitudinal_Design.m
Cm_a_dot.m Step7_Lateral_Design.m
Cm_alpha.m TransformB2NED.m
Cm_de.m TransformB2Wind.m
Cm_g.m TransformNED2B.m
Cn_beta.m TransformWind2B.m
Cn_da.m acroforce.m

. Cn_dr.m asromoment.m

- Cn_pm aircraft7.m
Cn_r.m interliml.m
Cy_beta.m interlim2.m
Cy_da.m interlim3.m

- Cy_dr.m modelLat.mat
Cy_p.m modelLong.mat
Cy_r.m nufun.m
FlatEarth. MATLABS5.md] rhofun.m
FlatEarth. MATLAB6.mdl selector.m
FlatEarth_ports MATLABS.mdl thrust.m

FlatEarth_ports MATLAB6.mdl



Brief Description of Other MATLAB Functions and Scripts

Basic_Constants_ MPX5.m contains basic constants for the MPX5. Basic constants
include things like aspect ratio of the vertical tail and horizontal tail area.

CL._0.M computes the stability derivative CLO.

CL_alpha.m computes the stability derivative CLa (lift curve slope).
CL_alpha_dot.m computes the stability derivative Clalphadot.
CL_de.m computes the control derivative Clde (elevator effectiveness).
CL_q.m computes the stability derivative CLq.

Check_Constants.m is a script to perform a believability check on the array called
constant which contains the stablility and control derivatives and inertia properties.

Cl_beta.m computes the stability derivative Clbeta (dihedral effect).

Cl_da.m computes the control derivative Clda (aileron effectiveness).

Cl_dr.m computes the control derivative Cldr (rolling moment due to rudder).
Cl_p.hl computes the stability derivative Clp (damping in roli).

Cl_r.m computes the stability derivative Clr.

Cm_0.m computes the stability derivative Cmo0.

Cm_a_dot.m computes the stability derivative Cmalphadot (lag of downwash effect).
'Cm_alpha.m computes the stability derivative Cmalpha (pitch stiffness).

Cm_de.m computes the control derivative Cmde (elevator effectiveness).

Cm_g.m computes the stability derivative Cmq (damping in pitch).

Cn_beta.m computes the stability derivative Cnbeta (weathercock stability derivative).
Cn_da.m computes the control derivative Cnda (adverse/prov;:rse aileron yaw).
Cn_dr.m computes the control derivative Cndr (rudder effectiveness).

Cn_p.m computes the stability derivative Cnp.



Cn_r.m computes the stability derivative Cnr (damping in yaw).

Cy_beta.m computes the stability derivative Cybeta (side force due to sideslip).
Cy_da.m computes the control derivative Cyda.

Cy_dr.m computes the control derivative Cydr.

Cy_p.m computes the stability derivative Cyp.

Cy_r.m computes the stability derivative Cyr.

Make Constants.m uses Basic_Constants_ MPXS5 to compute the array called constant.
NameScript.m helps in the believability check performed by Check_Constants.
QuickTrim2.m trims the aircraft at a given speed and altitude in steady level flight.

TransformB2NED.m computes transformation matrix from body to North-East-Down
frame.

TransformB2Wind.m computes transformation matrix from body to wind frame.
TransformNED2B.m computes transformation matrix North-East-Down to body frame..
TransformWind2B.m computes transformation matrix wind to body frame.

aeroforce.m computes the aerodynamic force vector in body axis components.

aeromoment.m compute the aerodynamic moment vector in body axis components.

. aircraft7.m contains the equations of motion and output equations in s-function format for

use in an s-function by SIMULINK.

interliml.m is a 1-dimensional table look-up function with limits. If the inputs are beyond

the range specified in the table, the outputs are limited to last value in the table and a non-
fatal warning message is generated. Extrapolation is never performed. The informed
student should check out these non-fatal warnings to verify that the code handled this
ambiguous situation in the proper manner. :

interlim2.m is a 3-dimensional table look-up function with limits. If the inputs are beyond

the range specified in the table, the outputs are limited to last value in the table and a non-
fatal warning message is generated. Extrapolation is never performed. The informed
student should check out these non-fatal warnings to verify that the code handled this
ambiguous situation in the proper manner.



