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PREFACE

A summary of equations often used in free-flight and wind-tunnel data reduction and
analysis is presented. Included are transfer equations for accelerometer, rate-gyro, and
angle-of-attack instrumentation; axes-system transfers of aerodynamic derivatives; and
methods for measuring moments.of inertia. In general, the equations are in a complete
form; for example, those terms are retained that are missing when planar symmetry is
assumed for airplanes.
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INTRODUCTION

The equations in this report are the coordinate transformation and motion equations
used in the various tasks associated with free-flight and wind-tunnel data reduction and
analysis. These tasks range from reducing flight data to calculating the motions on a
digital or analog computer and to applying various techniques for analyzing the data, such
as in references 1 and 2.

While many publications contain a number of these equations, no one contains all
that are usually needed in a complicated aerodynamic analysis; even the more nearly com-
plete reports (refs. 3 and 4, for example) omit the equations for transferring aerodynamic
stability derivatives from one moment reference to another. Moreover, in most cases
the equations are simplified, when they are presented, by assumptions such as small
angles of attack, zero sideslip, and small perturbation motions. Expanded forms of many
of the equations, on the other hand, are needed in special problems that may arise. For
example, parawing vehicles, which have their center of gravity located well below the wing
surface, require the expanded forms of the axes transformations when data measured about
a point on the wing are to be transferred to the center of gravity; reentry motion studies
sometimes involve large-amplitude motions so the complete forms of the transformations,
without the assumptions of small angle's of attack or sideslip, are needed. The engineer
working on any of these special problems usually has to derive these equations himself,
and this can be time consuming.

The purpose of this report is to provide the basic equations from which many of the
equations needed in a particular analysis can be generated. A comprehensive summary
of the basic axes transformation and motion equations is included, with most of these
given in their expanded, most general forms. Once these expanded forms are available,
the simpler forms can be written out fairly easily, and yet the general forms are here
when needed for special cases.

The general forms presented include axes transformations that enable transfer back
and forth between any of the five axes systems that are encountered in aerodynamic analy-
sis. Equations of motion are presented that enable calculation of motions anywhere in the
vicinity of the earth. Special problems are also considered; since flight instruments,
such as accelerometers or rate gyros, are not always alined along mutually perpendicular
axes, the procedure for correcting instrument readings for nonorthogonal alinements is
outlined.

In addition to these general forms, many of the simplified forms used frequently in
practical applications are summarized in appendix A.

Other relationships are presented in appendixes B to F. For example, appendix C
summarizes methods used to measure moments of inertia of models and full-scale



vehicles; appendix E discusses the use of the direction-cosine and the quaternion methods,
often used in place of Euler angles in specifying vehicle alinement; appendix F discusses
the scaling parameters used in model testing. However, throughout this paper, the empha-
sis is on providing the basic equations. For discussions of their development and of the
procedures used in their application, the user should turn to general published works on
flight-motion analysis. A comprehensive bibliography of these works is providedﬂ and
includes textbooks and reports dealing with stability, control, and performance as well

as reports discussing various techniques for extracting stability derivatives from flight
data.

SYMBOLS

Throughout this paper, symbols are defined in terms of SI Units with equivalent U.S.
Customary Units given parenthetically. Factors for converting from U.S. Customary to
SI Units are given in table I.

generalized angle of attack, defined for various axes systems in tables III
A and IV, rad (deg)

cross-sectional area in eq. (F-11) of appendix F, m?2 (ftz)

A’ angle between surface wind vector and plane of local horizontal, measured
perpendicular to plane of local horizontal (fig. 8), rad (deg)

Ap acceleration along flight path, g units (1g = 9.807 m/sec?)
A, acceleration in lift direction, g units (1g = 9.807 m/sec?)

A A A components of acceleration along X,Y,Z vehicle reference axes
X,cg Y, cgr Z,cg
at c.g., respectively, g units (1g = 9.807 m/sec2)

Ax Ay iAz i components of acceleration indicated by accelerometers along
b 2 )

Xi,Yi,Z; instrument axes, respectively, g units

(1g = 9.807 m/sec?2)

a speed of sound, m/sec (ft/sec)
a' damping constant defined by eq. (D-4) of appendix D, dimensionless
a diameter of circle around which wires or rods are attached in bifilar or

trifilar methods of measuring moments of inertia in eq. (C-9) of
appendix C (see, also, fig. 14(b)), m (in.)



ag . equatorial radius of earth's reference ellipsoid, m (ft)
ag distance from knife edge to spring (fig. 13), m (ft)

B generalized angle of sideslip, defined for various axes systems in tables IIL’
and IV, rad (deg)

B' angle between projection of wind vector onto plane of local horizontal and
component of wind velocity tangent to circle of local horizontal (fig. 8),
rad (deg)

b span, m (ft)

C constant in eq. (D-3) of appendix D, rad (deg)

Ca axial-force coefficient

Cc crosswind coefficient

Cp drag coefficient

Cb drag coefficient for wind-tunnel stability axes

CL lift coefficient

CL.o lift coefficient in steady-state level flight

b

generalized aerodynamic moment coefficients about X,Y,Z vehicle

. Moment
£ o=
C;,CmCn reference axes, respectively, q_S¢
body-axes moment coefficients
Cm ,0 pitching-moment coefficient in steady-state level flight

CN normal-force coefficient

generalized aerodynamic force coefficients about X,Y,Z vehicle refer-

. Force
ence axes, respectivel —_—
CX>CY’CZ s p Yy, 4.

o0
body -axes force coefficients



c reference chord, m (ft)

Cp specific heat at constant pressure, J/kg-°C (Btu(thermochemical)/lbm-OF)

Cy specific heat at constant volume, J/kg-°C (Btu(thermochemical)/lbm -OF)
aerodynamic drag in egs. (I-25) of Sec. I, N (lbf)

P {direction-cosine matrix defined in eq. (E-2) of appendix E

dy,dy,dy displacements of centroid of jet interface, measured with respect to X,Y,Z

vehicle reference axes, respectively, m (ft)
E modulus of elasticity, N/m2 (Lbf/ft2)
€(),€15€9,€3 Euler parameters in eq. (E-9) of appendix E

Fr,X’Fr,Y’Fr,Z forces due to jet control (not main rockets) along X,Y,Z vehicle

Fx,Fy,Fgz

G

GE

gX ’gY ,gz

reference axes, respectively, N (1bf)
forces along X,Y,Z vehicle reference axes, respectively, N (1bf)
transformation matrix composed of Euler parameters
geocentric gravitational constant, m3/sec2 (ft3/sec2)
acceleration due to gravity, m/sec2 (ft/secz)

components of gravitational acceleration along Xg,Yg,Zg gravity axes,
respectively, for an oblate earth, m/sec? (ft/sec2)

angular direction vehicle is traveling (fig. 6); angle measured positive
clockwise from north, i.e., for H =900, vehicle is traveling toward east,
rad (deg)

altitude, m (ft)

moment of inertia, kg-m2 (slug-ft2)



I. . mounting-cradle moment of inertia about vehicle roll axis, kg—m2
(slug-ft2)

Lim moment of inertia of engine rotating mass, kg-m2 (slug-ft2)

IX,IY,IZ moments of inertia about X,Y,Z vehicle reference axes, respectively,
kg-m2 (slug-ft2) ’

“IXY’IXZ’IYZ products of inertia, Iy = S‘ Xy dm, Igy = S. xz dm,
Iyy = S‘ yz dm, kg-m?2 (slug-ft2)
i,j,k unit vectors having properties given in eqs. (E-10) of appendix E

Jo,d3,J4 second, third, fourth zonal harmonics, respectively, of earth's reference
ellipsoid (values given following eq. (V-45) of Sec. V)

j unit vector (see 1i,j,k)

K spring constant, N/m (lbf/in.)

K{,K9,...,Kg constants defined in eqs. (I-13) of Sec. I

Ko boom misalinement angle at zero g, measured with respect to X vehicle

reference axis; positive with boom inclined above X-axis, rad (deg)
Kg constant for springs shown in fig. 13, N/m (lbf/ft)
K 1.Kg 2 values of Kg for springs of different strengths, N/m (lbf/ft)
b

Kt,l’Kt,z constants, determined from Ks,l and Ks,z’ used in measuring moments of
inertia in egs. (C-6) and (C-7) of appendix C, N/m (Ibf/ft)

unit vector (see 1i,j,k)
torsion-spring constant in eq. (C-8) of appendix C, N-m/rad (ft-1bf/rad)

coefficient of heat conduction in eq. (F-9) of appendix F, J/m-sec-K
(Btu(thermochemical)-in./ft2-sec-OF)



aerodynamic lift in egs. (I-25) of Sec. I, N (lbf)

L geocentric latitude of vehicle, positive in northern hemisphere, in Sec. V
and appendix E, rad (deg)
L,M,N aerodynamic moments about X,Y,Z vehicle reference axes, respectively,
N-m (ft-1bf)
Lm o Mem - Nem moments due to gyroscopic action of engine rotating mass about
X,Y,Z vehicle reference axes, respectively, N-m (ft-1bf)
length used in nondimensionalizing moments, m (ft)
[
characteristic length, m (ft)
Q' length of wire or rod on which model is suspended in measuring moment of
inertia by multifilar-pendulum method in appendix C, m (ft)
distance between fore and aft weighing scales in eq. (C-1) of appendix C,
_ m (ft)
[
distance from knife edge to supporting spring in eq. (C-5) of appendix C,
m (ft)
Ul seseslz 7, direction cosines defining orientation of rotated (primed) axes
system with respect to initial (unprimed) axes system; Ixx is
‘cosine of angle between X-axes of two systems; (xv, cosine of
angle between X-axis of rotated system and Y-axis of initial sys-
tem; . . ,; and (5, cosine of angle between Z-axes of two sys-
tems (eqs. (E-3) of appendix E)
M Mach number
M aerodynamic moment (see ﬁ,ﬁ,ﬁ)
Mym moment due to engine rotating mass (see er,Mrm,Nrm)
M. ,X’Mr,Y ’Mr,Z. moments due to jet controls (not main rockets) about
X,Y,Z vehicle reference axes, respectively, N-m (ft-1bf)
My, My ,My moments about X,Y,Z vehicle reference axes, respectively,

N-m (ft-1bf)



o]

p}q’r

pl ’ql ,ri

instantaneous mass of vehicle, kg (slugs)

time rate of change of vehicle mass (such as due to fuel consumption);
negative when vehicle losing mass, kg/sec (slugs/sec)

mass of weighing cradle used in measuring moments of inertia, kg (slugs)
aerodynamic moment (see f,ﬁ,ﬁ)

moment due to engine rotating mass (see Lym >Mrm ,Nrm)

period of oscillation, sec

period of oscillation with spring constant Kt,l’ sec

period of oscillation with spring constant Kt,z’ sec

period of oscillation for model alone, sec

period of ‘oscillation for model plus supporting hardware, sec

period of oscillation for supporting hardware, sec

initial, steady-state values of angular-velocity components along
X,Y,Z vehicle reference axes, respectively, rad/sec

static pressure, N/m2 (Ibf/ft2)

components of angular velocity about X,Y,Z vehicle reference axes,
respectively, rad/sec (deg/sec)

components of angular velocity indicated by rate gyros about

X;,Y;,Z; instrument axes, respectively, rad/sec

angular-velocity component (see PO,QO,RO)



angular-velocity component (see p,q,r)
éuaternion in eq. (E-9) of appendix E
impact pressure, N/m2 (Ibf/ft2)
angular-velocity component (see pi',qi,ri) |
free-stream dynamic pressure, N/m2 (lbf/ft2)

conjugate of quaternion in eq. (E-12) of appendix E

distance of c.g. of vehicle from center of earth (fig. 4), m (ft)

scale factors, with subscripts, as defined in table VI and discussed
in appendix F

radius of assumed spherical earth, 6378.123 km (20 925 631 ft)
angular-velocity component (see PO,QO,RO)
vertical reaction force (fig. 10) in eq. (C-2) of appendix C, N (lbf)

forces at supports in setups for determining c.g. location in eq. (C-1) of
appendix C, N (1bf)

angular-velocity component (see p,q,r)

vector expressing distance from c.g. to origin of instrument-axes system,
m (ft)

distance from origin of gravity-axes system to vehicle reference center,
m (ft)

angular-velocity component (see pi,qi,ri)
vehicle reference area, m2 (ft2)

total vehicle thrust in eq. (V-36) of Sec. V and in eq. (A-134) of appendix A,
N (1bf)

temperature in eq. (F-9) of appendix F, K (OF)



Tp

To

Tx, Ty Ty

t1/2
tq
tg

UpsVo:Wo

component of thrust along flight path, N (lbf)

{mitial thrust in eq. (V-36) of Sec. V

representative temperature of flow in eq. (F-10) of appendix F, K (°F)

components of thrust along X,Y,Z vehicle reference axes, respectively,
N (Ibf)

time, sec

time to damp to one-half amplitude, sec
arbitrary time defined in fig. 15, sec
arbitrary time defined in fig. 15, sec

initial, steady -state values of linear-velocity components along
X,Y,Z vehicle reference axes, respectively, m/sec (ft/sec)

components of vehicle absolute (inertial) velocity along X,Y,Z vehicle
reference axes, respectively, m/sec (ft/sec)

components of relative velocity (velocity of vehicle with respect to air),
along X,Y,Z vehicle reference axes, respectively, m/sec (ft/sec)

indicated components of relative velocity along X;,Y;,Z; instrument axes,
respectively, m/sec (ft/sec) '

resultant velocity, m/sec (ft/sec)

increment in resultant free-stream velocity, m/sec (ft/sec)
velocity component (see UO,VO,WO)

free-stream reference velocity, m/sec (ft/sec)

components of geostrophic-wind velocity, due to earth rotation
(atmosphere rotates with earth), relative to X,Y,Z vehicle reference
axes, respectively, m/sec (ft/sec)

inertial-velocity component (see u,v,w)

relative-velocity component (see a,7,%)



vi - relative-velocity component (see ﬁi,\'ri,Wi)

W vehicle weight, N (1bf)

w resultant velocity of earth surface wind, m/sec (ft/sec)

We weight of weighing cradle, N (1bf)

Wnm weight of model alone, N (lbf) :
WMaS weight of model plus supporting hardware, N (1bf)

Wg weight of model supporting hardware, N (1bf)

Wo velocity component (see U, Vo, Wo)

Wx,Wy Wy components of wind velocity, due to surface winds, relative to

X,Y,Z vehicle reference axes, respectively, m/sec (ft/sec)

w inertial-velocity component (see u,v,w)

w relative-velocity component (see a,v W)

Wy relative-velocity component (see ﬁi,\-ri,'v?i)

X,Y,Z vehicle reference axes

XY, Z aerodynamic forces along X,Y,Z vehicle reference axes, respectively,
N (lbf)

Xe;Ye,Ze right-handed inertial axes with origin at center of earth (fig. 4)

Xg ,Yg,Zg gravity axes with origin at surface of earth (fig. 4)

Xi,Yi,%44i axes in orthogonal coordinate system with origin at an instrument at point
X,y,Zz and with system alined at angles ¢,0,¢ with X,Y,Z vehicle

reference axes at c.g., respectively, as shown in fig. 1

X,V ,Z distances measured from X,Y,Z vehicle reference axes, respectively, m (ft)

10



Aa

Aal

Aaz

distances from c.g. to another point on vehicle, m (ft)

displacements of vehicle with respect to Xg,Yg,Zg gravity axes, respec-
tively (figs. 4 and 5), m (t)

coordinates of X-axis accelerometer or rate gyro, measured from
X,Y,Z vehicle reference axes at c.g., respectively, m (ft)

coordinates of Y-axis accelerometer or rate gyro, measured from
X,Y,Z vehicle reference axes at c.g., respectively, m (£t)

coordinates of Z-axis accelerometer or rate gyro, measured from
X,Y,Z vehicle reference axes at c.g., respectively, m (ft)

distance from knife edge to vertical reaction force Rj (fig. 10), m (ft)
distance from knife edge to vehicle c.g. (fig. 13), m (ft)

vertical distance to c.g. of weighing cradle (figs. 10 and 13), m (ft)
distance from knife edge to c.g. of model, m (ft)

distance from knife edge to c.g. of model plus supporting hardware, m (ft)
distance from knife edge to c.g. of supporting hardware, m (ft)

angle of attack, rad (deg)

—

w w, -V -Ww
tan-1 -:P- = tan-1 o Z,b Z;o
ay, U - Vb~ WX

position error, error due to location of angle-of-attack sensor in flow of

vehicle, equal to free-stream angle of attack minus true or corrected local

angle of attack; positive for a free-stream angle of attack greater than
local angle of attack, rad

difference between angle of attack and trim angle of attack at time t,, rad

difference between angle of attack and trim angle of attack at time tg, rad



AB

Bo

12

increment in angle of attack caused by boom bending under static air load,
measured with respect to boom center line; positive for upward deflection
of boom, rad

change in angle of attack caused by bending of mounting boom under inertial
load, measured with respect to boom center line; positive for upward

deflection of boom, rad

change in angle of attack caused by vehicle rotation, measured with respect \
to vehicle reference axis, rad

angle of attack indicated by vane or other sensor, measured with respect to
center line of mounting boom; positive with nose of vane pointed down, rad

angle between X body axis and X flight stability axis (fig. 3), rad (deg)

trim angle of attack, rad (deg)

change in angle of attack caused by upwash from mounting boom, measured
with respect to free-stream velocity; positive for upwash (upward flow
normal to free stream), rad

vane fioating angle, angle caused by slight mass unbalance or by warp in
vane surface due to imperfections in manufacture, measured with respect

to local velocity vector; positive for nose-up deflections of vane , rad

angle of sideslip, rad (deg)

1% " Vyp Wy
v

1

sin~ —b = sin
Vv

sideslip position error, rad

increment in sideslip angle caused by boom bending under static air load,
measured with respect to boom center line; positive for boom deflected
to right, rad

change in sideslip angle caused by bending of mounting boom under inertial
loads, measured with respect to boom center line; positive for boom
deflections to right, rad



Bd change in sideslip angle caused by vehicle rotation, measured with respect
to vehicle reference axis, rad

Bi sideslip angle indicated by vane or other sensor, measured with respect to
center line of mounting boom; positive with nose of vane pointed to right
of boom, rad )

Bu change in sideslip angle caused by sidewash from mounting boom, measured
with respect to free-stream velocity; positive for positive sidewash, rad

By sideslip-vane floating angle, angle caused by warp in sideslip vane due to
imperfections in manufacture, measured with respect to local velocity
vector; positive for vane deflected to right, rad

T transformation matrix for orthogonal axes system, defined in eq. (A-2) of
appendix A

T'honorthogonal transformation matrix for nonorthogonal axes system, defined in

eq. (I-14) of Sec. I
ratio of specific heats in egs. (I-19) and (I-20) of Sec. I, cp/Cy
Y
flight-path angle in eq. (V-17) of Sec. V (fig. 6), rad (deg)

o control deflection, rad (deg)

8,,0¢,01 control deflections (aileron, elevator, rudder, respectively) rad (deg)

5RPM change in engine rpm

€ angle between Xp principal and X body axes (fig. 3), rad (deg)

€m strain (elongation per unit length) measured on model, cm/cm (in./in.)

