REPORT No. 220

COMPARISON OF TESTS ON AIR PROPELLERS IN FLIGHT WITH WIND TUNNEL MODEL TESTS ON SIMILAR FORMS

By W. F. DURAND and E. P. LESLEY
Stanford University
-
\square

COMPARISON OF TESTS ON AIRPLANE PROPELLERS IN FLIGHT WITH WIND TUNNEL MODEL TESTS ON SIMILAR FORMS

By fi. F. Durand and E. P. Lesley

INTRODUCTION

The purpose of the investigation, which is the subject of the present report, was to determine the performance characteristics and coefficients of full-sized air propellers in flight and to compare these results with those derived from wind-tunnel teats on reduced scale models of similar geometrical form.

The full-scale equipment comprised five propellers in combination with a VE-7 airplane and Wright E-4 engine. This part of the work has carried out at the Langley Memorial Aeronautical Laboratory, between May 1 and August 24, 1924, and was under the immediate charge of Mr. Lesley. The model or wind-tunnel part of the investigation was carried out at the aerodynamic laboratory of Stanford University and was under the immediate charge of Mr. Durand.

For the full-scale work power absorbed was determined from calibration curves of the engine, derived both before and after the flight tests were made. Useful work is defined as drag of airplane, without influence of slip stream, times velocity, plus weight times rate of climb; efficiency as useful work divided by power absorbed.

The derived coefficients,

$$
C_{T}=\left(\frac{\text { Thrust }}{\rho n^{2} D^{4}}\right), \quad C_{P}=\left(\frac{\text { Power }}{\rho n^{3} D^{5}}\right), \text { and } \eta \text { (efficiency) }
$$

are plotted on $\frac{V}{n D}$, and curves are drawn representing the average of plotted spots.
For the model investigation, the corresponding coefficients and elements of the performance were determined by direct measurement of resistance, thrust, torque, air speed, and revolutions, as described in detail in Part II of the report.

A comparison of the curves for full-scale results with those derived from the model tests shows that while the efficiencies realized in flight are close to those derived from model tests both thrust developed and power absorbed in flight are from 6 to 10 per cent greater than would be expected from the results of model tests.

The more detailed description of the equipment employed, the methods of carrying out the observations, and of analyzing and reducing the results will be found in Parts I and II of the report as below.

PART I

FULL-SCALE TESTS

TEST PROPELLERS

The dimensions of the propellers tested are shown in Figures 1 to 5 and Table VIII.
The propellers are of the United States Navy standard plan form. They were made of birch in the usual laminated construction and covered with cotton fabric. The blade angles were measured before tests, and no appreciable difference was found between such measurements and those made by the Navy inspector at the works of the Hartzel Walnut Propeller Co., the angles being found correct within the tolerance allowed by the Navy specifications. At the close of the tests the pitch angles were again measured and the following determined:

Propeller	Mean geometrical pitch
B^{\prime}	--.-5'-0.4' ${ }^{\prime \prime}$
D^{\prime}	----_ $8^{\prime}-2.8^{\prime \prime}$
I	-----5 $5^{\prime}-8.5^{\prime \prime}$
K'	$\ldots 5^{\prime}-8.5^{\prime \prime}$
L'	$\ldots-5^{\prime}-8.6^{\prime \prime}$

Pitch: $5^{\prime} 8.8^{\prime \prime}$. Pltch ratio: 0.7. A.ppert ratio: 8. Camber ratio: Minimum +20 per cent. Rotation: RLght hand.
Fig. 1.-Experimental propeller L' for VE-7 adrplane
Propeller B^{\prime} is thus seen to have had at the close of the tests appreciably less than the designed pitch of $5^{\prime}-1.2^{\prime \prime}$. All are believed to have been as nearly geometrically similar to the models, which were made from the same drawings by the application of a linear scale ratio, as is practicable of realization with wood construction.

Pitch: $5^{\prime} 8.5$. Pitch ratho: 0.7. Aspect ratio: 7.
ratio: Mhimum +20 par cent. Rotation: Right hand.
Fie. 2.-Experfmental propeller K^{\prime} for VE-7 airplane

Pitch: $\theta^{\prime} 3.2^{\prime \prime}$. Pitch ratio: 0.8. Aspect ratio: 6. Oamber ratio: Minimam +20 per cent. Rotation: Right hand.

Fio. 4.-Experimental propeller D^{\prime} for $\mathrm{VR}-7$ airplane

Pltch: $\delta^{\prime} 8.8^{\prime \prime}$. Pitch ratio: 0.7. Aspect ratio: 6. Oamber ratio: . Minimum +20 per cent. Rotation: Right hand.

Fig. 3.-Experfmental propeller I for VE-7 airpiane

Pltah: $5^{\prime} 1.2^{\prime \prime}$. Pitch ratio: 0.6. Aspect ratio: 0. Oamber ratio: Minimum +20 per cent. Rotation: Right band.

Fig. 8.-Experimental propeller B^{\prime} for VE-7 airplane

INSTRUMENTS AND APPARATUS

The instruments and apparatus used in these tests were as follows:
(1) N. A. C. A. recording altimeter.
(2) N. A. C. A. recording pendulum inclinometer and airspeed meter.-This instrument was fitted with a heary diaphragm capsule, used for recording the intake manifold depression, in place of the usual airspeed capsule. The pendulum inclinometer, the instrument-being rigidly secured to a shelf in the observer's cockpit, gave records of the angle of the wing to the horizontal.

Fig. 6
(3) A trailing borb inclinometer and airspeed meter.-The trailing bomb of this instrument, with cover removed, is shown in Figure 6. It consists essentially of a streamline-form case with stabilizing tail, fitted with a mercury U tube and a Pitot tube. The mercury U tube and Pitot tube are connected, through small rubber tubing and through brass capillary tubing forming the suspending cable, to a pressure diaphragm-type recording instrument placed inside the drum on which the suspending cable is wound. The bomb is suspended from small self-

Fia. 7
aligning ball bearings, the bail passing through a longitudinal slot at the top, and is thus free to assume the direction of the air stream flowing by it. Inclination of the bomb from the initial position results in a difference of pressure on the two sides of the diaphragm capsule, to which the mercury U tube is connected, with only a slight displacement of the mercury. The moment of the displacement mercury is balanced by a small righting moment of bomb itself. Thus the bomb remains in any attitude it is placed unless disturbed by some external force. The inclinometer feature is calibrated by placing the bomb in a jig, as shown in Figure 7, tilting
to various positions, and making records of the pressures developed at the capsule of the recording manometer.

An equalizing valve is provided in the system, which permits equalizing the pressures on the two vertical legs of the U tube in any desired initial attitude of the bomb. The range of the instrument, with a diaphragm capsule of given sensitivity, is thus doubled. As used in these tests it was provided that a range of 16° could be covered, the instrument being adjusted to record from 0° to 16° of glide, from 0° to 16° of climb, or from 8° climb to 8° glide as desired.

From the record made the angle of flight path is estimated to 0.1°, but the possible error, due to oscillation in flight, inconstancy of recording capsule, and to error in measuring record, appears to be $\pm 0.5^{\circ}$.

A sample record, for gliding flight, is shown in Figure 8. The mean distance of the lighter wavy lines from the base is, from a calibration curve, a measure of the angle of flight path, and the distance of the heavier wavy lines from the same base is a measure of velocity head.

