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PREFACE

A summary of equations often used in free-flight and wind-tunnel data reduction and

analysis is presented. Included are transfer equations for accelerometer, rate-gyro, and

angle-of-attack instrumentation; axes-system transfers of aerodynamic derivatives; and

methods for measuring moments.of inertia. In general, the equations are in a complete

form; for example, those terms are retained that are missing when planar symmetry is

assumed for airplanes.
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INTRODUCTION

The equations in this report are the coordinate transformation and motion equations

used in the various tasks associated with free-flight and wind-tunnel data reduction and

analysis. These tasks range from reducing flight data to calculating the motions on a '

digital or analog computer and to applying various techniques for analyzing the data, such

as in references 1 and 2.

While many publications contain a number of these equations, no one contains all

that are usually needed in a complicated aerodynamic analysis; even the more nearly com-

plete reports (refs. 3 and 4, for example) omit the equations for transferring aerodynamic

stability derivatives from one moment reference to another. Moreover, in most cases

the equations are simplified, when they are presented, by assumptions such as small

angles of attack, zero sideslip, and small perturbation motions. Expanded forms of many

of the equations, on the other hand, are needed in special problems that may arise. For

example, parawing vehicles, which have their center of gravity located well below the wing

surface, require the expanded forms of the axes transformations when data measured about

a point on the wing are to be transferred to the center of gravity; reentry motion studies

sometimes involve large-amplitude motions so the complete forms of the transformations,

without the assumptions of small angles of attack or sideslip, are needed. The engineer

working on any of these special problems usually has to derive these equations himself,

and this can be time consuming.

The purpose of this report is to provide the basic equations from which many of the

equations needed in a particular analysis can be generated. A comprehensive summary

of the basic axes transformation and motion equations is included, with most of these

given in their expanded, most general forms. Once these expanded forms are available,

the simpler forms can be written out fairly easily, and yet the general forms are here

when needed for special cases.

The general forms presented include axes transformations that enable transfer back

and forth between any of the five axes systems that are encountered in aerodynamic analy-

sis. Equations of motion are presented that enable calculation of motions anywhere in the

vicinity of the earth. Special problems are also considered; since flight instruments,

such as accelerometers or rate gyros, are not always alined along mutually perpendicular

axes, the procedure for correcting instrument readings for nonorthogonal alinements is

outlined.

In addition to these general forms, many of the simplified forms used frequently in

practical applications are summarized in appendix A.

Other relationships are presented in appendixes B to F. For example, appendix C

summarizes methods used to measure moments of inertia of models and full-scale



vehicles; appendix E discusses the use of the direction-cosine and the quaternion methods,
often used in place of Euler angles in specifying vehicle alinement; appendix F discusses
the scaling parameters used in model testing. However, throughout this paper, the empha-
sis is on providing the basic equations. For discussions of their development and of the
procedures used in their application, the user should turn to general published works on
flight-motion analysis. A comprehensive bibliography of these works is provided _and
includes textbooks and reports dealing with stability, control, and performance as well
as reports discussing various techniques for extracting stability derivatives from flight
data.

SYMBOLS

Throughout this paper, symbols are defined in terms of SI Units with equivalent U.S.

Customary Units given parenthetically. Factors for converting from U.S. Customary to

SI Units are given in table I.

A

A _

eneralized angle of attack, defined for various axes systems in tables III

and IV, rad (deg)

ross-sectional area in eq. (F-11) of appendix F, m 2 (ft 2)

angle between surface wind vector and plane of local horizontal, measured

perpendicular to plane of local horizontal (fig. 8), rad (deg)

AD acceleration along flight path, g units (lg = 9.807 m/sec 2)

A L acceleration in lift direction, g units (lg = 9.807 m/sec 2)

Ax,cg,Ay,cg,Az,cg
components of acceleration along X,Y,Z vehicle reference axes

at c.g., respectively, g units (lg = 9.807 m/sec2)

AX ,i,Ay ,i,AZ ,i
components of acceleration indicated by accelerometers along

Xi,Yi,Z i instrument axes, respectively, g units

(lg = 9.807 m/sec2)

a speed of sound, m/sec (ft/sec)

a T damping constant defined by eq. (D-4) of appendix D, dimensionless

diameter of circle around which wires or rods are attached in bifilar or

trifilar methods of measuring moments of inertia in eq. (C-9) of

appendix C (see, also, fig. 14(b)), m (in.)



a e

a s

B

S t

b

C

CA

CC

CD

!

C D

CL

CL,o

C/,C m ,Cn

Cm,o

CN

Cx,Cy,Cz

equatorial radius of earth's reference ellipsoid, m (ft)

distance from knife edge to spring (fig. 13), m (ft)

generalized angle of sideslip, defined for various axes systems in tables III'

and IV, rad (deg)

angle between projection of wind vector onto plane of local horizontal and

component of wind velocity tangent to circle of local horizontal (fig. 8),

rad (deg)

span, m (ft)

constant in eq. (D-3) of appendix D, rad (deg)

axial-force coefficient

crosswind coefficient

drag coefficient

drag coeff{cient for wind-tunnel stability axes

lift coefficient

lift coefficient in steady-state level flight

eneralized aerodynamic moment coefficients about
.... Moment

reierence axes, respectively,

qooD £

kbody-axes moment coefficients

pitching-moment coefficient in steady-state levei flight

X,Y,Z vehicle

normal-force coefficient

eneralized aerodynamic force coefficients about
.. . Force

ence axes, respectively, _S

ody-axes force coefficients

X,Y,Z vehicle refer-

3



reference chord, m (ft)

Cp

Cv

D

dx,dy,d z

E

specific heat at constant pressure, J/kg-°C (Btu(thermochemical)/lbm-OF)

specific heat at constant volume, J/kg-OC (Btu(thermochemical)/lbmrOF)

erodynamic drag in eqs. (I-25) of Sec. I, N (lbf)
irection-cosine matrix defined in eq. (E-2)of appendix E

displacements of centroid of jet interface, measured with respect to X,Y,Z

vehicle reference axes, respectively, m (ft)

modulus of elasticity, N/m 2 (lbf/ft 2)

e0,e 1 ,e 2 ,e 3

Fr,x,Fr,y,Fr,z

Fx,Fy,F z

G

GE

g

gx'gY 'gz

H

h

I

I' - Iy

q_oS6

4

Euler parameters in eq. (E-9) of appendix E

forces due to jet control (not main rockets) along X,Y,Z vehicle

reference axes, respectively, N (lbf)

forces along X,Y,Z vehicle reference axes, respectively, N (lbf)

transformation matrix composed of Euler parameters

geocentric gravitational constant, m3/sec 2 (ft3/sec2)

acceleration due to gravity, m/sec 2 (ft/sec 2)

components of gravitational acceleration along Xg,Yg,Zg gravity axes,

respectively, for an oblate earth, m/sec 2 (ft/sec2)

angular direction vehicle is traveling (fig. 6); angle measured positive

clockwise from north, i.e., for H = 90 °, vehicle is traveling toward east,

rad (deg)

altitude, m (ft)

moment of inertia, kg-m 2 (slug-ft 2)



I c

Irm

Ix,Iy,I z

,!xy,Ixz ,Iy z

i,j ,k

J2,J3,J4

mounting-cradle moment of inertia about vehicle roll axis, kg-m 2

(slug-ft2)

moment of inertia of engine rotating mass, kg-m 2 (slug-ft2)

moments of inertia about X,Y,Z vehicle reference axes, respectively,

kg-m 2 (slug-ft2)

products of inertia, Ixy= _ xy dm, IXZ = _ xz dm,

Iyz = _ yz dm, kg-m 2 (slug-ft2)

unit vectors having properties given in eqs. (E-10) of appendix E

second, third, fourth zonal harmonics, respectively, of earth's reference

ellipsoid (values given following eq. (V-45) of Sec. V)

j unit vector (see i,j,k)

K spring constant, N/m (lbf/in.)

K1,K2,...,K6 constants defined in eqs. (I-13) of Sec. I

K o boom misalinement angle at zero g, measured with respect to X

reference axis; positive with boom inclined above X-axis, rad

vehicle

(deg)

Ks

KS ,I 'Ks ,2

Kt,1 'Kt,2

k

constant for springs shown in fig. 13, N/m (lbf/ft)

values of K s for springs of different strengths, N/m (lbf/ft)

constants, determined from Ks, 1 and Ks,2, used in measuring moments of

inertia in eqs. (C-6) and (C-7) of appendix C, N/m (lbf/ft)

unit vector (see i,j,k)

torsion-spring constant in eq. (C-8) of appendix C, N-m/rad (ft-lbf/rad)

coefficient of heat conduction in eq. (F-9) of appendix F, J/m-sec-K

(Btu (the rmochemical) -in./ft 2 -sec -OF)



L

L,M,N

erodynamic lift in eqs. (I-25) of Sec. I, N (ibf)
eocentric latitude of vehicle, positive in northern hemisphere, in Sec. V

and appendix E, rad (deg)

aerodynamic moments about X,Y,Z vehicle reference axes, respectively,

N-m (ft-lbf)

Lrm,Mrm,Nrm moments due to gyroscopic action of engine rotating mass about

X,Y,Z vehicle reference axes, respectively, N-m (ft-lbf)

ength used in nondimensionalizing moments, m
haracteristic length, m (ft)

(ft)

T length of wire or rod on which model is suspended in measuring moment of

inertia by multifilar-pendulum method in appendix C, m (ft)

istance between fore and aft weighing scales in eq. (C-1) of appendix C,

m (ft)

istance from knife edge to supporting spring in eq. (C-5) of appendix C,

m (ft)

_XX,_Xy,...,_ZZ direction cosines defining orientation of rotated (primed) axes

system with respect to initial (unprimed) axes system; _XX is

cosine of angle between X-axes of two systems; _XY, cosine of

angle between X-axis of rotated system and Y-axis of initial sys-

tem; . . .; and _ZZ, cosine of angle between Z-axes of two sys-

tems (eqs. (E-3) of appendix E)

M Mach number

M aerodynamic moment (see L,M,N)

Mrm moment due toengine rotating mass (see Lrm,Mrm,Nrm )

Mr,x,Mr,y,Mr,z moments due to jet controls (not main rockets) about

X,Y,Z vehicle reference axes, respectively, N-m (ft-lbf)

Mx,My,M z moments about X,Y,Z vehicle reference axes, respectively,

N-m (ft-lbf)



m instantaneous mass of vehicle, kg (slugs)

m T

rh

m e

N

Nrm

mVoo

q_S

time rate of change of vehicle mass (such as due to fuel consumption);

negative when vehicle losing mass, kg/sec (slugs/sec)

mass of weighing cradle used in measuring moments of inertia, kg

aerodynamic moment (see _,M,N)

moment due to engine rotating mass (see Lrm,Mrm,Nrm)

(slugs)

P period of oscillation, sec

P1

P2

period

period

of oscillation with spring constant

of oscillation with spring constant

Kt,1, sec

Kt,2, sec

PM

PM+S

period

period

of oscillation for model alone, sec

of oscillation for model plus supporting hardware, sec

PS

Po,Qo,Ro

period of oscillation for supporting hardware, sec

initial, steady-state values of angular-velocity components along

X,Y,Z vehicle reference axes, respectively, rad/sec

static pressure, N/m 2 (lbf/ft2)

p ,q,r components of angular velocity about X,Y,Z vehicle reference axes,

respectively, rad/sec (deg/sec)

Pi,qi,ri

qo

components of angular velocity indicated by rate gyros about

Xi,Yi,Zi instrument axes, respectively, rad/sec

angular-velocity component (see Po,Qo,Ro)

7



q

qc

qi

R

R e

Ro

R 1

R 1,R2 ,R3

r

rg

ri

T

ngular-velocity component (see p,q,r)
uaternion in eq. (E-9) of appendix E

impact pressure, N/m 2 (lbf/ft2)

angular-velocity component (see pi,qi,ri)

free-stream dynamic pressure, N/m 2 (lbf/ft 2)

conjugate of quaternion in eq. (E-12) of appendix E

distance of c.g. of vehicle from center of earth (fig. 4), m (ft)

l/scale factors, with subscripts, as defined in table VI and discussed

__ in appendix F

radius of assumed spherical earth, 6378.123 km (20 925 631 ft)

angular-velocity component (see Po,Qo,Ro)

vertical reaction force (fig. 10) in eq. (C-2) of appendix C, N (lbf)

forces at supports in setups for determining c.g. location in eq. (C-l) of

appendix C, N (lbf)

angular-velocity component (see p,q,r)

vector expressing distance from c.g. to origin of instrument-axes system,

m (ft)

distance from origin of gravity-axes system to vehicle reference center,

m (ft)

angular-velocity component (see pi,qi,ri)

vehicle reference area, m 2 (ft2)

Iotal vehicle thrust in eq. (V-36) of Sec. V and in (A-13d) of appendix A,

eqo

N (lbf)
emperature in eq. (F-9) of appendix F, K (OF)



T D

To

Tx,Ty,T z

t

tl/2

t 1

t2

U o ,V o ,W o

U,V,W

U,V,W

ui,vi,w i

V

AV

Vo

Voo

Vx,Vy,Vz

V

component of thrust along flight path, N (lbf)

lrnitial thrust in eq. (V-36) of Sec. Vepresentative temperature of flow in eq. (F-10) of appendix F, K (OF)

components of thrust along X,Y,Z vehicle reference axes, respectively,

N (lbf)

time, sea

time to damp to one-half amplitude, sec

arbitrary time defined in fig. 15, sec

arbitrary time defined in fig. 15, sec

initial, steady-state values of linear-velocity components along

X,Y,Z vehicle reference axes, respectively, m/sec (ft/sec)

components of vehicle absolute (inertial) velocity along X,Y,Z vehicle

reference axes, respectively, m/sec (ft/sec)

components of relative velocity (velocity of vehicle with respect to air),

along X,Y,Z vehicle reference axes, respectively, m/sec (ft/sec)

indicated components of relative velocity along Xi,Yi,Zi instrument axes,

respectively, m/sec (ft/sec)

resultant velocity, m/see (ft/sec)

increment in resultant free-stream velocity, m/see (if/see)

velocity component (see Uo,Vo,Wo)

free-stream reference velocity, m/sec (ft/sec)

components of geostrophic-wind velocity, due to earth rotation

(atmosphere rotates with earth), relative to X,Y,Z vehicle reference

axes, respectively, m/sec

inertial-velocity component (see

relative-velocity component (see

(ft/sec)

U ,V ,W)

tiff,W)



W

m

W

We

WM

WM+S

Ws

Wo

Wx,Wy,W z

W

w

W

wi

X,Y,Z

X,Y,Z

Xe ,Ye, Ze

Xg,Yg,Zg

Xi ,Yi, Z i

x,y,z

relative-velocity component (see ui,vi,wi)

vehicle weight, N (lbf)

resultant velocity of earth surface wind, m/sec (ft/sec) :_

weight of weighing cradle, N (lbf)

weight of model alone, N (lbf)

weight of model plus supporting hardware, N (lbf)

weight of model supporting hardware, N (lbf)

velocity component (see Uo,Vo,Wo)

components of wind velocity, due to surface winds, relative to

X,Y,Z vehicle reference axes, respectively, m/sec (ft/sec)

inertial-velocity component Csee u,v,w)

relat'xve-velocity component (see t_,_,_)

relative-velocity component(see ui,vi,wi)

vehicle reference axes

aerodynamic forces along X,Y,Z vehicle reference axes, respectively,

N Clbf)

right-handed inertial axes with origin at center of earth (fig. 4)

gravity axes with origin at surface of earth (fig. 4)

axes in orthogonal coordinate system with origin at an instrument at point

x,y,z and with system alined at angles _,O,dp with X,Y,Z vehicle

reference axes at c.g., respectively, as shown in fig. 1

distances measured from X,Y,Z vehicle reference axes, respectively, m (ft}

10



x,y ,Z

Xg,yg,Zg

£X,§X,zX

Xy,yy,Zy

_Z,§ZfiZ '

Yl

ga

gc

zM

zM+S

zS

OL

AOl

(it)distances from c.g. to another point on vehicle, m

displacements of vehicle with respect to Xg,Yg,Zg

tively (figs. 4 and 5), m (It)

coordinates of X-axis accelerometer or rate gyro, measured from

X,Y,Z vehicle reference axes at c.g., respectively, m (it)

coordinates of Y-axis accelerometer or rate gyro, measured from

X,Y,Z vehicle reference axes at c.g., respectively, m (it)

coordinates of Z-axis accelerometer or rate gyro, measured from

X,Y,Z vehicle reference axes at c.g., respectively, m (it)

distance from knife edge to vertical reaction force R 1 (fig. I0), m

distance from knife edge to vehicle c.g. (fig. 13), m (It)

vertical distance to c.g. of weighing cradle (figs. i0 and 13), m (it)

distance from knife edge to c.g. of model, m (it)

distance from knife edge to c.g. of model plus supporting hardware, m

distance from knife edge to c.g. of supporting hardware, m (it)

gravity axes, respec-

angle of attack, rad (deg)

'_+an-1 _b = tan-1 Wb - VZ _b -

Ub Ub Vx,b

position error, error due to location of angle-of-attack sensor in flow of

vehicle, equal to free-stream angle of attack minus true or corrected local

angle of attack; positive for a free-stream angle of attack greater than

local angle of attack, rad

difference between angle of attack and trim angle of attack at time tl, rad

difference between angle of attack and trim angle of attack at time t2, rad

11



S a increment in angle of attack caused by boom bending under static air load,

measured with respect to boom center line; positive for upward deflection

of boom, rad

s b change in angle of attack caused by bending of mounting boom under inertial

load, measured with respect to boom center line; positive for upward

deflection of boom, rad

s d

si

s 0

s t

change in angle of attack caused by vehicle rotation, measured with respect

to vehicle reference axis, rad

angle of attack indicated by vane or other sensor, measured with respect to

center line of mounting boom; positive with nose of vane pointed down, rad

angle between X body axis and X flight stability axis (fig. 3), rad (deg)

trim angle of attack, rad (deg)