interlim3.m is a 3-dimensional table look-up function with limits. If the inputs are beyond
the range specified in the table, the outputs are limited to last value in the table and a non-
fatal warning message is generated. Extrapolation is never performed. The informed
student should check out these non-fatal warnings to verify that the code handled this
ambiguous situation in the proper manner.

modelLat.mat is a MALLAB binary file generated by the statement
save modelLat aLD bLD cLD dLD Vt Hp aircraft
It contains the lateral-directional subsystem in state space form (e.g., a, b, ¢, d matrices).
modell.ong.mat is a MALLAB binary file generated by the statement
save modelLong aL bL cL dL. Vt Hp aircraft
It contains the longitudinal subsystem in state space form (e.g., a, b, ¢, d matrices).
nufun.m calculates kinematic viscosity in the standard atmosphere.

rhofun.m calculates air density in the standard atmosphere.

selector.m creates a smaller state space subsystemn from a larger state space system by
selecting certain states, control and outputs to be retained in the smaller subsystem.

thrust.m generated the thrust force and moment in body axis components.



Simulink Introduction

Get Matlab into the correct working directory. Click the Simulink symbol or type simulink in the
command window.

>> simulink
From a Simulink window select New Model
Save as (give the file name you want, (testl))

Open a few Simulink libraries
Sources, Sinks, Continuous, Math Operations

Drag Simulink blocks to the New Model window
Integrator, step, scope

Go into simulation parameters
Check the start time and stop time
Click start simulation

Open Scope window and look at step response of integrator.
Add feedback
Add summer and gain element.
Change sign of feedback to -
Simulate for various gains.
Examine .mdl file in editor window. Lots of text!
Make system a subsystem to simplify diagram.
Highlight all elements between source and sink.

Under the Edit menu select Create a subsystem.

Create a library of your own blocks for convenient re-use of work.






LINEARIZATION OF NONLINEAR EQUATIONS
By Dominick Andrisani

A, Linearization of Nonlinear Functions

Al Scalar functions_of one variable.

We are given the nonlinear function g(x). We assume that g(x) can be

represented using a Taylor series expansion about some point X, as follows

dg(x 1 d’s(x
£(X) = 80|y, +%l oy (x*xk)q%umk (x—x,)?

+ higher order terms

R L L
adf-—

A linear approximation for g(x} involves taking only the first two terms

g(x)=g(x)l ., 428

ax s, (x—xg)

This approximation is most accurate if (X - XR) is small so that the neglected higher

order terms are negligible.



A2

Example: g(X) = x>

Expanding g(x) about X = 2 gives

d
g(x) = g(x) 1., +——dg ey, (X—Xg)
X

=2" +2x1_, (x—2)

=4 +4(x —2)=—4+4x

Notice that this is a linear function of x. The simplification resulted because we evaluated

all nonlinear terms at the number X = Xy = 2. Because we evaluated the terms on the

right hand side of the equation above at X =X = 2, the only term that depends on x

is the x-2 term, and this is a linear term. This approximation to g(x) is valid near x=2,

We can generate another approximation to g(x) by expanding g(x) about X g =1 gives

gx)=1* +2x1 _, (x-1)=1+2(x—-1)

= -1+ 2x
This second approximation is valid near x=1. Clearly the linear approximation depends

on the choice of reference point X .

Scalar function of 2 variables

Given the nonlinear function g (X 13 %2 ) . This fonction can be represented by

a Taylor series expansion about X, R X 2, 8 follows



og Jg

g(xl 9X2) = g(XIR s X )+ axl Ix, =X1p:X2 =Xz (Xl Xk )+ aX2 le =Xp X2 =X, (Xz —X

0 og

1| 0 dg , ;

— o o (X —X + ——2] (X=X

2! aXI aX1 i T ( ! IR) aXz axz Xi=Xag X2 Xy ( 2 2R)
+ 9 o l (x, _X1R)(X2—X2R)+h.0.t.