Fig. 8
(4) Veeder counter.-This instrument, connected to the engine cam shaft through a simple mechanical clutch, was used to determine engine speed.
(5) Thermometers.-Distance-type indicating thermometers were used to determine strut temperature and carbureter intake temperature.

Besides the above, the regular equipment of navigating instruments, such as tachometer, air-speed meter, indicating altimeter, water and oil thermometers, and oil-pressure gage, was installed.

Calibration of engine

The engine was set up on a Sprague dynamometer test stand for calibration before flight tests, as shown in Figure 9.

During the calibration a 30-70 mixture of benzol and aviation gasoline was used as fuel, the purpose being to avoid danger of incipient detonation at full throttle. In the flight tests, however, it was proposed to use straight gasoline, since this work was to be conducted at such altitudes that the danger of detonation would not exist. This procedure was considered allowable, as it was believed that equal powers would be developed by the mixed and straight fuels under the conditions of flight.

Two carburetor intake temperatures were employed-about 10° and 26° centigrade. On comparison of the brake horsepowers developed in the two cases it was found that, for constant speed and barometric pressure, brake horsepower varied closely as $\frac{1}{\sqrt{T}}, T$ being the absolute temperature at the carbureter intake. The mixture control was adjusted, in this calibration, to the full rich position.

Some slight troubles were experienced with one magneto, which finally failed due to breaking of the distributor ring. This magneto, a Splitdorf SS-8, was replaced by a Splitdorf Dixie 800.

After installation in the airplane it was noted that the engine appeared to be rather rough, missing considerably at part throttle, and that, with the airplane on the ground and held stationary, it did not drive the propellers at the speeds expected from model tests, if the power as indicated on the dynamometer were being developed. The fuel used in calibration was substituted for aviation gasoline, but no appreciable improvement in performance could be

Fig. 9
detected. The installation was therefore checked over, a minor intake manifold leak corrected, the two magnetos used in the calibration replaced by tested accessories (Dixie 800), and the mixture control adjustment wired fast in the full rich position. With these changes the missing was eliminated and the standing R. P. M. at full throttle and with propeller I were observod to be 1,580. The performance with this propeller (standing R. P. M. at full throttle) was thereafter used as an index of engine condition. At no time during the flight tests, which in all occupied about 20 hours running time, was there a change; as shown by the indi cating tachometer, of more than 20 R.P. M., the performance being generally consistent.

At the end of the flight tests the engine was subjected to two further calibrationsfirst, with ariation gasoline as fuel, and second, with the original 30-70 mixture of benzol and aviation gasoline.

The results of the full-throttle runs of the three calibrations, reduced to theconditions of standard air, are shown in Figure 10. The reduction of the observed data to the conditions

Fig. 10.-Wright E-4 engine calibration reduced to standard air Curfe A-Fuel $30-70$ benzol gasoline. Feb. 18, 1824. Curve B-Frel gasoline. Jaly 16, 1924. Carve C-Fael 30-70 benzol gasoline. July 18, 1824. of standard air (barometer $=760 \mathrm{~mm}$., temperature $=15.6^{\circ}$ centigrade) is accomplished through the assumed relation B.HP. $=C \frac{p}{\sqrt{T}}$, in which p is the barometric pressure, T the absolute temperature at-the carbureter intake, and C a constant.

It may, be noted that the calibration after flight tests, with aviation gasoline as fuel, shows B.HP. about $61 / 2$ per cent less than that before flight tests with the mixed fuel, and that the second calibration with mixed fuel is about $31 / 2$ per cent below the first. It appears, then,
that between the calibrations, before and after flight tests, the engine deteriorated about $31 / 2$ per cent. Since aviation gasoline was used for fuel in the flight tests and many of these were conducted at moderate altitudes (1,500 to 3,000 feet), it also appears that toward the end of the flight tests the power developed by the engine at full throttle may have been little more than that indicated by the lowest calibration curve, while at the start it may have been close to that indicated by the highest curve.

FLIGHT TESTS

The flight tests consisted of, first, a series of glides, with the propeller at approximate R. P. M. for zero thrust, to determine the lift and drag of the airplane at various speeds; and second, power fights with each propeller at speeds covering the practicable range of the airplane, viz, from 50 to 135 miles per hour.

In the glide tests, after climbing to an altitude of about 3,500 feet, the airplane was jockeyed to a condition of steady glide at about 3,000 feet, where the records were started. The range of speed covered was from 50 to 135 miles per hour. The time occupied by each glide, during making of records, was about 40 seconds. In each glide the throttle was closed until the indicating tachometer showed about the R.P.M. for zero thrust at a particular air speed employed, this R. P. M. being determined from a model test of the propeller.

The recording and indicating instruments gave for the gliding flights: •

1. True air speed-as determined from the velocity head recorded from the Pitot tube of the trailing bomb and from density of air as derived from altimeter record and strut temperature.
2. Angle of flight path-as recorded by the trailing bomb inclinometer.
3. Angle of wing-ss determined from record of pendulum inclinometer.
4. R. P. M.-as determined from Veeder counter attached to engine.

In the glide tests only one propeller (I) was used.
The power flights were made mainly at full throttle and consisted of runs at air speeds from 50 to 135 miles per hour with each propeller; climbing, level flight, or power dives as determined by the speed.

In addition to the full-throttle runs a number of trials at part throttle were made. These were found generally unsatisfactory, however, because of difficulty in maintaining steady conditions, and were discarded. The intake-manifold pressure, from which it was expected to deduce engine power, was found to fluctuate considerably with the slight throttle adjustment necessary to maintain uniform engine speed at a given speed of flight. Then, too, it was found that the range of $\frac{V}{n D}$ that could be covered in level fight was very small, and that at the lower speeds the power required for level flight was so small as to be below the range of the engine calibration.

In the power flights the instruments provided data for:
(a) True air speeds-from trailing bomb Pitot and air density as in gliding flight.
(b) Angle of fight path.
(c) Angle of wing.
(d) R. P. M.
(e) Intake manifold depression (not used except as indication of throttle opening).
(f) Carburetor intake temperature as determined from indicating thermometer.
(g) Air density as determined from barometric pressure and strut temperature.

REDUCTION OF DATA

No thrust gliding flights.-The essential observed and computed data for the glide tests are shown in Table I.

The angle of attack is found by subtracting the angle of the flight path from the angle of wing.

$$
348-26 t-18
$$

The airplane, with fuel, oil, and water and with pilot and observer, was weighed before tests. Allowance is made for fuel, oil, and water consumed in each flight.

Lift is taken as equal to $W \cos \alpha, \alpha$ being the angle of the light path.
The apparent drag is numerically equal but opposite in sign to $W \sin \alpha$.
True drag is apparent drag plus thrust, and thrust is derived from the thrust coefficient of a model propeller for the value of $\frac{V}{n D}$ attained in the glide test, it being rarely possible to realize the exact $\frac{V}{n D}$ for zero thrust (0.972 for propeller I).
$\frac{1}{2} \rho V^{2}$ is given in the table in pounds per square foot and is derived directly from the record and calibration of the pressure capsule connected to the pitot tube of the trailing bomb.
C_{L} and C_{D} are $\frac{\text { Lift }}{\frac{1}{2} \rho \Gamma^{2} S}$ and $\frac{\text { Drag }}{\frac{1}{2} \rho V^{2} S}$ respectively; S being taken as 284.5 square feet.