S u

S V

f

change in angle of attack caused by upwash from mounting boom, measured

with respect to free-stream velocity; positive for upwash (upward flow

normal to free stream), rad

vane floating angle, angle caused by slight mass unbalance or by warp in

vane surface due to imperfections in manufacture, measured with respect

to local velocity vector; positive for nose-up deflections of vane, tad

.ngle of sideslip, rad (deg)in-1 v.._b = sin -1 Vb - Vy_ b - Wy_ b
V V

sideslip position error, rad

fa increment in sideslip angle caused by boom bending under static air load,

measured with respect to boom center line; positive for boom deflected

to right, rad

fib change in sideslip angle caused by bending of mounting boom under inertial

loads, measured with respect to boom center line; positive for boom

deflections to right, tad

12



_d change in sideslip angle caused by vehicle rotation, measured with respect
to vehicle reference axis, rad

sideslip angle indicated by vane or other sensor, measured with respect to
center line of mounting boom; positive with nose of vane pointed to right

of boom, tad

_u
change in sideslip angle caused by sidewash from mounting boom, measured

with respect to free-stream velocity; positive for positive sidewash, rad

_V
sideslip-vane floating angle, angle caused by warp in sideslip vane due to

imperfections in manufacture, measured with respect to local velocity

vector; positive for vane deflected to right, rad

F transformation matrix for orthogonal axes system, defined in eq. (A-2) of

appendix A

Fnonorthogonal
transformation matrix for nonorthogonal axes system, defined in

eq. (I-14) of Sec. I

5a,Se,5r

atio of specific heats in eqs. (I-19) and (I-20) of Sec. I, Cp/C vlight -p at'h angle in eq. (V-17) of Sec. V (fig. 65, rad (deg5

control deflection, rad (deg5

control deflections (aileron, elevator, rudder, respectively) rad (deg)

5RPM

Em

change in engine rpm

angle between Xp principal and X body axes (fig. 35, rad (deg5

strain (elongation per unit length5 measured on model, cm/cm (in./in.)

strain (elongation per unit length) measured on prototype, cm/cm (in./in.5

angle between Xs flight stability and Xwt wind-tunnel stability axes

(fig. 3), rad (deg5

angle between Xp principal and X s flight stability axes (fig. 3), rad (deg 5

13



X

/2

P

(7

_Pg,Og,_bg

_PZ,6Z,q_z

_e

_rm

¢o

14

geocentric longitude of vehicle, positive counterclockwise looking in direction

of positive Z e inertial axis (fig. 4), rad

coefficient of viscosity, N-sec/m 2 (slugs/ft-sec)

kinematic viscosity in eq. (F-9) of appendix F, la/p, m2/sec (ft2/sec)

phase angle, rad (deg)

atmospheric density, kg/m 3 (slugs/ft 3)

ange angle in eq. (V-21) of Sec. V, rad (deg)
urface tension in eq. (F-7) of appendix F, N/m (lbf/ft)

roll angle defined in fig, 10, tad (deg)

Euler angles defining angular alinement of one axes system with respect

to another axes system, rad (deg)

Euler angles defining alinement of X,Y,Z vehicle reference axes, respec-

tively, with respect to gravity-axes system (fig. 5), tad (deg)

Euler angles describing alinement of engine-thrust axes (fig. 9), rad (deg)

Euler angles of X-axis accelerometer or rate gyro, measured with respect

to X,Y,Z vehicle reference axes at c.g., respectively, rad (deg)

Euler angles of Y-axis accelerometer or rate gyro, measured with respect

to X,Y,Z vehicle reference axes at c.g., respectively, rad (deg)

Euler angles of Z-axis accelerometer or rate gyro, measured with respect

to X,Y,Z vehicle reference axes at c.g., respectively, rad (deg)

rate of rotation of earth, rad/sec

angular velocity of engine rotating mass, rad/sec

resultant angular velocity in Sec. I, rad/sec
requency of oscillation in appendix D, rad/sec



_X' '_Y' '°_Z' angular-velocity components along X',Y',Z' vehicle reference axes,

respectively, usually measured with respect to gravity-axes or

inertial-axes system, rad/se c

Subs cripts:

b body axes

0 initial conditions

P principal axes

S flight stability axes

w wind axes

wt wind-tunnel stability axes

Notation:

• (Dot) first derivative with respect to time

' (Prime) unless otherwise specified, a primed quantity is one referred to axes sys-

tem located at point x,y,z and/or alined at angles _,0,_ with respect

to initial reference axes system

& perturbation quantity (unless specified otherwise)

Subscripts used with coefficient symbols denote derivatives as follows:

c_ with respect to c_

& with respect to &£/2Voo

with respect to

with respect to _/2Voo

u with respect to u/Voo

15



v with respect to v/V_

W with respect to w/V_o

P with respect to p_/2V_

q with respect to q_/2V_

with respect to r_/2V_

5 with respect to control deflection

V with respect to V/V_o. This derivative, for a force such as the X-force, is

_C x
equal to 2Cx + _(V/Voo)' where the term 2C x represents the change in

8C x
X-force due to changes in free-stream velocity and the term

O(V/V_)

represents the change in CX due to effects such as Mach number or

aeroelastic effects. If these effects are negligible, then CXv = 2Cx,

Cmv = 2Cm, etc.
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SECTION I

EQUATIONS INVOLVING BASIC FLIGHT MEASUREMENTS

This section summarizes some of the relationships used in working with basic £1ight

measurements. Included are general equations for transferring accelerations, linear

velocities , and angular velocities between any two axes systems on a flight vehicle that

are related by a @,0,q5 Euler rotation sequence; the simplified forms that are frequently

used to correct accelerometer and rate-gyro readings for instrument displacement and

misalinement are given as equations (A-5) to (A-16) in appendix A. Also included are

the correction equations for angles of attack and sideslip, equations for determining flight

Mach number from measurements of static and impact pressures, and equations for deter-

mining vehicle forces and moments from accelerometer and rate-gyro readings.

GENERAL AXES TRANSFORMATIONS FOR COMPONENTS

OF ACCELERATION, LINEAR VELOCITY, AND

ANGULAR VELOCITY

• t

The general equations given here transfer between the two axes systems shown in

figure 1, where the "instrument-axes" system represents any system displaced and/or

misalined with respect to the vehicle reference axes at the c.g. It should be noted that the

Xi,Yi,Z i components of the instrument-axes system need not be mutually perpendicular

(orthogonal) nor referred to the same origin. This would be the case, for example, if

accelerometers were used to measure the separate components of acceleration but the

accelerometers were not orthogonally alined and were located at different points on the

vehicle. Hence, three separate instrument axes have to be considered. For the equa-

tions developed here, one instrument is assumed to be alined along the X-axis of a sys-

tem located at point :_X,_X,_,X and alined at Euler angles _PX,_X,q5 x with the vehicle

reference axes; a second instrument is assumed to be alined along the Y-axis of a sys-

tem located at point _y,:_y,_y and alined at Euler angles _y,0y,_y with the refer-

ence axes, and so on. Nine displacement coordinates and nine Euler angles in all are

needed to define the locations and alinements of the three instruments.

Both axes

equations (in the

-- dV
ainertial = _ +

..-" dE
Vinertial = -_- +

instrument axes

rotation and axes translation can be performed by using these

acceleration equations, axes-translation terms are of the form

w × V; in the velocity equations, they are of the form

× r). The transformations from the vehicle reference axes to the

are given in equation form; however, those from the instrument axes

17



SECTION I - Continued

to the vehicle reference axes are given only in matrix form, since they involve a matrix

inversion which becomes long and complicated unless certain simplifying assumptions

are made. Two simplified cases, in which (1) instrument axes are orthogonal and (2)

misalinement angles are small, are given as instrument-correction equations in equa-

tions (A-5) to (A-16) of appendix A.

Transfer From Vehicle Reference Axes to Instrument Axes

Acceleration. -

gAx, i = EgAx,cg
- ( r2 + q2)Xx + (Pq- r):_X + (rp + _l)_.x_COS 0x cos _PX

+ (pq + {')9_y- (p2 + r2)_y + (qr-_)_y_COS 0x sin _X

+ <pr- q)XZ + (qr + P)Yz-(q2 + p2)_z]Si n OX (I-1)

gAy,i= EgAx,cg - (r2+ q2)_ x
+ (pq- I')9x + (rp + q)Zx](COS _y sin Oy sin _y - sin tpy

+ EgAy,cg + _pq+ _,):_y _(p2 + r2)_y+ (qr- _)_y_(Sin d/y sin 0y sin qby+COS _y

+ _Az,cg + (pr -_l)_z+ (qr+ _))Yz- (q2+ p2)_z]COS 0y sin _by

cos Oy)

cos _by)

(I-2)

gAz, i =

÷ _Ay,cg

+ _Az,cg

_Ax,cg_ (r2 + q2)iX+ (pq- r)YX + (rp + q)ZX_ (cos _Z sin 0 z cos _bZ + sin _Z sin _bz)

+ (pq + _)iy _(p2 + r2):_y + (qr-_)_y_ (sin @Z sin 0 z cos qSZ - cos _PZ sin qbZ)

+ (pr- 51)Xz+ (qr+ _))Yz- (q2+ p2)_z]CO s 0Z cos q5z

Linear velocity.-

_ :(_+_x-r_x)C°SOxcos_x+(_+r_-_)cosOX_ _X

-(_ + PYz - qXZ) sin Ox

(I-3)

(I-4)

18



SECTION I - Continued

vi = (6 + qZX-rYx)(sin *Y sin 8y cos _y

+(_+r_

+ (W + P:_ z

_ =(_+_x _x)(c°_*z cos_z

+ ('_ + r.Xy- pZy)(sin _hz cos *Z

+(_+_z _z)c°s_z co_0z

- sin _y cos *y)

-p_yl(Sin _y sin ey sin ,y + cos _y cos *YI

- q_zlsin ,y cos ey

sin 0 Z + sin _Z sin ,Z 1

sin 0 Z - cos _hZ sin *Z)

Angular velocity.-

(I-5)

(I-6)

Pi = p cos 0x cos _X + q cos 0X sin _X - r sin 0X
(I-7)

qi = p (COS _y sin 0y sin ,y-Sin _y cos ,y)

+ q(sin *y sin _y sin 0y + cos _y cos *y)+

r i = p(cos _Z cos *Z sin 0 z + sin _Z sin *Z)

+ q(sin _Z cos *Z sin 0 Z - COS _Z sin *Z) +

r sin ,y cos Oy (I-8)

r cos 0 z cos *Z (I-9)

Transfer From Instrument Axes to Vehicle Reference Axes

If the axes along which data are measured are not orthogonally alined, the following

procedure must be used to transfer instrument readings to the vehicle reference axes

at the c.g.:

Accelerations are given by

gAx,cg

gAy ,cg

gAz,cg
u

= _nonorthogonal_ -1

gAx,i

gAy ,i

gAz ,i

+ K 2 (I-10)
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SECTION I - Continued

angular velocities, by

Er']= EFnonorthogonal_ -1 qi

i

and linear velocities by

Iil- -_- -1 .

(I-11)

(I-12)

where

K1 = _x(r 2 + q2) _ :_X(pq _ _) _ _x(r p + _) "_

K2 = _:_y(pq + _) + _y(p2 + r 2) _ _y(qr - _)

K3 = -Xz(P r - Cl) - YZ(q r + P) + ZZ(q 2 + p2)

K 4 = ry x - qz x

K 5=p_Y - r:_y

K6 = q:_z - PYz
J

(I-13)

In equations (I-10) to (I-12) _Fnonorthogonal_ -1 is the inverse of a fransforma-

tion matrix made up of the sines and cosines of nine Euler angles, one set _,O,q_ for

each of the three instruments. This transformation matrix is defined as

_nonorthogonal_ =

m

cos Oxcos _X cos Oxsin _X -sin Ox

cos J/y sin _y sin Oy sin _y sin q_y sin Oy sin qSy cos Oy

- sin _y cos qSy + cos _y cos _by

cos _/Z cos _bz sin Oz sin _Z cos _Z sin OZ cos Oz cos _Z

+ sin _Z sin q_Z - cos _Z sin _bz

(I-14)

Except under certain simplifying assumptions, the inverted matrix rFnonorthogonal_ -1

needed to solve these equations is too long and involved to write out; however, the matrix

inversion can be performed fairly easily on a digital computer. Equations for two cases

in which the matrix can be inverted are given in appendix A as equations (A-5) to (A-16).
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SECTION I - Continued

CORRECTIONS TO ANGLES OF ATTACK AND SIDESLIP

Angle of Attack

For a vane-type sensor, the true or corrected angle of attack (referred to the vehi-
cle reference axes at the c.g.) is given by

s = s i - s a - s u + s v - K o - s b+ s d +As (I-15)

where AS is the position error, the error due to the location of the sensor in the flow

field of the body, and the other corrections are those due to boom bending, misalinement,

and flow-field effects (see the list of symbols).

Equation (I-15) is for an angle-of-attack vane mounted on an instrument boom extend-

ing from the body or a wing tip but generally applies to any type of sensor. Other types

of sensor and methods of calibration are discussed in reference 5. The importance of the

different types of error is discussed in reference 3.

The angle s d is the correction for vehicle rotation and is given by

Sd = 2_ ql_ 2__ pl_ (I-16)
2V_ _ 2V_

The other errors are determined by calibration as discussed in reference 5.

Angle of Sideslip

The equation for corrected sideslip angle is

/_ = /_i + fia +/_u - _v +/_b + /_d + &_

where the correction for vehicle rotation is given by

2_ r_ 2£ pl_
_d = _ 2Voo + _ 2V_o

(i-17)

(I-18)

DETERMINATION OF FREE-STREAM MACH NUMBER

For flight tests of high-speed aircraft or missiles, the following relationships are

used to determine Mach number from onboard measurements of impact pressure qc

and static pressure 15: For subsonic conditions (M < 1.0),

qc _ - 1 _-1

-_-= 1 +-_M - =(1 + 0.2M) 7/2- 1

For supersonic conditions (M > 1.0), the equation is modified to include the loss in total

pressure behind the shock wave and becomes

(I-19)
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SECTION I - Continued

1

3/+1 M2 1)3/-1
qc = _+1 M 2 - 2

2 2_ M2 3/-
3/+1 3/+

(. 5.76M 2 h 5/2

i = 1.2M2\5.6M2 _ 0.8)
-I (I-20)

The indicated Mach number M is determined from tables or plots, based on equa-

tions (I-19) and (I-20), of _c/15 as functions of Mach number.

DETERMINATION OF AERODYNAMIC FORCES AND MOMENTS FROM

ACCELEROMETER AND RATE-GYRO READINGS

The components of the total force acting on the flight vehicle can be determined by

multiplying the corrected accelerometer reading (i.e., corrected for displacement and

misalinement) by vehicle weight. In coefficient form

= WAx,cg-_

CX qooS

WAy,cg_

Cy q_o S _ (I-21)

cz WAz,cg|
qoo S

The total force thus determined includes the static and the dynamic aerodynamic forces,

the engine thrust, the jet damping force, and the reaction and other control forces. It

does not include the components of vehicle weight, however, since gravitational effects

appear as accelerations that are measured directly by the accelerometer; that is, the

products of the weight and the corrected accelerometer readings are

WAx,cg:W({l+wq-vr+g sin Og)=_F x

WAy,cg= WCc+ur-wp-g cos 0g sin _bg)= _Fy (I-22)

W_z,c_=w(_+_, u_ _cos_ cos,_) =_ _z

where the sine and cosine terms are components of vehicle weight.

The total moments are determined from the rate-gyro readings according to the

equations
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_Mx

_My

_Mz

SECTION I - Continued

= _)Ix- _tIxy - _'Ixz + q(rI z - PIxz- qIyz ) - r(qIy - rIyz- PIxy )

: _Y-_z- _ +r(_Ix-_x_- r_xz)-_(r_z-_xz- q_Yz)

=_z- _Ixz-_z +_@I_-r_z- _x_)-_(_Ix-q_x_- r_xz)

The moment coefficients are

M xV"
C/ = qooSb

My

C m = _ qooS-'--_ >

Cn = q_Sb

(I-23)

(I-24)

(Although b and c are commonly used to nondimensionalize the moments, these lengths

are arbitrary and any convenient length can be used.)

Methods by which the total forces and moments are broken down into trim, static,

and cross-coupling components so that longitudinal and lateral coefficients can be deter-

mined are quite complicated and beyond the scope of this paper. The simplified method

for determining basic static- and dynamic-stability derivatives from oscillatory flight

motions is developed in appendix D. In this and in most methods, linear systems are used

to represent transient flight data; these linear systems are obtained by assuming small

angles, constant aerodynamic coefficients, constant free-stream conditions, rigid-body

mass and inertial characteristics, and separation of the longitudinal and lateral modes.

For data that do not fit these limitations, exact methods of simulation based on the equa-

tions of motion for six degrees of freedom are used. Other methods that are now becom-

ing popular involve parameter identification in which linear and quasilinear estimation

techniques are used. (See, for example, refs. 2 and 6.)

DIRECT FLIGHT MEASUREMENTS OF LIFT AND DRAG

Lift and drag components for an airplane can be measured directly by using flight-

path accelerometers which differ from body-fixed accelerometers in that they are oper-

ated by a vane or pressure sensor that rotates the sensor into or normal to the stream

direction. Accelerometers measuring parallel and normal to the flight path measure
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SECTION I - Concluded

vehicle thrust minus drag and lift, respectively, if the component of thrust in the lift
direction can be assumed negligible. In equation form the lift and drag are

TD - D = -WAD_

L = WAL _ _(I-25)

where T D is the component of thrust along the flight path.

corrected for the usual boom-type errors as described in correction with equation (I-15)

for the angle of attack measured from a boom. Details of this flight-testing technique

are given in refereace 7.

The accelerations should be
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SECTION II

TRANSFER OF AERODYNAMIC FORCE AND MOMENT COEFFICIENTS

AND DERIVATIVES TO ANOTHER REFERENCE CENTER
.4

The equations in this section are the general forms for transferring aerodynamic

force and moment coefficients and stability derivatives from a coordinate axes system

with origin at the c.g. to a parallel axes system with origin at a point x,y,z away from

the vehicle c.g. (Simplified forms obtained by assuming zero angles of attack and side-

Slip and neglecting aerodynamic cross derivatives are given as equations (A-17) to (A-43)

in appendix A.) In these general equations, unprimed coefficients are referred to the c.g.;

primed coefficients are referred to the point at x,y,z shown in figure 2.

The transformations are given for both systems of variables used in aerodynamics.

Equations for the _,/3,V,p,q,r system are given by equations (II-l) to (II-40); those for

the u,v,w,p,q,r system are given by equations (II-41) to (11-76). (The relationships

between the two sets of variables are given in table II.) The equations are derived in

appendix B. They are general in that no assumptions are made as to angle of attack or

sideslip and in that all transfer distances, lateral as well as vertical, are included; how-

ever, they are still not complete in that, for the purposes of these transformations,

second-order derivatives with respect to time are assumed negligible and are omitted.

Also, the transformations given for the static forces and moments (derivatives with

respect to _ or _) are the simplified forms that apply only when the body is not under-

going any significant rotation and p, q, and r are essentially zero. The transforma-

tions for static-stability derivatives that apply when there is significant vehicle rotation

can be derived as indicated in appendix B.

TRANSFORMATIONS FOR _,_,V DERIVATIVES

X-Axis Force Coefficients and Derivatives

!