Xy =X, %= Xp

dx, dx, R R
‘A linear approximation of g can be obtained by retaining the first three terms above
(underlined). The two variables in this problem can be associated together in a vector

¥ as follows

_ - 1 %
g(X) where X = X,

Example:
2
g(x,,X;) = X;” €OSX,
can be approximated about X1, ™ 2, Xy = 0 as follows

2
g(x,,X,)=(x,"cos x,) IxIR =2,x,, =0 +(2x, cosx,) len =2, %5, =0 (x;-2)

2 .
_(Xl Slll Xz) IX1R=2’ XZR=0 (Xz - 0)

=4+4(x; -2)+0=-4+4dx,

The same function can be approximated about X1, = 2 x 2% r/4

g(x;,X,)= 2? cos(§)+ (2x,cosx,)| L (x=2)
~(x,” sinx,)| . (% =)
Eip =4 XzR=‘z' 4

=0+0—4(x2-~f)=az—4x2

Notice again how important the linearization point or reference point is to the linearized

result.



A3 " Vector function of a vector of variables.

Let g(i) be an nx1 vector of nonlinear functions. Let X be an nxl vector of

variables
g1 Xl
— |81 - |%X:
E=| b X7
_gn_ _Xn_

A linear approximation about iR is

e, O _
gzg(xn)'l'a—ilhxn (X—Xg)

where
g (X5 - X))
g(ik) =| : =nx1 vector

gn (XIR’ e XnR)

9,98, 98
3z | 9% 9%, oK,
= Jacobian Matrix = nxn matrix

oX (3g, 9 dg

—_—tL

9%, 9x,  ax, |

A4 Accuracy of linearized solution.

When we approximate g(f) by retaining only the linear terms, we must

guarantee that the deleted terms, i.e., the h.o.t. are negligible. This is true only when

X— iR is small, i.e. when the perturbations {rom the reference point are small,

Linearization on Nonlinear Differential Equations in First Order Form
B.1 First order form

Nonlinear differential equations in first order form can be written as



B.2

X=g(x,u), X(0)

where
< g Xl u1
1 1 )
=_ . — . L XZ —__ uz
X= s B85 sy X= , U=| .
Xs Zn .
_Xn_ _llm_

Note that ¥ rtepresents specified forcing functions and X() is a specified initial

condition vector.

Example B. 1a -

2 2
=} _|[%2 —1u
= A = 5
_Xz_ _Xl +1
s ] 2 2
%] |x,2-u
: 2
| X, -X," +1

The reference or trim solution

When we were linearizing nonlinear fuﬁctions, we saw how important the
choice of reference point was. In linearizing nonlinear differential equations, we are also
concerned with the reference about which we linearize. However, we are now interested
in obtaining a linearized solution valid for all time. This requires that we linearize around

a reference solution, which is valid for all time.

Let ER (t) be a known solution to the nonlinear differential equation with
specified forcing function ﬁR (t) and specified initial condition ER (0) . ile,
X() =E(Xg (£),ux (1)) e (0)
Xgr (t) is said to be the reference solution to the nonlinear differential equation.

Example B.1b

For the differential equations given in Example B.1a

Xp(t)= 1 ug(t)=1, Xz(t)=



is a constant solution to the nonlinear differential equation. Verify this fact for yourself
by substituting this solution into the differential equation given in Example B.1a. Please

keep straight in your mind the difference between a differential equation (e.g. X = X)

and a solution to a differential equation (e.g. X =0 for x= X).

Example B.1c

For the differential equations given in Example B.1a

R
XR(t)= _1 s llR(t)=—'I XR=[ 0 ]

is another constant solution to the nonlinear differential equations.

Example B.1d
For the differential equations given in Example B.1a
x,=%1 . 0

Xp = up =const Xy=
® | x, =+u, =const R 0

is a constant solution to the nonlinear differential equations for any constant.

B3 Linearization about a reference solution

Let iR (t), ﬁR (t) be a reference solution. We now want to find a linearized

solution to the nonlinear differential equation about this reference solution.

We again expand g(X) in a Taylor series expansion about Xy and Uy iec.,

agI

g S
X= 8(Xg,Ug )+ == ox x_gR n=T, (X—Xg)+ x=Fg,u=l, (@ —1ug)

+h.o.t.