€p strain (elongation per unit length) measured on prototype, cm/cm (in./in.)

¢ angle between Xg flight stability and Xt Wwind-tunnel stability axes
(fig. 3), rad (deg)

N angle between Xp principal and Xg flight stability axes (fig. 3), rad (deg)

13



A geocentric longitude of vehicle, positive counterclockwise looking in direction
of positive Z, inertial axis (fig. 4), rad

1L coefficient of viscosity, N-sec/m2 (slugs/ft-sec)

v kinematic viscosity in eq. (F-9) of appendix F, u/p, m2/sec (ftz/seé)

3 phase angle, rad (deg)

p atmospheric density, kg/m3 (slugs/it3) \'

{range angle in eq. (V-21) of Sec. V, rad (deg)

o
surface tension in eq. (F-7) of appendix F, N/m (lbf/ft)

o} roll angle defined in fig, 10, rad (deg)

v,0,¢0 Euler angles defining angular alinement of one axes system with respect

to another axes system, rad (deg)

Y ,eg,gbg Euler angles defining alinement of X,Y,Z vehicle reference axes, respec-
tively, with respect to gravity-axes system (fig. 5), rad (deg)

Yierry 0 Euler angles describing alinement of engine-thrust axes (fig. 9), rad (deg)
rm>Yrm

z,l/X,GX,qbX Euler angles of X-axis accelerometer or rate gyro, measured with respect
to X,Y,Z vehicle reference axes at c.g., respectively, rad (deg)

Yy,0y,9y Euler angles of Y-axis accelerometer or rate gyro, measured with respect
to X,Y,Z vehicle reference axes at c.g., respectively, rad (deg)

wz,ez,qsz Euler angles of Z-axis accelerometer or rate gyro, measured with respect
to X,Y,Z vehicle reference axes at c.g., respectively, rad (deg)

Qe rate of rotation of earth, rad/sec
Qrm angular velocity of engine rotating mass, rad/sec

{resultant angular velocity in Sec. I, rad/sec

frequency of oscillation in appendix D, rad/sec

14



WyysWyys@y,  angular-velocity components along X',Y',Z' vehicle reference axes,
respectively, usually measured with respect to gravity-axes or
inertial-axes system, rad/sec

Subscripts: s

b body axes

0 initial conditions

p principal axes

s flight stability axes

w wind axes

wt wind-tunnel stability axes

Notation:

. (Dot) first derivative with respect to time

' (Prime) wunless otherwise specified, a primed quantity is one referred to axes sys-
tem located at point x,y,z and/or alined at angles ,0,¢ with respect
to initial reference axes system

A perturbation quantity (unless specified otherwise)

Subscripts used with coefficient symbols denote derivatives as follows:

o with respect to «

& with respect to @0/2V
B with respect to S

g with respect to f0/2V
u with respect to u/Ve

15



with respect to v/V

with respect to w/V

with respect to p£/2V,

with respect to q£/2V

with respect to r¢/2V

with respect to control deflection

with respect to V/V.,. This derivative, for a force such as the X-force, is

equal to 2Cx + %—c}-}‘%})—, where the term 2Cx represents the glé&;lge in
3(V/V o)
represents the change in Cx due to effects such as Mach number or
aeroelastic effects. If these effects are negligible, then Cxy = 2Cx,
Cmv = 2Cm, etc.

X -force due to changes in free-stream velocity and the term



SECTION I

EQUATIONS INVOLVING BASIC FLIGHT MEASUREMENTS

This section summarizes some of the relationships used in working with basic flight
measurements. Included are general equations for transferring accelerations, linear
velocities, and angular velocities between any two axes systems on a flight vehicle that
are related by a ¢,0,¢ Euler rotation sequence; the simplified forms that are frequently
used to correct accelerometer and rate-gyro readings for instrument displacement and
. misalinement are given as equations (A-5) to (A-16) in appendix A. Also included are
the correction equations for angles of attack and sideslip, equations for determining flight
Mach number from measurements of static and impact pressures, and equations for deter-
mining vehicle forces and moments from accelerometer and rate-gyro readings.

GENERAL AXES TRANSFORMATIONS FOR COMPONENTS
OF ACCELERATION, LINEAR VELOCITY, AND
ANGULAR VELOCITY

The general equations given here transfer between the two axes systems shown in
figure 1, where the "instrument-axes' system represents any system displaced and/or
misalined with respect to the vehicle reference axes at the c.g. It should be noted that the
Xi,Yi,Z{ components' of the instrument-axes system need not be mutually perpendicular
(orthogonal) nor referred to the same origin. This would be the case, for example, if
- accelerometers were used to measure the separate components of acceleration but the
accelerometers were not orthogonally alined and were located at different points on the
vehicle. Hence, three separate instrument axes have to be considered. For the equa-
tions developed here, one instrument is assumed to be alined along the X-axis of a sys-
tem located at point XX,yX, x and alined at Euler angles z,DX,GX,qbX with the vehicle
reference axes; a second instrument is assumed to be alined along the Y-axis of a sys-
tem located at point xY,yY, v and alined at Euler angles i,//Y, Y’¢Y with the refer-
ence axes, and so on. Nine displacement coordinates and nine Euler angles in all are
needed to define the locations and alinements of the three instruments.

Both axes rotation and axes translation can be performed by using these

equations (in the acceleration equations, axes-translation terms are of the form

—

_dv

inertial = it — +wX \7; in the velocity equations, they are of the form

a,
—r

Vinertial = %—ft- + X ?) The transformations from the vehicle reference axes to the

instrument axes are given in equation form; however, those from the instrument axes

17
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SECTION I — Continued

to the vehicle reference axes are given only in matrix form, since they involve a matrix
inversion which becomes long and complicated unless certain simplifying assumptions
are made. Two simplified cases, in which (1) instrument axes are orthogonal and (2)

misalinement angles are small, are given as instrument -correction equations in equa-
tions (A-5) to (A-16) of appendix A.

Transfer From Vehicle Reference Axes to Instrument Axes

Acceleration. -

BAx i = [gAX,cg - (rz + qz)ix +(pq - i‘)S_TX + (Tp + il)i}acos bx cos Yy

+ [gAY,cg +(pq + i*)iY - (pz + r2)37Y +(ar - @)Zﬂcos Oy sin Yy

- @Az,cg + (pr - QX + (qr + 13)372 - (qz + pz)izjsin ox (I-1)

2 - o - s = . . Cai ‘
gAy i= [gAX, cg - (r + q2)xX +(pq - r)yX +(rp + q)zX] (cos Yy sin 6y sin gy - sin Yy cos qu)
+ [gAY,cg + (pq + i‘)iY - (pz + rz)gY + (qr - b)iY] (sin Uy sin Oy sin ¢y + cos Yy CcOS qu)

+ EgAZ,cg + (pr - )%, + (Qr + P)yy - (qz + 92>EZJC°S by sin ¢y (I-2)

gAZ,i = @Ax,cg - (rz + qz)ix + {pq -~ i‘)j'rx + (rp + &)EX] (cos ¥y, sin 6, cos ¢, + sin Yy sin‘¢>z)
+ [gAY,cg + (pq + i')iY - (pZ + r2>3-7Y +(qr - pﬁ‘a (sin Yy sin 65 cos ¢ - cos Yy sin ¢Z)

+ (:gAZ,cg + (pr - §)Xy + (qr + Py - (qz + pz)izjcos 6 cos ¢y (1-3)

Linear velocity.-

u = (ﬁ + qZX - r§7X>cos fx cos Y + (\7 + riY - piY>cos bx sin Yy
- ('v?z' + p{lz - q}'{Z)sin 0% (1-4)

18



SECTION I — Continued

Vi = (ﬁ +QZy - rer)(sin ¢y sin 6y cos Yy - sin Yy cOS <PY>
+ ({} + 1Ry - piY)(sin Yy Sin Oy sin ¢y + coS Yy coS ¢Y)
+ (\'av' +P¥y - qiz)sin ¢y cOS by (I-5)
W, = (ﬁ + QZy - r{rx)<cos Yy, €os ¢y sin O + sin Yy sin qbz)
+ (\7 + IXy - pZY> (sin Yy, COS ¢ Sin By - COS Yy, sin (PZ)
+ ('v?z' +PYy - qiz)cos ¢ cOS Oy (1-6)

Angular velocity.-

p; =P COS Oy COS Yy +q €OS Oy sin Yy - T sin Oy x-7)
q; = p(cos Yy Sin Oy sin ¢y - sin Yx, cos cpY)

+ q(sin ¢y sin Yy sin Oy + cos Yy coS ¢Y)+ r sin ¢y cos Oy (I-8)
ri = p(cos Y, COS ¢y Sin O + sin Yy sin d)z)

+ q(sin Yy, cos ¢ sin 6, - cos Yy sin ¢Z> + T cos b, cos ¢, (1-9)

Transfer From Instrument Axes to Vehicle Reference Axes

If the axes along which data are measured are not orthogonally alined, the following

procedure must be used to transfer instrument readings to the vehicle reference axes
at the c.g.:

Accelerations are given by

eAy ] RS
A, cg gAxi| | K1
1-1
gAY,cg = Ernonorthogonalj gAY,i +| Kg (I-10)
LgAZ ’Cg_. LgAZ ’i_ LK3_
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angular velocities,

p

SECTION I — Continued

by

Py

-1
q4= [Fnonorthogonalj 9

r

and linear velocities by

<1 ci

]

where

- - 3 - . ‘\
Kq = % (12 + q2) - §(pq - T) - Zrp + Q)
X X X
Kg = -Xg(pq + 1) + ¥ (p2+r2>—2 (qr - p)
Y Y Y

Kg = -Ky(pr - &) - Fylar +b) + Z5(a? +p2)

K4 = riX - in

Kg = PZy - TXy

Kg = qXy - Py

ry
i) [x,
- -1 -
= [:rnonorthogon ﬂ Vi | +|Ks
' _VVi Kg

_/

(1-11)

(1-12)

(I-13)

In equations (I-10) to (I-12) [:rnonorthogonalj-l is the inverse of a transforma-
tion matrix made up of the sines and cosines of nine Euler angles, one set ¥,0,¢ for

each of the three instruments.

I?nonorthogonal] =

cos GX cos z,l/X

cos Yy sin ¢>Y sin by
- sin wY cos ¢Y

cos z//Z cos ¢>Z sin GZ

+ sin z//Z sin ¢Z

This transformation matrix is defined as

cos BX sin ‘I/X -sin GX

sin 1[/Y sin qu sin‘GY sin qu cos HY
+ CcOS sz cos ¢Y

sin z,l/Z cos ¢Z sin ez cos QZ cos ¢Z

- cos WZ sin ¢Z ]

(1-14)

Except under certain simplifying assumptions, the inverted matrix [rnonorthogonalj_l
needed to solve these equations is too long and involved to write out; however, the matrix

inversion can be performed fairly easily on a digital computer,

Equations for two cases

in which the matrix can be inverted are given in appendix A as equations (A-5) to (A-16).

20



SECTION I — Continued

CORRECTIONS TO ANGLES OF ATTACK AND SIDESLIP

Angle of Attack

For a vane-type sensor, the true or corrected angle of attack (referred to the vehi-
cle reference axes at the c.g.) is given by

a=aj-Qy - Qy+ oy - Ky - ap +ag + A (I-15)

where Ao« is the position error, the error due to the location of the sensor in the flow
field of the body, and the other corrections are those due to boom bending, misalinement,
and flow-field effects (see the list of symbols).

Equation (I-15) is for an angle-of-attack vane mounted on an instrument boom extend-
ing from the body or a wing tip but generally applies to any type of sensor. Other types
of sensor and methods of calibration are discussed in reference 5. The importance of the
different types of error is discussed in reference 3.

The angle ay is the correction for vehicle rotation and is given by

_2x ¢ _2y pt -16
Y47 VL T 1 2Va (I-16)

The other errors are determined by calibration as discussed in reference 5.

Angle of Sideslip
The equation for corrected sideslip angle is

B:Bi+Ba+Bu-Bv+§b+Bd+AB (I-17)

where the correction for vehicle rotation is given by

9x r{ .2z pd
i p— —— 1—18
Ad 7 W T L3V (I-18)

DETERMINATION OF FREE-STREAM MACH NUMBER

For flight tests of high-speed aircraft or missiles, the following relationships are
used to determine Mach number from onboard measurements of impact pressure (.
and static pressure p: For subsonic conditions (M < 1.0),

<. <1 +7/—-2—£M2) “1l =@ +0.2m)7/2 -1 (1-19)

For supersonic conditions (M > 1.0), the equation is modified to include the loss in total
pressure behind the shock wave and becomes
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SECTION I —~ Continued

- Yy +1 .2
M 2 \5/2 :
2ol T (I
5 2 2y M2 _Y 5.6M2 - 0.8
v+1 v+1

The indicated Mach number M is determined from tables or plots, based on equa-

tions (I-19) and (I-20), of c'ic /13 as functions of Mach number.

DETERMINATION OF AERODYNAMIC FORCES AND MOMENTS FROM
ACCELEROMETER AND RATE-GYRO READINGS

The components of the total force acting on the flight vehicle can be determined by
multiplying the corrected accelerometer reading (i.e., corrected for displacement and

misalinement) by vehicle weight. In coefficient form

c _WAX,ch
X~ q_S
0

WA
Cy = __Y,cg _ (I-21)
q.S

WA
C. =z Z,cg
o

The total force thus determined includes the static and the dynamic aerodynamic forces,
the engine thrust, the jet damping force, and the reaction and other control forces. It
does not include the components of vehicle weight, however, since gravitational effects
appear as accelerations that are measured directly by the accelerometer; that is, the
products of the weight and the corrected accelerometer readings are

~

WAX’cg=W(f1 +WQq - Vr + g sin Gg) =ZFX

(I-22)

—

WAY oo = W({z +UL - Wp - g cos 6 sin ¢g) =>:FY

WAZ,cg = W(w +Vp - uq - g cos 6y cos ¢g) = EFZJ

where the sine and cosine terms are components of vehicle weight.

The total moments are determined from the rate-gyro readings according to the

equations
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SECTION I — Continued

\
) My = bly - gy - Higy +(rIg - plxy - dlyz) - 7(dly - Flyz - Plxy)

ZMY = 4ly - Flyy - Py + r(pIx - dlxy - riyy) - p(rly - plxy - dlyy) >  (I-23)

) Mg = iy - by - dyz +p(dly - rlyz - Plxy) - a(lx - dlxy - Tixz)
J

The moment coefficients are

My
€1=/,a_sp
M
cm=z Y_g (1-24)
qooSc
Mg,
Ch= ) —=—
n 4.Sb

(Although b and ¢ are commonly used to nondimensionalize the moments, these lengths
are arbitrary and any convenient length can be used.)

Methods by which the total forces and moments are broken down into trim, static,
and cross-coupling components so that longitudinal and lateral coefficients can be deter-
mined are quite complicated and beyond the scope of this paper. The simplified method
for determining basic static- and dynamic-stability derivatives from oscillatory flight
motions is developed in appendix D. In this and in most methods, linear systems are used
to represent transient flight data; these linear systems are obtained by assuming small
angles, constant aerodynamic coefficients, constant free-stream conditions, rigid-body
mass and inertial characteristics, and separation of the longitudinal and lateral modes.
For data that do not fit these limitations, exact methods of simulation based on the equa-
tions of motion for six degrees of freedom are used. Other methods that are now becom-
ing popular involve parameter identification in which linear and quasilinear estimation
techniques are used. (See, for example, refs. 2 and 6.)

DIRECT FLIGHT MEASUREMENTS OF LIFT AND DRAG
Lift and drag components for an airplane can be measured directly by using flight-
path accelerometers which differ from body-fixed accelerometers in that they are oper-

ated by a vane or pressure sensor that rotates the sensor into or normal to the stream
direction. Accelerometers measuring parallel and normal to the flight path measure
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SECTION I — Concluded

vehicle thrust minus drag and lift, respectively, if the component of thrust in the lift
direction can be assumed negligible. In equation form the lift and drag are
Tp - D= -WAp
(I-25)
L = WA;j, .
where Tp is the component of_ thrust along the flight path. The accelerations should be
corrected for the usual boom-type errors as described in correction with equation (I-15)

for the angle of attack measured from a boom. Details of this flight-testing technique
are given in reference 7.

24



SECTION II

TRANSFER OF AERODYNAMIC FORCE AND MOMENT COEFFICIENTS

AND DERIVATIVES TO ANOTHER REFERENCE CENTER

4

The equations in this section are the general forms for transferring aerodynamic
force and moment coefficients and stability derivatives from a coordinate axes system
with origin at the c.g. to a parallel axes system with origin at a point x,y,z away from
the vehicle c.g. (Simplified forms obtained by assuming zero angles of attack and side-
slip and neglecting aerodynamic cross derivatives are given as equations (A-17) to (A-43)
in appendix A.) In these general equations, unprimed coefficients are referred to the c.g.;
primed coefficients are referred to the point at x,y,z shown in figure 2.

The transformations are given for both systems of variables used in aerodynamics.
Equations for the «,3,V,p,q,r system are given by equations (II-1) to (II-40); those for
the u,v,w,p,q,r system are given by equations (II-41) to (II-76). (The relationships
between the two sets of variables are given in table II.) The equations are derived in
appendix B. They are general in that no assumptions are made as to angle of attack or
sideslip and in that all transfer distances, lateral as well as vertical, are included; how-
ever, they are still not complete in that, for the purposes of these transformations,
second-order derivatives with respect to time are assumed negligible and are omitted.
Also, the transformations given for the static forces and moments (derivatives with
respect to o or p) are the simplified forms that apply only when the body is not under-
going any significant rotation and p, q,and r are essentially zero. The transforma-
tions for static-stability derivatives that apply when there is significant vehicle rotation
can be derived as indicated in appendix B.