C x = C x (II-1)

C T

Xot Cx_

=

Cx& Cx&

T

(II-2)

(II-3),

(II-4)

(n-s)
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C T

xp

SECTION II - Continued

= Cx p _ 2Cx_ _ cos
COS

+ 2Cx_ (_

sin (2 cos _)

cos _ + y sin (2 sin

(n-6)

cos _ CX(2
COS (2 +

+ 4C x sin (2 - _ cos (2 cos

+ 2C x cos (2 - sin sin

(II-7)

C T

Xr sin (2 2Cx_ [ cos _ += CXr - 2Cx(2 _ cos

+4C X .cos(2 cos_-_-sin_ (II-8)

Y-Axis Force Coefficients and Derivatives

c_ --cy
1

Cy(2* %(2 /
' C

Cy_ = y_

c_: c_ |
C_ = Cy_

cos---V _

' = + cos (2 _ sin (2 2CyflCyq Cyq c-_s-_\_ + +

+ 4Cy sin (2 - _- cos cos _

cos (2 - _ sin (2 sin

(H-9)

(II-lO)

(II-11)
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SECTION II - Continued

Cyr' =CYr- 2Cy_ _sin_-2Cy_ Cosl3+ cos _ sin

+ 4Cy cos ol cos ¢1 - _- sin

Z-Axis Force Coefficients and Derivatives

T

C z = C z

C' = C
Z_ Z_

C T =

z_ Cz_
T

Cz& = Cz&

c_ - CZ_ _

- -- 2Cz Zcos _+ sin_ sinC' = C 2Cz_ y_ cos _ +Zp Zp _ cos _ _

C T

Zq

+ 4Cz/_- sin _ - _- sin _ cos _)

_cz_c_ _ _)_cz_(_= CZq + c---_\_ cos el + 7 sin +

+ 4C z sin ol - _ cos cos t3

C' = C - 2Czo _ _ sin ol 2Cz/3 cos _ + cos (_ sinZr Zr _ cos

. coscos
X-Axis Moment (Roll) Coefficients and Derivatives

, _C l = C l +_ Cy - C z

C' z §
l_ = Cl_ + _ Cy_ - [ Cz_

£
cos _ - [ sin sin

(II-12)

(II-13)

(II-14)

(II-15)

(iI-16)

(II-17)

(n-18)
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C' = z - _ CZ/_z_ Cz_ +_cY_

C' =
l& Cl& + _"Cy& - _ CZ&

ctk : cl_ +[ cy_- _ Cz_

c': _' _ __cos _(cIp C/p +_ Cyp - CZp £ cos /7 lot

+ 2(_ cos /_+_ sin otsin fl)(C/f_

+,(f_n_-_s,noco_

_ -_CzD+ _ Cyot

-_cz_)+ _ CYt3

(]/-19)

(II-20)

:2

(II-2i)

(II-22)

C' = z -_ +c-g_lq C/q + _-Cyq CZq

s,o cosx_-s,n
+4cos/_ sinot -_cos C l+

lr Clr + _ CYr - CZr - 2 :_ sin otcos _ lot

cos _+_cos ot sin/_)(C//_

cos ot + _ sin ot

-_czD+ _ Cy_

_c_-_cz)

+__c_-_czD

-_cz_)+ [ Cyfi

_ _ .c zcos ot cos /7 - _ sin C1 + _- Cy

+ [ Cyot- _ Czot)

(II-23)

(II-24)

Y-Axis Moment (Pitch) Coefficients and Derivatives

, _
C m=C m+_.c z -_-Cx

C' x
mo t = Cmo t + _ Czot - _ Cxot

(II-25)

(II-26)
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, 9`
Cm_ = Cm_ + _ Cz_ - _ Cx_

C' = 9`
m& Cm& + [ CZ& - [ CX&

, 9` £

Cm_ =Cm_+[ CZ_-[CX_

9` _ _ cos a (CC'
rap= Cmp+_CZp -_CXp - 2 _ cos_ mot

cos + o

C' z CXq + 2 (_

ot_9` _ sin ot) (CI/3

cos

z - 2 :_sin ot (CC'm r = Cmr + _ CZr - _ CXr _ cos /3 mot

-2/} cos /3 +} cos ot sin _) (Cm/3

+ l _cos cos  -_sin m +_- CZ -[C

Z-Axis Moment (Yaw) Coefficients and Derivatives

, _ xC n = C n + C x - _ Cy

+2(}

= Cmq + 9[̀ CZq

+ 2 sin/3 (} cos

+ 4 cos /3(_ sin ot -

+ _- Czot - _- CX

+9` _ _)i-Cz¢ - _Cx

_ _ )_c z - _c x

_' ot)(c +cos ot + [ sin mot

9. Cx_)+_Cz_ -

_ )+_Cz -_Cx

_ )+ _ Czot - _-Cxot

+ _ c z_ - _- Cx

C' 9,
not = Cnot + _ Cxo t - _Cyot

(II-27)

(II-28)

(IIL29)

(n-3o)

[Czot - [c x

(ii-31)

(II-32)

(II-33)

(II-34)
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SECTION II - Continued

C T

X w CX w

CXp=CXp +KCXv -_CXw

C_q = Cxq - K Cxu + _ Cxw

CXr = CXr + CXu - _ CXv

Cy u CY u

Cy v CY v

Cy w CY w

Y-Axis Force Coefficients and Derivatives

, g _ _ CY wCyp = Cyp + [ CYv

, _

Cyq= Cyq -[CYu÷[CYw

Cyr = CYr + CYu - _ CY v

C !

Zu CZu

C T =
Z V CZv

C t =
Z w CZw

C' = + _
Zp CZp [ CZv

C' = C
Zq Zq - _"Cz u

C' = C +
Zr Zr CZ u

Z-Axis Force Coefficients and Derivatives

- _CZw

+[ CZ w

- K CZv

(II-43)

(I1-44)

(ii-_5)

(II-46)

(II-47)

(II-48)

(II-49)

(II-50)

(II-51)

(n-52)

(II-53)

(II-54)

(II-55)

(II-56)

(II-57)

(II-58)
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SECTION II - Continued

X-Axis Moment (Roll) Coefficients and Derivatives

C' = zlu C/u + _ CYu - CZu

C' z _ CZvlv = Clv+[CYv -

C'
lw= C/w+[Cy w-_cz w

_C _ -} CZv )C' = _ -_ +[t lv +_CYvlp C/p + _- Cyp C Zp

:_(C +z :_CZw )-_ lw _CYw -_-

tc + )C'
= -_ Zq-[ 1u ICY u -£Cz ulq C/q + _ Cyq

+ x (Clw + _CYw- } CZw)

c' +_ (c _ ),u+ C u- CZu
+_

Y-Axis Moment (Pitch) Coefficients and Derivatives

C T =mu Cmu + C zu - [ Cxu

C' = _i
mv Cmv +_-CZv -[CXv

C' = _"
m w Cmw+_CZw-_Cx w

C' = x z z (Cmp Crop +[CZp -_'CXp +_- m v

_. (Caw +9_ z )- _ _- C Zw - _- Cxw

C' = _ _ Cxq _ (cmq Cmq+_CZq -_ - _ mu

+_- mw _-CZw-_-CXw

+ _ c Zv - _ Cxv

+ _- C z u - _ CXu

(II-59) ,

, (II-60)

(II-61)

(II-62)

(II-63)

(II-64)

(II-65)

(II-66)

(II-67)

(II-68)

(II-69)



C T

m r

C T
n u

C'
nv

C'
n w

C'
np

c_

C'
n r

SECTION II - Concluded

)= Cmr + _- CZ r - _- Cx r + mu ?" Cz u - _-Cx u

+:_ _ _. Cxv )- (Cmv
Z-Axis Moment (Yaw) Coefficients and Derivatives

= Cnu + _ CXu - _-CY u

= Cnv + _ Cx v - _ CYv

_9,
= Cn w+_Cxw ICY w

= Cnp + CXp -[Cyp +[ nv

-_(Cnw + _ CX w - _ CYw)

_(c=Cnq+_CXq -_Cyq-_ nu

CYw ):_"(Ca w _+ _ + Cx w -

 (Cnu= Cnr+_CXr [CYr+

_ _ _ :_CYv )X(Cnv + _ CXv -_

_ _ CYv )+_Cxv

+ _- CX u _" CY u

_ x CYu )+ _ CXu

(n-7o)

(II-71)

(II-72)

(II-73)

(II-74)

(ii-75)

(ii-76)
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SE CTION III

TRANSFER OF" AERODYNAMIC FORCE AND MOMENT COEFFICIENTS

AND DERIVATIVES TO A ROTATED AXES SYSTEM

The equations in this section are the general forms of the axes transformations for

aerodynamic force and moment coefficients and stability derivatives that can be used to

transfer between any two of the five axes systems used in aerodynamic analysis. (Par- ,

ticular forms for transfer between body and wind-tunnel stability axes are given in

appendix A.) Transformations are presented for both _,_,V derivatives and u,v,w

derivatives. (For the relationships between the two sets of derivatives, see table II.)

The equations are developed in terms of a generalized angle of attack A and generalized

sideslip angle B; transformations between any two axes systems can be obtained by sub-

stituting specific angles for A and B in these equations. (See tables III and IV.)

DESCRIPTIONS OF AXES SYSTEMS

The five axes systems considered are those shown in figure 3. While three of

these systems, body, principal, and wind axes, are clearly defined in the literature, there

is some confusion concerning the definition of the stability axes. The stability axes

described in some reports are vehicle or flight stability axes about which the equations

of motion are written; in other reports they are wind-tunnel stability axes about which

aerodynamic data are measured in the wind tunnel. The differences between the two are

pointed out in these brief descriptions of the axes systems.

Body Axes

The orthogonal body-axes system is fixed within the vehicle with the X-axis along

the longitudinal center line of the body, the Y-axis normal to the plane of symmetry, and

the Z-axis in the plane of symmetry. This is the axes system about which aircraft

instruments are usually mounted, Its main advantage in motion calculations is that vehi-

cle moments of inertia about the axes are constant, so that the I terms can be omitted

from the equations of motion. It is the logical system to which to refer velocities, accel-

erations, and stability and control parameters in the study of aircraft handling qualities

because the pilot's orientation with respect to this frame is fixed.

Principal Axes

The principal axes are an orthogonal body-fixed system for which the products of

inertia are zero. The X and Z principal axes lie in the plane of symmetry; the angle
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SECTION III - Continued

between the X body axis and the X principal axis is usually small so that in many

cases the body axes can be assumed to coincide with the principal axes.

Flight StabilityAxes

The flight stability axes (sometimes referred to as vehicle stability axes) are _n

orthogonal body-axes system fixed to the vehicle, the X-axis of which is alined with the

relative wind vector when the vehicle is in a steady-state trim condition but then rotates

with the vehicle after a disturbance as the vehicle changes angle of attack. This system

is preferred in many stability studies because, as with other body-fixed axes, the moments

of inertia about the axes remain constant and also because the motions defined are pri-

marily those about the flightpath rather than about body reference lines.

Wind-Tuimel Stability Axes

The wind-tunnel stability axes are the system about which most wind-tunnel data

are obtained. For this system the X-axis is in the same horizontal plane as the relative

wind at all times (fig. 3). The angle ol between the X-axis of this system and the X

body axes is variable. (It is a constant s 0 for the flight stability axes.) This means

that vehicle moments of inertia about the X-axis change. It also means that additional

terms are required in the transformation equations for static-stability derivatives and

for u,v,w derivatives when data are transferred to or from the wind axes or the wind-

tunnel stability axes. These additional terms are designated (1), as in equation (III-7),

for example.

Wind Axes

The wind axes are the system generally used in calculating motions of the vehicle

as a point mass. The X-axis for this system is alined with the relative wind at all times

so that vehicle moments of inertia about this axis change. As with the wind-tunnel sta-

bility axes, additional terms, designated (1), are required in the transformations to or

from the wind axes and either the body, principal, or flight stability axes, since the angle

A between the X wind axis and the X-axis of either of these systems is variable. Also,

since the lateral angle B between the X-axes is variable, there are additional terms,

designated (2), as in equation (III-13), required in the transformations for some of the

lateral derivatives between the wind axes and either of the other axes systems.

NOTES ON USE OF TRANSFORMATION EQUATIONS

! T t

In the transformations that follow, symbols such as Cx,Cy,C z and Cx,Cy,C z

are used in a general sense to designate coefficients and derivatives about corresponding
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SECTION III- Continued

X',Y',Z' and X,Y,Z axes systems; specific designations to use with each axes system
are given in table V. Two types of transformation are given: "Direct" which include
those defined in table III and "inverse" which include those defined in table IV. Trans-

formations between any two axes systems are obtained by selecting the proper angles for
A and B from table III or IV and then the proper coefficient designations from table V.
For example, in transferring from flight stability axes to body axes (a direct transforma-

tion, according to table III), angle A is replaced by a 0 and angle B equals zero; the

transformation for C X then becomes, by using equation (III-1) and table V,

C x= CX, s cos a 0- CZ, s sina 0

As a second example, in determining the C/p about the wind-tunnel stability axes

from derivatives given about the body axes (an inverse transformation according to

table IV), equation (III-82) and tables IV and V are used to obtain

Clp,w t = Clp cos 2 a + Cnr sin 2 a + (Clr + Cnp)Sin a cos s

In the transformations for static-stability derivatives and also in the transforma-

tions for u,v,w derivatives, the terms designated (1) are included only in transferring

from either wind or wind-tunnel stability axes to either body, principal, or flight stability

axes and not in other transformations. For example, terms (1) are includedwhen the

body-axes derivative CXa (eq. (III-7)) is determined from data given about wind-tunnel

stability axes as in

CXs -- CXs,w t cos s - CZs,w t sin s - Cx,wt sin s - Cz,wt cos s

but are not included when CXs is determined from data about flight stability axes as in

CXs = CXs,s cos s 0 - CZs,s sin s 0

The terms designated (2) are included only in transferring to or from wind axes.

For example, in transferring from wind axes, the body-axes derivative Clfl (eq. (III-16))
is given by

Cl[ 3 = Clfi,w cos s cos fi - Cm/_, w cos s sin fi - Cnfi,w sin s

- Cl,w cos s sin fi - Cm, w cos s cos _fi

but, in transferring from wind-tunnel stability axes, becomes

Clfi = Clfl,w t cos s - Cn_,w t sin s

If the need arises, derivatives with respect to s,[3,V can be converted to deriva-

tives with respect to u,v,w by using the relationships given in table II.
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SECTION III - Continued

DIRECT TRANSFORMATIONS

Static Force and Moment Coefficients 1 (Direct, Table III)

T

C x= CxcosAcos B - Cy cosAsinB - C Z sinA

T

Cy=C xsinB+CY cos B

t

C z = CxsinAcos B - Cy sinAsinB+C z cosA

t

C l=C 1 cosA cos B - C m cosAsinB- Cn.sinA

T

C m= C1 sinB+C m cos B

?

C n=C l sinA cos B - C m sinAsinB+C n cosA

(III-i)

(III-2)

(III-3)

(III-4)

(III-5)

(III-6)

Static-Stability Derivatives (Direct, Table III)

C T

X_ = CX_ cos A cos B - Cy_ cos A sin B - CZ_ sin A

(III-7)-_C xsinA cos B+CysinA sinB - C z cosAj
V

(1)

where the terms designated (1) are included only in transferring from either wind or wind-

tunnel stability axes to either body, principal, or flight stability axes and not in other

transformations.

(III-8)T ,...

Cy_ CX_ sin B + Cy(_ cos B

C T

Z_- CX_ sin A cos B - CYo _ sin A sin B + Czo l cos A

+C xcos A cos B - Cy cosA sinB - C z sinai

(1)

(III-9)

1 Equations for control derivatives and velocity derivatives have this same form;
for example,

C£5 a CX5 a cos A cos B - Cy5 a cos A sin B - CZ6 a sin A

C' = cos A cos B cos A sin B sin A
X V CX V - CYv - C Zv
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SECTION III- Continued

T

Cl_ = Cl_ cos A cos B - Cm_ cos A sin B - Cn_ sin A

- C 1 sinAcos B +C m sinAsinB - C ncos A.2

(1)

' = sin B + cos BCm_ Cl_ Cm_

C T _-
n_ Cl_ sin A cos B - Cm(_ sin A sin B + Cn_ cos A

+C l cosA cos B -C m cosAsinB- C nsinA
k. 2

(m-lo)

(m-11)

(m-12)

= Cx/_ cos A cos B - Cy/_ cos A sin B - Cz/_ sin A

-%C xcos A sinB - Cy cos A cos B_J

(2)

(III-13)

where the terms designated (2) are included only in transferring to or from wind axes.

C_ = CX_ sin B + Cy_ cos B + C x cos B - Cy sin B_, (III-14)

(2)

C' = sin A cos B sin A sin B +
Z;3 CX;3 - Cy; 3 Cz;3

-_C X sinA sin B - Cy sinA cos BJ
g

(2)

cos A

(III-15)

Cl/_ cos A cos B - Cmfi cos A sin B - Cn/_

-%C1 cosAsinB - C m cosA cos BJ

(2)

sin A

(III-16)

= Cl_ sin B +Cm/_ cos B+Ckl cos B - C m sin BJ

(2)

(I!I-17)
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SECTION III - Continued

t

Cn_ = Cl_ sin A cos B - Cm_ sin A sin B + Cnfi cos A

-C 1 sinA sin B - Cm sinA cos B2
y

(21

Dynamic-Stability Derivatives (Direct, Table III)

=_Cx_cos2__ (Cxq+

+ CZr sin 2 A - E(CXr

Cyp).Sin B cos B + Cyq sin 2 B_cos 2 A

+ CZp) cos B - (CYr + CZq) sin B] sin A
cos A

(IiI-18)

(III-19)

= _CXq C°S2B- Cyp sin2B+(CXp-Cyq)sinBcosB_cosA

- (CZq cos B + CZp sin B)sin A (III-20)

C£r = (CXr cos B- CYr sin I3)cos 2 A- (CZp cos B- CZq sin ]3)sin 2 A

+ECXp c°s2 B + Cyq sin2 B - (CXq + Cyp) sin B cos B - CZr_ sin A
cos A (III-21)

Cyp yp cos 2 B- CXq sin 2 B + (CXp - Cyq)Sin B cos cos A

- (CYr cos B + CXr sin B) sin A (III-22)

C' = cos 2 B + sin 2 B +
yq Cyq CXp (CXq + Cyp)sin B cos B (III-23)

Cyr = (CYr cos B + CXr sin B)cos A

+Ec_cos__-c_ s_n__+(Cx-c_sin_co_._s*nA (III-24)

C !