Fia. 11.-Polar dlagram of Vought VE-7 adrplane

FIG. 12.-Lift characteristic of Vought VE-7 airplano

The final coefficients C_{L} and C_{D}, plotted as a polar diagram, are shown in Figure 11, a curve representing a reasonable estimate of the average of points being drawn.

In addition the points for C_{L} plotted against angle of attack are shown in Figure 12. In drawing a curve for this plot the preference has been giren to points determined in the later glides, it being found that in the first flights the pendulum inclinometer was out of adjustment (loose pivots) and the calibration somewhat doubtful.

Power fights.-The essential observed and computed data for the power flights are shown in Table II.

As in the glides, the specific weight of the encountered air is computed from the recorded barometric pressure and the observed strut temperature, the air being regarded as dry. It is realized that the specific weights thus derived are generally somewhat in excess of the correct
ralues, as the air at Langley Field is usually very humid even at an altitude of two or three thousand feet. However, since at ordinary temperatures the difference in weight between dry and saturated air is less than 1 per cent and since the air encountered was obviously intermediate in weight between dry and saturated air, it was felt that regarding the air as dry involved no error of consequence.

Telocity is computed from specific weight and from the velocity head as recorded by the pressure capsule connected to the trailing bomb Pitot.
R. P. M. are found from observations of the Veeder counter.

Angle of flight path is recorded by the trailing bomb inclinometer and angle of wing by the pendulum inclinometer. Angle of attack may be found by taking the difference between the two angles recorded. Because of difficulty in securing consistent records from the pendulum inclinometer, a different method of determining the angle of attack, described later, was used.

Weight is determined as in the no-thrust gliding flights.
Lift, drag, and thrust are determined as follows:
A first approximation or tentative lift $L^{\prime}(=W \cos \alpha)$ is assumed, thus neglecting the lift component of the propeller thrust. From this tentative lift the observed velocity head and the area of the wing surface $\mathrm{C}_{ \pm}^{\prime}$ (a tentative lift coefficient) is computed. A corresponding $C^{\prime \prime}$ is read from the polar diagram, Figure 11, and a tentative angle of attack from Figure 12. From $C^{\prime \prime}{ }_{\rho}$ a tentative drag is computed. A tentative thrust T^{\prime}, equal to tentative drag plus $W \sin a$, is then deduced. A second approximation of lift is then determined by deducting $T^{\prime} \sin B$, the lift component of tentative thrust, from the tentative lift. B is the angle of the propeller axis to the fight path and is 2° less than the angle of attack. From this second approximation of lift a new lift coefficient, angle of attack, drag coefficient, and drag are derived.

A second approximation of thrust is determined by adding, as before, $W \sin \alpha$ to the drag.
Trials for a third approximation of drag, deduced in a similar manner, gave values differing from the second approximation by too small an atmount to be of practical consequence.

Lift and drag as.given in Table II are thus second approximations, and angle of attack is that read from Figure 12 for a lift coefficient derived from the second approximation of lift. - Likewise, the thrust of Table II is second approximation of drag+ $W \sin \alpha$.

Horsepower is derived from the calibration curves of Figure 10 as follows:
It is first assumed that during the tests the engine changed from the condition as represented by the highest calibration curre to that as represented by the lowest; that such change was gradual and that therefore at any time between the first and last flight the condition would be represented by a calibration curre intermediate between A and B, the space being divided by 32 intermediate lines and these with A and B representing 34 calibrations, each of which would show the condition of the engine for the test flight of the corresponding number. Thus test fight 17 would have a calibration curve halfway between A and B. The early test fights would have calibration curres close to A and the later ones curves close to B . It is found that this method results in less dispersion of points from a smooth power curve than if a single calibration curve is used. In other words, two tests of a given propeller, one conducted at the beginning of the flights and the other at the end, appear more consistent if to the first a calibration curve near to A (fig. 10) is applied and to the second one near to B than they do if a single calibration curve is used for both.

The horsepower for standard air and at the observed R. P. M. is thus determined from the calibration assumed for each flight, and the horsepower for the conditions of flight is derived from this through the assumed relation: $\mathrm{HP} .=C \frac{p}{\sqrt{T}}, p$ being barometric pressure, T absolute temperature at carbureter intake, and C a constant.

We then have the coefficients as previously defined:

$$
\begin{aligned}
C_{T} & =\frac{\text { thrust }}{\rho n^{2} D^{4}} \\
C_{F} & =\frac{\text { power }}{\rho n^{3} D^{3}} \\
\eta & =\text { efficiency } \\
& =\frac{\text { thrust } \times \text { velocity }}{\text { power }} \\
& =\frac{C_{r}}{C_{P}} \times \frac{V}{n D}
\end{aligned}
$$

Any homogeneous system of units may be employed in deriving the above coefficients. In Figures 13 to. 17 the values of C_{T}, C_{P}, and η, derived from the flight tests, are shown as ordinates on abscissas of $\frac{V}{n D}$. Curves are drawn which represent, as nearly as practicable, the average of the experimental spots, while, at the same time, indicating a continuous and consistent relation. Table IUI shows the values of $C_{7_{2}} C_{P,}$ and η, finally chosen as best representing the average of experimental points and through which the curves of Figures 13 to 17 are drawn.

Figures 18 to 22 show the coefficients as derived both from model tests and from full-scale tests, the model tests being those of model propeller in combination with a model plane.

discussion

At the time these tests were started it was belieyed that the least reliable data would be those resulting from the estimated performance of an engine under conditions somewhat different from those of calibration. It was thought that thrust, as determined from addition of drag of the airplane and component of weight along the flight path, would be subject to little error. It appears, however, assuming that accurate measurements would result in points falling on smooth curves, as in the case of model tests, that there is little difference in the possible error of the power and thrust determinations, the advantage being somewhat in faror of the former. It is evident from the dispersion of spots that the possible error in a single spot is considerable but it seems likely that the curves drawn in Figures 13 to 17, representing as they do the average of many determinations, should show the performance of the full-scale propellers tested within a very moderate error.

With reference to the apparent greater possible error in thrust, it may be here noted that the thrust as determined is composed of two parts, one due to drag and the other due to component of weight-along the flight path. Since the angle of the flight path is uncertain within 0.5 degree, the weight component of thrust may be in error as much as 17 pounds, in some cases amounting to 4 per cent of the total. If to this is added an error in drag, due to initial error in the polar diagram or to observation, the final error in thrust may be considerable.