TRANSFORMATIONS FOR «,3,V DERIVATIVES

X-Axis Force Coefficients and Derivatives

Cx =Cx (I1-1)
Cxy = X4 (1-2)
Cx, = Cxg (11-3).
Cx4= Cx4 (-4)
C'Xé = CXB ' (II-5)
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C'Xp - CXp - 2Cx yeosa ZCXB(E cos B + 2 sin a sin B>

a ¢ cos B [ [
+ 4CX<-§- sin B - % sin a cos B) (I1-6)
qu = CXq + 5—5-2_5 Cxa(% cos o + % sin a>+ ZCXB<% cos o - % sin oz)sin B
i i i
+ 4CX<% sin @ - % cos az) cos B (1I1-7)
v ) Yy sin @ _ X y ,
CXr = CXr 2CXa T o5 B 3 ZCXB<_Q cos B + 7 €os a sin B)
y _X g -
+ 4CX<£,cos a cos B 7 Sin B) (I1-8)
Y -Axis Force Coefficients and Derivatives
' N
Cy=Cy
' .
CYa = CYoe
1
=Yg ) o
]
CY . = CY&
Cy.=Cy.
Y T8
v _ y cos o Z ¥ o .
CYp = CYp ZCYa Tcos B + 2CYB<!Z cos B + ¢ Sin a sin B)
Z . V .
+ 4CY<[ sin 8 - % sin @ cos B) (I1-10)

2C
Y - - - -
C, =Cy + a(%cosa+%sin a>+ZCY <§cosa-§sin oz)sinB

Yqg  "*a cosp B\L ]
+ 4CY<?Z' sin a - % cos a)cos B (I1-11)
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' _ y sin a X y
CYr = CYr ZCYa % o5 B 2CYB(Q cos B += 7 cos a sin B)

+ 4CY(% cos o cos 8 - % sin B)

7.-Axis Force Coefficients and Derivatives

Cy=Cy )
C'Zoz - Cza
C'ZB = CZB $
c'Z& =Cz,

v -
“z5™ %z )

Cl =C, -2C, 195, (" y >
7 Zp 7 !ZcosB+ CZB cosﬁ—vﬂsmasmﬁ

Zging -3
+ 4CZ<Q sin B - 7 sin o cos B)

2Cy

C'Zq=CZq+ a<§cosa+%sina>+2cz (-Z-cosa-%sinasinﬁ

cos B\L B\L

+ 4CZ<}E{- sin o - % cos a>cos B

cl =Cy, -2C, LSIB&_sc (g sp+l i )
Zy Zp Zo € cos B ZBQco B+ﬂcosas1n3
+ 4CZ<% cos a cos 8 - % sin B>

X-Axis Moment (Roll) Coefficients and Derivatives

(II-12)

(Ir-13)

(11-14)

(11-15)

(I1-16)

(I1-17)

(I-18)
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Gy = Cu +2 Cy, - y Cz, (11-19)
Cp =Gy 2oy, -Lcg, (1-20)
CEB = Czé + % CYB ¥ czé 'i(11-21)
+2<; cos6+%smasm B)(CZB CYB %CZB>
+ 4<% sin g - % sin a cos B) (CZ + %— Cy - % CZ) (I1-22)
Czq = Clq + %qu - % CZq + coz B(% cos a + %— sin a><cloz + % CYQ - % CZa)
+2$1>n3<_ cosa—% )( % —%CZB)
+ 4 cos B<; sin & - Z cos a) (Cl +% %CZ> (I1-23)
Cir =G+ % Cy, - % Czp -2 % ig;%(cla +§ “Yq _% CZa)
- 2(% cos fB +%-7cos a sin B)(CZB +%CY3 _%Czﬁ>
+ 4(% cos a cos B - % sin ,8) (Cl + % Cy - %CZ> (I1-24)
Y -Axis Moment (Pitch) Coefficients and Derivatives
Chn=Cm+3Cy-Zcy (11-25)
Cray = Cmg +3 Cg, - 2Cx (11-26)



SECTION II — Continued
(I1-27)

mB— Cm3+%CZB ICXB
5 =Cmy * %cy, - 2Cx, (11-28)
m = Crmj + % Cz; - % Cx; (11229)
;np=Cmp+2!}CZp_%CXP_Z%%%_%(Cma+%CZa'%Cxa>
)(Cmﬁ g Czg " !-ZCXB>

y sin o sin 8

+ 2(![ cos B + 2 7
(I1-30)

+ 4<Q sin 8 - — sin a cos B)(Cm 7 Cy - ZCX)

' 2 (X X Z
Cmq’cmq"'QCZq"_CXq csB( cosa+-Q-sma><Cma Zcza'fcxa)
+2$1n[3(-cosoz—2{-s1na>(c C xC
] mgtgZgT T X
+ 4 cos B(— sin a - gcos o (C +g-C - -i—C (1I1-31)
] m*y~zZ2"7 X

T X _z _ o ¥ sina X _z
Cmy = Cmp +7 Czp 7 CXr 2Qcosﬁ(cma+ﬂcza QCXOA)

Z(Q cos B + cos a sin B>(0m3 1 CZB - ECXB>

+ 4(}2 cos o cos B - I sin B) (Cm +7 Cz -7 CX> (11-32)

7-Axis Moment (Yaw) Coefficients and Derivatives

v y X
C. = Cn + I CX - z CY . (11-33)
(11-34)
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SECTION II — Continued

1
t Z V7
Cxp = Cxp * 7 Oy - ¥ Cxy (I1-44)
A 2 )-( 4,
= -Zc 2 11-45
v y _X -
CXr = CXr + T CXu 7 CXV (11-46)

Y -Axis Force Coefficients and Derivatives

¢y = Cy, (I1-47)
Cy = Cy. | (I1-48)
Cy_ = Cyy | (11-49)
cg(p = Cy, + % Cy, - % Cy,, (11-50)
Cy, = Cyg - Zcy, +3Cy, (1r-51)
Cy. = CY;‘ + % Cy,, - % Cy, (11-52)

7 -Axis Force Coefficients and Derivatives

c'Zu =Cy. (I1-53)
Cy, =Cz, (I1-54)
Czy = Czy (11-55)
c'zp = ch + % Cz, - % Cz., (I1-56)
C'Zq =Czq - % Cz, * X Cz, (11-57)
Cy.=Cz, wiczu '%’CZV (11-58)
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SECTION II — Continued

X-Axis Moment (Roll) Coefficients and Derivatives

czu =Gy +% Cy, - % Cz, (I1-59) .
G, = Ciy+2Cy, - S g (11-60)
ciw =Cp, * % Cy, - % Czy _ (I1-61)
ci _clp+;cYp ;cz +%(Clv+%-CYV—%CZ) ‘
- %(clw + % Cyy, - % CZW) (I1-62)

X z ¥ )
+3 (Czw +7Cyy - 7 CZW) (11-63)

X 4 A -
- Q<sz +7Cy, - ¥ CZV\) (11-64)

Y-Axis Moment (Pitch) Coefficients and Derivatives

1 X Z

Cing = Cmy +3 Cz, - 2Cx, (I1-65)
Cmv = CmV + _ﬂ- CZV - I CXV (11-66)
' X z

- %’.(cmw + %‘- Cg, - % CXW> (I1-68)

X X Z



SECTION II — Concluded
- X _Z y X _Zz
Cmr = Cmr +Q CZr 7 CXI‘ +Q <Cmu + 1 CZu 7 CXu)

X X Z
- z(cmv +XCy -2 CXV> (11-70)

Z-Axis Moment (Yaw) Coefficients and Derivatives

1 X

Cpy = Cny + ’} Cx, - 7 Cvy (L-71)
' y X

Chy = Cny +¥ Cx, - 7 Cyy (11-72)
' y _X -

Chy = Cny * 7 Cxy, = 7 Oy (11-73)

y X Z y X
Chp = Cn, +%Cxp -7 Cvp Jrz(crlv +5Cx " 7 cYV>

-.-—’ : — -: —
+ <Cn +Qy Cx Cy ) (I1-75)
! LY _X LY LY _X
Ch.. = Cp Cx ’ <Cn Cx. -7 Cy >
_E LY _X -7
<Cn > Cxy -7 Cx ) (11-76)
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SECTION II1

TRANSFER OF- AERODYNAMIC FORCE AND MOMENT COEFFICIENTS

AND DERIVATIVES TO A ROTATED AXES SYSTEM

The equations in this section are the general forms of the axes transformations for
aerodynamic force and moment coefficients and stability derivatives that can be used to
transfer between any two of the five axes systems used in aerodynamic analysis. (Par- .,
ticular forms for transfer between body and wind-tunnel stability axes are given in ‘
appendix A,) Transformations are presented for both «,8,V derivatives and u,v,w
derivatives. (For the relationships between the two sets of derivatives, see table I1.)

The equations are developed in terms of a generalized angle of attack A and generalized
sideslip angle B; transformations between any two axes systems can be obtained by sub-
stituting specific angles for A and B in these equations. (See tables III and 1V.)

DESCRIPTIONS OF AXES SYSTEMS

The five axes systems considered are those shown in figure 3. While three of
these systems, body, principal, and wind axes, are clearly defined in the literature, there
is some confusion concerning the definition of the stability axes. The stability axes
described in some reports are vehicle or flight stability axes about which the equations
of motion are written; in other reports they are wind-tunnel stability axes about which
aerodynamic data are measured in the wind tunnel. The differences between the two are
pointed out in these brief descriptions of the axes systems.

Body Axes

The orthogonal body -axes system is fixed within the vehicle with the X-axis along
the longitudinal center line of the body, the Y-axis normal to the plane of symmetry, and
the Z-axis in the plane of symmetry. This is the axes system about which aircraft
instruments are usually mounted. Its main advantage in motion calculations is that vehi-
cle moments of inertia about the axes are constant, so that the I terms can be omitted
from the equations of motion. It is the logical system to which to refer velocities, accel-
erations, and stability and control parameters in the study ‘of aircraft handling qualities
because the pilot's orientation with respect to this frame is fixed.

Principal Axes

The principal axes are an orthogonal body-fixed system for which the products of
inertia are zero. The X and Z principal axes lie in the plane of symmetry; the angle
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SECTION III — Continued

between the X body axis and the X principal axis is usﬁally small so that in many
cases the body axes can be assumed to coincide with the principal axes.

Flight Stability Axes

The flight stability axes (sometimes referred to as vehicle stability axes) are an
orthogonal body-axes system fixed to the vehicle, the X-axis of which is alined with the
relative wind vector when the vehicle is in a steady-state trim condition but then rotates
with the vehicle after a disturbance as the vehicle changes angle of attack. This system

is preferred in many stability studies because, as with other body-fixed axes, the moments °
~ of inertia about the axes remain constant and also because the motions defined are pri-
marily those about the flight path rather than about body reference lines,

Wind-Tunnel Stability Axes

The wind-tunnel stability axes are the system about which most wind-tunnel data
are obtained. For this system the X-axis is in the same horizontal plane as the relative
wind at all times (fig. 3). The angle o between the X-axis of this system and the X
body axes is variable. (It is a constant «( for the flight stability axes.) This means
that vehicle moments of inertia about the X-axis change. It also means that additional
terms are required in the transformation equations for static-stability derivatives and
for u,v,w derivatives when data are transferred to or from the wind axes or the wind-
tunnel stability axes, These additional terms are designated (1), as in equation (III-7),
for example.

Wind Axes

The wind axes are the system generally used in calculating motions of the vehicle
as a point mass. The X-axis for this system is alined with the relative wind at all times
so that vehicle moments of inertia about this axis change. As with the wind-tunnel sta-
bility axes, additional terms, designated (1), are required in the transformations to or
from the wind axes and either the body, principal, or flight stability axes, since the angle
A Dbetween the X wind axis and the X-axis of either of these systems is variable. Also,
since the lateral angle B between the X-axes is variable, there are additional terms,
designated (2), as in equation (III-13), required in the transformations for some of the
lateral derivatives between the wind axes and either of the other axes systems,

NOTES ON USE OF TRANSFORMATION EQUATIONS

In the transformations that follow, symbols such as Cx,Cy,Cy and Cy,Cy,Cy
are used in a general sense to designate coefficients and derivatives about corresponding
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SECTION III — Continued

X',Y',z' and X,Y,Z axes systems; specific designations to use with each axes system
are given in table V. Two types of transformation are given: 'Direct" which include
those defined in table III and "inverse" which include those defined in table IV. Trans-
formations between any two axes systems are obtained by selecting the proper angles for
A and B from table III or IV and then the proper coefficient designations from table V.
For example, in transferring from flight stability axes to body axes (a direct transforma-
tion, according to table III), angle A is replaced by ozo' and angle B equals zero; the
transformation for Cx then becomes, by using equation (III-1) and table v,

CX=CXScosaO—CZSsina0 !
2 b

As a second example, in determining the C;  about the wind-tunnel stability axes
from derivatives given about the body axes (an inverse transformation according to
table IV), equation (III-82) and tables IV and V are used to obtain

- 2 in2 i
Clp,wt = Clp cos® @ + Cp,, sin® a + (Clr + Cnp)sm a cos «

In the transformations for static-stability derivatives and also in the transforma-
tions for wu,v,w derivatives, the terms designated (1) are included only in transferring
from either wind or wind-tunnel stability axes to either body, principal, or flight stability
axes and not in other transformations. For example, terms (1) are included-when the

body -axes derivative CXa (eq. (III-7)) is determined from data given about wind-tunnel
stability axes as in

Con = CXa,wt cos o - Cza,wt sin a - CX,Wt sin @ - CZ,wt Ccos «
but are not included when CXa is determined from data about flight stability axes as in
C =C cos ap - C sin @
Xa ™ "Xy g 0" "Za s 0
The terms designated (2) are included only in transferring to or from wind axes.
For example, in transferring from wind axes, the body-axes derivative C 8 (eq. (II1-16))
is given by

G =C COoS «o sB-C
g™ "lgw €08 B - Cmyg o

cos @ sin 8 - C, sin o
b B’W

- Cl,w cos « sin 8 - Cm,w cos « cos B
but, in transferring from wind-tunnel stability axes, becomes

C sin «

B

=C cos a -C
g wt 8, wt

If the need arises, derivatives with respect to «,3,V can be converted to deriva-
tives with respect to u,v,w by using the relationships given in table II.
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SECTION III — Continued
DIRECT TRANSFORMATIONS

Static Force and Moment Coefficients 1 (Direct, Table III)

Cs( = Cyx cos Acos B - Cy cos AsinB - Cy sin A (III:l)
Cy = Cx sin B + Cy cos B (TII-2)
Cy = Cx sin A cos B - Cy sin A sin B + Cyz cos A (II-3)
C; = C; cos A cos B - Cpy cos A sin B - Cy sin A (111 -4)
Cp, = Cp sin B + Cy, cos B (II-5)
Cp = C; sin A cos B - Cp, sin A sin B + Cy, cos A (I11-6)

Static-Stability Derivatives (Direct, Table III)

]

CXa =Cx, cos Acos B -Cy, cos AsinB - Cg , sin A

- E:X sin A cos B + Cy sin A sin B - Cy cos AJ (III-'?)
(1)
where the terms desighated (1) are included only in transferring from either wind or wind-

tunnel stability axes to either body, principal, or flight stability axes and not in other
transformations.

1

CYa =Cx, sinB + Cy  cos B (I11-8)
C'Za= Cx, 8inAcosB-Cy, sinAsinB+Cg cos A

+ C\JX cos Acos B-CycosAsinB-Cy sinﬁ (III-9)_
~N

1)

A 1Equations for control derivatives and velocity derivatives have this same form,;
for example, :

Ck@a = Cx, cos AcosB - CYﬁa cos A sin B - CZGa sin A

a

CkV = Cxy, €08 A cos B - Cyy cos Asin B - Cz, sin A
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SECTION III — Continued

Cza = Cla cos A cos B - Cmacos A sin B - Cna sin A

- €l sin A cos B + Cy, sin A sin B - Cpy cos4AJ (III-10)
i
(1) :
Crmg = Cy,Sin B + Cp, cos B (Im-11)

C;loz = Cy,sin A cos B - Cm, sin A sin B + Cp,, cos A \

+ C; cos A cos B - Cyy, cos A sin B - Cp sin A (I1I-12)
A -/ :
~v
(1

CkB = Cxg cos A cos B - Cy, cos A sin B - Czg sin A

- SX cos A sin B - Cy cos A cos _1_3/ (IIr-13)
——
2)
where the terms designated (2) are included only in transferring to or from wind axes.
C&B - CXB sin B + Cyg cos B+ Cx cos B-Cy sin B (I11-14)
(2)

]

CZB = CXB sin A cos B - CYB sin A sin B + CZB cos A

- kCX sin A sin B - Cy sin A cosB (IIx-15)
(2)

Ciﬁ = CZB cos A cos B - CmB cos A sin B - CnB sin A

-y cos Asin B - Cpy cos A cos B (II1-16)
TN
(2)
c;nB = Cgsin B+ Cmg cos B + Cy cos B - Cpy sin B (II1-17)
(2)
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SECTION HOI - Continued
C;‘B= Cyg sin A cos B - Cpg sin A sin B + Cpg cos A

- El sin A sin B - Cy, sin A cos BJ '(I:II-18)
(2)

Dynamic-Stability Derivatives (Direct, Table III)

CL =|Cy c0s2 B - (Cy +Cv \sinB cos B + Cv_sin2 Blcos2 A
Xp [Xp (O%q * C1p) Yq

+Cz. sinZ A - [:(CXr + CZp) cos B - (CYr + CZq> sin Bjsin A cos A (IIr-19)

Xq CX cos? B - CYp sin? B + (CXp - qu) sin B cos B]cos A

- (Czq ©08 B + Cz sin B)sin A (111-20)

CXr (CX cos B - CY sin B) cos? A - (Czp cos B - CZq sin B) sin A
2 . . .
+ l:CXp cos B’+ qu sin B - (CXq + CYp) sin B cos B - CZ;' sin A cos A (III-21)

' _ 2 2 s
CYp = l:Cyp cos® B - CXq sin® B + (CXp - CYq) sin B cos B:} cos A

- (ch cos B + Cx,. sin B) sin A (II-22)

Cy, = Oy cos? B + Cx, sin B + (Cxy + Cyp)sin B cos B (II-23)

1 .
Cy, = (CYr cos B + Cx  sin B) cos A

+ [CYp cosZ B - CXq sin? B + (CXp - CYq) sin B cos BJ sin A (II1-24)

C'Zp = (CZp cos B - CZq sin B) cos? A - (CXr cos B - Cy,. sin B) sin? A
+ [CXP cos? B + CYq sin? B - (CXq + Cyp> sin B cos B - CZIJ sin A cos A (III-25)
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C'Zq = (CZq cos B + Cg,, sin B)cos A

+ [Cxq cos2 B - Cyp sin B + (CXp - qu) sin B cos B:]sin A
1

+ [(er + Czp> cos B - (CYr + CZq) sin BJ sin A cos A

C'p = [Clp cos? B - (Clq + Cmp) sin B cos B + Cmq sin2 BJ cos? A + Cn, sinZ A

+ [‘(Clr + Cnp) cos B + (Cmr + qu> sin B] sin A cos A

Cl'q = ‘:Clq cos? B - Cmp sin? B + (Clp - Cmq> sin B cos B] cos A

- (qu cos B + Cnp sin B) sin A

C'

_ ) . 2 4 _ ) . . 9
e = (Clr cos B‘ Cm,. Sin B) cos® A (Cnp cos B - Cp, sin B) sin? A

+ [Clp cos? B + Cmq sin? B - (Clq + Cmp) sin B cos B - Cnlz] sin A cos A

' _ 2 - i 2 - i
Cmp = [Cmp cos“ B Clq sin® B + (Clp Cmq) sin B cos B] cos A

- (Cmr cos B + Cy _ sin B) sin A
C}nq = Cmq cos? B + Clp sin? B + (Clq + Cmp) sin B cos B

C}nr = (Cmr cos B + Cy_ sin B) cos A

+ [Cmp cos? B - Clq sin B + (Clp - Cmq> sin B cos B:]sin A

40

= 2 2 in2 B - i in2
CZr = CZr cos“ A + I:CXp cos® B + qu sin“ B (CXq + CYp) sin B cos BJ sin® A

(m-zs)‘

(11-27)

(I -28)

(I11-29)

(I11-30)

(IT11-31)