(CZp cos B- CZq sin B)cos 2 A -(CXr cos B- CYr sin B)sin 2 AZp

cos2o+c, +c, ls ncoso-CZ s ncos A (III-25)
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SECTION III- Continued

C t __
(CZq cos B + CZp sin B)cos AZq

+ ECXq cos2 B - Cyp sin2 B + (CXp - Cyq)Sin B cos B_sin A

Zr CZr c°s2 A + Xp c°s2 B + Cyq sin 2 B- (CXq + Cyp)sin B cos sin 2 A

+ _(CXr + CZp) cos B-(CYr + CZq)Sin B_sin A cos A

C'lp =_Clp c°s2B-(C/q+Cmp) sinBcosB+Cmqsin2B_cos2A+Cnrsin2A

+ _(C/r + Cnp ) cos B+ (Cmr+ Cnq) sin B_ sin A cos A

C'lq =_Clq c°s2B" Cmp sin2B+(Clp-Cmq)sinBcosB_cosA

- (Cnq cos B + Cap sin B) sin A

(III-26)

(III-27)

(III-28)

(III-29)

C Y

lr

C !

mp

= (C/r cos B- Cmr sin B)cos 2 A -(Cnp cos B- Cnq sin B)sin 2 A

+_Clp cos 2 B+Cmq sin2B-(C/q + Cmp)Sin B cosB-Cnr_Sin A cosA

Cmp cos 2 B - C/q sin 2 B + (C/p - Cmq )sin B cos B_ cos A

- (Cmr cos B + Clr sin B)sin A

(III-30)

(III-31)

T

Cmq

C !

m r

= Cmq cos 2 B + Clp sin 2 B + (Clq + Cmp )sin B cos B

Cmr cos B + Clr sin B) cos A

+ _Cmp cos 2 B- Clq sin 2 B + (C/p - Cmq)Sin B cos B_ sin A

(111-32)

(III-33)

40



SECTION Ill -- Continued

(Cap cos B- Cnq sin B)cos 2 A -(C/r cos B- Cmr sin B)sin 2 A

+ _C/p c°s2 B + Cmq sin2 B- (C/q + Cmp)Sin B cos B- Car]Sin A cos A (111-34)

Cnq cos B + Cnp sin B) cos A

+ [Clq e°s2 B - Cmp sin2 B + (Clp - Cmq)Sin B cos B] sin A (111-35)

C T

n r = Cn r cos 2 A + _Clp cos 2 B + Cmq sin 2 B - (C/q + Cmp ) sin B

+ E(Clr + Cnp ) cos B-(Cmr + Cnq)Sin B]sin A cos A

cos B] sin 2
A

(111-36)

t

CX u

u,v,w Derivatives (Direct, Table III)

=_CXuC°S2B -(CXv+CYu)SinBcosB+Cyvsin2B]cos2A+CZw

+ ¢Cxw+ +/C w+Cz  s,o js,o cos.

+l(c_cos----'_ X sin2A cos B - Cy sin 2AsinB+C z sinAcos

(1)

_X c°s2 A sin 2 B + Cy cos 2 A sin B cos B+

J

(2)

sin 2 A

(111-37)

C t

Xv = [CXv cos2 B - CYu sin2 B + (CXu - Cyv)Sin B cos B] cos A

- (CZv cos B+CZuSinB)sinA_ (C xcosAsinB+CYcosAcos B_cos B

(2)
(111-38)

41



CXw cos B - CYw

SECTION III- Continued

B) COS2 A - (CZu cos B - CZvsin sin B)sin 2 A

+ ECXucos2 B + CYv sin2 B- (CXv + CYu)Sin B cos B- CZwJSin A

cos A [,_
sin A

\cos B k_X cos B - Cy sinA sin B+C z cos A))

(1)

+sin A sin B(C x cos A sin B + Cy cos A cos B)j

(2)

CY u = Yu cOs2 B- CXv sin 2 B + (CXu- CYv ) sin B cos cos A

t

Cy v

-(CYwCOS B+CXwSinB)sinA-\(CxcosB- Cy sin B) cos A sin B,J

(2)

= CYv cos 2 B + CXu sin 2 B + (CXv + CYu )sin B cos B

+ k(Cx cos B - Cy sin B)cos Bj
v

(2)

T _

Cyw (CYw cos B + CXw sin B)cos A

+ECYuCOS2B-CXvSin2 B+(CXu-CYv)SinBcosB_sinA

- %(Cx cos B - Cy sin B) sin A sin B
, _2

(2)

=(CZu cos B- CZv sin B)cos 2 A -(CXw cos B- CYw sin B)sin 2 A

+ [CXu cos2 B+CYv sin2 B-(CXv +CYu)SinB cosB- CZw_SinA

-_,(C x cosA cos B - Cy cosA sinB - C z sinA) sinAcos B2
V

(1)

+%(C xsinAsinB +Cy sinA cos B) cosAsinB
J

(2)

42
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SECTION III Continued

C _ ___ CZ u(CZv cos B + sin B_/cos AZv

+ ECXv cos2 B - CYu sin2 B + (CXu - CYv) sin B cos B_ sin A

C t

ZW

-k(Cx sin B + Cy cos B) sin A cos B_2

(2)

= CZw cos2 A + ECXu cos2 B + CYv sin2 B - (CXv + CYu)Sin B c°s B_sin2 A

+ _(CXw+CZu)COSB-(CYw+CZv)SinB_ sinAc°sA

+%(C XcosAcosB - Cy cosA sinB - C z sinA) c°sACOS Bj

(i)

+ \(C x sin A sin B + Cy sin A cos B) sin A sin BJ

(2)

Ct

lu = _C/uCOS2 B-(C/v+Cmu)sinBcosB+Cmvsin2B_c°s2A

+ Cnw sin2 A + _(CIN + Cnu)COS B + (Cmw + Cnv)Sin B_ sin A c°s A

+_C l sinAcos B - C m sinAsinB+C n cosA) SinACOS gj

(1)

+iC 1 sin B + C m cos B)cos 2 A sin B_2

(2)

(III-44)

(in-45)

(III-46)

C'lv =E Clv c°s2B- Cmu sin2 B+(C/u-Cmv)sinBc°sB_c°sA

-(Cnv cosB+CnusinB)sinA- (ClSinB+Cmc°sB)c°sAc°sB

(2)

(III-47)
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SECTION HI -- Continued

(C_wcos__Cmvs_n_)cos__-<Cnucos'-_nv_n_>s_n__

•_C,ucos__*Cmvsin__-<C,v*Cmu>_n_cosO-Cn_S_n_cos

-_C l sinA cos B - C m sinA sinB +C n cos A) C°S A
cos B}

(1)

+ _(C l sin B +C m cos B) sinA cosAsinB

(2)

(III-4_)

T

Cmu = _Cmuc°S2B-Clvsin2 B+(Clu-Cmv)sinBcosB_cosA

-(CmweosB+C/wsinB)sinA-%(C/ cosB-CmsinB)cosAsinB

(2)

(III-49)

C T

m V = Cmv cos 2 B + C/u sin 2 B + (C/v + Cmu )sin B cos B

+L(C/ cos B- Cm sin B) cos BJ

(2)

(III-50)

C T

m W = (Cmw cos B + C/w sin B) cos A

+_CmueOS2B -ClvSin2B+(Clu -Cmv)sinBcosB_sinA

C cos B - C m sinB) sinAsin BJ
g

(2)

(III-51)
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Cnu = Cnu cos B - Cn v

SECTION III- Continued

sin B_cos2/ A - \[C/w cos B - Cm w sin B)sin 2 A

+ _C/u cos2 B+Cmv sin2 B -(C/v+Cmu)sinBcos B- Cnw_sinA

L( A_ sin A- C l cos A cos B - C m cosA sinB - C nsin /-_'Bj
.

(1)

+
L(C sinA sinB +C m sinA cos B) cosA sinB_

(2)

cos A

(III-52)

Cnv cos B + Cnu sin B)cos A

+_C/vCOS2 B - Cmu sin2 B+(C/u- Cmv)sinB cos B_sinA

- \(C l sin B + Cm cos B) sin A cos BJ

(2)

(III-53)

C !

nW =CnwCOS2A+_CluCOS2B+CmvSin2B-(Clv+Cmu)sinBc°sB_sin2A

+_C_,_*_nu)CO__-ICm_+Co_-_n_3_n_cos_

+ (C l cosA cos B - Cm cos A sinB - Cn sinA) C°S A
cos

(1)

+
(C/ sin A sin B + C m sin A cos B) sin A sin BJ

(2)

(III-54)
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SECTION ]II- Continued

INVERSE TRANSFORMATIONS

Static Force and Moment Coefficients 1 (Inverse, Table IV)

(' ' ) C_C x= C xcosA+C z sinA cos B+ sinB

(c£ ) ,' sinA sinB +CyCOS BCy = - cos A + C z

T t

C z = -C xsinA+C z cosA

(_ , ) ,C l= C cosA+C nsinA cos B+C m sinB

(c; ' ) ,C m= - cosA+C nsinA sinB+C m cos B

? T

Cn = -C 1 sinA+C ncosA

Static-Stability Derivatives (Inverse, Table IV)

(C' C' A) Cyo _CX_ = x_C°S A+ Z_ sin cos B + sin B

XSinA- C Z cos cos B
)

(1)

(III-56)

(III-57)

(III-58)

(III-59)

(III-60)

(III-61)

(c' c' A) Cy_Cy_ = -. X_ cosA+ Z_ sin sin B + cos B

,(c' ' A)+ X sinA - C z cos sin B
J

V

(i)

-Cx+ c' c' 'CZ_ = sinA+ Zo t cosA - X cos A- C z

(1)

(III-62)

sin A (III-63)
/

1 Equations for control derivatives and velocity derivatives have this same form;
for example,

(Cx0 ' ) %= ' cos A+C sinA cos B + sin B
Cx5 a Z5 a

( ) 'CXv= CXv' cosA+C'ZvSinA cos B+CYvSinB
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SECTION III- Continued

t C' A) '-- C' cosA+ n_ sin cosB+Cm_ sinB

-(C' ' )l sinA- C ncosA cos B
v J

(1)

(III-64)

Cmo / = lc _ cosA+ n_ sin sinB+Cmc _

C' ' A)+ 1 sinA - C n cos sinB

(I)

cos B

(III-65)

I._T T t t

Cn_ = -Ul_ sinA+Cnc _ cosA- C l cosA- C nsinA ,)

(1)

(III-66)

CZ/_ A 1 C' sinB= C' cos A + sin cos B + Y/3Cx_ x_

l T T / !
C xcos A+C z sinA sinB+Cy cos B

2

(c c' )Cy/3 = - ' cosA+ Z/3 sinA sinB + cos Bx_

xc°sA+C z sin cos B - CysinB
• j

(2)

-Cx_ C'C Z _ = sinA+ Z_ cosA

(m-67)

(m-68)

(III-69)

Cl_= t_'l_ c°sA+Cn;3sinA)c°sB+Cm/_sinB

-(c' ' A) 'l cosA +C n sin sinB +C m cos BJ

(2)

(111-7o)
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SECTION III- Continued

Ict t A1 t= - cos A + Cn_ sin sin B + Cm; 3 cos BCm;3 l_

- k.IC t t 1 tl cosA+C nsinA cos B- C m sinB
V

(2)

(In-71)

CXp =

Cxq

t

-Cj sin A + Cn; 3 cos ACn_ = /3

Dynamic-Stability Derivatives (Inverse, Table IV)

[C' cos2A+C' sin2A+(CXr+' C'Zp) A]Xp Z r sin A cos cos 2 B

C_q [(CXq Cyp) <Cyr C' )sinAlsinBcos B+ sin 2 B + + cos A+ + Zq

(, ., ) (' ._.,.)= CXq cosA+ zqsinA cos 2 B - Cyp cosA+ sinA sin 2 B

- C' C' C' C' sin A cos A - Cx sin B cos BXp c°s2 A + Zr sin 2 A + X r + Zp

__[.,co..A_c,('-"rl A]CXr X r Zp sin2 A - CXp Z sin A cos cos B

(Cyr Cyp A)
+ cos A - sin sin B

(III-72)

(III-73)

(III-74)

(III-75)

Cyp ICyp Cyr ) ( ' C' A)= cos A+ sinA cos 2 B - CXq cos A + Zq sin sin2 B

[C' cos2A+ sin2A+(CXr+ Zp) q]
- C' ' C' '

Xp Zr sinA cosA - Cy sin B cos B

[c, c, (c,c,)Cyq= cos 2 B + Xp c°s2 A+ Zr sin 2 A + X r + Z sinA cos sin 2

[(%%1 (c,%).]- + cos A + Yr + sin sin B cos B

(c, % .)CYr = Yr cos A - sin cos B

E c, (Cx -C'r)£C' cos 2 A + sin2 A + sin A cos sin B
+ X r Zp Z

(III-76)

B

(III-77)

(in-78)
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SECTION III - Continued

=_2' cos2A ' sin2 A - (C ' - C' r)Sin A cos A]cosCZp Zp - CXr Xp Z

¢2' cos A-C_q sin A)sin B+ Zq

B

C Zq Zq cos A - sin cos B

_C' CXr " (CXp- C' r) A]+ Zp c°s2 A+ sin 2 A+ Z sinA cos sin B

=C' Ckp (C£r C' )sinA cosACZr Zr c°s2 A + sin 2 A - + Zp

( + np) sin A cos A] cos 2Clp = C'lp cos 2A+C'nr sin 2A+ C_r C' B

+C' sin2B+[(C' +Cmp)cosA+I mr' C' _q) A]mq lq + C sin sin B cos B

C/q= lq cosA+Cnq sin cos 2 B - C'mp cosA+Cmr sin sin 2 B

-_flp cos2A+C'nrSin2A+ IC'lr+Cnp)sinAcosA'" - Cmq]Sin'

Clr = C'lr cos 2 A - Cnp sin 2 A - C'lp - Cn sinA cos cos B

(c' ' A)+ mr cos A - Cmp sin sin B

B cos B

(III-79)

(III-80)

(III-81)

(III-82)

(III-83)

(III-84)

Cmp = (C'mp cos A + C'mr sinA)c°s2B- ( C'lq cosA+C'nq sinA) sin2B

-_]'lp cos2A+C'n r sin2A+(C'lr +Cnp)SlnAc°sA-Cmq]sinBc°sB'" '

' ,)= ' C' cos 2A+Cnr sin 2A+ +Cnp sinACmq Cmq cos 2 B + lp I r

[(lqCtmp) (Cmr nq) sinIA ]

- C' + cosA+ +C sinB cos B

cos A] sin 2

(III-85)

B

(III-86)
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Cn r

SECTION III- Continued

cosA Cmp sinA) cos B=(c_r - ,

F- , C'r)+ C'lr cos 2A+Cnp sin 2A+ lp - n sinA cos A] sin B

=_:' cos 2A- C' C' - C'Cnp Up Ir sin2 A- I Ip nr 1 sin A

c, A)+ nq cos A- lq sin sin B

(c, _o, A)= nq cos A lq sin cos B

_C' cos2A+C' sin2A+(C' - C'nr) sin A cos A_ sin+ np lr lp

C' cos2A+ ' sin2A- (C ' Cnp )= nr C/p ir + sin A cos A

cos A_cos B

B

(III-87)

(III-8_)

(III-89)

(III-90)

u,v,w Derivatives (Inverse, Table IV)

_C' cos2A+ sin2A+ (CXw+ Zu ) A_
= C' ' C'CXu Xu Zw sin A cos cos 2 B

C' E(C' C' ) (C' +Cz )sinA_sinBcosB+ Yv sin2 B+ Xv+ Yu cosA+ Yw v

+ xsinA - C z cos A) sinA
,,, _fl

(1)

_ T T t t g_+ C x cosA+C z sinA sinB - Cy cos cosAsinB
L J

(2)

"(III-91)

=(' c' ) (c' cosA+ ' A)CXv CXv cosA+ Zv sinA cos 2 B - Yu CywSin sin 2 B

C' cos 2A+ sin 2A+ + sinAcosA - Cy sinB cos BXu Zw Xw Zu

+ cos A + C z sin sin B + Cy cos cos B
)

(2)

(III-92).
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SECTION III Continued

C' cos2 A - C' sin2 A- ( Xu Zw)sinAcos cos BCXw Xw Zu

I_' cosA ' sinA)sinB- (C'+ Yw - CY u xsinA - C Z cos A) cosA J
V

(I)

' 1 '+ C cosA+C Z sinA sin B - Cy cos sinA sinB
J

(2)

"_ ' C' C' sin A) sin 2 BC' sinA)cos 2 B- ( Xv cosA+ ZvCYu=I yuC°SA+Cyw

( ' C'v - C' cos 2 A + C' C' Cz_sin A cos A - sin B cos BXu Zw sin 2 A+ Xw+ y

- k(C'X sin A - C z cos A)

(1)

sin Asin B

cos B s

+ cos A+C Z sinA cos B +Cy sin cos A sinB
2

(2)

CY v
C' cos 2 A + sin 2 A + + sin A

= Cyv cos 2 B + Xu Zw X w Zu

[( ) ( ' C'v) A]- C' C' cosA+ CY w+ Z sin sin B cos BXv + Yu -

- cosA+C_ sinA cos B+Cy sin cos B
J

(2)

cos A] sin 2
B

CY w = (C' cosA ' sinA)cosBYw - Cyu

_C' cos2A+ sin2A+ ( - CZw)SinA
C' C' '

+ X w Zu Xu cos sin B

+

+

_.(CL ' A) cos A sin BsinA - C Z cos cosB i

(I)

k.[<CTX cos A + C z sinA cos B+Cy sin sinA sin B
J

(III-93)

(III-94)

(III-95)

(III-96)
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SECTION III- Continued

= C' cos 2 A - sin2 A - CXu Z sinA cos cos BCzu Zu

+ C' cos A - CXv sin sin B + cos A + C z sin
Zv "'v-

(1)

sin A

cos

= (C' cosA ' sin A) cos BCZv Zv - CXv

CLw ( ' -C' ) sin A cos A] sin B+ CZu' cos 2A+ sin 2 A+ CXu Zw

= C'Zw CXu' C' C'cos 2 A+ sin 2 A - \_ Xw + Zu_Sin] A cosACZ w

IoL ,- cos A + C z sin cos Bs

(1)

(III-97)

(III-98)

(III-99)

C/u = _'lu c°s2A+ Cnw' sin2A+ (c,lw + Cnu) sin A cos A] cos2'
B

+C' E(C' C' ) @' C' )sinA_sinBcosBmv sin 2 B + 1v + mu cosA+ mw+ nv

,l sinA - C n cosA/sinAI

(i)

+ C cosA+C n sin sin B - C m cos cos A sinB

.._]

) ( )C/v lv cosA+ nv sinA cos 2 B - Cmu cosA+Cmw sinA sin 2 B

_,_' cos2 A + sin2 A + ( + Cnu)Sin A cos A Cmv]Sin B cos B
- C' C' ' - '

Iu nw I w

- C cosA+C nsin sinB - C m cos cos B

2
V

(2)

(III-100)

(III-101)
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SECTION III - Continued

__? _c,C/w lw nu sin 2 A ( lu A cos B

(, , ) (c' ' )+ Cmw cosA - Cmu sinA sinB - 1 sinA - C ncosA cosA
Y

(11

+ C cosA+C nsinA sinB - C m cos sinAsinB
J

(2)

(III-102)

Cmu = t v _ (C t C t )(Cmu cosA+Cmw sinA) cos 2 B lv cosA+ nv sinA sin 2 B

C" cos 2A+Cnwsin 2 A+ + sinA cosA - Cm sinB cos B
lu lw nu

_k( C' ' A) sinAsinB1 sinA - C n cos cos B ,y

(1)

÷ C cosA+C nsin cos B+C m sin cosAsinB

J

(2)

(III-103)

Cm v= C'mv cos 2 B + C'lu cos 2 A+Cnwsin 2 A+ lw + Cn smA cos sin 2 B

- [(C'lv + Cmu)COS A+ (C'mw + C_v) sin A] sin B cos B

) o]T T

- C cos A +C z sinA cos B + Cm sin cos B
2

(2)

(III-104)
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SECTION HI -- Concluded

' )cos A - Cmu sin A cos B

+ Clw cos 2A+C_usin 2A+ Clu-Cn sinAcos sinB

,+ sin A - C n cos c-_s'B .j

(1)

+ C cosA+C n sin cos B+C m sin sinA sinB

(2)

(III-105)

_:' cos2A-C ' (2' -C'w) A_Cnu = nu lw sin2 A - lu n sin A cos cos B

+
QJ cosA-C' A1 L( ' ' sinAlSinAnv lv sin sinB + C l cosA+ C n cos B2

v

(1)

=(c' ' A)Cnv nv cos A - Clv sin cos B

' C' C' - C n sinAcos sinB+ Cnu cos 2A+ lw sin 2A+ lu

= C' C' sin 2 A- IC' 'ulCnw nw cos 2 A+ lu I w + Cn sinA cos A

(III-106)

(III-107)

(C_ ' A) cos Acos A + C n sin

_. cos B j
V

(1)

• (III-108)
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SECTION IV

TRANSFORMATION EQUATIONS FOR MOMENTS OF INERTIA

This section gives equations for transferring moments of inertia to a rotated ames

system in a general form, similar to that used in section HI, so that transformations can

be made between any two of the five axes systems used in aerodynamic analysis. As in

section III, these transformations are defined as direct and inverse in tables III and IV,

respectively, and can be performed between any two axes systems by selecting proper

,, angles for A and B from these tables.