If the efficiencies given in Taple II are plotted, it will be found that the efficiency curves as drawn represent a fair average of the points. The dispersion from a smooth curve is, however, generally greater than for thrust or power. The three curves as drawn are consistent; efficiency being determined by

$$
\eta=\frac{C_{F}}{C_{P}} \frac{V}{n D}
$$

Referring to Figures 18 to 22, it may be seen that both thrust and power coeffcients as determined from the flight tests are from 6 to 10 per cent more than those derived from model tests, the mean difference being about 8 per cent. The difference appears too consistent and of too great an amount to be chargeable to experimental or accidental error. In the case of

Fro. 13.-Propeller B^{\prime} fall scale with VE-7 airpiane

Fia. 15.-Propeller I full scale with VE-7 shrptone

Fic. 14.-Propeller D^{\prime} full scale with VE-7 ifplane

Fig. 16.-Propeller K^{\prime} full scale with VE-7 airplane

Fia. 17.-Propeller L/full scals with VE-7 alrplane

Fis is.-Propeller B^{\prime}

Fia. 19.-Propeller D^{\prime}

Fig. 21.-Propeller K^{*}

Fia. 20 -Propeiler I

Fig. 22.-Propeller \mathbf{L}^{\prime}
efficiency the difference is considerably less but is also generally consistent. The full-scale propellers show slightly higher peak efficiency than the models and slightly lower efficiency at large slip. The difference is generally less than 3 per cent, in one case only, propeller I, being 4 per cent or more.

There appear to be three possible causes for a somewhat consistent difference between the results of these full-scale and model tests.

1. Scale effect.-The linear scale ratio of the full-size propellers and the models is 2.72 . The relocity of advance for the flight tests is generally about three times that for the models. The $I 7$ for the sections of the full-size propellers is thus about eight times that for the models, the mean model ralue being about 50 (ft.-sec. units). If the formula

$$
L_{\mathrm{c}_{2}}=L_{\mathrm{c}_{1}}+.057 \log _{10} \frac{v_{1} I_{2}}{v_{1} l_{\mathrm{t}}} \text { (Ref. 1) }
$$

is applicable, the increase in lift coefficient for the full-scale propeller sections, due to the higher $I T$, would be such as to increase the thrust and power about the 8 per cent experienced.
2. Difference in the goemetry of the full-scale and model tests.-In the case of the model propellers the propeller shaft is parallel to the direction of flight. The angle of attack is constant at 2°.

In the flight tests the angle of attack varies between 2° and 12° and the angle of the propeller shaft to the flight path between 0° and 10°. The propeller is thus generally in yaw; only a little at small slip (near peak efficiency) but appreciably at large slip. From such data as are available it appears that the effect of yaw should be to increase both power absorbed and thrust developed. The wider difference between the model and full-scale tests at extreme slip (greater yaw on full-scale) may thus be explained.
3. Lack of complete similarity of full-scale and model airplanes.-It will be noted by reference to Figure 24 that in the model airplane the tail surfaces and rear portion of the fuselage are omitted. This was unavoidable with the model propeller dynamometer as constructed. It appears, with respect to power absorbed, that tail surfaces and completed fuselage would have a qualitative effect similar to that of the model as used, but much less in amount. A slight increase in power for small slip and a slight decrease for large slip might thus be expected, as is shown in Part II. However, a considerable body of observation with other models goes to show the rery rapid falling off of influence on the propeller with increase of distance between the propeller and the obstructing surface or body, and points definitely to the conclusion that the influence of surfaces giving generally a frictional drag and at distances of one and one-half diameters of the propeller or more would produce an effect on the propeller, presumably within the error of observation.

Likewise it seems unlikely that the slipstream interference offered by the tail surfaces would have any considerable effect upon the shaft thrust as exerted by the model propeller. As is shown in Part II, the thrust credited to the model propeller is equal to the shaft thrust minus the increase or augment of model drag. The shaft thrust might be expected to be larger for the complete model than for the partial model, perhaps by the same order of quantity as with the power. It is not clear what would be the result with regard to the augment of drag, since the slight degree of truncation of the fuselage would tend to offset the influence of the lacking parts of the model, thus perhaps leaving the augment but little changed.

In any case, however, and as noted abore, there seems good observational ground for considering the influence of the omitted portions of the model on the propeller performance as presumably within the limit of observational error and in no case apparently sufficient to account for the measurable and consistent difference between model and full-scale results.

Further flight tests and corresponding tests with model propellers and airplanes should be conducted. For the flight tests it is most desirable that simple and reliable thrust and torque meters be developed. The shaft thrust in flight, although not directly applicable to the determination of useful work and consequently of efficiency, would be comparable with a like quan-
tity determined from a model test. The scale effect factor would thus be given a more definite ralue than if the indirect method of determining thrust, employed in the tests described, is used. The adrantage of using a simple and dependable torque meter over relying upon a calibrated engine is obvious.

Indications of somewhat closer agreement between model and full-scale test results are given by model tests conducted at a later date. These tests were too few in number and of insufficient extent to be conclusive and were made too late for inclusion in this report, which was in page proof. They give, however, practically the same power coefficients as previous tests, but thrust coefficients generally somewhat greater, resulting in efficiencies over the working. range, from 1 to 3 per cent higher.

It is obvious, in view of the uncertainty in the power developed by the engine, that the power coefficients for the full-scale tests might be made measureably less, and thus the efficiencies for the full-scale propellers also somewhat increased.

The increase in thrust coefficients for the model tests, the decrease in power coefficients for the full-scale tests, and the increase in efficiency for both would tend to bring the full-scale and model results somewhat closer together, and possibly make them as nearly the same as could be expected, considering the experimental errors necessarily involved.

PART II

MODEL TESTS

INTRODUCTION

The model research part of this general investigation was carried on, as noted, at the Aerodynamic Laboratory of Stanford University. There were supplied to the laboratory

Chord: 20.38". Gap: 20.55 ${ }^{\prime \prime}$. Stagger: 4.18" Angle of wing setting: Opper wing, $1^{\circ} 45^{\prime}$; lower, $2^{6} 15^{\prime}$.

Fig. 23.-Wing tunnel model of VE-7 airplane drawings and specifications for (five propellers with dimensions and characteristics as shown in Figures 1 to 5 , together with a drawing (fig. 23) showing the central portion of the Vought airplane. The scale ratio between model and full size was 0.3674 , thus giving a diameter of close to about 3 feet for the model propellers and of 21 inches for the wing chord of the model plane. The model wings were extended in span on each side approximately 18 inches beyond the blade tips of the propellers, and thus included beyond any question all parts of the model which could in any direct way react with the propeller or be influenced by it. It will also be noted from the scale ratio that this 6 feet of model wing spread represents about 16 feet on the airplane, or some 47 per cent of the total wing spread.

A cut of the model with one of the propellers in position is shown in Figure 24.
Due to the construction of the dynamometer and wind tunnel, the rear extension of the fuselage and tail surfaces were necessarily omitted. The fuselage was faired into the body of the dynamometer with only such clearance as to insure complete freedom under observation.

The fuselage was also hollow, with air entering through the mesh representing the radiator and streaming aft between fuselage and dynamometer body, thus reducing the effect of the truncation at the rear end.

For some comment as to the possible or probable influence of the omitted portions of the model, see Part I, "Discussion."

In an investigation of the character proposed it is clear that the airplane structure, viewed as an obstruction in the wake of the propeller, must also be riewed as a necessary part of the airplane and not as an appendage which might be installed or removed at will.

From this point of view we may develop as follows the form of analysis suited to these conditions.

Assume the model and the propeller in operative relation. The propeller under specified conditions, as determined by a given value of $\nabla / n D$, develops an actual thrust (pull) T. In so doing, however, it increases the wind reaction of the air on the model by some amount A, which may thus be termed the augment of resistance due to the operation of the propeller. If then from the total thrust T there be subtracted the augment A, there will remain a residual or net thrust ($T-A$), which alone can be credited to the propeller as a useful final product.