The linear approximation is obtained by assuring that X — T('R and W— l_lR are small

enough that the h.o.t. can be neglected.

B4 Definition of small digtribution variables
Define
X=X—x,
Su=u-1,
X=X —X,

For the linearized solution to be valid, these perturbations must be “small.”



B

Separation of the linearized differential equations into two parts

Assuming that the perturbations are small, we can write the approximation to the

differential equations as

X= g(ikaﬁn)*‘%'k (i—ik)"'g_ilk (0 —-1ug)

9x

we can now substitute the small perturbation variables

§R+8i'=g(ik,ﬁk)+£lx &‘»§+a—g|R ou
— == ox du

In the equation above we have simplified the notation with IR to denote IY‘—"‘R’ n=r, -

Notice that the underlined terms are numerically equal from the definition of reference

solution. Since they are equal, they can be cancelled out leaving

=08 oo dg o
Sx—ax I 0X + . g OU

This is a set of linear smail perturbation differential equations. In summary, the original

nonlinear problem _
x=g(x,u), X(0)

with solution X(t) for specified input u(t) has been decomposed into two separate

problems.

e  The reference problem

Xg = g(Xg, k)
with initial condition KR (0) with solution iR(t) to input TlR (t)
s  The small perturbation problem

. 0%

52=2| 8i+a—§IRBE

T ox J
with Initial condition
5X(0) = X(0) — X, (0)
with solution ai(t) to input Bﬁ(t).
Finally the total approximate solution is given by the entire solution procedure is shown

in Figure 1.

X(t) =X, (t)+ OX(t)



B.6

B.7

On picking a reference solution

Any solution to X = g(i, ﬁ) makes a good reference solution but these

solutions can be hard to find. An easier set of solutions are constant solutions i.e.,

solutions s0 that iR (t) =6 and ER (t) = constant for ﬁR(t)=conStant. For

constant reference solutions, finding the reference solution to a nonlinear differential

equation becomes a problem of finding the solution to a nonlinear algebraic equation

g(Xg, Ug)=0
Linearization Example
> 2 2
X(O=|. [=] °~, 1
a) Choice of Reference Solution

To simplify our choice, assume that the reference solution is constant,

ie, Xi= 7'(2 =0. This  requires that X22 - l.l2 =0 and
: —X12 +1=0. These equations can be satisfied whenever
x,>=u’mdx,?=1
Values of X; and X, which satisfy these equations are

X, = Fu where uis any constant

x, =+



Exact
Nonlinear
Solution (x(t))
(e.g., from numerical
integration)

A

Nonlinear Il)ifferential
Equations

X =g(x,m), x(0)
y=h(x,0)
u(t) = specified

Nonlinear Reference
Problem

Xp = 8(Xp,ly)
X, (0), U, specified

where typically xg and ug
are constants

Nonlinear Reference
Solution
(e.g., constant
squti_c:yn)
XgyUg

'

v

Linear Small
Perturbation Problem

8§=ggln 8i+a—g-ln ou

o,
= —I
Sy =k 8):+au , ou

0x(0)=x(0)—-X, (0)

du(t)=u(t) —u,

v

Linear
Solution
(i.e., from Laplace
Transforms)

OX(t), dy(t)

'

Total Approximate Solution

X(t) =X _+ Ox(t)
y(t)=y,+0y(t)
x(0)=x_ +06x(0)
a(t)=u, +dou(t)

Figure 1 Solution Procedures for Nonlinear Differential Equations




We will consider two different reference solutions

Ref.#1 Ref.# 2

+1 ' ‘ -1 '
iR(t)=|:_l_l , Up(t)y=+1 Xg (t)= 1 ug () =-1
o] wo(]]

b) Small Perturbation Equations of Motion

5§=g—§IR8§E + g_gil‘ Su
where X =X —X; Ou=u-—u,
og, 92, dg,
A=£— ox, 0%, | 5 0% _|Ju
ox (98,98, [ odu |98
dx, ox, du