These equations are derived from a general transformation of the form

t t

I_ -Ixy -Ix_

-Ixy Iy -Iyz

t T T

-Ixz -Iyz I z

m

I x -Ixy -Ixz

Iy -Iyz

-Iyz I z

EF] -I (IV-l)

where ,r is the transformation matrix given in appendix A and is applied to the aerody-

namic axes by setting _=-B, O=A, and _b=0.

The most commonly used forms of these transformations, those for transfers among

body, principal, and flight stability axes, are given in appendix A.

DIRECT TRANSFORMATIONS (TABLE III)

Ix= IX cos 2 B +2Ixy sinB cos B+Iy sin 2 cos 2A+I z sin 2 A

+ (2Ixz cos B - 2Iyz sin ]3) sin A cos A

!

Iy=Iycos 2 B +I xsin 2 B - 2Ixy sinB cos B

(IV-2)

(IV -3)

T

I z

T

Ixy=

=I Z cos 2 A+ (I xcos 2 B +Iy sin 2 B+2Ixy sinB cos B) sin 2A

- (2Ixz cos B - 2Iyz sin B) sin A cos A

s n2 cos A
- (I_z cos_ ÷Ixz _n _)s_nA

(IV-4)

(IV-5)
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SECTION IV - Concluded

t

_xz--(_xzcos_ -_,z _n_)co2"A-(_XZco__ -_,Z_n_)s_n_"A

-(I X cos 2 B +Iy sin 2 B +2Ixy sinB cos B - Iz) sinA cos A

!

Iyz = (Iyz cos B + IXZ sin B) cos A

+ _xy(eos2 B-sin 2 B)-(I X -Iy)sin B eosB_ sinA

INVERSE TRANSFORMATIONS (TABLE IV)

IX= (I x cos 2 A+ I_, sin2A - 2I_z sin A cos A)cos 2 B+ I_ sin 2 B

' A)- 2 cos A + Iyz sin sin B cos B

Iy= Iy cos 2 B+ (I_ cos 2 A+ I_. sin 2 A-2I_z sin A cos A)sin 2 B

+2(Ix_ycosA+Iyz sinA) sinBcos B

! T t

I Z =I Z cos 2 A+I Xsin 2 A+2Ixz sinA cosA

( A) (" ' A)' ' cos 2 B Ixy cos A + Iyz sin sin 2 BIxy = Ixy cos A+Iyz sin

, ,+ I cos 2 A+I z sin 2 A sinA cosA I'- 2Ixz - sin B cos B

*)+IIXZ Z ( A sin 2 Ix= COS - t _

(, , A)+ Iyz cos A - Ixy sin sin B

(' ' A) EI'Iyz = Iyz cosA - Ixy sin cos B + xz(Sin2 A - cos 2 A)

-(I_-I_) sin A cos A_ sin B

(IV-6)

(IV-8)

(IV-9)

(iv-lo)

(IV-11)

(IV-12)

(iv-13)
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SECTION V

EQUATIONS OF MOTION FOR SIX DEGREES OF FREEDOM

The equations presented here are the general forms that include the variables ,

likely to be of interest in computing motions in the vicinity of the earth (moon and sun

perturbations are ignored). The terms of each equation are grouped so that various

effects (for example, oblateness of the earth) can be accounted for by adding or omitting

certain terms. Linearized equations and the wind-axes equations for a point mass are

given in appendix A.

The general equations apply to any of the five systems of vehicle reference axes

shown in figure 3. The Euler angles _g,0g,_)g are referred to the gravity-axes sys-

tem, with origin located at the surface of the earth, which rotates with the earth as shown

in figure 4. (The relationship of these gravity axes to the vehicle reference axes is

shown in fig. 5.)

FORCE EQUATIONS

Equations for the forces along the X,Y,Z axes are given in general form as equa-

tions (V-l) to (V-3), respectively. Equations for specialized cases can be obtained from

the general forms as follows:

(1) For an oblate earth, equations (V-43) to (V-45) of auxiliary equations are used

in place of term (2) in X,Y,Z force equations, respectively.

(2) If mass of vehicle is constant (zero thrust is also implied), terms (3) to (5) are

omitted.

(3) For flight outside the atmosphere, terms (6) to (8) are omitted.

X-Axis Forces

• " - + = - r

(1) (2) (3) (4) (5) ..

1 2 +
+ _pV_S(Cx,o Cx_a

¥ _. &t • _ilL.
--+_X _*CXq2v_oj+ CXv V'oo & 2Voo

(6)

+ yXl 3#9+ CX_ 2Voo + CXp + CXr 2--_,+ CXsaSa + CXse6e + CX6rSr + 0

(7) (s) (9)

(v-l)
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SECTION V - Continued

where the different terms are defined as follows:

(1) Mass times acceleration

(2) Component of vehicle weight (for a more nearly complete weight component,

one that includes earth-oblateness effects, see auxiliary eqs. (V-43) to (V-45))

(3) Primary rocket thrust (see auxiliary eqs. (V-36) to (V-39))

(4) Jet damping force

(5) Reaction control force

(6) Basic aerodynamic forces

(7) Aerodynamic cross-coupling terms

(8) Aerodynamic control forces

(9) Higher order terms

Expansions of the aerodynamic forces and moments (terms (6) to (9) in force equa-

tions and terms (11) to (14) in moment equations) neglect all aerodynamic partial deriva-

tives with respect to rates of change of velocities and angles except those with respect to

a and /L The forces are expanded in terms of the independent variables ol,/_,V,p,q,r

but could as easily be expanded in terms of the variables u ,v ,w ,p ,q ,r. The X-axis aero-

dynamic force, for example, could also be written as

"1 2 / P_ q_

X = _pV_oS _Cx, o + CXuU + CXvV + CXwW + CXp _ + CXq 2V_o

r t _ Higher order terms]+ CXr 2Voo + CX65 +

Y-Axis Forces

_ sin_ _ -kmCrdx-Pdzt+_

(I) (2) (3) (4) (5)

+ _pV:oS Cy_ +Y ,o + CYv

7

___ _P.!- + rP_
+ Cy_ 2V_ + Cyp 2V_o CYr 2-'_

v

C6)

+ Cyaa + Cy& _ + Cyq
\ -._ ,. - - %M

(7) (8) (9).

(V -2)

where the terms (1) to (9) are defined as in equation (V-I).
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SECTION V- Continued

Z-Axis Forces

m(w + pv - qu) -rag cos 0g co_ = TZ - +

(1) (2) (3) (4) (5)

+ _pV_S Z,o + CZ_a
v &_ +

+CZv_+Cz& 2V_ CZq2v_j

(6)

+ CZ_ + Cz_ -_ + _ + -- + Cz5 5a + CZ5 6e + 0
2v_ czp2v_ CZr2v_ _/

(7) (8) (9)

(v-s)

where the terms (1) to (9) are defined as in equation (V-I).

MOMENT EQUATIONS

Equations of motion involving moments about the X,Y,Z axes are given in general

form as equations (V-4) to (V-6), respectively. Equations for specialized cases can be

obtained from the general forms as follows: _:: .....

(1) If vehicle mass is constant, terms (2) to (4) and (7) to (9) are omitted

(2) If principal £xes are used, terms (3) to (6) are omitted

(3) If vehicle has a plane of symmetry (X-Z plane) but principal axes are not used,

terms (3) and (5) are omitted

X-Axis Moment (Roll)

+ -_ _ k _ )

(1) (2) (3) (4) (5) (6)

rn_pldy2+dz21+dx(qdy+rdz))_ -%(Tydz_+_ + Lrrn= _ t_

(7), (8) (9) (10)

v _h_
+ CI/3;3+ C/V _ + Cl# 2Voo

v

(11)

+ C/6aSa + C/sr6r) + 0

(13) (14)

+ r_
+ CZP 2V_ Clr 2--_j

&_ q_

+ Cla_ + Cl& _ + C/q 2Vooj
\ v

(i2)

(V-4) .
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SECTION V - Continued

where the different terms are defined as follows:

(1), (5), and (6) moments of inertia times angular accelerations

(2) to (4) and (7) jet damping moments

(8) Moments due to main rocket thrust

(9) Moment due to reaction control

(10) Moment due to gyroscopic action of engine rotating mass

(see auxiliary eqs. (V-40) to (V-42))

(11) Basic aerodynamic moments 1

(12) Aerodynamic cross-coupling terms

(13) Moments due to aerodynamic controls

(14) Higher order terms

-Y-Axis Moment (Pitch)

Y + P + qIy - - rIyz + (pq - 9)Iyz - (qr + P)Ix-y +

(1) (2) (3) (4) (5) (6)

= _nI_q (dx2 + dz2)+ dy(p dx + r dz)_ ÷ _(Tx d z - TZ dx)
_ )

(7) (8)

+_ + Mrm

(9) (lO)

-I-

1 pV2S_2 Q\Cm,°
__V + &_ q_

+ Cm°l_ + Cmv Voo Cm& _ + Cmq 2--_j

(ill

Ak
+ Cmfi_ + Cm_ 2V_

P_ r_ \

Cm 6 6a+Cm,. 6e_+ 0
+Cmp2-V-_+Cmr2-_ +_: oe _y

(12) (13) (14)

where terms (1) to (14) are defined as in equation (V-4).

(v-5)

1 See statement following equation (V-l) about terms (11) to (14) in expansion of
aerodynamic forces and moments.
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_Iz +pq(Iv - Ix) + riz - qiyz

(i) (2) * (3)

SECTION V - Continued

-pixz+ (pr+ +
(4) (5) (6)

= l:n_r(dx 2 +dy21 +dz(P_ dx + q dY)j1 -

(7)

dxl+ _ Nrmv( TX dY LTY +

(st (9) (10)

lpv2sl[ Cn,o + + V

\k Cn/_ Cnv _ + Cn_2V_o

(117

p_ r_ &_ q_

+ Cnp _ + Cn r 2---_z + Cn_ + Cn_ _ + Cnq 2Vooj
k

(12)

vc)

(13) (14)

where terms (1) to (14) are defined as in equation (V-4).

(V-6)

AUXILIARY EQUATIONS

General equations that take into account various relationships and effects in develop-

ing the equations of motion are given as equations (V-7) to (V-45). Equations for special-

ized cases may be obtained as follows:

(1) For flat earth, terms containing

(2) For nonrotating earth, _2e, V x,

(3) For no surface winds, terms containing

and X are omitted

Vy, and V z are omitted

W x, Wy, and WZ are omitted

Relationship Between Euler Angles and Angular Velocities

The Euler angles specifying vehicle alinement with the gravity-axes system can be

determined from the angular velocities p,q,r by the equations

r cos qbg q sin qbg
÷

cos Og cos Og
+ 1", cos _g tan 0g + (_2e + _)(sin L

+ cos L sin _hg tan Og)
(v-_)

0g= q COS q_g-r sin _bg-_L sin _g-(_2 e + _)cos L cos
(v-s)
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_I_c°s _g (_e + L
_g=p+qtan agSin _g+rtan 0gCOS _bg+_cos 0g + _)cos

The inverse relationships are

(v-9)

P = _g- _g sin 0g- f_ cos 0g cos _g-(_e + _)(cos L cos 0g sin _Pg

- sin L sin 8g)

q = _g cos qSg + _g sin _g cos 8g- I_(sin Og cos _g sin qSg sin _g cos _g)

- (_e + i)cos L(sin 0g sin _g sin q_g + cos _g cos _g)

- (ae +  )sin L sin cos eg

r = -_g sin _g + _g cos q_g cos 0g - f_ (sin 0g cos _g cos _bg + sin _g sin qSg)

-(_2 e + _)cos L(sin Og sin _g cos _g- cos _Pg sin qSg)

- (_e + _)sin L cos qSg cos Og (V-12)

Vehicle Coordinates

Vehicle coordinates can be computed from the X,Y,Z

and vehicle Euler angles by integrating the equations
axes velocity components

_g
: u cos _g cos 0g + v(cos _g sin 0g sin _g- sin _g cos _g)

+ w (cos _g sin 0g cos q_g + sin _g sin _g) (V-13)

_g = u sin _Pg cos Og + v(sin _g sin Og sin qSg + cos _hg cos _g)

+ w(sin _g sin Og cos q_g- cos _g sin _g) (V,14)

_.g = -u sin Og. + v cos Og sin qSg + w cos Og cos qSg (V-15)

rg = _Xg 2 + yg2 + Zg2
(V-16)
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Trajectory Parameters (See Fig. 6)

Flight-path angle, longitude, and latitude can be determined from the equations

Y = tan-1 h (V-17)

_(_- Re_2 e cos L) 2 + _2

_g

R e cos L
_2e (V-18)

"1_= -_'g
R--/ (V-19)

The range for a spherical earth is

Range = Rea (V-20)

where, for a total range of less than 50 000 feet,

-=  o)cos,oy
For a total range greater than 50 000 feet,

or= cos-lEsin Lo sin L + cos L O cos L cos(k ko)_

range for a flat earth is

(V-21)

(V-22)

Range = _Xg 2 + yg2 (V-23)

Angle of Attack, Sideslip, and Relative Velocity (See Fig. 7)

Angle of attack, sideslip, and resultant relative velocity are related to components

of velocity along the vehicle body axes by

= tan -1 Wb
fi"_" (V-24)

fi = sin -1 _7__b
V (V-25)

V = t]b2 + XTb2 + W-'b2 (V-26)

Ub = V cos _ cos /3 = u b - VX, b - WX, b (V-27)

_7b=Vsin/3=v b - Vy, b - Wy, b (V-28)
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w--b= V sin o_ cos _ =w b- VZ, b - WZ, b

where subscripts b; X,b; Y,b; and Z,b denote body-axes components.

(V-29)

Wind Corrections (See Fig. 8)

Geostrophic (due to earth's rotation).- The components of the geostrophic wind

along the X,Y,Z vehicle reference axes are

V x = Re_2 e cos L cos 0g cos _g (V-30)

Vy = -Re_ e cos L (cos _g sin _g - sin Og sin _g cos _g) (V-3i)

V z = Re_2 e cos L(sin _g sin _hg + sin 0g cos qSg cos _hg) (V-32)

Surface winds.- Components of the surface winds along the X,Y,Z vehicle refer-

ence axes are

-- A' B'
W x = W(cos A' sin B' cos 0g cos _g - cos cos cos 0g sin _g

+ sin A' sin 0g) (V-33)

Wy = W_os A' sin B' (sin qSg sin 0g cos _hg- sin _g cos qSg)

- cos A' cos B' (sin _g sin 0g sin ¢>g + cos _g cos @g)

sin A' sin @g cos 0g] (V-34)

WZ= W_os A' sin B' (cos @g cos qSg sin Og + sin _g sin qSg)

- cos A' cos B' (sin @g cos q_g sin 0g- cos @g sin qSg)

sin A' cos _g cos 0g_ (V-35)

Resolution of Engine Thrust and Torque Into Components

Along Vehicle Reference Axes (See Fig. 9)

Vehicle thrust and moment can be resolved into components along the vehicle refer-

ence axes by the equations

°Tu+
T=To+- _-

T X = T cos 0rm

8T (V-36)

05Rp M 5RPM

cos @rm

sin _rm

(v-37)

(v-38)
Ty=T cos 0rm
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T z = -T sin 0rm

and, if it is assumed that irm = _rm = 0rm = _rm = 0,

Lrm = Irm_2rm(-q sin erm - r cos 0rm sin _rm)

Mrm = Irm_rm(r cos 0rm cos _rm + P sin 0rm )

(V-39)

(V-40)

(V*-41)

L-1)-2J3(_-_e)3(5 sin3 L- 3 sin L)

L - 30 sin 2 L+ 3)- .
• I sin 0g}

mgy 2 3 (____e)32 (3 sin L cos L) +_J3 (5 sin 2 L - 1) cos L

4._52 J4l-_ ) (7 sin 3 L- 3 sinL) cos L- . . (sin _hg

+ _3 j2( )2(3s,n2

- _58J4 (35 sin 4

L-i)-2J3(_----e13(5 sin 3 L-3 sin L)

(V-43)

sin 0g sin q_g + cos _Pg cos q_g)

(V-44)
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= m 2 (3

_5 ( 3- J4 .7 sin2

- _5J4 (35sin4
8

L - 3 sinL) cos L - . . ._cos 0g sin _g

Nrm = Irm_2rm(P cos 0rm sin _rm - q cos 0rm cos _rm) (V-42)

Components of Gravitational Acceleration Along X,Y,Z Vehiele Referenee

Axes With Earth-Oblateness Effects Ineluded

If the effect of earth oblateness on the aeeeleration due to gravity is eonsidered

important, terms (2) in the X,Y,Z axes foree equations (V-l) to (V-3) should be replaced,

respectively, by the following X,Y,Z axes weight components:

sin L cos L) (5 sin 2 L- 1)cos Lmg x



SECTION V - Concluded

GE ;FT /ae_ 2 3 ae 3 1) cos L

mgz=m _-_2_-)(3 sin L cos L)+ _J3(_)(5 sin 2 L-

-5J4(-_) 4(Tsin3L-3sinL)cOsL-'2 " t (sin_gc°s _gsin0g-cOs _g_in_g)

+ - _" J2 (3 sin 2 L- 1)- 2J 3 (5 sin 3 L- 3 sin L)

sin 4 L - 30 sin 2 L +3) - .
• tcos_gC°S 0g_

where

GE = 398 601.2 + 0.4 km3/sec 2 ((14 074 901.1 + 14) X 109 ft3/sec 2)

(V-45)

ae = 6378.160 • 0.005 km (20 925 721.8 + 16 ft)

and J2, J3, and J4 are the second, third, and fourth zonal harmonics. The values

from reference 8 are

J2 = 1082.7(1 + 0.1) × 10 -6

J3 = -2.56(1 + 0.1) × 10 -6

J4 = -1.58(1 ± 0.2) × 10 -6

In equations (V-43) to (V-45), which were derived from the gravitational potential

given in reference 8, oblateness terms through the 4th order are considered and the

earth's longitudinal oblateness is neglected.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., February 16, 1972.
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APPENDIX A

SUMMARY OF FREQUENTLY USED FORMS OF AXES TRANSFORMATIONS

AND EQUATIONS OF MOTION

EULER ANGLE TRANSFORMATION BETWEEN

TWO ORTHOGONAL AXES SYSTEMS

For two orthogonal axes systems, an initial X,Y,Z reference system and an

X' ,Y ',Z' system obtained by rotating the initial system through Euler angles _,8,_

(in that order), the transformations between the two systems are given by these

relationships.