Then if the relative air speed of the airplane is ∇, the net or useful power will be measured by the product ($T-A$) V. Again, if, in order to realize these conditions, the actual torque and revolutions per second required are Q and n, the input or shaft power will be measured by $2 \pi n Q$.

We may then define "propulsive efficiency" as the quotient ($T-A$) $\nabla \div 2 \pi n Q$, and if we denote this efficiency by η we shall have

$$
\eta=\frac{(T-A) V}{2 \pi n Q}
$$

From a slightly different riewpoint we may imagine the propeller at the extremity of a shaft, say 1,000 feet in length, extended out ahead of the airplane. In such case we may assume the interaction between airplane and propeller as nonexistent. Both propeller and airplane will operate as in free air, and the resistance of the latter will be the towed or free-air resistance at the given speed. Likewise the thrust (pull) will equal the resistance,

Fic. 24.-Model propeller with model of VE- T alrplane showing method of support and the propulsive efficiency as defined above (with $A=0$) will be the same as the true propeller efficiency in free air. If then we imagine the shaft to be gradually shortened in, there will begin to develop in due time an interaction between the airplane and the propeller, as a result of which both the thrust (pull) developed and the resistance to be overcome will increase. Finally, with the propeller and airplane in their normal operative relation, we shall find a notable increase in both, and if the engine is driven at such speed as will serve to give the same air speed of the airplane as before, then we may consider that the same net result is accomplished. This useful power will evidently be $(T-A) V$ and the input power to accomplish this will be $2 \pi n Q$, the power resulting from the actual n and the actual Q. The ratio between the two will then gire the propulsive efficiency under the given conditions of operation as defined by the actual value of $\bar{F} / n D$. It should be noted that the value of n and hence of $V / n D$ for a given air speed with the propeller and airplane interacting will not, in general, be the same as that for the ideal case without interaction. The attempt to compare the propulsive efficiency at the value of $V / n D$ in the
actual case with interaction with the propeller efficiency at different value of $V / n D$ without interaction greatly complicates the problem, however, and it is believed that-for present purposes the comparison of the curve of propulsive efficiency on an axis of $\mathrm{V}^{7} / n D$ with the corresponding curve of propeller efficiency (free) on its axis of $\mathrm{V} / n D$ will show sufficiently well the character and extent of the interaction between the airplane and the propeller in its effect on the efficiency of operation.

In order to realize the condition outlined in the preceding analysis, the program of measurements to be made on the model airplane and propeller must comprise the following:
(1) Wind resistance tests of the model airplane alone.
(2) The usual tests of the propeller alone, giving for a series of values of $\mathrm{V} / n D$ ralues of . thrust, torque, and efficiency.
(3) Tests of the combination, including resistance measurements on the model and the usual measurements for the propeller. In the set-up for the test in combination the propeller and model are maintained in their proper geometrical relation but with complete independence of suspension and control, so that all measurements may be made independently and thus give ralues for the propeller as influenced by the model and for the model as influenced by the propeller.

SET-UP OF APPARATUS AND MODEL

In order to realize this program of measurements, the general character of the apparatus employed with the set-up of the model may be briefly indicated as follows:

It will be recalled that the wind tunnel at Stanford University is of the Eiffel type, with a throat diameter of 7.5 feet and an experiment chamber with a length of 12 feet.

The dynamometer as indicated in the cut of Figure 24 consists essentially of a slender tapering barrel some 9 feet long mounted on knife-edges as a cradle dynamometer and with the model propeller motor located in the larger, down-wind end of the barrel, faired in as a part of the barrel form. The motor is connected to the propeller through a special form of drive which transmits torque with longitudinal freedom. This general arrangement provides for the direct measurement of thrust and torque which are weighed on beam scales graduated, respoctively, in hundredths of kilograms and in thousandths of kilogram-meters.

In order to provide for the independent measure of forces on the propeller model and on the airplane model, the latter was suspended by piano wires from the ceiling of the experiment chamber, the length of suspension being about 7 feet. This arrangement is shown in the cut of Figure 24.

For the direct measurement of air forces on the model, a piano-wire bridle was attached to the two sides of the model at shaft level and thus accommodating the propeller between the two sides of the bridle leads. From the apex of the triangle thus formed a single piano wire was led forward (up wind) through the honeycomb baffle, through and beyond the tunnel inlet to the end wall of the building, and over a carefully fitted-up pulley down to a gross weight on the plate of a beam scale weighing to hundredths of a pound. Thus by subtraction the pull on the model due to air flow may be directly weighed on the scale.

In order, however, that the reading of the scale may be made to indicate air forces and nothing else, it is necessary that the model, when in the observing condition, should hang in the free gravity position; otherwise there will be a gravity component, plus or minus, included in the scale reading. In order to eliminate any such component, the following operative routine was followed.

The model, without wind and disconnected from the piano wire leading to the scalo, was allowed to hang freely under grarity, and while so hanging a transit instrument, set up abreast of the model and at the side of the experiment chamber entirely out of the wind stream, was adjusted with vertical cross hair on a reference mark on a paper scale attached to the model. Then, during the observations, the model was brought, by suitable fine-motion adjustments, exactly to this initial or zero position, with the mark on the vertical cross hair. Under these conditions the scale readings may be properly interpreted as giving (by subtraction from the gross) the actual wind forces on the model.

It is obvious, furthermore, that this arrangement may be used either with or without the propeller, and thus provide for a męasurement of air forces on the model, either in a homogeneous air stream or as influenced by the operation of the propeller placed with any desired clearance between itself and the forward edge or plane of the model.

OBSERVATIONS

In accordance with the general methods indicated in the preceding section, observations were made covering the various elements of the problem. These observations, with the resulting values of the various coefficients, are given in Tables IV and V.

In the reduction of these observations, the following coefficients hare been employed:
$C_{T}=$ thrust coefficient (propeller alone)
$C_{T}=$ thrust coefficient (propeller with plane)
$C_{P}=$ porrer coefficient
$\eta=$
Graphical representations of these results are shown in the diagram of Figures 25 to 29.
In these diagrams the individual values of the various coefficients are represented by the plotted points. A smooth curve as best indicating a continuous and consistent lav is then drawn through and among these spots, and such curve is accepted as the best indication of the Iaw relating the values of the coefficient to varying $\bar{F} / n D$. The values of the effciency η are then derived from the smooth curves of these coefficients and are plotted as shown in the various diagrams. Tables VI and VII give, for various values of $\Gamma / n D$, the values of the coefficients and resulting efficiencies finally chosen as best representing the continuous and consistent law above referred to.

DISCUSSION
(1) It will be noted in all cases that the presence of the obstruction behind the propeller has the effect of moving to the right on the axis of $V / n D$ the point for zero thrust. This condition is readily seen to follow as a result of the slowing down of the column of air actually operative on the propeller as compared with the air passing freely at the side of the obstruction. For any given value of wind velocity as based on the latter the air column acting on the propeller will be slowed down, the value of n for zero thrust will be decreased, and the value of $\bar{\sigma} / n D$ correspondingly increased.