(I11-32)

(m-33)
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vy ) . 2 A ) . . 2
Chp = (Cnp cos B Cpg sin B)cos? A (Clr cos B - Cpy,. sin B) sin“ A

+ I:Clp cos? B + Cmq sin2 B - (Clq + Cmp) sin B cos B - CHIJ sin A cos A (III-34)

4

C}lq = (qu cos B + Cp, sin B) cos A

+ [Clq cos? B - Cmp sin? B + (Clp - Cmq) sin B cos BJsin A (III-35) |

C;lr = Cp, cos® A + [Clp cos? B + cmq sin? B - (Clq + Cmp> sin B cos B]sin2 A

+ [(Clr + Cnp) cos B - (Cmr + qu) sin B] sin A cos A (I11-36)
u,v,w Derivatives (Direct, Table III)
C'

- 2n_ : . 2 2 s 2
X, = [Cxu cos® B (CXV + CYu) sin B cos B + CYV sin B]cos A+ CZW sin“ A

+ [—(CXW + Czu>cos B + (CYw + CZV) sin Bﬂsin A cos A

+ 1
@osB

(CX sin? A cos B - Cy sin2 A sin B + Cy sin A cos A) ‘
J

@

2 s 2
+ CX cos® A sin

B +CY cos2 A sin B cos B
& n;

@

(IIx-37)

o= 2. in2 - . :
CXv = [:CXV cos“ B CYu sin“ B + (CXu CYV) sin B cos B:l cos A

- (CZV cos B + CZu sin B) sin A -L(CX cos A sin B + Cy cos A cos B) cos BJ

2) (IT1-38)
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t . 2 . .2
CXW = (CXW cos B - Cy,, sin B) cos® A - (Czu cos B - Cz, sin B)sm A

+ [CXu cos? B + Cyy sin? B - (CXv + CYu)sin B cos B - CZW] sin A cos A

_\%g%%(cx sin A cos B - Cy sin A sin B + Cy, cos A)J
(1)
+ sin A sin B|Cy cos A sin B + Cxr cos A cos B |
N (x g Y ) (I-39)
(2)
r 2 _ .2 _ .
CYu = l:CYu cos® B CXV sin® B + (Cxu CYV) sin B cos B:lcos A
- (Cyy, 08 B + Cx,, sin B)sin A - \(CX cos B - Cy sin B)cos A sin B (I11-40)
N
(2)
r 2 i 2 :
CYV = CYV cos® B + CXu sin® B + (CXV + CYu) sin B cos B
+ k(CX cos B - SX sin B) cos B, (II1-41)
(2)
4 .
CYW = (CYW cos B + CXW sin B) cos A
+ [CYu cos? B - Cx, sin? B + (CXu - CYV> sin B cos B:] sin A
- &CX cos B - Cy sin B) sin A sinE o (I1-42)

@

C'-Zu = (CZu cos B - CZV sin B)cos2 A - (CXW cos B - CYW sin B) sin? A

+ [CXu cos? B + Cy, sin? B - (CXV + CYu) sin B cos B - CZWJ sin A cos A
. . sin A
- \(CX cos A cos B - Cy cos A sin B - Cy, sin A)-c—og—ﬁj
(1) A
+&CX sin A sin B + CYiEl A cos B) cos A sin B, (I11-43)
@)
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] N
Cz, = ((.:ZV cos B + Cy sin B) cos A
+ [CXV cos2 B - Cy,, sin B + (CX 0" CYV) sin B cos B:‘sin A

- (C< sin B + Cy cos B)sin A cos B 11144
(Gxomp s Cyom Hanaco, -

(2)

C'ZW = CZW cos? A + [Cxu cos? B + Cy, sin? B - (CXV + CYu) sin B cos ]‘3E]sin2 A

+ [(CXW + Czu) cos B - (CYW + CZV) sin B] sin A cos A

cos A

+ (CX cos A cos B - Cy cos A sin B - Cy sin A)co 5,

(1)
+ (CX sin A sin B + Cy sin A cos B) sin A sin B (II1-45)
@

= E:lu cos? B - (Clv + Cmu)sin B cos B+ Cpy,, sin? B] cos? A

+ Cny, sinZ A + E(Clw + Cnu)cos B+ (me + Cnv) sin B] sin A cos A

sin A

+(CzsmAcosB Cm s1nAs1nB+CncosA> o5 B,

(1)

+ (Cl sin B + Cpy, cos B)cos
Q o

(2)

2 AsinB (ITI-46)
J

N 2 i 02 .
Clv = [CZV cos® B - Cpy, sin“ B + (Clu - Cmv> sin B cos B] cos A
- (Cn cos B + Cp,, sin B)sin A - (CZ sin B + Cyy, coS B)cos A cos B (I1-47)
\' u O\ :

W,
(2)
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1]

CZW

= - i 2 . 02
= (Clw cos B - Cpy, sin B) cos® A - (Cnu cos B - Cp, sin B) sin® A
2 . . .
+ [Clu cos™ B + Cpy,, sinZ B - (Clv + Cmu) sin B cos B - Cn“Z] sin A cos A

- (C; sin A cos B - Cp, sin A sin B A)Los A
&CZ sin A co m Sin A sin B + Cp, cos >cos 5,

TN

(1)

. . . \

+ (Cl sin B + Cp, cos B) sin A cos A sin B (TI1-48)
N
(2)

]

- 2 .2 .
Cmu = [Cmu cos® B - G, sin” B + (Clu - Cmv) sin B cos B:J cos A

- (Cmy, €08 B + Cy, sin B)sin A - \(f:l cos B - Cpy sin B)cos A sin B (I11-49)
"
@)

' _ 2 .. 2 .
Cimy = Cmy C0s” B + Cy sin® B + (Clv + Cmu) sin B cos B
+ (Cl cos B - Cp, sin B) cos B (TI1-50)
Q i J
)

] .
Crmy, = (me cos B + C;  sin B)cos A

+ E)mu cos? B - Clv sin? B + (Clu - Cmv) sin B cos B:J sin A

- (CZ cos B - Cy, sin B)sin A sin B
AN —— _/

(2)

(III-51)
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L _ . 2 _ _ . .2
Chy = (Cnu cos B - Cp, sin B)cos A (Clw cos B - Cn,, sin B) sin® A

+ [:Clu cos2 B + Cmy sin2 B - (Clv + Cmu) sin B cos B - CnW:] sin A cos A

- (Cl cos A cos B - Cyy cos A sin B - Cy, sin A)il—rl—A-
cos B,
(1)
+ &Cz sin A sin B + Cpy sin A cos B)cos A sin B, (II1-52)

(2)
C}IV = (Cnv cos B + Cp, sin B)cos A
+ [:Clv cos? B - Cm,, sin® B + (Clu - Cmv) sin B cos B] sin A

- (Cl sin B + Cyy, cos B) sin A cos B (I11-53)
Q ),

@

v 2 2 .2 . .2
an = Cp,, €OS A+ [Clu cos” B + Cpy, SIn® B - (Clv + Cmu> sin B cos B]sm A

+ [(Clw + Cnu)cos B - (me + Cnv)sin B]sin A cos A

+ (Cl cos A cos B - Cy cos A sin B - Cp sin A)C—OS—é
cos B
L -/
)
+ (Cl sin A sin B + Cy, sin A cos B) sin A sin B (IIX-54)
A\ /)

(2)
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INVERSE TRANSFORMATIONS

Static Force and Moment Coefficients 1 (Inverse, Table 1V)

Cx = (Cx cos A + Cy, sin A)cos B + Cy sin B (111-55)
Cy = -(Ck cos A + Cj, sin A)sin B + Cy cos B (III-56)
Cg = -Cy sin A + c'Z cos A (ITI1-57)
C = (C2 cos A + C}l sin A) cos B + C;n sin B (I11-58)
Cnm = -( 2 cos A + Cy, sin A)sin B + Cp, cos B (I11-59)
Cn = -C; sin A + Cy cos A ~ (III-60)

Static-Stability Derivatives (Inverse, Table IV)

4 \ N ] s
CXa = (CXa cos A + Cza sin A) cos B + CYa sin B
- (Cy sin A - C}, cos A) cos B (I1-61)
QX 2 )
(1)
\] 1 . . A\
CYa = -(CXa cos A + CZa sin A) sin B + CYoz cos B
+ (C' sin A - C,, cos A)sin B 1-62
(% 7 oS A)sin B (I11-62)
"
(1)
Cz, = —C;(oz sin A + C'Za cos A -633( cos A - C’Z sin AJ (111-63)
(1)

1 Equations for control derivatives and velocity derivatives have this same forni;
for example, ' ‘
t

| ]
C = [C cos A +C sinA)co‘s B+C sin B
Xoa ( Xoy, %o, Yo,
Cxy = <C$§V cos A + C'ZV sin A)cos B + C"YV sin B
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]

\ . : \ .
Ciy = (Cla cos A + Cp  sin A) cos B + Cp , sin B

- (c! sin A - C}, cos A)cos B
x(l n ) J

1

' ' . . !
Cma = _<Cla cos A + Cna sin A) sin B + Cyy , €08 B
A

. \ N
+ Cl sin A - Cn cos A)smE

(1)

1 . ' t t .
Cn =-ClasmA+Cna cos A-C cosA-Cns1an

a L
(1)

CXB = (CS(B cos A + C'ZB sin A) cos B + C'YB sin B

- \(C'X cos A + C'Z sin A)sin B + C'Y cos BJ

T

@)

1

CYB = -<CXB cos A + C'ZB sin A) sin B + C'Yﬁ cos B

t ' . [} .
- k(CX cos A + CZ sin A)cos B - CY sin B

_J
(2)

4 . 1 4
CZﬁ = -CXB sin A + CZB cos A

t 1 . ? .
CZB = (clB cos A + CnB sin A)cos B + CmB sin B

- (c' cos A +C, sinA)sinB+C' cos B
&l n m-"

@

(I11-64)

(III-65)

(III-66)

(II1-67)

(I11-68)

(m1-69)

(II1-70)
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Cmg = -<C£B cos A + C;‘B sin A)sin B + Cpyg COS B

- (Ci cos A + Cyp, sin A) cos B - Cp, sin B (@I-71)
Q y
Y
(2)
] . 1
CnB = -CZB sin A + CnB cos A : (IX-72)

Dynamic-Stability Derivatives (Inverse, Table IV) :

CXp = E:kp cos? A + C'Zr sinZ A + (C;(r + C'Zp> sin A cos ﬂcos2 B

\

+CL sin2 B + (C' + C, )cos A+ (C' +C )sin Al|sin B cos B (1I1-73
8 [ e A g >
CXq = (C;(q cos A + C'Zq sin A) cos? B - (C:yp cos A + C'Yr sin A) sin? B

- l:c'Xp cos2 A + C'Zr sinZ A + (Csir + C'Zp> sin A cos A - C'Yq:] sin B cos B (III-74)

! A\l

_ ' 2 _ ' .2 _ _ .
CXr = [er cos?4 A CZp sin¢ A (CXp CZr) sin A cos A:] cos B

+ (c'Y cos A - cg{p sin A) sin B , (I11-75)
r

CYp = (C;{p cos A + C'Yr sin A> cos? B - (C' cos A + C,, sin A)sin2 B

Xq Zq

t

! 2 ' .2 1 . ' .
- [C\Xp cos“ A + CZr sin® A + (CXr + Czp)sm A cos A - CYQJ sin B cos B (III-76)

CYq = CYq cos2 B + LCS(p cos2 A 4+ C'Zr sin2 A + (C'Xr + C'Zp> sin A cos 1{]sin2 B

-{ct +C )cos A+ (C' + C, )sin A|sin B cos B mI-77
[ERG AT R o

Cy,= (nyr cos A - C%{p sin A) cos B
+ [-ckr cos2 A + c'Zp sin2 A + <c;(p - c'Zr) sin A cos A] sin B (I11-78)
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T

_ t 2 - ? .2 _ _ ' .
CZp = {:Czp cosé A CXr sin“ A (CXp Czr) sin A cos A]cos B

]

+{C, cos A -C
(Zq Xq

sin A) sin B

t

Czq = (C'Zq cos A - CXq sin A)cos B

]

+|-CY cos? A +C! sin2A+<C -C
[ Zp Xy X

1

7 )sinA cosjﬂsin B
r

Czp= C'Zr cos2 A + Ckp sin? A - (Ckr + C'Zp> sin A cos A

_ ] 2 t .. 2 ' 1 . 2
Clp = [Clp cos“ A + Cnr sin® A + (Clr + Cnp> sin A cos A:Icos B

+ C,'mq sin? B + [(Céq + C}np> cos A + (C;nr + Chq) sin A{]sin B cos B

_ ' ' . 2 - t ! . .2
Clq = (Clq cos A + qu sin A> cos“ B (Cmp cos A + Cpy . sin A) sin“ B

'

] ] . ’ . .
- [Clp cos2 A +’Cnr sinZ A + (Clr + C}lp> sin A cos A - C}n{' sin B cos B

|

+ (C}nr cos A - C}np sin A) sin B

1Y

] 2 1 .2 4 t . 4 .
- [Clp cos® A + Cp . sin® A + <Clr + Cnp> sin A cos A - Cm.qj sin B cos B

Cmq = C{nq cos? B + [Czp cos? A+ C;lr sin® A + <C2r + C},_p)sin A cos Aﬂsinz B

- [(Ciq + C}np> cos A + (C;nr + C;IQ) sin A] sin B cos B

Cm.. = (C}np cos A + C;nr sin A) cos? B - (Czq cos A + C;Iq sin A) sin? B

(I11-79)

4

(III-80)

(I11-81)

(I11-82)

(III-83)

(I11-84)

(I11-85)

(I11-86) |
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Cmy = (C;nr cos A - C;np sin A> cos B

|

1 2 ' .2 ' . R
+ [:-Clr cos® A + Cnp sin® A + (Clp - Cﬂr) sin A cos A:]sm B

Cny, = l:c;lp cos2 A - Cir sin? A - (Czp - 0;11) sin A cos A:]cos B

+ (C;Iq cos A - Ciq sin A> sin B

Cn = (Chq cos A - C. sin A)cos B

g lq

1 2 ' .2 4 ' . .
+ ECnp cos® A + Clr sin® A + (Clp - Cnr) sin A cos A] sin B

t

Cn, = Cn, cos? A + Cip sin? A - <Clr

+ Chp) sin A cos A

u,v,w Derivatives (Inverse, Table IV)

_ [t 2 ' .. 9 ' ? . 2
Cxy = |:CXu cos” A + CZW sin® A + (CXW + Czu) sin A cos A:lcos B

+ C%{v sin2 B + l:(c;(v + C%{u) cos A + (Cg{w + C'ZV> sin AJsin B cos B

+ (CL sin A - C!, cos A)sin A
Cx "y 08 A)sin 4,
(1)

+ li(c;( cos A + C'Z sin A) sin B - C;{ cos B:l cos A sin B
¢ J

—~

(2)

_ ' ' . 2 ]
CXv = (CXV cos A + CZV sin A) cos® B - (CYu

_ [C;(u cos2 A + C'ZW sin2 A+ (C;(w + C'Zu) sin A cos A - C.

+ {—(C'X cos A + C'Z sin A) sin B + C} cos B;] cos B
L .,

@)
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Yy

cos A + Cg( sin A) sin? B
W

:]sin B cos B

(II-87)

(I11-88)
{

(II1-89)

(111-90)

(I1-91)

(II1-92)



SECTION III — Continued

CXw = I:C'XW cosZ A - C'Zu sin? A - (Cku - C'Zw) sin A cos A] cos B

1 [} N . | . 1
+ (CYW cos A - CYu sin A> sin B - SCX sin A - Cy, cos A) cos 6

N
(1) .
+ I:(C;( cos A + Ci, sin A) sin B - C%{ cos B|sin A sin B (I11-93)
X J

~
(2)
" _ * 1 . 2 ' t . s 2
Cyy = (CYu cos A + CYW sin A) cos“ B - (CXV cos A + CZV sin A) sin“ B
- [Cku cos2 A + C'ZW sin A + (C;(w + C'Zu)sin A cos A - C%{‘J sin B cos B

- (Ck sin A - C'Z cos A) sin A sin B

Q g cosB
(1)
+ [_(03( cos A + C'Z sin A) cos B + C& sin B:] cos A sin B (I11-94)
O _J

®

_ ! 2 U 2 ' .2 t ' . .2
CYV—CYV cos B+[CXu cos A+CZW sin A+<CXW+CZu)s1nAcosA:\sm B

4 1 ' | \ . .
- [(CXV + CYu> cos A + (CYW + CZV> sin A] sin B cos B

- [(CS( cos A + Ci, sin A) cos B + C"Y sin Bz] cos B (111-95)
\ J
L
(2)

_ (2 _ 1 .
Cyw = (CYW cos A CYu sin A) cos B
-C: s2A+C, sin? A+ (Cl -C, )sin A cos Alsin B
+ [ Xyy co + Z in + Xy Zow inAc in

+ (C;( sin A - C'Z cos A) cos A sin B
X

cosB
V
(1)
+ [C' cos A + C}, sin A)cos B + Cy, sin B] sin A sin B (I11-96)
\( X Z ) _ Y U
(2)
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o 1 2 o 2 ' .
Cz, = [Czu cos® A CXW sin® A - (CXu CZW) sin A cos zﬂcos B

[ ' R . sin A
+ (CZV cos A - CXV sin A)sm B+ (CX cos A + CZ sin A) o5 B
N - =

(1)

(I1-97)

= (C'Zv cos A - C;(V sin A) cos B

1

+ Ec‘zu cos? A + k., sin? A + (ch - c'ZW) sin A cos A]sin B (111-98)

Cy = C'ZW cos? A + C;(u sin? A - <C;(w + C'Zu) sin A cos A

w

- (Cl cos A +Cl, sin A)SOS A (111-99)
g X yA >COS B/

)

Clu = [Czu cos? A + Cn sin? A + <C - + Chu) sin A cos AJ cos? B

+ C;nv sin B + I:( ) cos A +<me + Cnv) sin A] sin B cos B

L 1 .
+& sin A - C, cos A) SHLAJ
1)

+ l:(ci cos A + Cp, sin A> sin B - Cyp cOS chos A sin B (II1-100)
C ’ _ '
~

(2)

Cy, = (CEV cos A + C}lv sin A) cos? B - (C}nu cos A + Cpy, sin A) sin? B

t 2 ' - 92 ' ' s ' .
- [Clu cos® A + Cp sin® A + (CZW + Cﬂu) sin A cos A - Cmv] sin B cos B

[:C cos A + Cp sin A) sin B - Cp, cos B] cos B (I1I-101)
I\ _

(2)
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l

|~ 2 _ .2 _ v A .
CZW = [Clw cos® A Cnu sin® A <C u an> sin A cos A] cos B

Cmy

Cmy

? ' : s r . \
+ (me cos A - Cpyy, sin A) sin B - \(Cl sin A - C, cos A) cos Aj
1)

+ [:(Cz cos A + Cp, sin A)sin B - Cpy cos BJsin A sin B
\ J

(2)
= ! ! : 2 _ ' ' . .9
= (Cmu cos A + me sin A) cos® B <Clv cos A + CnV sin A) sin“ B
- [Ciu cos2 A + Chy, sinZ A + (Czw + C}lu) sin A cos A - C}nv]sin B cos B

- (Ci sin A - Cj, cos A) sin A sin B
Q

cosB
N
1)
+ E(CE cos A + Cp, sin A)cos B + Cp, sin B]cos A sin B
& _

N
@)
_ ! 2 ' A ' .2 U ' . .. 9
= Cmv cos“ B +|:Clu cos® A + Cp, sin® A + (Clw + Cﬂu) sin A cos A{lsm B
! ! ' ' s .
- |:(sz + Cmu>cos A+ (me + Cnv) sin A] sin B cos B
- [(CZ cos A + Ci, sin A)Acos B + Cy, sin BJ cos B

N\ —~— /)
)

(II1-102)

(II1-103)

(I11-104)
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SECTION III — Concluded

Cry = (C;nw cos A - Cpy, sin A) cos B
+1-C; cos? A+cCl sin? A+ (C) -cC, )sin A cos Alsin B
lw Dy lu Ny

C! sin A - Cl, cos A cos Asin B
l n cos B
[ J

)

+ [(CZ cos A + Cj, sin A> cos B + C;n sin B] sin A sin B
d — J
(2)

' 2 t . ' s
Cny = [Cnu cos® A - Clw sin? A - (Clu - Ci‘w) sin A cos A]cos B

(Cn cos A - Cl sin A> sin B + (Cl cos A + C sin A) s1r;1]&3
)

@

CnV = (C;lv cos A - sz sin A> cos B

- 2 t .. 2 v~ . .
+[\—Cnu cos A"'Clw sin® A + (Clu an) sin A cos A]smB

|

A4 .
lw + Cﬁu) sin A cos A

Cny = C;lw cosZ A + Czu sinZ A - (C

<Cl cos A + C sin A) cos A
N cos B

@
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(II1-106)

(II1-107)
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SECTION IV

TRANSFORMATION EQUATIONS FOR MOMENTS OF INERTIA

This section gives equations for transferring moments of inertia to a rotated axes
system in a general form, similar to that used in section III, so that transformations can
be made between any two of the five axes systems used in aerodynamic analysis. As in
section III, these transformations are defined as direct and inverse in tables Il and IV,
respectively, and can be performed between any two axes systems by selecting proper
- angles for A and B from these tables.