Direct Transformation

The transformation from the initial X,Y,Z system to the

at Euler angles _,O,q_ with the initial system is

Y' = r

! t

X' ,Y ,Z system alined

(A-l)

where

r

cos e cos

sin _ sin O cos _h

- sin _ cos

cos _ cos q5 sin O

+ sin _sin q_

cos e sin

sin _ sin a sin

+ cos _ cos

sin _ cos _ sin

- cos _ sin

-sin

sin q_ cos a

cos _ cos 0

(A-2)

Inverse Transformation

The transformation from the X ,Y ,_ system back to the

= r-1 y'

X,Y,Z system is

(A-3)
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cos e cos

cos 0 sin

sin _) sin 0 cos

- sin _h cos _)

sin _ sin 0 sin

+ cos cos

m

COS _ cos _ sin 0

+ sin _ sin

sin _cos _ sin 0

- cos _ sin

-sin 0 sin q5 cos 0 cos q5 cos 0

TRANSFORMATIONS FOR ACCELEROMETER AND

RATE-GYRO MEASUREMENTS

(A-4)

These equations are simplified forms of the general inverse transformations for

accelerations and angular velocities given in section I; however, they can be used in most

practical applications to correct accelerometer and rate-gyro readings for displacement

and misalinement. For cases that do not fit the assumptions made, the general forms in

section I must be used.

Case I

Orthogonal Instrument Axes; No Restrictions on Misalinement Angles

If X,Y,Z axes accelerometers or rate gyros making flight measurements are

orthogonally alined then, even though the misalinements of the instruments with respect

to the vehicle reference axes are large, their readings can be corrected by using these

equationS.

Acceleration corrections.-

gAx,cg = gAx, i cos O cos _h + gAy,i(sin q5 sin 0 cos _ - sin _ cos _b)

+ gAz,i(cos _ cos _b sin O + sin _ sin _b) + (r 2 + q2)_ x

- (pq - i'):_ x - (pr + _1)_x (A-5)

gAy,cg = gAx, i cos 0 sin _ + gAy,i(sin _ sin 0 sin qS'+ cos @ cos gb)

+ gAz,i(sin _ cos _) sin 0 - cos g_ sin gb) - (pq + i-)_y

+(p2 +r2) y _,(qr - (A-6)
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gAz,cg = -gAx, i sin 0 + gAy, i sin _ cos 0 + gAz,i cos _b cos 0

- (pr- _t)_ z - (qr + P)Yz + (p2 + q2)_ z

Angular -velocity corrections.-

P = Pi cos 0 cos _ + qi(cos _ sin _ sin 0 - sin _ cos _)

+ ri(cos _ cos q5 sin 0 + sin _ sin _b)

q = Pi cos 0 sin _ + qi(sin _ sin q5 sin 0 + cos _ cos qS)

+ ri(sin _h cos _b sin 0 - cos _h sin _)

(A-7)

(A-8)

(A-9)

r= -Pisin 0+qisin q_ cos 0+r icos 0 cos _b

Case II

Nonorthogonal Instrument Axes; Small Misalinement Angles

(A-10)

If X,Y,Z axes accelerometers or rate gyros are not orthogonally alined but the

misalinements with the vehicle reference axes are small, then these correction equations

can be used. It should be noted that, in equations (A-11) to (A-16), the angles _,0,q5

are in radians.

Acceleration corrections.-

gAx,eg = g(Ax, i - _xAy,i + 0xAz,i ) + (q2 + r2)_ x _ (pq_ r)Yx- (pr + q)ZX (A-11)

gAy,cg = g(,yAx, i + Ay,i_ _byAz,i) _ (pq + _)_y +(p2 + r2)_y _ (qr- f_)_,y (A-12)

gAz,cg = g(-0zAx, i + qSzAy, i + Az,i) - (pr- q):_Z- (qr + P)Yz + (q2 + p2)_ z

Angular-velocity corrections.-

P = Pi - _xqi + 0xri

q = _yPi + qi - _yri

r= -0zp i+ _zqi+ r i

(A-13)

(A-14)

(A-15)

(A-16)
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SPECIAL FORMS OF TRANSFORMATIONS FOR AERODYNAMIC

FORCE AND MOMENT COEFFICIENTS AND

STABILITY DERIVATIVES

Simplified Forms for Transferring Coefficients and Derivatives

to Another Reference Center

These transformations are the simplified forms obtained from the general equa-
tions of section II by assuming zero angles of attack and sideslip and neglecting aerody _-
namic cross derivatives.

X-axis force coefficients and derivatives.-

!

Cx = C x

C_ = CX_

Cx& = Cx&

T

Cx q : Cx q + 2_ 4_q- Cx_ - 7- Cx

Y-axis force coefficients and derivatives,-

t

Cy = Cy

C T =
yfi Cyfl
t

cy_ = Cy_

%-- % *_ %

, %Cyr = _mCyfl+ 49 Cy

Z-axis force coefficients and derivatives.-

t

C z = C z

C _ =
Z_ Czol

T

Cz& = Cz&

cz + cz ?cz

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

(A-24)

(A-25)

(A-26)

(A-27)

(A-28)

(A-29)
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X-axis moment (roll) coefficients and derivatives.-

C1 = C1 + [Cy - C z

cz_ = ct_ + [ Cy_

' Zc •

,

C/p = C/p + _ Cyp 2_ 2+ _ C1/_ + C Z _ + _- Cyfi

4__ Cy, _ 2 _A q +
C/r = C/r + _- CYr - Cl/3 _2 Cy/_ + _ _2

Y-axis moment (pitch) coefficients and derivatives.-

C m Cm + x _.7Cz TCx

C' = x
m_ Cm_ + _- Cz_ - [ Cx_

Cm& = Cm& + [ CZ& - _-CX&

2_ 2
' :_ z CXq + _ Cm_ Z_Cmq = Cmq + _ CZq- _" -_ C

2_ 4_
Cxo l - -_- Cm -

_2
4:_ C z + 4g2 Cx

_2 _2

Z-axis moment (yaw) coefficients and derivatives.-

,
C n = C n +_C z - _-Cy

,
Cn/_ = Cni3 - _-CYi3

Cn_ = Cn_ - [ Cy_

Cnp = Cnp - _- Cyp -

C t

n r

Cxa + -_- Cnfi - --

:_ 2_ 2_ 2

= Cnr - _- CYr - -_- Cn/3 + 7 Cy/_
+4Yc n 4x-_ Cy

- _2

(A-30)

(A-._)

(A-32)

(A-33)

(A-34)

(A-35)

(A-36)

(A-37)

(A-38)

(A-39)

(A-40)

(A-41)

(A-42)

(A-43)
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Transfer of Coefficients and Derivatives From Body

to Wind-Tunnel Stability Axes

These equations are the most frequently used axes transformations. They convert
the coefficients CX, Cy, CZ, etc., measured about body axes in the wind tunnel, into

?

the coefficients about wind-tunnel stability axes CL, Cy, CD, etc. They can be

obtained from the general inverse equations (III-55) to (III-107) of section HI by replac-

ing the angle A by el and letting the angle

)

C D= -C xcos o_ - C z sino_

Cy = Cy

CL=C xsino_ -C z cos o_

Cl,wt = C1 cos ol + Cn sin ol

Cm = Cm

Cn,wt = -C l sin _ + C n cos ot

B equal zero.

(A-44)

(A-45)

(A-46)

(A-47)

(A-48)

(A-49)

C t ____

Dot -CXo l cos ot - CZo t

)

CD& = -Cx& cos _ - Cz&

Cyfl = Cy_

=

CL_ = Cx_

CL& = CX&

sin _ + C L

sin

)

cos _ - CD

COS (9/

(A-50)

(A-51)

(A-52)

(A-53)

(A-54)

(A-55)

72

Cl_,wt = Cl_

cl , t : cz

C/p,wt = Clp

C/r,w t = C/r cos 2 ol - Cnp

Cl6,w t = C/6

cos ol + Cnt 3 sin ol

cos ol + Cn_ sin ol

cos 2 ot + Cnr sin 2 el + (C/r + Cnp)sin ol cos

sin2 _ + (Cnr-C/p)

cos _ + Cn5 sin ol

0t

sin o_ cos o_

(A-56)

(A-57)

(A-58)

(A-59)

(A-60)
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Cmol = Cmol

Cm& = Cm&

Cmq = Cmq

Cm6 = Cm 5

(A-61)

(A-62)

(A-63)

(A-64)

Cn/3,wt = -Cl_ sin a + Cnfl cos ol

Cn_,wt = -Cn_ sin ot + Cn_ cos

Cnp,w t = Cnp cos 2 a - Clr

Cnr,w t = Cnr cos 2 a + C/p

sin 2 o_ + (Cnr - C/p)sin ot cos

sin 2 a - (C/r + Cnp)sin ol cos o_

Cn6,w t = -C/6 sin ot + Cn6 cos

Transfer of Coefficients and Derivatives From

Wind-Tunnel Stability to Body Axes

These transformations convert coefficients about wind-tunnel stability axes CL,
T

Cy, CD, etc., into coefficients about body axes CX, Cy, CZ, etc. They can be

obtained from the general direct transformations in equations (III-1) to (III-36) of sec-

tion III by replacing the angle A

!

C x= -C D cos _ +C L

Cy = Cy

T

C z = -C D sin _ - C L cos cg = -C N

C1 = Cl,wt cos ol - Cn,wt sin Ol

Cm = Cm

C n = Cl,wt sin Ol+ Cn,wt cos ot

by o_ and letting the angle

sin _ = -C A

B equal zero.

(A-65)

(A-66)

(A-67)

(A-68)

(A-69)

(A-70)

(A-71)

(A-72)

(A-73)

(A-74)

(A-75)

= C'
Cxcg - D_

T

CX& = -CD&

cos a +CLa sina + CN= -CAa

cos c_ + CL& sin a = -CA&

(A-76)

(A-77)
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sin _ - CL_

sin _ - CL&

cos c_ - C A = -CN_

cos c_ = -CN&

Cl_= Cl_,w t cos _ - Cn/_,wt

Cl_ = C1 . cos _ - sin/_,wt Cn_,wt

C/p = C/p,w t cos 2 _ + Cnr,w t

C/r = C/r,w t cos2 _ - Cnp,wt

= cos ot sin ol
C/5 C/6,wt - Cns,wt

sin

sin2_- (Cnp,wt+C/r,w_Sin

sin2 _ + (C/p,wt - Cnr,wt) sin

Cm_ = Cm_

Cm&=Cm&

Cmq= Cmq

Cm5 = Cm 5

Cn/9 = C/_,wt

Cn_ = Cl_,w t

sin o_ + Cnfi,w t cos ol

sin ol + Cn_,w t cos

Cn r = Cnr,wt

Cn 6 = C/5,wt

Cnp = Cnp,wt cos 2 _ - C/r,wt sin2 _ + (C/p,w t -

cos 2 _ + Clp,wt sin 2 _ + (C/r,wt

sin a + Cns,w t cos

Cnr ,wt)sin

+ Cnp ,wt) sin

Ol COS Ol

O/ COS O/

O/ COS O_

Ol COS OZ

(A-78)

(A-79)

. (A-80)

(A-81)

(A-83)

(A-84)

(A-85)

(A-86)

(A-87)

(A-88)

(A-89)

(A-90)

(A-91)

(A-92)

(A.-93)

(A-94)

(A-95)
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TRANSFORMATION EQUATIONS FOR MOMENTS AND PRODUCTS OF INERTIA

Ix,s

Iy,s

Iz,s

= Ix cos 2

= Iy

Body to Flight Stability Axes

o_0 + I Z sin 2 s 0 - 2Ixz sin s 0 cos .s 0

=ixsin 2 s 0+I z cos 2 s 0+2IXZ sin c_0 cos s 0

IXZ,s=(Ix-Iz)sino_0cos °10+Ixz(C°S2 o_0 -sin 2 o_0)

IxY,s = Ixy cos s 0 +Iyz sin s 0

Iyz,s = Iyz cos c_0 - Ixy sin s 0

(A-96)

(A-'97)

(A-98)

(A-99)

(A-100)

(A-101)

Body to Principal Axes

Ix, P =I xcos 2 e +I z sin 2 e - 2Ixz sin e cos e

Iy,p = Iy

iz,p =I z cos 2 e +I xsin 2 e +2Ixz sin e cos e

(A_I02)

(A-103)

(A-104)

Flight Stability to Body Axes

IX = iX,s cos 2 c_0 + Iz, s sin 2 s 0 + 2Ixz,s sin c_0 cos c_0

Iy = Iy, s

iz = iX,s sin 2 c_0 + Iz, s cos 2 s 0 - 2Ixz,s sin s 0 cos s 0

IXZ = (Iz,s- Ix,s)sin c_0 c°s _0 + Ixz,s( c°s2 s0-sin2 (_0)

Iyz = Iyz,s cos s 0 + IxY,s sin c_0

Ixy = IxY,s cos s 0 - Iyz,s sin s 0

Flight Stability to Principal Axes

Ix,p = Ix, s cos 2 7/+ Iz, s sin 2 _ + 2Ixz,s sin 77 cos 7?

Iy,p = Iy, s

Iz, P = IX, s sin2 _?+ Iz, s cos 2 _?- 2Ixz,s sin _?cos _?

(A-105)

(A-106)

(A-107)

(A-10S)

(A-109)

(A-110)

(A-ill)

(A-112)

(A-113)
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Principal to Body Axes

I x=IX, P cos2 e +Iz, P sin2 e

Iy = Iy,p

I z=Ix, P sin 2 e +Iz, p cos 2 e

IXZ = (Iz, P - Ix,p)sine cos e

Principal to Flight Stability Axes

IX, s = IX, P cos 2 77+ IZ, P sin 2 _?

Iy, s = Iy,p

IZ, s = IX, P sin 2 _? + IZ, p cos 2 _?

Ixz,s =(Ix, P -Iz,p)sin_?cos_/

SPECIAL FORMS OF EQUATIONS OF MOTION

(A-114)

(A-115)

(A-116)

(A-II7)

(A-118)

(A-119)

(A-120)

(A-121)

Coupled Linear Equations of Motion

These are the linearized equations that describe the small perturbation motions of

a vehicle about a steady-state flight condition. In steady-state flight, the components of

thrust, aerodynamic force, and other forces in a given direction are balanced by the com-

ponent of vehicle weight and, hence, the initial components do not appear in the equations.

Other specific assumptions made in deriving these equations are

(1) Total-velocity components, angular rates, and angles are equal to a steady-

state value plus a small perturbation value; for example, the velocity com-

ponent along the X-axis is u = U o + Au, where u is the total-velocity

component, U o is the initial steady-state velodity, and Au is the per-

turbation velocity

(2) Products and squares of perturbations can be neglected

(3) The vehicle has a plane of symmetry (Ixy = Iyz = 0)

(4) Pitch and roll perturbation rates are given in terms of the initial pitch and roll

angles Oo and q_o and not in terms of the total pitch and roll angles

Oo+Ao and 4o+Z_; that is,
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= Aq COS _bo - Ar sin q5o

and

sin 0 o sin 0o
,+ Ar COS qbo

_i = Ap + Aq sin q5o cos OO cos 00

(5) Aerodynamic cross-coupling coefficients are zero

(6) Mass-damping and jet-reaction forces and moments can be neglected

(7) The vehicle is flying at constant thrust (_= 05RpMtcr =0)

These equations are written about the body axes but can be converted to the flight

stability axes by letting Wo = 0 and 0o = Yo" Also, to reduce the number of variables

to six, the incremental velocity components Au, Av, and AW can be expressed in

terms of resultant velocity and incremental angle of attack by using the following equa-

tions (the alternative would be to expand the aerodynamic forces on the right-hand side

in terms of u,v,w derivatives):

For body axis,

AU= AV COS a 0 -V_oAa sin a 0

AV = Voo Aa

AW = AV sin s 0 +V_o AS COS S 0

For flight-stability axis,

Au = AV

AV = V_o Aot

AW = Voo A01

The six equations are

A_ +Qo AW + Wo Aq-RoAv- Vo Ar + g(S Aq dt c°s 0°c°s _b°-S

(C A&_ CX V AV CXq A_q_ + _X_ As + _ + -- + CX 5
A5

2m CX& 2Voo Voo 2V_o,

Ar dt cos ,0 o sin qSo)

+...) (A-122)

A_r+RoAu+UoAr-PoAW WoAP-g(_Apdtcos 0oC°SqSo+ S

C Ar
2 +

= pV,.___S A_ + + Cyp 2V_ CYr 2V_o2m Y_ Cy_ 2Voo

Ar dt sin 0o)

(A-123)
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Aw+PoAv+VoAP-QoAu-UoAq+g(_pdtcos Oo sin _o + _ Aq dt sin Oo)

2

PVo_S(c A&_+ AV Aql[ _ A6+ .) (A=124)2m Za Aa + CZ& 2V_ CZv _ + CZq 2V---_ + CZ6 " "

A_ I x +(Qo z_r + R o hq)(I Z - Iy) - (Po _q +Qo Ap + A_,)Ixz

l_ A_ + q_ 2v_ qp _ qr 2v_ 5 • • (A-125)

Aq iy + (Po Ar + R O Ap)(I x - IZ) + 2(p O Ap - R O Ar)Ixz

= _pVo_S_ Cmo_ _ + Cm V _ + Cm q __.q_!+_2VooCm6 A6+ . . ) (A-126)

A_ Iz + (Po Aq + Qo Ap)(Iy - Ix) + (Qo Ar + R O Aq- A_)Ixz

=lP V2St n_ A_ + A__+ _+ + A5 +2 Cn_ 2Voo Cnp 2Voo Cnr _ Cn6 " " (A-127)

Uncoupled Equations of Motion

The linearized equations of motion can be uncoupled (lateral motions made inde-

pendent of longitudinal motions) by assuming that the vehicle is in straight and level flight

and that there are no components of initial velocity except Uo, Wo, and Qo in the

initial steady-state condition (i.e., V o = Po = Ro = _o = _bo = 0). Under these assump-

tions, longitudinal equations contain only the variables Au, _0, and Aw (q = 0); and

lateral equations contain only the variables Av, Ar, and Ap.