As will be noted from the diagram, the amount of this shift on the $\nabla / n D$ scale is 0.05 or less for the various propellers employed and for the amount of obstruction represented by the VE-7 model.
(2) From this shift of the point for zero thrust it naturally results that the curve for thrust or thrust coefficient for the combined case as compared with the propeller alone starts farther to the right and near the start lies above that for the propeller alone.

This means that for large values of $V / n D$ the curves for propeller with model will be above that for propeller alone, as noted in the various diagrams. (Figs. 25 to 29.)

As the slip becomes greater, however, and the values of $\nabla / n D$ become less, this excess decreases, and the two curves ultimately meet and cross. For the conditions represented by the present research this point of crossing is seen to be not far from the value of $V / n D$ forbest efficiency.

Beyond this point the curve for thrust coefficient lies below that for the propeller alone, thus shawing, for this part of the range, a definite loss in value for the propeller in operative position forward of the model.
(3) It thus appears that for large values of $V / n D$ the presence of the model results in a definite increase in the net propulsive effort derived from the propeller, while for moderate and small values the reverse is the case, and, furthermore, that in general the latter condition (loss of net propulsive effort) obtains over that part of the range which must be employed in practical cases.
(4) Similarly, as for the thrust coefficient, the torque, and hence the shaft power coefficient for the propeller with model, is increased for large values of $V / n D$ and decreased for small values, with a crossing point usually at a smaller value of $V / n D$ than for the thrust coefficient. These conditions are plainly seen in the diagrams of Figures 25 to 29.

Ftii. :

Fin 2i-Motel propeller I

Fig 2s.-Model propeller D^{\prime}

Fia. 28-Model propeiler \mathbf{F}^{\prime}

Fig. 29.-Model propeller L
(5) In consequence of these relative changes in the values of the thrust and power coefficients, it results that on the axis of $V / n D$ the point of zero efficiency (for large values of $V / n D$) is carried to the right (larger values of $\nabla / n D$) for operation with the model and that generally for large values of $V / n D$ the propulsive efficiency is greater with the obstruction than with the propeller alone. On the other hand, for small or medium values of $V / n D$ the propulsive effciency for operation with the model is less than that for the propeller alone.

The two curves of efficiency thus cross and the point of equal values is seen to be, in general, at a value of $V / n D$ somewhat larger than that for the maximum value on either curve.

Likewise it is seen that the maximum ralues of the propulsive efficiency for operation with the model are in all cases less than those for the propeller alone, and in particular that this loss in efficiency is carried over the range of values of $V / n D$ from those for maximum value of efficiency along the direction of decreasing values (increasing slip). Due to limitations in diameter, it results in the normal case that propellers must be used over a range of values of $\Gamma / n D$, beginning with a large value somewhat less than that for maximum efficiency and extending over a small range in the direction of decreasing ralues. It thus follows that the air propeller in the normal practical case must be used over a segment of the efficiency curre beginning near but somewhat to the left (as here plotted) of the maximum value and extending to the left over a range of decreasing values of efficiency and hence over a range where the effect of an obstruction, as represented by the nose of the fuselage or other part of the airplane structure, will be to decrease the propulsire efficiency as compared with that for the propeller alone at the same value of $V / n D$.
(6) The amount of the loss in propulsive efficiency over the working range is seen to rary between some 3 and 5 per cent, and so far as these present observations indicate such loss is greater with high pitch ratio than with low and with narrow blades than with wide.

While these conclusions are in general agreement with those drawn from other similar investigations, the number of variant forms in the present research is too small to warrant the drawing of any final or definite general conclusions regarding the character of the relation between such loss in propulsive effciency and the detailed characteristics of the propeller form.

TABLE I
GLIDE TESTS

$\begin{aligned} & \text { Flight } \\ & \text { and } \\ & \text { Tun } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { pade } \\ \text { path } \end{gathered}$	$\begin{aligned} & \text { Angle } \\ & \text { of } \\ & \text { wing } \end{aligned}$	$\begin{aligned} & \text { Angle } \\ & \text { aftack } \end{aligned}$	Weight	Lift	$\begin{aligned} & \text { Appar- } \\ & \text { entt } \\ & \text { drag } \end{aligned}$	$1 / 2 \rho \mathrm{~V}^{2}$	$\begin{aligned} & \text { Specific } \\ & \text { weight } \\ & \text { of alr } \end{aligned}$	Velocity It/seo.	R.P. M.	$\frac{V}{n D}$	Thrust	$\begin{aligned} & \text { True } \\ & \text { drag } \end{aligned}$	C_{L}	C_{D}
1-2	-0.2	3.9	10.1	2,070	2,053	223.6	9.60	0.0688	$0 ¢ 8$	745	0.085	10.0	23	0.757	
1-8	-6.6	1.1	7.7	2,063	2,040	237.0	1220	. 0888	108.9	830	. 916	2.1	246	. 0.01	. 0.0712
14	-6.6	-0.8	6.3	2,056	2.042	238.3	1480	. 0688	117.7	965	. 896	347	271	. 487	. 0646
1-5	-7.6	-2.8	4.8	2,049	2,031	271.1	19. 10	. 0088	133.6	1,110	. 892	489	820	. 876	. 0.591
-1-7	-9.2	- 5.7	3.5	2,042	2,016 2,004	3286 385	${ }_{28} 980$	-0688	11966	1,200	. 918	385	${ }^{386}$	- 297	. 0540
1-7	-10.0	-7. 6	2.4	2,035	2,004	388.3	${ }_{33}^{280}$	-0088	184.1	1,300	. 828	35.7	889	. 248	. 0475
1-8	-11.2	-8.2	2.0	2,028 2,020	1, 1889	${ }^{3931}$	${ }_{35} 380$. 06858	177.9	1,415	. 824	47.7	449	. 208	. 0482
2-1	-6.0	-5.1	I1I	2,070	2059	2168	${ }^{3} 10$. 00691	${ }_{920}$	${ }^{1} \mathbf{7} 40$	-814	15.8	292	. 194	. 05388
2-2	-6.8	1.7	8.5	2,083	2,049	24.3	1210	. 0702	106.3	820	:845	$\underline{0.2}$	258	. 598	. 0739
2-3	-8.5	- 41	4.4	2,056	2033	303.9	2280	. 0702	$142.8{ }^{\text {a }}$	1,180	. 800	56.7	861	. 322	. 0571
$2-4$	- 0.8	-6.2	3.8	2,049	2,019	348.7	27. 50	. 0714	157.5	1,300	. 881	69.6	419	. 259	. 0538
2-5	-11.0	-8.7	2.9	2,042	2,000	410.7	34.30	. 0614	175.9	1,420	. 910	63.7	476	. 208	. 0489
2-6	-143	-12.0	23	2.035	1.972	502.6	43.20	. 0725	105.7	1. 580	. 910	78.6	881	. 161	. 0475
22-2	-7.4	7.7	15. 1	2,000	2038	288.6	6. 76	. 0695	79.1	624	. 932	7.5	274	1. 070	. 1480
22-3	-5.8	8.8	9.7	2,006	2,055	208.9	${ }^{9} .62$. 0700	94.0	762	. 919	15.1	224	. 754	. 0822
22-4	-6.7	-0.1	0.6	2002	2,038	2046	12.74	. 0702	108.1	828	. 959	4.4	209	. 808	. 0559
22-8	-6.9	-2. 1		2,058	2,043	247.2	16. 11	. 0602	122.5	976	. 915	27.0	974	. 447	. 0800
29-6	- -7.1			2,054	2,038	203. 9	19.91	. 0705	1348	1, 100	. 900	43.6	298	. 361	. 0528
23-3	-11.3			2,064	2,024	40.8	38.20	. 0700	188.	${ }_{1}{ }_{1} 1838$. 917	48.5	452	. 238	. 0588
23-4	-18.5			2,059	2,002	450.6	30.60	. 0502	188. 2	1,436	. 838	35.6	516	183	. 0498
	16.4			2,054	1,881	845.8	48.40	. 0717	187.4	1,632	. 947	31.0	677	161	. 0469
$24-2$	-7. 1	7.1	14.2	2,070	2,054	255.8				55.6	. 988	-282	224	L 123	. 1288
24-3	-6.1	8.6	11.7	2,068 2062	2,054	2198	7.88	. 00095	821	605	- 280	11.1	231	. 989	. 1220
24-5	-6.0	1.6	7.6	2,058	2047	215.1	10.39	. 0698	97.9	782	. 808	20.0	235	. 888	0.090
24-6	-7. 1	0.0	7.1	2,054	2,098	258.7	12.21	. 0698	109.1	869	. 907	23.6	278	. 589	0805
25-2	-6.9	-1.1	5.8	2,070	2,055	248.5	14.30	. 06997	114.0	892	. 246	10.6	259	. 507	0040
26-3	-7.4	-2. 5	4.9	2,066	2,049	2881	10.80	. 0088	1228	000	. 998	15.8	288	. 444	. 0611
25	-7.6	-8.2	4.4	3,062	2,044	2728	18.50	. 0698	130.6	1,024	- 887	18.6	291	. 290	. 0.055
25-6	-8.8	-5. 4	3.4	2,058	2,030	38	22. 50	. 00.08	186.4 143.5	1,103	. 962	12.18	300	.8518	. 0.0517
20-2	-8.1	-6.4	1.7	2,070	2,049	${ }^{2915}$	25.20	. 0709	151.3	1216	. 914	41.5	833	. 287	. 0468
20-	-112	- 0.0	22	2,086	2027	4012	29.90	. 0711	184.5	1,816	. 918	40.9	448	. 239	. 0529
20-5	-13.1	- 11.15	2. 2	2,002 2,058	2,008 1,988	467.3 632.6	36.90 42.90	. 0714	182.4 198.1	1,438 1,592	. 934	39.6 88.1	${ }_{607}^{607}$. 182	.0485 .0509
26-6	-15.4	-13.2	2.2	2,054	1,080	845.8	47.00	. 0710	206.3	1,684	. 911	880.6	${ }_{6}^{687}$. 148	. 04048