These equations are derived from a general transformation of the form

e -— — —

]

1 ]
' -1 .
Ty & yp|=[T]|lxy ¥ -lyz|[T] av-1)
A ] ! .
Txz vz Iz | xz  lyz Iz |

where .T' is the transformation matrix given in appendix A and is applied to the aerody-
namic axes by setting ¢ =-B, 6=A,and ¢ =0.

The most commonly used forms of these transformations, those for transfers among
body, principal, and flight stability axes, are given in appendix A.

DIRECT TRANSFORMATIONS (TABLE III)

I;( = (IX cos? B + 2Ixy sin B cos B + Iy sin? B) cosZ A + Iy sinZ A
+(2Ix 7 cos B - 2lyyz sin B)sin A cos A (Iv-2)
I%( = Iy cos? B + Iy sin? B - 2Ixy sin B cos B (Iv-3)
I, = Iy cos? A + (IX cos? B + Iy sin? B + 2Ixy sin B cos B) sin? A
- (2IXZ cos B - 2Iyy sin B) sin A cos A (Iv-4)
Iy = I:IXY(cos2 B - sin? B) - (IX - IY) sin B cos l‘z"_]cos A
- (IYZ cos B + Iy sin B) sin A Iv-5)
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I'

<7 = (IXZ cos B - IYZ sin B) cos2 A - (IXZ cos B - IYZ sin B) sin2 A

- <IX cos2 B + Iy sin? B + 2Ixy sin B cos B - IZ) sin A cos A
11

— (IYZ cos B + Ixy sin B) cos A

+ [IXY(COS2 B - sin2 B) - (IX - IY) sin B cos"lﬂ sin A
INVERSE TRANSFORMATIONS (TABLE IVv)

Ix = (13( cos? A + I'Z sin? A - 213(2 sin A cos A) cos2 B + I%( sin? B
- 2<I;(Y cos A + I"YZ sin A) sin B cos B

Iy = I;{ cos? B + (13( cos2 A + I'z sin? A - 2Ixy sin A cos A> sin B
+ 2(13(Y cos A + I&Z sin A) sin B cos B

]

Iy = I'Z cos2 A + Iy sin? A + ZI;CZ sin A cos A

Ay ' . 2 1 r . 2
IXY = (IXY cos A + IYZ sin 'A> cos® B - (IXY cos A + IYZ sin A) sin“ B

t

+ (13( cos? A + I'Z sin2 A - 213(Z sin A cos A - IY) sin B cos B
I = |Lr(cos? A - sin2 A) + (T - I') sin A cos Alcos B
XZ X7 X Z

+ (I%{Z cos A - IS(Y sin A) sin B
Iyg = (I;[Z cos A - ;(Y sin A) cos B +[Is(z(sin2 A - cos? A)

- (13( - I'Z) sin A cos A:] sin B

(IvV-6)

(IV-7)

(IvV-8)

(IV-9)

(IV-10)

(Iv-11)

(Iv-12)

(IV-13)



SECTION V

EQUATIONS OF MOTION FOR SIX DEGREES OF FREEDOM

The equations presented here are the general forms that include the variables .
likely to be of interest in computing motions in the vicinity of the earth (moon and sun
perturbations are ignored). The terms of each equation are grouped so that various
effects (for example, oblateness of the earth) can be accounted for by adding or omitting
certain terms. Linearized equations and the wind-axes equations for a point mass are
given in appendix A.

The general equations apply to any of the five systems of vehicle reference axes
shown in ﬁgure 3. The Euler angles Wg,Bg,(ﬁg are referred to the gravity-axes sys-
tem, with origin located at the surface of the earth, which rotates with the earth as shown
in figure 4. (The relationship of these gravity axes to the vehicle reference axes is -
shown in fig. 5.)

FORCE EQUATIONS

Equations for the forces along the X,Y,Z axes are given in general form as equa-
tions (V-1) to (V-3), respectively. Equations for specialized cases can be obtained from
the general forms as follows:

(1) For an oblate earth, equations (V-43) to (V-45) of auxiliary equations are used
in place of term (2) in X,Y,Z force equations, respectively.

(2) If mass of vehicle is constant (zero thrust is also implied), terms (3) to (5) are
omitted.

(3) For flight outside the atmosphere, terms (6) to (8) are omitted.

X-Axis Forces

m( +qw - Tv) + mg sin 6 = Ty - m(qdy -rdy) + F
 + ) g= T m(adg - rdy) + Frx

1) (2 3) 4 )

1.2 v &e a2
va°°S<SX,o'+ Cxaa + CXV v + CX& v + CXq 3

+
Vo,

(6)

B2 ¢ 3] -
+ Cxgh + Cxp 37—+ C%p B+ Cxp 7=+ OXp, 08 * Cxp 0 cxbrorJ + 0 (V-1)
2 S —~— -

S ® ©
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SECTION V — Continued
where the different terms are defined as follows:

(1) Mass times acceleration

(2) Component of vehicle weight (for a more nearly complete weight component,

one that includes earth-oblateness effects, see auxiliary eqs. (V-43) to (V-45))

(3) Primary rocket thrust (see auxiliary egs. (V-36) to (V-39))
(4) Jet damping force

(5) Reaction control force

(6) Basic aerodynamic forces

(7) Aerodynamic cross-coupling terms

(8) Aerodynamic control forces

(9) Higher order terms

Expansions of the aerodynamic forces and moments (terms (6) to (9) in force equa-
tions and terms (11) to (14) in moment equations) neglect all aerodynamic partial deriva-
tives with respect to rates of change of velocities and angles except those with respect to
@ and B. The forces are expanded in terms of the independent variables . «,8,V,p,q,r
but could as easily be expandéd in terms of the variables u,v,w,p,q,r. The X-axis aero-

dynamic force, for example, could also be written as

1 2

- pe ql
X = -2-pV°°S <CX,O + Cqu + CXVV + CXWW + CXp Z—ﬁ +C

Xq 2V,
+Cx,. ZLVQ; + Z Cxgd + Higher order terms>

Y -Axis Forces

v - - cos g sin =Ty -m(rdg -pdg)+ F
g+ xu - o), - g cos g oin g = Ty ~ (7 x P 0)+ Ty,

(v @ (3 (4) (5)

1 .2 v . B4 pl r{
+ §prS<SY,o+ CYBB + CYV Vo + CYB Vo + CYp Vo + CYr 2‘19

(6)

ay qf
+\CYaC!+ Cy&m'ﬁ‘ ch 2V00J+ CY5r5r> + 0
— ~

M ® (9.

where the terms (1) to (9) are defined as in equation (V-1).
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7Z-Axis Forces
m(W + pv - qu) -mg cos fg cos ¢g = Tz - m(p dy - q dx) + Fr 7
-0 ) NI

) @ 3) @ (5)
qt :

1 .2 v &g
+=pVeS(Cy 4+ Cz a+C Y 4+Cyz.,—=—+C
gPYeo <\Z,° Za Zyy_*tlagv, " PRV,

-~

(6)

3 ) rf
+ Cyg B"‘CZ"&Q—"*‘CZ —p——+CZr——+ Czs 0a + Czg Oe + 0
C B B2v P2V 2V, (Ca e \/
(M (®) ®
(V-3)

 where the terms (1) to (9) are defined as in equation (V-1).
MOMENT EQUATIONS

Equations of motion involving moments about the X,Y,Z axes are givenin general
form as equations (V-4) to (V-6), respectively. Equations for specialized cases can be

obtained from the general forms as follows:

(1) If vehicle mass is constant, terms (2) to (4) and (7) to (9) are omitted
(2) 1f principal axes are used, terms (3) to (6) are omitted

(3) If vehicle has a plane of symmetry (X-Z plane) but principal axes are not used,
terms (3) and (5) are omitted

X -Axis Moment (Roll)
Sy +qr(Iz - Iy) + pix - qlgy - Tixy + (r2 - a2)1yz + r - Alxgy - @9+ Nixz,
pIx +ar(Iz - Iy) + pix - dixy - Tixz N Xy - ,

® 0] &) 4 (%) (6)

= fx{Lp(dYZ + dz2) vag(ady +r dﬂﬂ - k(TY dz, - Ty dl()J + Mpx + Lrm

(7. ®) (9) (10)

12 Voo L oL rg &, At
v 1ov2se(Cy o+ Cugh + Cly o+ Cp 3y * Cp v * e 2wy Fa®t Ta 2Vt a2,
u — 7\ ~ —
(11) (12)
+Cyp Ba + Cg 5r> + 0 (V-4)
% " %r )
13) (14)
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where the different terms are defined as follows:
| (1), (5), and (6) moments of inertia times angular accelerations
(2) to (4) and (7) jet damping moments
(8) Moments due to main rocket thrust
(9) Moment due to reaction control

(10) Moment due to gyroscopic action of engine rotating mass
(see auxiliary eqs. (V-40) to (V-42))

(11) Basic aerodynamic moments 1
(12) Aerodynamic cross-coupling terms
(13) Moments due to aerodynamic controls

(14) Higher order terms

‘¥ -Axis Moment (Pitch)

&IY +pr(Ix - Izj) + ‘EE{ - pixy - riyy +(£q - P)Iyy - (ar + i))IXY]+\(p2 -\ri)IXZJ
() @ © (4) (5) (6)

= Ih,:;q(dxz +dy2) + dy(p dx + r d@] +&TX dg - Ty dxz +Mpy +Mpy

(7 (8) (9) (10)

1 2 v aﬂ ql
+=pVSlCm o+ Cn @+ Cm +Cm + Cmy sl
2 <¥ o VvV, a2V 42V,
(11)
LBy L ry -5
+ CmgB + Cmyg o=+ Cmy, o+ Cinyp oo + Cmg, 0 + cmée e+ 0 (V-5)
N ° Jl
—~—
(12) (13) (14)

where terms (1) to (14) are defined as in equation (V-4).

1See statement following equation (V-1) about terms (11) to (14) in expansion of
aerodynamic forces and moments.
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F1 Iy -1 ri, - qlyy - pi a2 - p2)Igy - (pr + Q)L + (ar - p)I
g rva(ly -Tx) + g - ofvg - Blxg + (o Py - (or ¢ Dlya, ¢ 07 - Ok,

(n v @ - ® (4) (5) (6)

=m [Cr<dxz + de) +dzlpax +q dY)Jj) i \<TX 4 - Ty d)i)J ’ &,’—ZJ ’ \N:E/

(" 8) 9 (10)

1 o2 v <l p! rf @ o Al
+ ‘2-pr32<€“,0 + CnBB + CnV Voo + Cnﬁ 2V°o + Cnp ZV_OO + Cnr 2!‘)—0/ + fnaa + Cnd 2V°° + nq 2V°&
(11) (12)
+ Cnéat‘)a + Cn5r5r> + 0 (V-6)
o T
(13) (14)

where terms (1) to (14) are defined as in equation (V-4).
AUXILIARY EQUATIONS

General equations that take into account various relationships and effects in develop-
ing the equations of motion are given as equations (V-7) to (V-45). Equations for special -
ized cases may be obtained as follows:

(1) For flat eai‘th, terms containing L. and A are omitted
(2) For nonrotating earth, g, Vx, Vy,and Vg are omitted

(3) For no surface winds, terms containing Wy, Wy, and Wy are omitted

Relationship Between Euler Angles and Angular Velocities

The Euler angles specifying vehicle alinement with the gravity -axes system can be
determined from the angular velocities p,q,r by the equations

rcoscj)g qsincpg . ol
+ + L cos Y tan Og + (Qe + A)(sin L

Vg = cos b cos Oy

+ cos L sin Y tan Gg) (V-7
= cOS ¢g - T sin ¢>g - [L sin ng - (sze + 5\) cos L cos I,Ué] (V-S)

bg
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ébg =P +qtan 6g sin ¢g + r tan bg cos ¢g + [I:‘c%&%;—bg + (Qe + i)cos L i:r; tj (V-9) |
The inverse relationships are
p= ébg - {bg sin 6g - L cos 0g cos Yy - (Qe +i) (cos L cos 6g sin g

- sin L sin Gg) . (V-10)
q= ég cos pg + 1'pg sin ¢g cos 6y - f.(sin 6 cos %Ué sin ¢g - sin Y4 cos ¢g) |

- (Qe + 1) cos L(sin Og sin g sin ¢g + cos Y4y cos ¢g)

- (% +1)sin L sin g COS b (V-11)
r= -ég sin d)g + xZ/g COs ¢g cos Qg - I:.(sin Gg cos Yg cos ¢’g + sin ng sin qbg)

- (Qe + 5\) cos L(sin 6g sin Yg cos $g - COS Y4 sin qbg)

- (Qe + i) sin L cos ¢g cos bg | (v-12)

Vehicle Coordinates

Vehicle coordinates cain be computed from the X,Y,Z axes velocity components
and vehicle Euler angles by integrating the equations

Xg = U COS Yy cOS Og + 'v(cos Yo sin 6g sin ¢g - sin Yo cos (jbg)

+ w(cos Yg sin 6g cos ¢g + sin Yo sin gbg) (V-13)

jrg =u sin 'J’g cos fg + v(sin z,bg sin g sin ¢g + cos Yg cos ¢>g>

+ w(sin Yg sin 6 cos ¢g - cos Yg sin ¢g) (V-14)

ég = -u sin 6g + v cos fg sin ¢g + W COSs 6y cos bg (V-15)
2,52 2 | ,
rg = \]xg + Vg + 2 (v-16)
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Trajectory Parameters (See Fig. 6)

Flight-path angle, longitude, and latitude can be determined from the equations

1 h

v =tan” (V-17)
\Ki{ - Re@ cos L)? + 32
X
=—2 __gq (V-18)
Rg cos L
I-2¢8 (V-19)
e
The range for a spherical earth is
Range = Rgo (V-20)
where, for a total range of less than 50 000 feet,
0= \/(L - L0)2 + [(A - o) cos L(:,]z (v-21)
For a total range greater than 50 000 feet,
0= cos'l[sin Ly sin L + cos L cos L cos (A - )\0)] (V-22)
range for a flat earth is
Range = gz + yg2 (V-23)

Angle of Attack, Sideslip, and Relative Velocity (See Fig. 7)

Angle of attack, sideslip, and resultant relative velocity are related to components
of velocity along the vehicle body axes by

@ =tan~1 \:v:k_,_ (V-24)
Up

g =sin~1 ;,'9 (V-25)

V=i 2+7 2472 (V-26)

ﬁb =V cos a cos B=u - VX,b - WX,b (V-27)

vy, =Vsing = Vp - Vy b - WY,b ‘ (v-28) |
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Wy, = V sin & cos B = Wy, - VZ,b - WZ,b (V-29)

where subscripts b; X,b; Y,b; and Z,b denote body-axes components,

Wwind Corrections (See Fig. 8)

Geostrophic (due to earth's rotation).- The components of the geostrophic wind
along the X,Y,Z vehicle reference axes are

Vx = Ref2e cos L cos g cos Yg ‘ (V-39)
Vy = -Rg§2g cos L (cos (bg sin a[/g - sin Bg sin qbg cos v,bg) (V—Bi)
Vg = Refle cOS L(sin d)g sin Yg + sin 6g cos q>g cos z,bg) (V-32)

Surface winds.- Components of the surface winds along the X,Y,Z vehicle refer-
ence axes are

Wy = W(cos A' sin B' cos g cos Yg - cos A' cos B' cos 6g sin Vg
+ sin A’ sin 6g) (V-33)
Wy = W/cos A' sin B' (sin ¢g sin O cos Yy - sin Yg cOS qbg)
- cos A' cos B' (sin Yg sin fg sin ¢g + cos Y cos ¢>g)
~ sin A' sin ¢g cos Bg:l (V-34)
Wy, = W|cos A’ sin B'(cos Yg COS pg Sin 6g + sin Y sin ¢g)
- cos A' cos B'(sin Yg oS ¢g sin bg - cos Yg sin qbg>
- sin A' cos ¢g cos Bg] (V-35)

Resolution of Engine Thrust and Torque Into Components

Along Vehicle Reference Axes (See Fig. 9)

Vehicle thrust and moment can be resolved into components along the vehicle refer-
ence axes by the equations

oT 5T

du  ppy |
Tx =T cos 6., COS Yy (V-317)
Ty =T €08 Opy Sin Ypm (Vv-38)
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Tz = -T sin 0ry (V-39)
and, if it is assumed that Irm = Qrm = 9rm ‘l’rm =0,

Mrm = L Qpm(r €08 6rm cos Yy + P sin 6ppy) (Vi41)
Nym = Irm@rm(P €08 Oy Sin Ypy - q €0S Oy €0S Yy ) (V-42)

Components of Gravitational Acceleration Along X,Y,Z Vehicle Reference
Axes With Earth-Oblateness Effects Included