Longitudinal equations.-

A_ + Qo Aw + W o Aq + gOg cos Og,o
As + CX& 2Voo

AV
+ Cxv

÷ Cxq Aq_ _)2V----_+ _ CX6 A (A-128)
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Avv - Q0 Au - U o hq + g0g sin 0g,o

2
pv£s / _& _ _v

= _ _Cza aa ÷ Cz& _ + Czv v--_

Aq_ _ A6 /+ CZq _ + Cz 5
(A-129)

A_ Iy P S_ Aa + __ + + + A
- ma Cm& 2Voo Cm v_ Cmq _ Cm 5

Lateral equations.-

(A-130)

A;¢ + Uo Ar - W 0 Ap - g(_bg cos 0g,o + _g sin 0g,o )

/
(A-131)

A_ I x + Qo hr(Iz- Iy) - (Qo Ap + A_)Ixz

(c ,,/3÷
_ ___._. + Ap

2 l/3 Cl_ 2Voo C/p Ar_ _ _61 (A-132)+ C/r _ + C/5

IZ + Qo Ap(Iy - IX) + (Qo Ar- Ap)Ixz

pv2s {c + +_ Ap

2 \ n/3 Cn_ 2Voo Cnp 2Vo_ Ar_+_ A6) (A-133)+ Cnr 2V--'-_ Cn5

Wind-Axes Equations for a Point Mass

The wind-axes equations used in ballistic trajectory studies in which the vehicle is

considered to be a point mass are, along the flight path,

m d__V= _pV2S CD _ W sin y + W (A-134)
dt 2

and, normal to the flight path,

mV dy = pV2_____SCL _ W cos y (A-135)
dt 2

These equations assume a constant thrust acting parallel to the flight path and

neglect jet damping and reaction control forces.
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DERIVATION OF EQUATIONS PRESENTED IN SECTION II

FOR TRANSFER OF COEFFICIENTS TO NEW

REFERENCE CENTER

The aerodynamic forces and moments acting on a flight vehicle can be considered

to be functions of six independent variables: _,/3,V,p,q,r in one system, or u ,v ,w ,p ,q _r

in the alternate system. To evaluate force and moment derivatives at a new reference

center, such as at a new c.g., the derivatives at the new center, which represent changes

in forces or moments with changes in the independent variables, both evaluated at the new

center, are written, for example,

(B-I)

f m f _Y _f m f mT

where the forces X ,Y ,Z and moments L ,M ,N

related to those at the original reference center by

at the new reference center are

__, __ __, 9Z ]
X =X L =_+_Y -

Y_, =_Y M M +_Z- _Xl
(B-2)

The variables _,t3,V,p,q,r evaluated at the original reference center can now be

expressed as dependent functions of the independent variables _',/3',V',p',q',r' of the

new system through the equations

8O



APPENDIX B - Continued

__ V' a' _'= tan. 1 w = tan-1 sin cos - py + cl:_
u V' cos c_' cos/3' - q_ + r_

_ V' p'/3 = sin -I v = sin-I sin - rx + pz
V V

V' = Vu2 + v 2 + w 2

:V(V' cos ol' cos fl' -q_. +r_) 2 +(V' sin/3' = rz_+p_)2 +(V' sin or' cos /3' -p:_+q_)2

(B_-3)

q q'

r r

(B-4)

0 0 0 0 0 0

Since from equations (B-4) 8p--7 = ap' 0q' = _q' Or' = 0-'r' and derivatives such as

813 = _ = 0 (they are derivatives of one independent variable with respect to another)
aq, aq,
the derivatives in equations (B-l) can be evaluated from equations (B-3) and (B-4) as

a___.a= 1 _ = 2y_v= ap = __ag_- = ___r= 0
D_ w D_ t 8_ _ D_ t Da t D_ T

off- 1 as aV _p_ 8cI_ ar
b/3, 7=7=7-7-7 =°

2-Y-v = i b_2__= o_E= op =_ = 2s_r= o
bV' 8V' bV' OV' bV' 8V'

bo_ _ -:_ cos o_ _ = z cos _ + y sin el sin _ o__V = E sin/3 - y sin oz cos /3

ap' V cos/3 ap' V ap'

b__ = 1 _ = b_ff_r= o
ap' _p, op'

- aV = (._ sin oz -.z cos a) cos /3
b.__ = :_ cos ol + z sin ot _ = (_. cos a x sin oz) sin fl I_VOq' V cos/3 aq, V

8q = I 8p = 8__Er=0
aq' aq, _I'

bet = -_ sin et 0/3 = -x cos _ - y cos ot sin _ b._V =_ cos et cos /3 - z_ sin /3
br' V cos t3 br' V br'

2_.L= i 2E=___= o
Or' br t br'

(B-5)
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Substituting equations (B-5) and (B-2) into equations (B-l) and nondimensionalizing yields
the transformation equations given in section IX.

The transformations for the u,v,w derivatives (eqs. (II-41) to (II-77) of Sec. II)
are derived in the same way except that in this system the derivatives are of the form

aX 0X _u 0X av 0X _ 0X 8p 0X aq_
au---c= 8u au'+ av au'+ _w au'+ _p au'+--_--_u '+

o••e•••o•ee•••e•••oe•o•ee•ooo

Jt

@X Or
Or au'

OX Or

Or _r'
0x aw ox 0p ox aq_OX oX 8u oX 8v + + + +

Or--F = hi Or' + Ov Or' Ow Or' _p Or' _l Or'

(B-6)

The derivatives in equations (B-6) are evaluated from equations expressing velocity com-

ponents at the original reference center in terms of those at the new reference center as

u=u' -q_+r:_
k

v = v' - rx + pz} (B-7)

-I
w=w' -py +qxJ

and are given as

au av _¢¢ ap ___ Or ;
_u' " av' _V' 8p' 8q' Or'

au av 8w

ap, = 0 _p, = _ = -_

au_ _ --_-_=o --_-_=:_
at' aq, at'

_--_--= :_ --_-_= -_ _----=o
Or' Or' Or'

(B-8)

All other derivatives are zero•

Substituting these derivatives from equations (B-8) along with equations (B-2) into

equations of the form (B-6) and nondimensionalizing then yield the transformations for

u,v,w derivatives given in section II.

In nondimensionalizing, forces are divided by q_S; moments, by qooS_; p, q, r,

_, and _ are multiplied by 1/2V and u,v,w by 1/V. The velocity derivatives, such

as CXv, CYv , and Cmv, are written in terms of static forces and moments by making

use of the following relationship:
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therefore,

= {pV2SCx

-- { aCx8__XX= pVSC x + pV2S 8--_ (B 9)
aV

The derivative _x/aV represents the change in C x brought about by changes in

velocity V by itself as an independent variable and not by changes in velocity due to

angular-velocity components p,q,r for the rotating body. They are the result of such

'things as aeroelastic and Mach number effects and are usually neglected, so that equa-

tion (B-9) becomes

a_X_X= pVSC x (B-10)
aV

The relationship in equation (B-10) is also used in nondimensionalizing the derivatives.

The transformations given in section II for the static force and moment coefficients

and the static-stability derivatives (derivatives with respect to _ or _) are simplified

forms that apply only if there is no vehicle rotation and p, q, and r are zero. Although

it probably is not practical to use such forms, more general forms can be derived that

account for significant rotation; for example, it can be shown that the complete form of

a_/8_' from equations (B-3) is

8ol = 1 + iqz - rg) cos _ + (py - q:_) sin
8ol _

and, by similarly evaluating 8_/8_' and 8V/8c_', it can be shown that the more com-

plete transformation for CX_ is

C'=x_ Cx_Ii(q_-ry)c°s_+(PY-q'q)sin"_+ V cos

_qz - ry)sin o_ - _ - qg_)cos sin- Cx_ V

2CXF(qz - ry)sin ol- (p_- qg_)cos ol]cos ;3 (B-If)+
L V J

which reduces to C' = (the form given inSec. II) if p =q= r = 0.
. X_ Cxol
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METHODS OF MEASURING CENTER-OF-GRAVITY LOCATIONS AND

MOMENTS OF INERTIA OF MODELS AND FLIGHT VEHICLES

The methods presented here are a summary of methods used at the Langley

Research Center to measure moments of inertia of rocket-propelled models and the

methods presented in reference 3 for determining c.g. locations and moments of inertia,

of full-scale airplanes. In these methods all oscillations are assumed to be small.

Some other limitations and precautions that must be taken in using these methods, and

which apply to all methods, are discussed in reference 3.

CENTER-OF-GRAVITY LOCATION

Longitudinal c.g. Location

The longitudinal c.g. location can be determined by mounting the aircraft or rocket

on weighing scales. For a typical aircraft installation, two scales measuring the forces

R 1 and R 2 are located at wing jack points and a third scale measuring the force R 3

is located at some distance _ forward or aft of the jack points. The longitudinal dis-

tance from the jack points to the c.g. is then given by

= R3_

R1 + R2 + R3 (C-l)

Vertical c.g. Location

In order to determine the vertical c.g. location the vehicle is mounted on a knife

edge as shown in figure 10. The weighing cradle has a weight Wc and a centroid _c,

and the vehicle is supported in various roll and pitch attitudes by a vertical reaction

force R 1 acting at a distance Yl" The distance from the knife edge to the airplane c.g.

is obtained from measurements of R1, Yl, and q_ by using the equation

= RlY 1 - Wc_ c sin _b
W sin _ (C-2)

MOMENTS OF INERTIA

Compound-Pendulum Method (Fig. 11)

This method is used mainly to determine pitch and roll moments of inertia on small

models that can easily be mounted with a single attachment point. The moment of inertia

of the model about an axis through the model c.g. is given by
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.I WM+S_M+S 2 WsZs WMZM 2
= 47r2 PM+S 47r2 PS 2 g

The subscript M+S refers to the model plus the supporting hardware, S

porting hardware alone, and M to the model alone. The distance zM+S'

edge to the c.g. of the model plus supporting hardware, is obtained from

WS_ s + WM_ M

ZM+ s = WM+S

(c-3)

to the sup-

from the knife

(C -4)

Spring Method

This method is usually used to measure pitch and roll moments of inertia when the

model is so large that more than one support is needed. The model is mounted on a knife

edge and springs are attached at equal distances on both sides of the knife edge, as shown

in figure 12. The moment of inertia canbe determined from the equation

I = K_-_2 p2 + rngz p2 _ m_2

4_2 4_ 2
(c-5)

Spring Method for Full-Scale Vehicles

This method, which is described in detail in reference 3, uses two sets of springs

with each set having a different spring constant, so that both the moments of inertia and

the vertical c.g. location can be determined. The springs are arranged as shown in fig-

ure 13. The moment of inertia about the point axis through the knife edge is given by

I= (Kt'l - Kt'2)P2 _ roT. 2 _ ic _ male 2 (C-6)

The vertical distance from the knife edge to the c.g. of the model is then determined from

Kt'2 - Kt'l Wjc
= _ (C-7)

w\P2)J

where W c and _c are the weight and c.g° vertical displacement (measured from the

knife edge) of the weighing cradle that is used. The constants Kt, 1 and Kt, 2 are

determined from the constants for the springs shown in figure 13 by the equations
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Kt, 1 = 2Ks,las 2

Kt, 2 = 2Ks,2as 2

Torsion-Pendulum Method

Used for measuring yaw moments of inertia, this method involves mounting the

model on a torsion shaft as shown in figure 14(a). The moment of inertia about the lon-

gitudinal axis of the shaft is given by

I = kp2+S kPS2
(C-8)

4y 2 4_ 2

Multifilar-Pendulum Methods

Essentially the same as the torsion spring method except that the vertical wires or

rods provide the restraining spring moment, an example of a bifilar pendulum is shown in

figure 14(b). The moments of inertia are determined from

p2
I = WM+S M+S 5.2 WS PS 2 5.2 (C-9)

16_2 _' 16_2 _'

where 5. is the diameter of the circle around which the wires or rods are attached and

_' is the length of one of the wires or rods. A system with two wires is called a bifilar

pendulum; a system with three is called a trifilar pendulum. In using these methods, the

wires or rods must be centered about the system mass center.
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DETERMINATION OF LONGITUDINAL AND LATERAL STABILITY

DERIVATIVES BY USING SIMPLIFIED LINEAR ANALYSIS
$

Perhaps the simplest and most direct method of analyzing transient flight data is to

determine static- and dynamic-stability derivatives from the frequency and the time to

damp to half-amplitude of transient motions, such as the damped angle-of-attack oscilla-

tion shown in figure 15. This method has been used effectively to determine the control

response characteristics of rocket-propelled models in reference 9. Even when a more

sophisticated analysis is planned, this method can provide, before the detailed analysis

is begun, a fairly accurate quick-look assessment of the vehicle characteristics from the

basic flight records.

The oscillation in figure 15 represents the transient response to a step-control

input. The method assumes that

(i) The forward velocity and the Mach number of the vehicle are constant

(2) The longitudinal aerodynamic forces vary linearly with angle of attack a, pitch

angle 8, elevator deflection 5e, da/dt, and d_/dt; lateral aerodynamic forces are

assumed to vary linearly with sideslip angle /_, yaw angle _h, rudder deflection 6r,

d/_/dt,and d_/dt

(3) The vehicle is in level flight before the control deflection is applied

(4) Longitudinal and lateral motions are independent of each other (all aerodynamic

cross derivatives such as C/q and Crop are neglected)

Under these assumptions, the longitudinal equations of motion can be simplified to

mV_° dI_ _-) 5e
da (D-I)

= CL, o + CLaa + CLSe

&6 + qc (D-2)Iy d2_ Cm, o + a + Cm_ Cmq + Cm
q S_ dt 2 = Cma 2Voo _ 5e 5e

where CL, o and Cm, o are the values of lift and pitching-moment coefficient in

trimmed level flight. The solution to equations (D-l) and (D-2) is of the form

a = Ce a't cos(cot - 4) + a t

In equation (D-3), C is a constant that is determined from initial conditions,

trim angle of attack,

at

(D -3)

is the
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irCLa - (Cmq CI& _. c .,_
a' = - gLT + ) zvool]

(D -4)

and

Cma 6 CmqCLa

- I' 2V_ I'm' (a')2

mVj
m' = --

qooS

I' = Iy

qooSc

(D-5)

(D-6)

The damping constant a' and the frequency co are determined from measured quanti-

ties; a' can be calculated from the rate of decay of the oscillation (see fig. 15) as

Ao_2

l°ge =a'= _ log eI=._0.693

t 2 - t 1 tl/2 tl/2

(D-7)

where tl/2 is the time for the oscillation to damp to one-half its initial amplitude. The
frequency co can be calculated from the period of the oscillation P as

2_
P

Equation (D-5) can be rewritten as

Cma=-I'_a')2+ w2]- _2_oo

CmqCL a

m t

(D-8)

(D-9)

and equation (D-4), as

4I'V_o/ CLa_
Cmq+Cmh- e ,ka' + 2m'/

(D-10)

The last term of equation (D-9) is usually very small compared to the first term (usually

less than 1 percent) and may be omitted in most cases. (See ref. 9.) Omitting this term

and substituting equations (D-7) and (1)-8) give the equations for the longitudinal static-

and dynamic-stability derivatives in terms of the period and the time to damp to half-

amplitude of the oscillation as

-4_'21y_I + 1-_ _0"693_2_ (D-11)

Cmol = qooS---_ Lp-"_ 41r2\tl/2 ] ]
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(Cm_+Cm_)----_\_ w_c,._
Similar equations for the lateral derivatives can be developed as

-2I z (1.386Voo(Car On_):-__+ _ °_)

(D-12)

(D-13)

(D-14)

of Cn_

ity axes.

It should be noted that the mean values of angle of attack or sideslip do not neces-

sarily correspond to the trim value, so that the mean value that is used to determine

tl/2 (eq. (D-7)) must be obtained by selecting positive and negative amplitudes from the

angle-of-attack or sideslip envelopes and determining the mean of these positive and

negative amplitudes.

For the lateral-derivative equations a small angle of attack is assumed. The values

and (Cnr - Cn_) given by equations (D-13) and (D-14) are those about the stabil-
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USE OF DIRECTION COSINES AND QUATERNIONS

IN MOTION CALCULATIONS

In the equations of motion and throughout this report, vehicle orientation with

respect to given axes is specified in terms of the Euler angles ¢,,0,c>. Two other

methods can be used, however, to specify alinement. One is to give the alinement in ,

terms of direction cosines; the other is to specify alinement in terms of "Euler param_

eters," which are components of a four-parameter quantity called a quaternion. Whereas

there is no particular advantage in one of these methods over the other, both have certain

advantages over the use of the Euler angles. Both eliminate the singularities that occur

when vehicle attitudes approach +90 ° (a condition known as gimbal lock) and, whereas the

equations relating Euler angles to angular rates are nonlinear (eqs. (V-7) to (V-9) of

Sec. V), those relating direction cosines and Euler parameters to angular rates are linear,

so that the computational procedure is simplified, particularly in analog computations.

Either method is preferred to the Euler angle method, therefore, in certain applications.