TABLE II
POWER FLIGHT DATA
PROPELLER B'

propeller n^{\prime}

PROPELLER I

COMPARISON OF TESIS ON ATR PROPELLERS

TABLE II-Continued
POFER FLIGET DATA-Continned
proprifere \mathbf{r}^{\prime}

$\begin{aligned} & \text { FIlght } \\ & \text { and } \\ & \text { run } \\ & \text { No. } \end{aligned}$	Bpeciffe proinds per ft. ${ }^{2}$	$\begin{aligned} & V \\ & \text { feet per } \\ & \text { second } \end{aligned}$	R.P.M.	$\begin{aligned} & \text { Angle } \\ & \text { Ang } \\ & \text { of } \\ & \text { fifght } \\ & \text { path } \end{aligned}$	Angle attack	HT	\underline{L}	D	T	HP.	S/aD	C_{r}	C_{P}	T
			1785		11.8	2009	1,908	218	623	169	0.337	0.0775	0.0491	0.632
14-2	${ }^{0.0654}$	83.0	1,732	10.5	8.8	2004	1,963	220	595	164	. 394	.0763	. 0188	616
14-4	. 0673	111.5	1,768	85	6.2	2,059	1,994	246	${ }_{5}^{550}$	167	- 404	0851	0459	000
14-5	. 0684	125.8	1.792	7.0	47	2,054	2,002	372	598	172	. 680	. 05580	. 0452	. 744
14-6	. 0667	142.5	1,808	47	3.6	2,049-	2,028	320	492	102	. 0		. 0501	. 0
14-7	. 07865	1640	T, 785				2,063		477	175	. 630	.0535	. 0427	. 814
15-2	. 0687	164.0	I	-3.4	18	1,069	2,006	525	402	182	7175	. 0407	. 0379	. 78
15-5	. 06002	2045	I, 894	-6.8	1.4	3,004	2,054	810	387	192	. 7675	. 0351.	-6142	. 76
2201	.0060	167.8	1,916	0	2.2	2074	2,072	465	485	204	-643	.0334	. 04028	C82
22	.0745	145.2	1, 832	38	3.1	3,069	${ }_{2}^{2} 064$	359	406	197	. 823	. 0139	. 0398	-603
29-3	. 0738	163.0	${ }_{1}^{1,1824}$	-0.8	2.9	2	${ }_{2}$	611	407	198	. 674	. 0.374	. 0971	. 650
29-4	. 07278	185.0	IT ${ }^{1}$	-6.1	1.0	2054	2,050	5%	412	189	. 731	. 0378	-0030	. 768
296	. 07828	2025	2,004	-7.0	1.4	9049	2,038	622	372	198	- 789	-0314	. 04595	. 715
29-5	. 0760	170.0	1,916	0	21	3.044	2.043	478	470	204	-652	.043:	. 0403	. 694
$30-1$. 0764	1680	1,968	${ }^{0}$	22	2.075	1,073	$\stackrel{480}{210}$	788	186	-685	. 0808	-046	. 536
$30-2$. 0748	76.7	1,768	12.	11.3	2, 065	1.928	219	687	182	-382	.0788	-0186	. 820
$30-3$	-0746	8026	1,742	11.4	6.2	2,090	1,970	243	650	187	-434	. 0778.1	${ }^{00471}$	- 668
30-4	-0756	120.0	1,788	9.4	4.6	2,053	1,998	279	${ }^{156}$	150	. 402	O8ist	.0460	-710
30-6	. 0756	134.0	1, 8 ± 8	7.2	3.6	2,050 2 2	2,017 2,044	322 4 4	579 474	185 206		.0488	.0431	. 788
30-7	. 0163	169.5	1,810	0	2.1	2,045	2,044	44	4.4	191	0		. 0518	. 0
13-1	. 0768	0	1,720											

protiture i'