If the effect of earth oblateness on the acceleration due to gravity is considered
important, terms (2) in the X,Y,Z axes force equations (V-1) to (V-3) should be replaced,
respectively, by the following X,Y,Z axes weight components:

3
mgx_mgg @(R) (3 sin L cos L) + = J3( )<5SIH2L—1)cosL

4
5 ae 3 . -
‘§J4<'ﬁ') (7 sin® L - 3 sin L)cosL - .Jcos bg sin Yy
2 3
—E-%J2<?§> (3 sinzL-l) 2J3( ) (5 sind L - 3 sin L)
- §J 4(35 sm4 L - 30 sin? L, 3) i ) (V-43)
8 4 R + o o sin g -

2 3
a a
mgy = m %{[}2(§> (3 sin L cos L) + -g-J3(§§) (5 sin? L - 1) cos L

4
- gJ‘lQR) (7 sin® L. - 3 sin L) cosL -. . ](sin ng sin Gg sin ¢g + cos ng cos qbg)

2 3
a
+[:1 - %Jz(,ﬁg) (3 sin? L - 1) 2J3( ) (5 sin3 L - 3 sin L)
5 de 4 4
- '8_J4(E> (35 sin®* L - 30 sin2 L & 3) ~. . .8in ¢g cos Gg (V-44)
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2. 3
, a
mg, = m GE E}z(-ﬁe-) (3 sin L cos L) +%J3(—a}—§) (5 sin? L - 1) cos L

4
de .3 . . . .
- '2"]4('1?{> (7 sin® L - 3 sin L) cos L - .. Zl(sm Yg cos Pg sin fg - cos Yg sin ¢g)

+[ - %Jz(%‘if(s sin L - 1) - 2J3(%§)3(5 sind L - 3 sin L)

4
- gJ4<%§) (35 sin* L - 30 sin? L +3) - . . ]cos $g cOS Oy (V-45)

where

GE = 398 601.2 + 0.4 km3/sec? ((14 074 901.1 + 14) X 109 1t3/sec?)

ac = 6378.160 + 0.005 km (20 925 721.8 + 16 ft)

and Jg, Jg,and Jy4 are the second, third, and fourth zonal harmonics. The values
from reference 8 are

Jg = 1082.7(1 + 0.1) x 10-6
Jg = -2.56(1 + 0.1) x 1070
Jg = -1.58(1 £ 0.2) x 1070
In equations (V-43) to (V-45), which were derived from the gravitational potential

given in reference 8, oblateness terms through the 4th order are considered and the
earth's longitudinal oblateness is neglected.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., February 16, 1972.
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APPENDIX A

SUMMARY OF FREQUENTLY USED FORMS OF AXES TRANSFORMATIONS

AND EQUATIONS OF MOTION

EULER ANGLE TRANSFORMATION BETWEEN
TWO ORTHOGONAL AXES SYSTEMS

For two orthogonal axes systems, an initial X,Y,Z reference system and an
X',Y',Z' system obtained by rotating the initial system through Euler angles ,60,¢
(in that order), the transformations between the two systems are given by these
relationships.

Direct Transformation

The transformation from the initial X,Y,Z system tothe X',Y',Z' system alined
at Euler angles y,0,¢ with the initial system is

X' X
Y|=T|Y (A-1)
Z' Z
where
[ cos 6 cos ¥ cos 6 sin ¥ -sin 6 |

~sin ¢ sin 6 cos Y sin Y sin 6 sin ¢ sin ¢ cos 6
T =|-sin Yy cos ¢ + cos Y cos ¢ (A-2)

cos Y cos ¢ sin § sin Y cos ¢ sin &  coS ¢ cos 8
u—sintpsinqb - cos ¥ sin ¢

Inverse Transformation

The transformation from the X' ,Y',z' system back to the X,Y,Z system is

X x|
y|=T-1 ¥ (A-3)
Z VA
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where — —
- cos 6 cos Y sin ¢ sin 6 cos Y cos Y cos ¢ sin 0
- sin Y cos ¢ + sin ¥ sin ¢
r-1 - |cos 6 sin ¥ sin ¥ sin 6 sin ¢ sin ¥ cos ¢ sin 0 (A-4)
+ cos Y cos ¢ - COs Y sin ¢ '
-sin 6 sin ¢ cos 6 cos ¢ cos 6

TRANSFORMATIONS FOR ACCELEROMETER AND
RATE~-GYRO MEASUREMENTS

These equations are simplified forms of the general inverse transformations for
accelerations and angular velocities given in section I; however, they can be used in most
practical applications to correct accelerometer and rate-gyro readings for displacement
and misalinement. For cases that do not fit the assumptions made, the general forms in
section I must be used.

Case I

Orthogonal Instrument Axes; No Restrictions on Misalinement Angles

If X,Y,Z axes accelerometers or rate gyros making flight measurements are
orthogonally alined then, even though the misalinements of the instruments with respect
to the vehicle reference axes are large, their readings can be corrected by using these
equations. '

Acceleration corrections. -

gAX,cg = gAX,i cos 6 cos Y + gAY’i(sin ¢ sin 6 cos ¥ - sin Y cos @)

+ gAZ,i(cos Y cos ¢ sin @ + sin ¥ sin ¢) + (rz + qz)}'{X

- (b - D)y - @r + D2y ‘ (A-5)
gAY,cg = gAX,i cos 0 sin Y + gAY’i(sin Y sin 6 sin ¢'+ cos Y cos ¢)

+ gAZ’i(sin Y cos ¢ sin 6 - cos Y sin ¢) - (pq + i'):'(Y

+(02 + 13§y - (ar - P)zy, (A-6)
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gAZ,cg = 'gAX,i sin 0 + gAY,i sin ¢ cos 6 + gAZ,i cos ¢ cos 6
- (pr - q)’-‘z - (qr + p)}_’Z + (pz + qz)iz (A-T)
Angular-velocity corrections.- )

p = p; cos 6 cos Y+ qi(cos Y sin ¢ sin 6 - sin ¥ cos ¢)

+ rj(cos Y cos ¢ sin 6 + sin Y sin o) (A-8)

q = p; cos 0 sin Y + qi(sin ¥ sin ¢ sin 6 + cos ¥ cos o)

+ ri(sin ¥ cos ¢ sin 0 - cos ¥ sin o) (A-9)
r = -p; sin 6 + q; sin ¢ cos O + rj cos 6 cos ¢ (A-10)
Case II

Nonorthogonal Instrument Axes; Small Misalinement Angles

If X,Y,Z axes accelerometers or rate gyros are not orthogonally alined but the
misalinements with the vehicle reference axes are small, then these correction equations
can be used. It should be noted that, in equations (A-11) to (A-16), the angles ¥,0,¢
are in radians,

Acceleration corrections. -

BAx og = 8(Ax 1 - Vxhy 1 + Oxhy 5) + (a2 + 1)y - (bu - B)jy - @r + g (A-11)
gAy oo = 8(¥yhx it Ay i - Pyhz ) - A+ DRy + (02 + 2§y - (ar - b)Zy (A-12)
gAy oo = B(-0zAx 5 + Pghy j + Ay ;) - (or - DXy - @ar +p)y, + (a2 +p2)z, (A-13)

Angular-velocity corrections.-

P =p; - ¥xq; + OxTi (A-14)
q = YgyPj + 0y - OyTy (A-15)
r=-07D; + $pd; + Ty (A-16)
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SPECIAL FORMS OF TRANSFORMATIONS FOR AERODYNAMIC
FORCE AND MOMENT COEFFICIENTS AND
STABILITY DERIVATIVES

Simplified Forms for Transferring Coefficients and Derivatives
to Another Reference Center

These transformations are the simplified forms obtained from the general equa- :
tions of section II by assuming zero angles of attack and sideslip and neglecting aerody‘-
namic cross derivatives.

X-axis force coefficients and derivatives. -

Cy = Cx (A-17)
c;'(a = Cx,, (A-18)
]

. = . A-
Cx, = Cx, (A-19)
Cy =Cx +2Ecy .32 Cx » (A-20)

Xqg Xq7 7y a1

Y -axis force coefficients and derivatives. -

Cy = Cy (A-21)
Cy - CYB (A-22)
C;(B = Cy; (A-23)
Cy, = Cyp + ZTZ Cy, (A-24)
Cy. = Cy, - % Cy, + %ﬁ Cy (A-25)

Z-axis force coefficients and derivatives. -

Cy, =Cg (A-26)
c'Za = Cg,, (A-27)
1
Czs = Cz, (A-28)
1 2% 4z | ‘
=C =C - == -2
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X -axis moment (roll) coefficients and derivatives.-

C=C +%Cy-%cz

C.=C;,+=Cy=
= - = -2
' 27 252 27
Cl Clp+QCYp+ 7 CZB+ 5 CZa"'—ﬂz CYB

' zZ 2x 2%z
Crp=Cip +7 Cyy - Cig - "2 cYB+—Y-cl +—LCY

Y -axis moment (pitch) coefficients and derivatives.-

C —-'Cm'l' CZ"—CX

m L

[

Z )
Cm&—Cma'l--ECZ "ECXd
O —cm o +Ec, -Eoy +2c. 2
Mg = Mg Y V2q "y " Xg T T a3 Zy
2X7, 47 4x7 4z,
- Cy -22Cy -2%2c, +232° ¢
(2 Ra g TMTT R TET TG X

g "g
- _2 -
' =C i 22 2xz
Cnp = Cnp -7 C¥p =~ OXo + T Cng .2 Cyg
' _ . X 2% 22 4 4%y
Cnr = Cnr ] CYI‘ T Cnﬁ _—QE CYB 1 Cn - ﬂz CY

(A-30)

(A-31)

(A-32)

(A-33)

(A-34)

(A-35)

(A-36)

(A-37)

(A-38)

(A-39)
(A-40)

(A-41)

(A-42)

(A-43)
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Transfer of Coefficients and Derivatives From Body

to Wind-Tunnel Stability Axes

These equations are the most frequently used axes transformations. They convert

the coefficients Cyx, Cy, Cg, etc., measured about body axes in the wind tunnel,

the coefficients about wind-tunnel stability axes CL, Cy, Cb, etc. They can be

into

obtained from the general inverse equations (II1-55) to (I11-107) of section III by replac-

ing the angle A by a and letting the angle B equal zero,
Cp = -Cx cos & - Cy sin &

Cy=Cy
CL=Cxsina - Cyg cos «
Cl,wt= Cp cos a + C, sin &
Cm =Cm

cn,wt = -C; sin @ + Cp, cos &

t - - .
CDa = CXa CoSs « Cza sin o + CL

4
= -C - i
CDa’e , X Ccos o Czd sin a
Cy =°C
Yg = "Yg
Cy.=Cy.
YB YB

. 1
CLa=CXa sin « -Cza cos a - Cp

CL& = de sin o - CZ& cos o

C =Cj, cos @ +CpH.sinaw
Lg,wt = ~ig * ~ng Sin
G. =C,.cos @ +Cp.sin a

Lpowt 4 ng

_ -9 .2 .
Clp,wt = Clp cos® o + Cnr sin“ o + (Clr + Cnp> sin o cos o
Clr,wt =G cos? a - Cnp sin? o + <Cnr - CZp) sin a cos o

Clé,wt= Cl5 cos & + Cp 4 sin o

72 -

(A-44)
(A-45)
(A-46)
(A-47)
(A-48)

(A-49)

(A-50)
(A-51)
(A-52)
(A-53)
(A-54)

(A-55)

(A-56)

(A-57)

(Af58)
(A-59)

(A-60)
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Cma = Cma

o
Cmg = Cmg
Cmg = Cmg

CnB,wt = -CZB sin o + CnB cos a

Ch. ,=-Ch.sina +Cp,,cos «
Phwt TR i
= 2, _ (2 _ .
Cnp,wt = Cnp cos? o Clr sin“ a + (Cnr Clp> sin a cos «
= 2 02 i
Cnr,wt = Cn, cos® a + Cp, sin® @ - (Clr + Cnp) sin « cos «
C = -Cy- sin @ + Cp; cOS o
N5 wt Lo ng

Transfer of Coefficients and Derivatives From

Wind-Tunnel Stability to Body Axes

(A-61)
(A-62)
(A-63)

(A-64)

(A-65)

(A-66)
(A-6T)

(A-68)

(A-69)

These transformations convert coefficients about wind-tunnel stability axes Cp,,

Cy> Ci), etc., into coefficients about body axes Cx, Cy, Cy, etc. They can be

obtained from the general direct transformations in equations (III-1) to (III-36) of sec-

tion III by replacing the angle A by « and letting the angle B equal zero.

Cx = -Cpy cos @ + Cy, sin «
Cy=Cy

Cgz = -Cp sin @ - Cy, cos «

_CN

G=¢ wt Cos & - Cn,wt sin o

Cm"—"Cm

Ch= Cl,wt sin o + Cn,wt cos «

J .
Cx, = -CDa cos a + CLa sina + CN = -Cp,

| .
Cxy4 = —CDd cos a + CL& sin a = 'CAde

(A-70)
(A-71)
(A-72)
(A-73)
(A-74)

(A-T5)

(A-176)

(A-77)
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Cyg = Cvg
C o = C .
Y4 Y4

1 .
Cza= —CDa sina - Cp,  cos a - Cp = -Cy,

Czy = —de sin @ - CL,, cos @ = -Cy
G, =C - i
13 ZB,Wtcosa CnB’wtsma
C.=C. cosa-C sin «a
Yt wm Pg,wt
Clp = Clp,wt cos2 a + Cnr,wt sin? o - (Cnp,wt + Clr,wt>sin acos o

- 2 in2 :
Clr = Clr wt ©08° @ - Cnp,wt sin“ o + (Clp,wt - Cnr,wt)sm o Cos o

H

&) cos o sin o

5~ Ciowt " Cng ot

Cma = Cma
Cmg = Cmy,
Cmg = Cmy

Cm5 = Cm6

CnB = Cl,B,wt sin a + Cnﬁ,wt CcoSs o

Cns=6GCy. i Cn -
ng lB,wtsma+ ng wt cos o

- 2
Cnp_cnp,wt cos“ o Clrwt

b

sin? o + (Clp,wt - Cnr’ )sin @ cos o

wt,

2

_ .9 .
Cn, = Cnr,wt cos® a + Clp,wt sin® a + (Clr,wt + Cnp,wt) sin o cos &

C sina+Cn6Wtcosa
b

ng = Clé,wt

(A-78)
(A-79)
(A-80)
(A-81)
(A-82)
(A-83)
(A-84)
(A-85)

(A-86)

(A-87)
(A-88)
(A-89)

(A-90)

(A-91)

(A-92)
(A-93)

(A-94)

(A-95)
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TRANSFORMATION EQUATIONS FOR MOMENTS AND PRODUCTS OF INERTIA

Body to Flight Stability Axes
2 02 :

IX,s = Iy cos® qq + 1y sin® aq - 2Ixy sin ay cos o
IY,S = IY
I, s =Ix sin? ag + iy cos2 og + 2Iy 7 sin @q COS o,

b
I = (Ix - 1)si I 2 o, - sin2
X7, = (X Z) sin o cos @ + Ixz(cos® @, - sin® ag
Ixy,s = Ixy cos aj +1lygz sin a
Iyz s = Iyz cos @ - Ixy sin @

Body to Principal Axes

Iy p=Ix cos2 € + Iy sin? ¢ - 2Ix 7 Sin € cos €

b
IY,P = IY

2

IZ P =IZ coSs € +IX sin2 € + ZIXZ sin € cos €
I

Flight Stability to. Body Axes

Ix = IX,s cos? gy + IZ,s sin? ag + 2Ixy g sin o cos @
Iy=lys
Iy = IX,s sin2 ag + IZ,s cos? ag - 2IXZ,S sin a( cos ag,
Ixy = (IZ,S - IX,S) sin o cos o +IXZ’S(cos2 ag - sin2 ao)
Iyz = IYZ,s cos aq + IXY,s sin @y
Iy = IXY,s cos @ - IYZ,s sin g

Flight Stability to Principal Axes
Ixp=Ix ¢ cos2 i + Iy, s sin n + 2y & Sin 7 €OS 7

IY,P = IY,s

2

IZ,P =Ix s sin? 7 + Iz s cos® n - 2Ixyz g sin 1 cos 7

(A-96)
(A-97)

(A-98)

(A-99)
(A-100)

(A-101)

(A-102)
(A-103)

(A-104)

(A-105)
(A-106)

(A-107)

(A-108)
(A-109)

(A-110)

(A-111)
(A-112)
(A-113)
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Principal to Body Axes

Ix=Ixp cos? € + I7 p sin? ¢ (A-114)
b b :
Iy=Iyp (A-115)
Iy =Iy p sin € +1 52 "(A—116)
Z=X,p +lgz,p COS™ €
Ixy = (IZ,P - IX,P) sin € cos € (A-117)

Principal to Flight Stability Axes

IX,s = IX,P cos2 n+ IZ,P sin2 n (A-118)
Iys=Iyp (A-119)
IZ,s = IX,P sin2 7 + IZ,P cos? n (A-120)
Ixz s = (IX,P - IZ,P) sin 1 cos 1 ' (A-121)

SPECIAL FORMS OF EQUATIONS OF MOTION

Coupled Linear Equations of Motion

These are the linearized equations that describe the small perturbation motions of
a vehicle about a steady-state flight condition. In steady-state flight, the components of
thrust, aerodynamic force, and other forces in a given direction are balanced by the com-
ponent of vehicle weight and, hence, the initial components do not appear in the equations.
Other specific assumptions made in deriving these equations are

(1) Total-velocity components, angular rates, and angles are equal to a steady-
state value plus a small perturbation value; for example, the velocity com -
ponent along the X-axis is u = U, + Au, where u is the total-velocity
component, U, is the initial steady-state velocity, and Au is the per-
turbation velocity

(2) Products and squares of perturbations can be neglected
(3) The vehicle has a plane of symmetry (IXY =lyy = 0)

(4) Pitch and roll perturbation rates are given in terms of the initial pitch and roll
angles 6, and ¢, and not in terms of the total pitch and roll angles
6o + A6 and ¢g + Ag; that is,
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6 = Aq cos ¢, - Ar sin ¢q

and
¢ Ap & A 5 sin 6o A sin 6,
+ sin + Ar cos
P + Aq © o8 b b0 Tog e
(5) Aerodynamic cross-coupling coefficients are zero ’

(6) Mass-damping and jet-reaction forces and moments can be neglected

(7) The vehicle is flying at constant thrust <.§T_ = ___863T = >
RPM

These equations are written about the body axes but can be converted to the flight
stability axes by letting Wo =0 and 6o =7,. Also, to reduce the number of variables
to six, the incremental velocity components Au, Av,and Aw can be expressed in
terms of resultant velocity and incremental angle of attack by using the following equa-
tions (the alternative would be to expand the aerodynamic forces on the right-hand side
in terms of u,v,w derivatives):

For body axis,
Au = AV cos ag - V,, Aa sin o
Av =V, Ax
Aw = AV sin Qg + Ve Aa COS O

For flight -stability axis,

Au = AV
Av = V, A

The six equations are

Al + Qo AW + Wo Aq - Rg AV - V, Ar + g(j Aq dt cos 6y cos ¢g - S. Ar dt cos 6 sin q>0>

2
- BVS oy A Aag Zc A +. . . A-122
o (CX o+ CX Y IV + CXV A\ Cxq 2V°o X5 +. ( )

AV + Ry Au + Ug Ar - Py AW - Wo Ap -g(pr dt cos 6g cos ¢o +SAr dt sin 90)

AB 1 Co ADL o Arg
gav., tYpav, T TYrav,

+ZCY5 AS+. . ) (A-123)

(i
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AW + Py Av + Vg Ap - Qy Au - U, Ag +g(SAp dt cos 6, sin ¢ +§Aq dt sin 90>

2 1
Vis Aq ¢ PPN
= pZm (Cza Aa + CZ . g“; £ + C V $—V + C 2300 ZC . ..> (A‘124)

AP Ix +(Qo Ar + Ry Aq)(Iy - Iy) - (Pg Aq +Q, Ap + Al)Ixy

1 A@Q Ap ¢ Ar ¢ z *
= V S a% x Ad+. . . -
ZP <CZB AB + CZB + Clp SV + Clr 2V°c,+ Clﬁ + > (A-125)

Aty + (Po AT + R, Ap)(Ix - 1z) +2(Po Ap - Ro Ar)Ixy

=1

2

Aa gl A
PV S£<Cma Aa +Cm. 2—3‘— CmV VV+Cmq ZVQ Zcm(‘3 Ad +. . > (A-126)

At Iz +(Py Ad + Qg Ap)(Iy - Ix) +(Q, Ar +Rg Aq - AD)Iyy

- L,v2se <c ng A8 + Cng ?\ﬁ;ﬁ + Cny 2A‘1;£ Cn, 2” },Cné Ab + . . > (A-127)

W]

Uncoupled Equations of Motion

The linearized equations of motion can be uncoupled (lateral motions made inde-
pendent of longitudinal motions) by assuming that the vehicle is in straight and level flight
and that there are no components of initial velocity except U,, Wy, and Qg in the
initial steady-state condition (i.e., Vo=Po=Rp=yYy=dg= 0). Under these assump-
tions, longitudinal equations contain only the variables Au, A6,and Aw (q = é); and
lateral equations contain only the variables Av, Ar, and Ap.