The basic equations needed in applying these two methods are given here.

DIRECTION-COSINE METHOD

where D

In the direction-cosine method, the axes transformation for any vector has the form

e' = D (E-l)

Z'

is the matrix made up of direction cosines and is defined as

D = _YX

_ZX

where the elements of

_XY

_yy

_ZY

D

fYZ

-_ZZ

are given in terms of Euler angles as

(E -2)
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_XX

_XY

_XZ

_YX

_yy

_YZ

_ZX

_ZY

_ZZ

= cos _ cos 0

= sin _ cos 0

= -sin 0

= -sin g/cos _ + cos _ sin e sin

= cos _P cos _ + sin _ sin 0 sin

= cos 0 sin

= sin _ sin _ + cos _ sin e cos

= -cos _hsin _ + sin _ sin 0 cos

= cos O cos _

(E-3)

It can be shown that D can be determined from the angular velocities by using equa-

tions (E-4) and (E-5) as follows:

B

0 co
Z'

-w Z,
0

L_wy, -coX,

-coy,

coX' D

0

(E -4)

which is a linear (matrix) differential equation. The angular velocities ¢°X' 'coY' 'coZ'

are those of the pri:ded axes system (see eq. (E-l)) with respect to the unprimed axes

system. In motion calculations where the primed axes are considered as the vehicle

body or other reference axes and the unprimed axes are taken as the gravity-axis sys-

tem (see fig. 5), coX, ,coy, ,W Z, can be determined from the body-axes angular velocities

coX' !-P-

coy, = q

coZ' r

-D

-L

+ )cosL

-(_e + i)sin L
m

(E -5)

p,q,r by

or, for a flat nonrotating earth,

coX' = Pl

coY' = _lcoZ'

(E -6)
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QUATERNION METHOD

Basic Quaternion Relationships

where

G

In the quaternion method an axes transformation has the form (ref. 10)

Y' - G

G is a matrix composed of the Euler parameters e0,el,e2,e 3

(e02 +el2 - e22- e32 ) 2(ele 2 +e0e3) 2(ele 3 - e0e2)

2(ele 2 - e0e3) e02 - el2 + e22 - e32 ) 2(e0e I + e2e3)

(E-7)

and is defined as

(E -8)

_ - _ e222(ele 3 + e0e2) 2(e2e 3 - e0el) (e02 el2 + e32 )

The Euler parameters are elements of a four-parameter quantity called a quaternion,
defined as

q=e 0 +eli+e2J +e3k (E-9)

where eo,el,e2,e 3 are real numbers and the vectors i,j,k satisfy the following
conditions:

i 2 = j2 = k 2 = -i

ij = -ji = k

-h

jk = -kj = 1_

ki -ik
(E-10)

The quantity e 0 is the real or scalar part of the quaternion; the terms eli + e2J + e3k
make up the imaginary part. The length or norm of the quaternion is defined as

[ql = _ = +02 + el2 + e22 + e32 (E-11)

The quantity q* is the conjugate of the quaternion and is defined as

q* = e0 - eli - e2J - e3k (E-12)

The transformation in equation (E-7) can also be written in terms of the quaternion and

its Conjugate as

(E-13)
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In flight-motion calculations, in which the Euler parameters define the alinement
of the Vehicle body or other reference axes with respect to the gravity axes (see figs. 4

and 5), the differential equation from which the Euler parameters can be determined is

-'0_ --el!e

e0
el =i_.

e2 2 e3

-e 2

-e 2

-e 3

e 0

e I

_/.

-el_ iI r]-G (£e + X)c°s

e0_- - u__e +

(E-14)

where G is defined by equation (E-8).

Relationship Between Euler Parameters and Euler Angles

Initial values of e0,el,e2,e 3 for use in performing the calculation indicated by

equation (E-14) can be determined from the initial values of the Euler angles. The Euler

parameters are related to Euler angles by the following equations:

O O sin 2 1e0 = cos cos _ cos 2_ + sin 2_ sin _

O O
e I cos 2_ cos _ sin _ - sin _ sin _ c°s

e 2 = cos sin _ cos + sin cos

e 3 sin cos _ cos - cos sin sin

CE-15)

sin 8= -2(ele 3 - e0e2)

2(e0e 1 + e2e3)

tan @=e02 +el 2 _ e22 _ e32

tan _ =
2(o:e2+e0e3)

e02 - el2 - e22+e

(E-16)
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SCALING PARAMETERS

This appendix summarizes parameters for the three types of scaling used in aero-

dynamic testing: dynamic, aerodynamic, and aeroelastic. These parameters establish

the requirements for a given type of scaling in that each significant parameter must have

the same value for both model and prototype if the simulation is to be valid. In most

cases, it is impossible to satisfy all the scaling requirements at the same time and com_

promise techniques have to be worked out. A knowledge of the scaling parameters is

essential to understanding and applying these techniques.

DYNAMIC-SCALING PARAMETERS

Dynamic-scaiing parameters established the conditions under which the motions

(accelerations, velocities, and angles) and the forces for the model simulate those for

the prototype. These parameters are obtained by requiring that, in the equation describ-

ing the motion of the flight vehicle, the ratio of any one term to another has the same

value for model and prototype. The equation of motion has the general form

Inertial force = Weight + Aerodynamic force (F-l)

Two scaling parameters determined from equation (F-l) are

Froude No. = Vehicle inertial force = mV 2/_ _ V2
Vehicle weight W g_ (F-2)

Mass ratio = Vehicle inertial force = mV2/_ _ W

Aerodynamic force pV2_2 pg_3
(F'3)

In addition, the scaling assumes geometric similarity between model and prototype

as well as similarity in mass distribution. The scale factors given in table VI were

obtained by satisfying all these requirements.

AERODYNAMIC-SCALING PARAMETERS

Aerodynamic-scaling parameters must have the same value for model and proto-

type if the flow field around the model and, hence, the aerodynamic force and moment

coefficients, is to be the same as around the prototype. Aerodynamic-scaling param-

eters determined from the equation of motion of the fluid, in which viscous, pressure,

and gravity forces are considered, are
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Reynolds No. =

APPENDIX F - Continued

Fluid inertial force PV_ 1_2 pV_

Fluid viscous force _Voo_
(F -4)

Much No. = Fluid inertial force = fpV2_2_ 1/2 Voo (F-5)

Fluid pressure force \_/ = _-

Fluid inertial force _ PV 2_2 = _V2 (F-67

Froude No. = Fluid gravity force pg_3 g_

In addition, if surface-tension forces are important, a fourth parameter to be con-

sidered is

Weber No. = Fluid surface-tension force _ _ _ _ (F-7)
Fluid inertial force pV2_2 pV2_

where a is the surface tension per unit length.

The pressure force considered in Much number (eq. (F-5)) is that due to the pres-

sure differential across a shock wave in compressible flow. The pressure-force param-

eter considered in incompressible flow is

Euler No. = Fluid pressure force = _ (F-8)

Fluid inertial force pV2_ 2

The Euler number is usually not important because usually the resultant body forces are

measured; however, it becomes important when body forces are determined from mea-

surements of pressure distribution.

Two scaling parameters determined from the laws of thermodynamics are

1 Heat added by convectionPrandtl No. = X
Reynolds No. Heat added by conduction

where v = y/p,

fluid, and

where AT

and

v cppV_T/_ = _CPP (F-9)

: V_---_ kT/_2 k

k is the coefficient of heat conduction (thermal conductivity) of the

Grashof No. - 3g AT (F-10)
2

V_Wo

is the temperature difference between two representative points in the fluid •

T o is a representative temperature.
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APPENDIX F - Continued

Aeroelastic-Scaling Parameters

The basic aeroelastic-scaling parameters to be satisfied in simulating deforma-
tions caused by aerodynamic loads are

For structural elongation:

EA _ (F-11)
pV2_ 2

For structural bending:

EI

pV2_ 2

in whieh it is assumed that the strains in the model structure are the same as for the

prototype; that is,

ern = 1.0
ep

It is also assumed that neither model nor prototype materials are stressed beyond their

elastic limits and that the ratios of shear-to-tensile stress and of shear-to-elastic

modulus are the same for model and prototype. A more thorough discussion of elastic

scaling is given in reference 11.

(F-12)

(F-13)

COMMENTS ON SCALING PROCEDURES

Dynamic Scaling

In general, tests of dynamically scaled models are limited to subsonic speeds

(below M = 0,6) because of the requirement that the force coefficients must be the same

on model and prototype. For vehicles designed to fly at transonic or supersonic speeds,

the model is usually tested at the correct full-scale Mach number. The motions, loads,

and accelerations of the test models are then reduced to nondimensional coefficients by

utilizing the known mass and inertial characteristics of the models, and these coeffi-

cients are in turn used to calculate the motions, loads, and accelerations of the prototype.

In any case, care must be taken to insure that Reynolds number effects do not introduce

an unacceptable distortion. Reynolds number effects can be neglected in most tests if

the model Reynolds number is above 106; however, in general, the Reynolds number

effects on skin-friction drag must be accounted for.

Aerodynamic Scaling

In wind-tunnel and free-flight model testing, it is impossible to satisfy all the

aerodynamic-scaling parameters at the same time; however, the problem usually reduces
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APPENDIX E- Concluded

to one in which only two of the parameters, Reynolds number and Mach number, are

important. In most problems, the effect of the fluid gravity on the motion is negligible,

and so the Froude number and the Grashof number of the fluid can be neglected. It can

be shown that the Prandtl number is the same for model and prototype if the ratio of

specific heats Cp//C v is the same for both, and this condition is automatically satisfied

if air is used as the fluid in the model tests. A still further simplification is possible

because Reynolds number effects are limited to the narrow boundary-layer region at the

body surface and the flow outside the boundary layer is practically without the influence

of viscosity. Thus, Reynolds number and Mach number effects can be considered sepa-

rately. Most wind-tunnel tests at transonic and supersonic speeds are made at the full-

scale Mach number. The Reynolds number effects, called scale effects, are accounted

for by making corrections to skin-friction drag coefficient (the coefficient primarily

affected by Reynolds number) or by using boundary-layer trips, wires or a rough grit, to

cause separation at the proper chordwise position and therefore to simulate the full-scale

flow pattern. These techniques are discussed in textbooks on wind-tunnel testing (for

example, ref. 12) and reports dealing with their application, such as reference 13.
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TABLE I.- CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

Multiply by to obtain
Physical quantity U.S. Customary Unit conversion factor SI Unit

(a) (b)

Angle

Length

Velocity

Acceleration

Pressure

deg

ft

0.01745329

0.3048

Moment of inertia

Mass

Force

Moment

Area

Mass flow

Density

Spring constant

Gravitational constant

ft/sec

knot (international)

knot (U.S. statute)

mph

ft/sec 2

lbf/ft2

atmosphere

ft of H20 (39.2 ° F)

in. of Hg (60 ° F)

0.3048

0.5144444

0.44704

0.44704

0.3048

47.88026

1.01325 × 105

2.98898 × 103

3.37685 × 103

Specific heat

Kinematic viscosity

Coefficient of

heat conduction

Temperature

slug-ft 2

slugs

lbf

ft-lbf

ft 2

slugs/sec

slugs/ft3

lbf/in.

lbf/ft

ft3/sec 2

1.355818

14.59390

4.448222

1.355818

0.09290304

14.59390

515.3788

175.1268

14.59390

0.02831685

Btu(thermochemical)
Ibm -OF

ft2/sec

Btu(thermochemical) -in.

ft2-sec-oF

OF

oc

4.184 × 103

0.09290304

518.87315

(c)

(c)

rad

m

m/sec

m/sec

m/sec

m/sec

m/sec 2

N/m2
N/m 2

N/m 2

N/m 2

kg-m 2

kg

N-m

m 2

kg/sec

kg/m 3

N/m
N/m

m3/sec 2

joule/kg-°C

m2/sec

J/m-sec-K

OR

Coefficient of slugs/ft-sec

viscosity

abased on values in ref 14.

bprefixes to indicate multiples of SI Units are as follows:

(c)

47.880258

K

N-sec/m2

Prefix (symbol) Multiple

kilo(k)

hecto (h)

deka (da)

deci (d)

centi (c)

milli (m)

micro (_)

103

102

i0

i0-I

10-2

i0-3

i0-6

c Temperatures related by following formulas:

5 (o F + 459.67)K=_

K = oc + 273.15

f_=5°R
9
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TABLE II.- RELATIONSHIPS BETWEEN o_,_,V AND u,v,w DERIVATIVES

CXa = -CXu sin a cos _ + CXw cos _ cos

CX_ = -CXu cos _ sin fi + CXv cos _ - CXw

CXv = CXu cos a cos _ + CXv sin _ + CXw sin a cos

sin a sin

sin

CXu = -Cxa cos Cx_ cos a sin _ + CXv cos a cos

CX v

CX w

= Cx_ cos _ + CXv sin

v COS a sin a sin _ += CX cos _ Cx_ CXv
sin a cos
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TABLE III.- ANGLE DESIGNATIONS FOR DIRECT a TRANSFORMATIONS

l
Axes conversion I

Angle designation

From To A B
(Unprimed coefficients) (Primed coefficients)

Principal

Flight stability

Flight stability

Body

Body

Principal

b
6

aO

Nb

Wind-tunnel stability

Wind-tunnel stability

Wind-tunnel stability

Wind

Wind

Wind

Wind

Body

Principal

Flight stability

Body

Principal

Flight stability

Wind-tunnel stability

01

(3/ - 6

a - a 0

13/

OZ - 6

a - a 0

0

0

0

0

0

0

0

a Direet transformations (eqs. (IN-I) to (III-54)) represent rotation from ref-

erence (unprimed) axes system through angle -B about Z-axis and then through

angle +A about Y-axis to new (primed) axes system. Inverse transformations

(table IV and eqs. (III-55) to (III-107)) represent reverse of direct.

bAngles e and _/ between the principal axes and the body and flight stabil-

ity axes, respectively, can be determined from moments of inertia by

tan 2e = 2Ixz

I z - IX

2Ixz
tan 2_/= ,s

IX, s - Iz, s
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TABLE IV.- ANGLE DESIGNATIONS FOR INVERSE a TRANSFORMATIONS

Axes conversion Angle designation

A BFrom

(P rimed coefficients)

Body

Body

Body

Body

Principal

Principal

Principal

Flight stability

Flight stability

Wind-tunnel stability

To

(Unprimed coefficients)

Principal

Flight stability

Wind-tunnel stability

Wind

Flight stability

Wind-tunnel stability

Wind

Wind-tunnel stability

Wind

Wind

C

a 0

01

n b

o_ - eb

0l - E

a = a 0

- a0

0

0

0

0

0

0

0

ainverse transformations (eqs. (III-55) to (III-107)) are reverse of direct

(table III and eqs. (III=l) to (III-54)) and represent rotation of primed axes system,

through angle -A about Y-axis and then through angle +B about Z =axis, until

axes coincide with original unprimed system.

b Equations for determining angles e and _? given in footnote in table III.
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TABLE V.- DESIGNATIONS OF FORCE AND MOMENT COEFFICIENTS

FOR DIFFERENT AXES SYSTEMS

Coefficients for axes system -

Component
Body or

principal

(a)

Flight
stability

Wind -tunnel

stability

X-axis force

Y-axis force

Z-axis force

X-axis moment (roll)

Y-axis moment (pitch)

Z-axis moment (yaw)

Cx

Cy

CZ

C l

Cm

Cn

a Subscript

or -C A

or -C N

Cx,s

Cy,s

CZ,s

C1 ,s

Cm,s

Cn,s

t

-C D

Cy

-C L

Cl ,wt

Cm ,wt

Cn,wt

P sometimes used to denote principal axes.

Wind

-C D

C C

-C L

C1 ,w

Cm ,w

Cn,w
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TABLE VI.- SCALE FACTORSa FOR DYNAMIC SCALING

Area b .................................... R/2

Volume ................................... Rl 3

Velocity ............................ Rg1/2 R/1/2

Acceleration ................................. Rg

Mass Rp R/3• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Mass-flow ....................... . . . . . . . . . . . RpRg 1/2 R/5/2

Weight ................................... Rp Rg R/3

Force coefficient .............................. 1o0

Moment coefficient ............................. 1.0

Wing loading ................................. Rp Rg R l

Time ..................................... R/1/2 Rg -1/2

Dynamic pressure .............................. Rp Rg R 1

Force .................................... Rp Rg R/3

Angular velocity• . . ............... . o . . . . . . . . . . . RI-1/2 Rgl/2

Angular acceleration ............................ R/-1 Rg

Moment ................................... Rp Rg R/4

Moment of inertia ............... . . . . . . . . . . . . . . . RpR/5

a scale factor is ratio of model quantity to prototype quantity; for example,

Model area = R/2 × Prototype area

b Definitions of symbols:

Rl = Model length
Prototype length

Rg = Acceleration of gravity at model altitude
Acceleration of gravity at prototype altitude

Rp = Air density at model altitude
Air density at prototype altitude
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Vehicle moment reference center

Y

Z

Instrument center
P Xi

X

Y
q

r

Yi

Zi

Z

Figure 1.- Systems of vehicle reference axes and instrument axes.
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Y

Center of gravity

 JS- x,
y,_.r _.New reference center to which

data are to be referred

Z

Z_

Figure 2.- Axes systems for transfer from vehicle c.g. to new reference center

by equations of section If.

Yw

Yb ,YP, Ys, Yw t

Figure 3.- Systems of vehicle reference axes, including body, principal, wind,

flight stability, and wind-tunnel stability.
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Figure 4.- Relationship between earth-centered inertial axes, gravity axes,

and vehicle reference axes.

110



. , -. • .

X



nocrceoocoue

Ye
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Figure 6.- Relation of heading angle H and flight-path angle

earth-centered inertial axes.
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Xb

Figure 7.- Resolution of relative velocity into components along vehicle body axes.
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Tangent to circle of local latitude _--_i /

ni!!i to _ \_ S Resultant surface-wind velocity W

_ __ X e

Ze

Figure 8.- Directions of surface and geostrophic winds.
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Z

Figure 9.- Alinement with respect to vehicle reference axes of thrust and torque

dueto rotating mass of engine.
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(_ Cradle

Pivot point

Figure 10.- Determination of vertical location of center of gravity.
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Pivot point

Figure 11.- Measurement of moment of inertia by compound-pendulum method.
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Figure 12.- Measurement of moment of inertia by spring method.
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Figure 13.- Determination of vertical location of center of gravity and rolling moments of inertia

for full-scale airplanes. (Reproduced from ref. 3.)
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(a) Torsion pendulum.
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(b) Bifilar pendulum.

Figure 14.- Methods of measuring yawing moments of inertia.

118



a

i ............... Trim angle of
attack

Time ,seconds ._

Figure 15.- Damped angle-of:attack oscillation assumed in analysis of appendix D.
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