1
Using Ref. #1 iR =[ J, Uy =1
ol Sl L]
LS&Z =l o], o™

-1
Using Ref. #2 Xy =[ , D=1

-1
Ox 0 —-2{éx +2
bl e
ox,| [+2 0]3x, 0
c. The Linear Solution for Reference #1

@ 8%, =28x, —20u



@  Ox, =-208x,

take Laplace transforms

®  s8x,(s)—8x,(0)= 26x,(s) —28u(s)
) SOX ,(s)— Ox, (0) =—26x,(s)

multiply (2) by s
8%, (s) — s8x, (0) =—2s8x, (s)

multipty (1) by -2
—250x,(s) = —40x,(s) + 40u(s) — 20x, (0)

set these equal

s78x, (s)— s8x, (0) = —48x, (s) +48u(s) — 26x,(0)

8x, (s)[s” + 4] = s8x, (0)— 25x,(0) + 43u(s)

sdx, (0)— 28x,(0) 4
Tra TGy ®

3x, (s) =

The first term on the right gives initial condition response. The second term on the right
dx,(s) 4
Su(s) s*+4°

To find OX 1 (t) take the inverse Laplace transform. From (2)
sdx,(s)— Ox, (0) =-28x,(s)
1
Ox,(s) = -5 [s8x, (s) — 8x, (0)]

contains the transfer function

To find the solutions OX 1(t) and 5X2 (t) you must be given the input Su(t) and the initial

conditions (8X1 (0), 8X2(0 )) Then the solutions can be found using inverse Laplace
transforms.
d) Total Solution for Reference #1
[xl (t)] % ® . [le(t)J_ 1+8x,(t) J
X, | %, (O] |8x,(t)] [1+8x (1)
u(t) = ug (t) +ou(t) =1+ du(t)

o _[1+8x1(0)
“O=[) 4 ox,0)]




Comment;
For this procedure to be valid the perturbations must be small, ie.,

all must be small.

Suppose we have the nonlinear problem with
x,(0)=1.01
x,(0)=.99
u(t) = 1.0+.01sin ot

then we can use Ref#1 and then we can have
0x,(0)=.01
0x,(0) =—.01
Su(t) =.01sin ot
On the other hand if for the nonlincar problem we have
x,(0)=-1.01
x,(0)=-99
u(t)=—1-.01sinmwt
We would use Ref. #2 with
ox, (0)=—01
ox,(0)=.01
du(t) =—.01sinmt



C. Output Equations

Often nonlinear differential equations are associated with nonlinear output equations. This may
come about in modeling the sensors aboard an aircraft. The sensors are often nonlinear functions of the

state vector and control vector. Output equations can be expressed as follows.
y= h(X, ) where is ¥ apxl vector

This can also be linearized about reference solution xg and wug as follows.

oh Jh
y=yg +8y=h(x,u)lg +B_XIR (X"XR)"'a_“lR (u—uy)

The underlined terms are equal by definition of ¥ on the reference and can be cancelled out on both sides of
the equation. That leaves the linear small perturbation output equations in terms of small perturbation

variables.
iiyma—hlR 15}K+-a--l~l-lR du=C-6x+D-6u
ox ou

The total output equation in linear form is then given by the following.

y(t)=yg +3y(t)

D. Stability
One of many possible definitions of dynamic stability for nonlinear systems is given in terms of the

9g, 98,
Jg ax, ox,

eigenvalues of the Jacobian matrix, A= 5%- IR = agz agz

ox, Ox, |

R

If all the eigenvalues of A have negative real parts we say that the reference solution, (XR ’ llR) ,
is stable.

If at least one of the eigenvalue of A has a positive real part we say that the reference solution,
(XR ’ llR) » is unstable.

If at least one eigenvalues of A has a zero real part, and if all the other eigenvalues have negative
real parts, we can draw no conclusion about the stability of the reference solution, (XR s llR) .

E. Concluding Comments

We have seen how the solution to nonlinear differential equations can be found by decomposing
the problem into two simpler parts. The reference part is simpler because it is often a nonlinear algebraic
problem. The second small perturbation part is simpler because it often involves solving linear differential
equations with constant coefficients. The total approximate solution to the original nonlinear differential

equation was shown to be the sum of the two simpler parts.