Longitudinal equations. -

2
. _ PV,S Aa g AV
Au + Qo AW + Wg Aq + gog cos bg.0 = T (CX Aa+CX 2V +CXVWO
Aq ¢ Z ‘
Cx, =— Cxs Ad A-128
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2
. . . pV. S A& L AV
Aw - Qo Au - Up Aq + gOg Sin Oy = e <CZ Aa ¥ CZa V. CZV Vo
+ Czq 2V Z Cy A5> (A-129)
2
. pViSt Aal AV Aq (L z AB 1
Aq Iy = 5 (Cm Ao + Cm Vo CmV V. + Cmq V. + Cm5 (A-130)
Lateral equations.-
AV + Ug Ar - W, Ap - g(¢g cos 6y o + Yg sin 9g,0>
2
_ PVes Ag [} Apg¢ . Ar g Z
A Ab A-131
Zm <CYB B+Cysov,t CYpav. * Y av., T L Y5 ( )
AD TIx +Qq Ar(Iy - Ty) - (Qo AP + AT)Iyy
2
=5 <CZB AB + CZB + Clp 2V°° le 5vo Cl5 (A-132)
I Iz + Qo Ap(Iy - Ix) + (Qo AT - Ap)Ixy
2 .
_ pVLSe ABL Apfz r!z Z AB -

Wind-Axes Equations for a Point Mass

The wind-axes equations used in ballistic trajectory studies in which the vehicle is
considered to be a point mass are, along the flight path,

2
m%’-:-ﬂz——S—CD—WSin'y+T (A-134)
and, normal to the flight path,
2
mV g{ sz S Cr. - W cos y (A-135)

These equations assume a constant thrust acting parallel to the flight path and
neglect jet damping and reaction control forces.
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DERIVATION OF EQUATIONS PRESENTED IN SECTION II

FOR TRANSFER OF COEFFICIENTS TO NEW

REFERENCE CENTER

The aerodynamic forces and moments acting on a flight vehicle can be considered
to be functions of six independent variables: «,3,V,p,q,r in one system, or u,v,w,p,q,r
in the alternate system. To evaluate force and moment derivatives at a new reference |
center, such as at a new c.g., the derivatives at the new center, which represent changes
in forces or moments with changes in the independent variables, both evaluated at the new

center, are written, for example,

— —_t — — ot — — N
zX - X Odua oX 08 + X oV + X Ip - X oq + oX or
o

1 1 + 1] 1 ] \ ]
da B 9B o oV o 9 Ooa oq o or o

1

X _ oX oo , 0X 08 60X OV  oX op _0X oq _ 6X or
= — + A R T
o oo o' g o8 ov og  wp of g g or o8 (B-1)

or'  8a or' 88 or' oV or' op or oq or or or

R —t —t —t — —
X' _oX ba, oK og X ov oX o X oKX or

where the forces X .Y ,Z and moments L ,M N at the new reference center are

related to those at the original reference center by

X =X L =L+2Y -5Z
——t — — — —— —
T =Y M =M +XZ - zX : (B-2)
7 =7 N =N +§X - xY

The variables «,8,V,p,q,r evaluated at the original reference center can now be
expressed as dependent functions of the independent variables «',g',V',p',q",r' of the
new system through the equations :
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-1 V' sin o' cos 8' - py +qx

a =tan”! = =tan ; : : e
V cos o cos B -Qz + 1y

-1

\] N ] - -
g = sin =Sin.1V sin 8 - rx + pz

v
v v $
V' = \Juz +v2 4 w2

= \I(V' cos a' cos 8' -qZ + r§)2 +(V'sin g' - r% + p§)2 +(V' sin @' cos g' - py + qi)ZJ

(B-3)

q=q' ' (B-4)

9 9 0 9 9 2 and derivatives such as

BB BB B or
gq% = i;g-: = 0 (they are derivatives of one independent variable with respect to another),

Since from equations (B-4)

the derivatives in equations (B-1) can be evaluated from equations (B-3) and (B-4) as

o _ 28 _ OV _p _ g _ or _ A
oa' o' da' Ba' oda' oat
98 o Vv 9p _ oq _ or _
—== ey =g —g=—x=0
88" " o8 98 9B 9B
v _ Sa B B N _ 2 _,
po av'  av'  av'  av' 8V’
8 _ -y cosa _ij@'_=icos[3+§rsinasinﬂ i:isinﬁ—}_fsinacosﬁ
' Vcosp o \'

or -
b2 _Xcosa+zsina 9B _ (zZ cos @ - xsin a)sin g &V _ (% sin @ - 7 cos @) cos B
aq" V cos B aq' \'2 ‘oq’

or
da _ -y sin @ 9B _-Xcosp-ycosasing 8V _§ cos @ cos B - X sin B
or' V cos B or' \' r!
ar_l 2&:3:0
ar' or' or’
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Substituting equations (B-5) and (B-2) into equations (B-1) and nondimensiohalizing yields
the transformation equations given in section II.

The transformations for the u,v,w derivatives (eqs. (II-41) to (II-77) of Sec. I)
are derived in the same way except that in this system the derivatives are of the form

—_ —t — _ — — — N
X _X m X o Xow & p &K g &K or
u'  fu ou'  ov ou'  oOw ou'  9p ou'  8q ou'  or au'

k (B-(?)

—t —t — ) — ) —
oX - X ou + oX ov + oX ow X 9p + oX _E(L_'_ X or
ar! du or' ov or' ow or' 9 or' oq or' or or'

~

The derivatives in equations (B-6) are evaluated from equations expressing velocity com-
ponents at the original reference center in terms of those at the new reference center as

u=u'-qz + ry
v=v'-rxX+pz (B-7)
w=W' - py +Qx

and are given as

du _ ov _ 8w _ % _ 8 _ or _,)

au' ov'  ew' op' &' or'

du ov - ow -

EX 2 Y

ou v ow > (B-8)
w Tt w ) WY

u _ = o _ - ow _

Er Al =

All other derivatives are zero.

Substituting these derivatives from equations (B-8) along with equations (B-2) into
equations of the form (B-6) and nondimensionalizing then yield the transformations for
u,v,w derivatives given in section IIL.

In nondimensionalizing, forces are divided by q_S$S; moments, by q_S¢ p, q, T,
a, and # are multiplied by 1/2V and u,v,w by 1/V. The velocity derivatives, such
as CXV, Cyys and Cp,, are written in terms of static forces and moments by making
use of the following relationship:
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therefore,

(B-9)

The derivative oCy / 9V represents the change in Cx brought about by changes in
velocity V by itself as an independent variable and not by changes in velocity due to
angular-velocity components p,q,r for the rotating body. They are the result of such
‘things as aeroelastic and Mach number effects and are usually neglected, so that equa-
tion (B-9) becomes

% = pVSCx (B-10)

The relationship in equation (B-10) is also used in nondimensionalizing the derivatives,

The transformations given in section II for the static force and moment coefficients
and the static-stability derivatives (derivatives with respect to a or p) are simplified
forms that apply only if there is no vehicle rotation and p, q,and r are zero. Although
it probably is not practical to use such forms, more general forms can be derived that
account for significant rotation; for example, it can be shown that the complete form of
da/da' from equations (B-3) is

%=1 +iqi - ry) cos @ + (py - 9x) sin «

and, by similarly evaluating 93/0a' and 08V/0a', it can be shown that the more com-
plete transformation for Cx, is

Cy . =Cx 14 @z - ry)cos a + (py - gx) sin @
a a V cos B

) CXB[(qi - ry) sin @ - (py - X) cos a] sin 8

A

+ 2CX[(qZ - ry) sin a‘; (py - gx) cos oz] cos B (B-11)

which reduces to C'Xa = Cxa (the form given in Sec. II) if p=q=r=0.
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APPENDIX C

METHODS OF MEASURING CENTER-OF-GRAVITY LOCATIONS AND
MOMENTS OF INERTIA OF MODELS AND FLIGHT VEHICLES

The methods presented here are a summary of methods used at the Langley
Research Center to measure moments of inertia of rocket-propelled models and the
methods presented in reference 3 for determining c.g. locations and moments of inertia 4
of full-scale airplanes. In these methods all oscillations are assumed to be small, !
Some other limitations and precautions that must be taken in using these methods, and
which apply to all methods, are discussed in reference 3.

CENTER-OF-GRAVITY LOCATION

Longitudinal c.g. Location

The longitudinal c.g. location can be determined by mounting the aircraft or rocket
on weighing scales. For a typical aircraft installation, two scales measuring the forces
Ri1 and Rg are located at wing jack points and a third scale measuring the force Rg
is located at some distance ¢ forward or aft of the jack points. The longitudinal dis-
tance from the jack points to the c.g. is then given by

2o R3,Q
R1 + Ry + Rg

(C-1)

Vertical c.g. Location

In order to determine the vertical c.g. location the vehicle is mounted on a knife
edge as shown in figure 10. The weighing cradle has a weight W¢e and a centroid zg,
and the vehicle is supported in various roll and pitch attitudes by a vertical reaction
force R7 acting at a distance y1- The distance from the knife edge to the airplane c.g.
is obtained from measurements of Ry, y1,and ¢ by using the equation

W sin ¢

Z =

(C-2)

MOMENTS OF INERTIA

Compound-Pendulum Method (Fig. 11)

This method is used mainly to determine pitch and roll moments of inertia on small
models that can easily be mounted with a single attachment point, The moment of inertia
of the model about an axis through the model c.g. is given by
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= = = 2

o VmusPmus p2 Vst 2 WP (©-3)
The subscript M+S refers to the model plus the supporting hardware, S to the sup-
porting hardware alone, and M to the model alone. The distance £M+S’ from the knife
edge to the c.g. of the model plus supporting hardware, is obtained from

_ _ WSzS + WMZM
ZM4S T W (C-4)

M+S

Spring Method

This method is usually used to measure pitch and roll moments of inertia when the
model is so large that more than one support is needed. The model is mounted on a knife
edge and springs are attached at equal distances on both sides of the knife edge, as shown
in figure 12, The moment of inertia can be determined from the equation

_2 - _
1=K p2 Mgz p2 _ mz2 (C-5)
4772 42
Spring Method for Full-Scale Vehicles

This method, which is described in detail in reference 3, uses two sets of springs
with each set having a different spring constant, so that both the moments of inertia and
the vertical c.g. location can be determined. The springs are arranged as shown in fig-
ure 13. The moment of inertia about the point axis through the knife edge is given by

(Ke1 - Kt,z)P% o2 N

mz” - I - mczc2 (C-6)
P+\2
47211 - ult 3

The vertical distance from the knife edge to the c.g. of the model is then determined from

2
K¢ 2 t,1<§2> W,

Z = o - (C-7)
wit-(p2) |

where W and Ec are the weight and c.g. vertical displacement (measured from the
knife edge) of the weighing cradle that is used. The constants Kt 1 and K o5 are

)
determined from the constants for the springs shown in figure 13 t;y the equations

I=
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2
Ki 1= 2Ks 135

2

Torsion-Pendulum Method

Used for measuring yaw moments of inertia, this method involves mounting the
model on a torsion shaft as shown in figure 14(a). The moment of inertia about the lon-
gitudinal axis of the shaft is given by

2 2
_Pmis  KPg

1=
472 472

(C-8)

Multifilar -Pendulum Methods

Essentially the same as the torsion spring method except that the vertical wires or
rods provide the restraining spring moment, an example of a bifilar pendulum is shown in
figure 14(b). The moments of inertia are determined from

9 2
Vs Pmas -2 Ws Pg” o |
I= — a“ - — a (C-9)
1672 £ 1672 £

where a is the diameter of the circle around which the wires or rods are attached and

Q" is the length of one of the wires or rods. A system with two wires is called a bifilar
pendulum; a system with three is called a trifilar pendulum. In using these methods, the
wires or rods must be centered about the system mass center,
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DETERMINATION OF LONGITUDINAL AND LATERAL STABILITY

DERIVATIVES BY USING SIMPLIFIED LINEAR ANALYSIS

E]

Perhaps the simplest and most direct method of analyzing transient flight data is to
determine static- and dynamic-stability derivatives from the frequency and the time to
damp to half-amplitude of transient motions, such as the damped angle-of-attack oscilla-

tion shown in figure 15. This method has been used effectively to determine the control
" response characteristics of rocket-propelled models in reference 9. Even when a more
sophisticated analysis is planned, this method can provide, before the detailed analysis
is begun, a fairly accurate quick-look assessment of the vehicle characteristics from the
basic flight records.

The oscillation in figure 15 represents the transient response to a step-control
input. The method assumes that

(1) The forward velocity and the Mach number of the vehicle are constant

(2) The longitudinal aerodynamic forces vary linearly with angle of attack «, pitch
angle 6, elevator deflection &g, da/dt, and d6/dt; lateral aerodynamic forces are
assumed to vary linearly with sideslip angle B, yaw angle 3, rudder deflection oy,
dp/dt, and dy/dt

(3) The vehicle is in level flight before the control deflection is applied

(4) Longitudinal and lateral motions are independent of each other (all aerodynamic
cross derivatives such as Clq and Cmp are neglected)

Under these assumptions, the longitudinal equations of motion can be simplified to

mV_ /40 da
qoos <Et— - a—) = CL ,0 + CL a + CL6 5 (D_l)
Iy d29 qc_

=Cm,o+ Cmaa + Cm. 2V o+ Cmy 55— + Cma de (D-2)

q.S¢ dtz 2V

where Cp, o and Cp o are the values of lift and pitching-moment coefficient in

trimmed level flight. The solution to equations (D-1) and (D-2) is of the form

_ ~.a't
o = Ce” "cos(wt - &) + oy (D-3)

In equation (D-3), C is a constant that is determined from initial conditions, ot is the
trim angle of attack,

87



APPENDIX D — Continued

1 C‘La c
@' = -glmr  (Cmg * Omg)gy 7 (-4
C C
=\ T "o Tm @ -9
and N
m' = MV e
QoS .,
5 (D-6)
U
q.Sc )

The damping constant a' and the frequency w are determined from measured quanti-
ties; a' can be calculated from the rate of decay of the oscillation (see fig. 15) as

log,, ~22 1

OBe 7o 1

oo oBhay %83 -0.693 -7
t2 - tl t1/2 tl/z

where t4 /2 is the time for the oscillation to damp to one-half its initial amplitude. The
frequency w can be calculated from the period of the oscillation P as
27

w = 2 (D-8)

Equation (D-5) can be rewritten as

Cm CL
_ 2, 2 ¢ Mg ta
Cm,, = -I'[(a') + w:] i At (D-9)
and equation (D-4), as
- 'V,  CL,
Cmg + Cm, =——=—\3" + 5= (D-10)

The last term of equation (D-9) is usually very small compared to the first term (usually
less than 1 percent) and may be omitted in most cases. (See ref. 9.) Omitting this term
and substituting equations (D-7) and (D-8) give the equations for the longitudinal static-
and dynamic-stability derivatives in terms of the period and the time to damp to half-
amplitude of the oscillation as '

2

-47°T 2
Crm,, = Iyl 1 12 0.693 (D-11)
o g SE P2 4n2\ty /o
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‘ -2I< /1.386V
Y[+ 0
C Ci«\ = - L D-12
( mq+ ma) c2 <qooSt1/2 W La> ( )

Similar equations for the lateral derivatives can be developed as

471'21 2 +

(Cor - Cng)= 12

For the lateral-derivative equations a small angle of attack is assumed. The values
of CnB and (Cnr - Cn B) given by equations (D-13) and (D-14) are those about the stabil-

21 /1.386V
Z [+ © g
+ 2 Cy > (D-14)

ity axes.

It should be noted that the mean values of angle of attack or sideslip do not neces-
sarily correspond to the trim value, so that the mean value that is used to determine
tq /2 (eq. (D-7)) must be obtained by selecting positive and negative amplitudes from the
angle-of-attack or sideslip envelopes and determining the mean of these positive and
negative amplitudes.
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USE OF DIRECTION COSINES AND QUATERNIONS
IN MOTION CALCULATIONS

In the equations of motion and throughout this report, vehicle orientation with
respect to given axes is specified in terms of the Euler angles ¥,0,¢. Two other
methods can be used, however, to specify alinement. One is to give the alinement in
terms of direction cosines; the other is to specify alinement in terms of "Euler param -
eters," which are components of a four-parameter quantity called a quaternion. Whereas
there is no particular advantage in one of these methods over the other, both have certain
advantages over the use of the Euler angles. Both eliminate the singularities that occur
when vehicle attitudes approach +90° (a condition known as gimbal lock) and, whereas the
equations relating Euler angles to angular rates are nonlinear (eqs.» (V-7) to (V-9) of
Sec. V), those relating direction cosines and Euler parameters to angular rates are linear,
so that the computational procedure is simplified, particularly in analog computations.
Either method is preferred to the Euler angle method, therefore, in certain applications.
The basic equations needed in applying these two methods are given here.

DIRECTION -COSINE METHOD

In the direction-cosine method, the axes transformation for any vector has the form

?

X X
Y' =DIY (E_l)
VA Z |

where D is the matrix made up of direction cosines and is defined as
[ixx  txy %7

fzx lyy 72z

where the elements of D are given in terms of Euler angles as
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0y = cos Y cos 6 v w
Iy = sin y cos 6

{x7 = -sin 0

lyx = -sin Y cos ¢ + cos Y sin 6 sin ¢
lyy = €cOs Y cos ¢ + sin Y sin 6 sin ¢ g (E.-3)
Ly = cos 6 sin ¢

fzx = sin Y sin ¢ + cos Y sin 6 cos ¢

lzy = -COS Y sin ¢ + sin Y sin 6 cos ¢

Qg7 = cos 6 cos ¢ J

It can be shown that D can be determined from the angular velocities by using equa-
tions (E-4) and (E-5) as follows:

p—

0 wZ, -wYT]
D= 0,1 0 W | D (E-4)
LwY' 'y 0

which is a linear (matrix) differential equation. The angular velocities wX, ,wY,,wZ,

are those of the primed axes system (see eq. (E-1)) with respect to the unprimed axes
system. In motion calculations where the primed axes are considered as the vehicle
body or othér reference axes and the unprimed axes are taken as the gravity-axis sys-
tem (see fig. 5), wX. ,wY, ,wz, can be determined from the body-axes angular velocities
p,a,r by

[wyr] p] -L ]

wgi|=la|-D ~(Qe + ) cos L (E-5)
W r (Qe +A\)sin L

- ZI_J L J L< ) -

or, for a flat nonrotating earth,

-
wxv =P
va =q > (E-6)
W =T
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QUATERNION METHOD

Basic Quaternion Relationships

In the quaternion method an axes transformation has the form (ref. 10)

X' X
Y'| =G|y ' (E-T)
7! z

where G is a matrix composed of the Euler parameters €0,€1,€9,63 and is defined as

F(eoz +e2 -ey2 - e32) Z(ele2 + e0e3> 2(e1e3 - eoez) h
G= Z(ele2 - e0e3) (eoz - e1z + ez2 - e32) 2(eoe1 + e2e3) (E-8)
Z(ele3 + eoez) " 2(e2e3 - e0e1> (eoz - el2 - ezz + 6321

The Euler parameters are elements of a four-parameter quantity called a quaternion,
defined as

q=ey+eqi+ey+egk (E-9)
where €0:€1:€9,64 are real numbers and the vectors 1i,j,k satisfy the following
conditions: '

2 .2 2 . .

i“=j=k= -1 k=-kj=1

J ] y (E-10)

ij=-ji=k ki = -ik = j

The quantity 2 is the real or scalar part of the quaternion; the terms eli + e2j + e3k
make up the imaginary part. The length or norm of the quaternion is defined as

Iq l = \qu* = \/eo2 + el2 + e22 + e32 (E-11)

The quantity q* is the conjugate of the quaternion and is defined as

q* = eq - eli - e2j - e3k (E-12)

The transformation in equation (E-7) can also be written in terms of the quaternion and
its conjugate as

x' X
Y' |=q*|Y|q (E-13)
VA Z
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In flight-motion calculations, in which the Euler parameters define the alinement
of the vehicle body or other reference axes with respect to the gravity axes (see figs. 4
and 5), the differential equation from which the Euler parameters can be determined is

eOT -4 -€4 —e:ﬂ e .
. p _L 4
. == ﬁ qal|-G -(Qe + 7\) cos L (E-14)
e 2| e e -e
2 3 0 1 o\ L
i r (e +X)sin L
Le3. L—ez eq eo_‘ L

" where G is defined by equation (E-8).

Relationship Between Euler Parameters and Euler Angles

Initial values of €(s€1:€2:€3 for use in performing the calculation indicated by
equation (E-14) can be determined from the initial values of the Euler angles. The Euler
parameters are related to Euler angles by the following equations:

= ¥ ) ? . gin ¥sin fsinl
ey = €o8 5 cos 5 cos 5 + sin 5 sin 5 sin 5

- ¥ 9 ein® - sin¥sin ]
eq = cos 3 cos 5 sin o) sin 5 sin 5 cos 5

" s (E-15)

ey cos > sin 5 cos 5 + sin 5 cos 3 sin 5

= sin¥ 8 9 _ ¥ gin £ sin &
eq sin 5 cos 5 cos 5 cos 5 sin 5 sin 5
sin 8 = —2(e1e3 - eoez) W

_ Z(eoe1 + e2e3)

tan ¢ = —5——5——>5 3

2(e1e2 + e0e3)
2 _e.2

tan Y =
- 2
eg 1 ez2 +€gq
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SCALING PARAMETERS

This appendix summarizes parameters for the three types of scaling used in aero-
dynamic testing: dynamic, aerodynamic, and aeroelastic. These parameters establish
the requirements for a given type of scaling in that each significant parameter must have
the same value for both model and prototype if the simulation is to be valid. In most
cases, it is impossible to satisfy all the scaling requirements at the same time and com-
promise techniques have to be worked out. A knowledge of the scaling parameters is
essential to understanding and applying these techniques.

DYNAMIC-SCALING PARAMETERS

Dynamic-scaling parameters established the conditions under which the motions
(accelerations, velocities, and angles) and the forces for the model simulate those for
the prototype. These parameters are obtained by requiring that, in the equation describ-
ing the motion of the flight vehicle, the ratio of any one term to another has the same
value for model and prototype. The equation of motion has the general form

Inertial force = Weight + Aerodynamic force (F-1)

Two scaling parameters determined from equation (F-1) are
Froude No. = Vehicle inertial force - mVy /17_ ,,o (F-2)

) Vehicle weight W gl
Mass ratio = vehicle inertial force _ mVg /ﬂ (F-3)

Aerodynamic force B PVO% 02 g 23

In addition, the scaling assumes geometric similarity between model and pi'ototype
as well as similarity in mass distribution. The scale factors given in table VI were
obtained by satisfying all these requirements.

AERODYNAMIC-SCALING PARAMETERS

Aerodynamic-scaling parameters must have the same value for model and proto-
type if the flow field around the model and, hence, the aerodynamic force and moment:
coefficients, is to be the same as around the prototype. Aerodynamic-scaling param -
eters determined from the equation of motion of the fluid, in which v1scous pressure,
and gravity forces are con81dered are
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2 .
_ Fluid inertial force _ pVZe? _PVL

Reynolds No. = —— = = (F-4)
Fluid viscous force uUV,¢ U
2,2\1/2
Fluid inertial force PV L Vo
Mach No, = = = — F-5
ach MO« = Fluid pressure force (paz 02 a (F-5)
Fluid inertial force _ pV2e2 _ V2
Froude No. = === (F-6)

Fluid gravity force  pg¢3 8¢

In addition, if surface-tension forces are important, a fourth parameter to be con-
sidered is

Weber No. = Fluid surface-tension force _ ol g

— - 5.9 2 (F-7)
Fluid inertial force pVie2  pvey

where o is the surface tension per unit length.

The pressure force considered in Mach number (eq. (F-5)) is that due to the pres-
sure differential across a shock wave in compressible flow. The pressure-force param-
eter considered in incompressible flow is

Euler No. = Fluid pressure force p (F-8)

Fluid inertial force  pV2 02

The Euler number is usually not important because usually the resultant body forces are
measured; however, it becomes important when body forces are determined from mea-
surements of pressure distribution.

Two scaling parameters determined from the laws of thermodynamics are

_ 1 Heat added by convection
Prandtl No. = Reynolds No. =~ Heat added by conduction

cpprT/ﬂ _ cpu :
V! kT/Qz k

where v = u/p, k is the coefficient of heat conduction (thermal conductivity) of the
fluid, and

(F-9)

Grashof No. = 3g2AT (F-10)

where AT is the temperature difference between two representative points in the fluid -
and T, is a representative temperature.

95



APPENDIX F — Continued
Aeroelastic-Scaling Parameters

The basic aeroelastic-scaling parameters to be satisfied in simulating deforma-
tions caused by aerodynamic loads are

For structural elongation:

__E_zé‘*_z L (F-11)
pVet

For structural bending:
_EL (F-12)
pV2g2 '

in which it is assumed that the strains in the model structure are the same as for the
prototype; that is,

‘m_q,0 (F-13)
€
p
It is also assumed that neither model nor prototype materials are stressed beyond their
elastic limits and that the ratios of shear-to-tensile stress and of shear-to-elastic
modulus are the same for model and prototype. A more thorough discussion of elastic
scaling is given in reference 11. '

COMMENTS ON SCALING PROCEDURES

Dynamic Scaling

In general, tests of dynamically scaled models are limited to subsonic speeds
(below M = 0.6) because of the requirement that the force coefficients must be the same
on model and prototype. For vehicles designed to fly at transonic or supersonic speeds,
the model is usually tested at the correct full-scale Mach number. The motions, loads,
and accelerations of the test models are then reduced to nondimensional coefficients by
utilizing the known mass and inertial characteristics of the models, and these coeffi-
cients are in turn used to calculate the motions, loads, and accelerations of the prototype.
In any case, care must be taken to insure that Reynolds number effects do not introduce
an unacceptable distortion. Reynolds number effects can be neglected in most tests if
the model Reynolds number is above 106; however, in general, the Reynolds number
effects on skin-friction drag must be accounted for.

Aerodynamic Scaling

In wind-tunnel and free -flight model testing, it is impossible to satisfy all the
aerodynamic-scaling parameters at the same time; however, the problem usually reduces
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APPENDIX F- — Concluded

to one in which only two of the parameters, Reynolds number and Mach number, are
important. In most problems, the effect of the fluid gravity on the motion is negligible,
and so the Froude number and the Grashof number of the fluid can be neglected. It can
be shown that the Prandtl number is the same for model and prototype if the ratio of
specific heats c¢p /cv is the same for both, and this condition is automatically satisfied
if air is used as the fluid in the model tests. A still further simplification is possible
because Reynolds number effects are limited to the narrow boundary-layer region at the
body surface and the flow outside the boundary layer is practically without the influence
of viscosity. Thus, Reynolds number and Mach number effects can be considered sepa-
‘rately. Most wind-tunnel tests at transonic and supersonic speeds are made at the full-
scale Mach number. The Reynolds number effects, called scale effects, are accounted
for by making corrections to skin-friction drag coefficient (the coefficient primarily
affected by Reynolds number) or by using boundary-layer trips, wires or a rough grit, to
cause separation at the proper chordwise position and therefore to simulate the full-scale
flow pattern. These techniques are discussed in textbooks on wind-tunnel testing (for
example, ref. 12) and reports dealing with their application, such as reference 13.
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TABLE I.- CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

: . ; Multiply by to obtain
Physical quantity U.S. Customary Unit conversion factor SI Unit
(a) (b)
Angle deg 0.01745329 rad
Length ft 0.3048 m
Velocity ft/sec 0.3048 m/sec
knot (international) 0.5144444 m/sec
knot (U.S. statute) 0.44704 m/sec
mph 0.44704 m/sec
Acceleration ft/sec2 0.3048 m/sec?
Pressure 1bf/ft2 47.88026 N/m2
atmosphere 1.01325 x 105 N/m?2
ft of HoO (39.2° F) 2,98898 x 103 N/m2
in. of Hg (60° F) 3.37685 x 103 N/m?2
Moment of inertia slug-ft2 1.355818 kg-m2
Mass slugs 14.59390 kg
Force 1bf 4.448222 N
Moment ft-1bf ' 1.355818 N-m
Area it2 0.09280304 . m2
Mass flow slugs/sec 14.59390 : kg/sec
Density slugs/it3 515.3788 : kg/m3
Spring constant 1bf/in. ' 175.1268 i N/m
1bf/ft 14.59390 N/m
Gravitational constant t3/sec2 0.02831685 m3/sec2
Specific heat Btu(thermochemical) 4,184 x 103 joule/kg-OC
. lbm -OF .
Kinematic viscosity t2/sec 0.09290304 m2/sec
Coefficient of BtU(therr;ochemical)—in. 518.87315 J/m-sec-K
heat conduction ft2-sec-OF
Temperature OF (c) K
oc (c) K
oR (c) K
Coefficient of slugs/ft-sec 47.880258 N-sec/m2
viscosity

2Based on values in ref. 14,
bPprefixes to indicate multiples of SI Units are as follows:

Prefix (symbol) Multiple
kilo (k) 103
hecto (h) 102
deka (da) 10
deci (d) 10-1
centi (c) 10-2
milli (m) 10-3
micro (u) 10-6

€ Temperatures related by following formulas:

K= g (OF + 459.67)
K =0C + 273.15

. 5
K=2°R
9
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TABLE II.- RELATIONSHIPS BETWEEN «,3,V AND u,v,w DERIVATIVES

CXa = -Cxu sin a cos B + CXW cos a cos B
CXB = -Cx, cos @ sin g + Cx,, cos B - CxXyw sin a sin 8

CXV = Cx, COS & cos B+ Cxy sin B + CXw sin o cos B

_ sin o _ .
CXu = CXa cos B CXB cos « sin 8 + CXV cos « cos 8

Cxy = CXB cos B + CXV sin g

- COS &

CXW=CXV_CBS_B-CXB sinasinB+CXV sin a cos B
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TABLE III.- ANGLE DESIGNATIONS FOR DIRECT # TRANSFORMATIONS

Axes conversion

Angle designation

] From o ) To o B
(Unprimed coefficients) (Primed coefficients)

Principal Body € 0
Flight stability Body ag 0
Flight stability Principal n 0
Wind -tunnel stability Body o 0
Wind-tunnel stability Principal o - € 0
Wind-tunnel stability Flight stability a - ag 0
Wind Body o B
Wind Principal o - € B
Wind Flight stability a - ag B
Wind Wind-tunnel stability 0 B

3 Direct transformations (eqs. (III-I) to (III-54)) represent rotation from ref-

erence (unprimed) axes system through angle

-B about Z-axis and then through

angle +A about Y-axis to new (primed) axes system. Inverse transformations

(table IV and eqgs. (III-55) to (III-107)) represent reverse of direct.
bAngles e and 7 between the principal axes and the body and flight stabil-

ity axes, respectively, can be determined from moments of inertia by

21
tan 2¢ = 2 XZ
Iz -1x
21
tan 27 = i:s_.

X,s IZ,s
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TABLE IV.- ANGLE DESIGNATIONS FOR INVERSE @ TRANSFORMATIONS

Axes conversion

Angle designation

- From _ To A B
(Primed coefficients) (Unprimed coefficients)
Body Principal € 0
Body Flight stability ag 0
Body Wind-tunnel stability a 0
Body Wind a B
Principal Flight stability nb 0
Principal Wind-tunnel stability a - €P 0
Principal Wind o - € B
Flight stability Wind-tunnel stability a - o 0
Flight stability Wind a - ag B
Wind-tunnel stability Wind { 0 B

ayhverse transformations (eqs. (III-55) to (II1-107)) are reverse of direct

(table III and egs. (III-1) to (II1-54)) and represent rotation of primed axes system,

through angle -A about Y-axis and then through angle +B about Z-axis, until
axes coincide with original unprimed system.

b Equations for determining angles

¢ and 7 given in footnote in table IIIL.
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TABLE V.- DESIGNATIONS OF FORCE AND MOMENT COEFFICIENTS

FOR DIFFERENT AXES SYSTEMS

Coefficients for axes system —

Component
Body or Flight Wind-tunnel Wind
principal stability stability
(a)
X-axis force Cx or -Cp CX,s -Cb -Cp
Y -axis force Cy Cy s Cy Ce
b
Z-axis force Cyz or -Cn Cy o -Cy, -Cq,
2
X-axis moment (roll) G Cl,s C, wi c, W
Y-axis moment (pitch) Cm Cm,s Cm Jwt Ch W
Z-axis moment (yaw) Cn Cn,s Cn,wt n,w

aSubscrip’c P sometimes used to denote principal axes.




TABLE VI.- SCALE FACTORS? FOR DYNAMIC SCALING

Area® . L L e e e e e e e ..RZ2 A
Volume . . . v v v o o o ¢ o o o o o o o e o e e s e s e e e s e e e e e RZ3
Velocity . . . .. .. e e e e Rg1/2 R 1/2
Acceleration. . . . v v v ¢« v v v e v e e e e e e e e e e s e e e e e e e Rg
3
MasSS. v« ¢ ¢« ¢ ¢ ¢ o e o o o o RpRz
Mass-flow . . . .« ¢« v ¢« v ¢ ¢ ¢ v o o & e e e e e e s e e e e e e e e e e . Rp Rgl/2 RZ5/2
Weight . - . . . - . . . . . . 3 . . . . . . . . . . . . . . . . . L] . . . - . Rp Rg RZ3
Force coefficient . . . . & v v v v 6 v e o 6 o o o o o o o 0 o o o o o o o s 1.0
Moment coefficient . . . . . ... .. e e e e e e e e e e e e e e e 1.0

Wi-ng loadingo ® e o 8 e & e s & e+ * e e e s e e 6 s e & o o s s 6 o s e o+ o Rp Rg Rl

Timeo e o o o o o & o o+ o 0 o * e o o,_o » & & ©o o Rll/z Rg—l/z

Dynamic pressure. . « .« « « . . et e e e e e s e s s e s e e e s e e e . RpRgRl
Force ... . ... e e e e e e e e e e e e e e e e e e e e e e e e e RpRgRl3
Angular velocity. . ¢ . . . . .. .. e e e e e e s e o s e e e e e e e e Rl‘l/2 Rgl/2
Angular acceleration . ... ... .... e e s e s e e e e e e e e e RZ‘1 Rg

4
Moment . . . . ¢ v o o o o o oo e e e s e e e e e e s e e e e e e e e e Rp Rg RZ
Moment of inertia . . . . . . . ¢« ¢« v ¢ ¢ . . . « e e s e e e e e e Rp Rl5

2 Scale factor is ratio of model quantity to prototype quantity; for example,
Model area = RZ2 X Prototype area

b Definitions of symbols:

Model length
Prototype length

RZ=

_ _Acceleration of gravity at model altitude
€ Acceleration of gravity at prototype altitude

_ _Air density at model altitude
P ™ Air density at prototype altitude
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Figure 1.- Systems of vehicle reference axes and instrument axes.
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Figure 2.- Axes systems for transfer from vehicle c.g. to new reference center
by equations of section II.
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Figure 3.- Systems of vehicle reference axes, including body, principal, wind,
flight stability, and wind-tunnel stability.
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Vertical velocity of vehicle 'h
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Figure 6.- Relation of heading angle H and flight-path angle vy to
earth-centered inertial axes.
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Figure 7.- Resolution of relative velocity into components along vehicle body axes.
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Figure 8.- Directions of surface and geostrophic winds.



Figure 9.- Alinement with respect to vehicle reference axes of thrust and torque
due to rotating mass of engine. '
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Figure 10.- Determination of vertical location of center of gravity.
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Figure 11.- Measurement of moment of inertia by compound-pendulum method.
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Figure 12.- Measurement of moment of inertia by spring method.
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Figure 13.- Determination of vertical location of center of gravity and rolling moments of inertia
for full-scale airplanes. (Reproduced from ref. 3.)
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Figure 14.- Methods of measuring yawing moments of inertia.
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