		161.1	1,40	0.0	24	2074	2000	428	429 '	176	0.722	0.0554	0.0567	0.705
18-1	0.0074	${ }_{80.8} 8$	I 460	10.6	10.8	2,099	1, 893	215	585	153	-406	. 0892	0 006	668
		88.7	1,4i5	9.8	8.3	2,064	I, 967	223	574	155	. 682	. 0044	0097	-626
18-3	.0720	108.1	1,492	8.0	6.1	2,059	2,000	247	534	155	${ }_{5} 53$	-003	.0632	. 65
18-5	.0728	124. 6	1. 544	6.0	45	2,054	2,025	286	488	${ }_{167} 161$. 845	. 0007	.0588	. 736
18-5	. 0735	1*0.0	1,595	4	3.3	${ }^{2} \mathbf{2}, 044$	2,042	488	439	$\underline{151}$. 728	. 0559	. 0549	. 741
-7	. 0743	1845	1,660	0	23	3,044				183			. 0080	. 0
18.8		${ }_{102}$	${ }_{1}$	0.8	24	2,074	2,071	431	480	181	. 710	-0670	-0537	. 784
-	. 070723	162.5 156.1	$\stackrel{1}{1,684}$	24	27	3,009	2,061	880	477	170	- 780	. 00649	. 05839	. 788
10-3	.0729	170.1	1,692	-a3	22	2,064	2.062	458	447	178	-756	. 0475	0500	. 718
$10-4$. 0742	I79. 5	1,740	--2.7	1.9	2,089	2.05	450		180	. 732	. 0562	. 0541	\%60
10-7	. 073	I07. 5	1,680	0	22	2.044	2.042	450	450	180	. 73	. 1002		

TABLE III
FINAL ADJUSTED COEFFICIENTS, FULL SCALE TESTS
PROPELLER B^{\prime}

$V / n D$	C_{r}	C_{P}	\%
0.30	0.0839	0.0493	0.610
. 35	. 0700	. 0486	. 869
. 40	. 0737	. 0475	. 620
. 45	. 0678	. 0461	. 062
. 50	. 0817	. 0441	. 700
. 55	. 0563	. 0420	. 78
. 00	. 0485	. 0395	. 737
. 65	. 0418	. 0370	. 735
. 70	. 0310	. 0340	. 700

PROPELLER D^{\prime}

0, 30	0. 1070	a. 0680	0.485
. 85	. 1013	. 0087	. 617
. 40	. 0980	. 0088	. 564
. 45	. 0808	. 0678	. 605
. 50	. 0850	. 0662	. 642
. 55	. 0798	. 0648	. 677
. 00	. 0740	. 0830	. 705
. 65	. 0879	. 0005	. 728
. 70	. 0815	. 0578	. 740
. 75	. 0550	. 0545	. 787
. 80	. 0488	- 0510	. 780
. 85	. 0416	.0471	. 750

PROPELLER I

0.30	0.0999	0.0611	0.490
.35	.0948	.0608	.546
.40	.0900	.0600	.600
.45	.0842	.0588	.644
.50	.0788	.0573	.685
.55	.0728	.0565	.720
.60	.0683	.0532	.748
.05	.0595	.0507	.762
.70	.0520	.0275	.765
.75	.0447	.043	.768
.80	.0372	.0404	.736

PROPELLERK'

0.30	0.0822	0.0495	0.488
.35	.0783	.0490	.560
.40	.0744	.0482	.818
.45	.0698	.0472	.665
.50	.0049	.0462	.703
.55	.0593	.0477	.730
.60	.0530	.0430	.740
.65	.0468	.0409	.739
.70	.0400	.0386	.727
.75	.0329	.0367	.680

PROPELLERL'

Q 30	0.1080	0.0710	0.450
. 35	. 1030	. 0710	. 508
. 40	. 0995	. 0705	. 568
. 45	. 0950	. 0698	. 612
. 80	. 0896	. 0088	. 055
. 55	. 0829	. 0662	. 688
. 60	. 0755	. 06334	715
. 65	. 0678	. 0600	. 785
. 0	. 0596	. 05860	. 74
. 75	. 0504	. 0512	. 78

TABLE IV
TEST DATA-MODEL PROPELLERS ALONE
PROPELLER B'

No.	$\frac{1}{2} \rho V^{\prime \prime}$	F	R.P.M.	T	Q	V7nD	C_{T}	$C_{P_{1}}$
1.	2842	47.71	1085	0.0	0.705	0.844	0.0	0.0196
	3. 106	51.80	1278	1.323	1207	. 782	. 0134	. 0245
8.	2.610	47.42	1188	1.323	1124	. 768	. 0153	. 0285
4.	${ }^{3.114}$	${ }^{62} 02$	1391	2977	1. 694	. 718	. 02880	. 0239
	2. 638	47.78 42	1320 1550	2.977	1.618	. 651	. 0279	- 0309
	3.218	88.88	1702	5.292 8.269	3.275	. 6590	. 00458	. 033295
	2.74	4845	1684	8. 269	3. 131	. 659	. 04388	. 03631
	2.764	48.95	1850	11. 907	$4.18 t$. 608	. 0565	. 0389
	2.894	50.10	2071	16. 200	6.371	. 664	. 0819	. 0412
	3. 578	65.79	2569	20.790	8. 650	. 417	. 0688	. 0128
12	3. 064	51.63	2813	20.790	8	. 385	-0728	. 0138
13.	3. 184	5239	2811	33.075	10.620	. 364	. 0662	0434
	. 281	15.68	2101	20.750	5.807	. 148	. 0938	.0435

PROPELLER D^{\prime}

PROPELLER I

PROPELLER K'

1.	3. 191	80.85	1090	0.0	0.615	0.033	0.0	0.0163
	3.245	5286	1262	1.323	. 983	. 846	. 0162	. 0247
	3.368	63.24	1403	2.977	1,498	. 268	. 0290	. 0306
	3.348	53.80	1574	5. 298	2197	. 684	. 0410	-0957
	3.411	64. 30	1777	8.209	3.070	. 611	. 0503	. 0390
	3.479	55.10	2156	14.820	4.009	. 51	.0629	. 0429
	3.042	51.28	2389	21.188	6.308	429	. 0712	. 0445
	2.992	50.86	2618	20.790	7.710	. 889	. 0751	. 0458
	3.051	51.29	2850	33.075	2252	. 260	. 0781	. 0455
	. 377	18.02	2677	33.075	E. 285	. 140	. 0968	. 0420

PROPELLER L'

	8.042	50.31	1058	0.0	0.633	0.958	0.0	
2.	2992	49.9	1143	1.323	1086	0.854	0.0188	. 0.0238
	3.065	50.63	1288	297	1. 180	. 786	.0343	. 0403
	3.141	51.28	1418	5. 292	2.619	. 722	. 0458	. 0505
	2. 022	51.55	1458	6.960	2.646	. 704	. 0331	. 0193
	3.227	51. 91	1690	8. 269	3.416	. 653	. 6807	-0.0525
	3.227	51.02	1768	11. 790	4.544	. 588	. 0717	. 0505
	3.339	52.87	1964	18.200	5.824	. 638	. 0782	. 0588
	3. 533	54.38	2174	21. 188	7. 834	. 500	. 0838	-0805
	${ }^{2} 5382$	54. 83	2366	28.790	8.983	. 464	.0893	- 0682
	3.645	55.31	2020	35. 278	11.109	- 422	- 0059	0836
	3. 686	55.81	2852	44.000	13.200	. 390	. 1009	0653
13.	. 368	17. 63	2188	33.075	7.965	. 161	. 1281	. 0651

TABLE V
TEST DATA-MODEL PROPELLERS WITH MODEL VE-7
PROPELLER B^{\prime}

No.	$\frac{1}{8} \rho T$	y	R.P.M.	T	Aug.	Q	$V / n D$	C_{7}	$C_{P I}$
1	2.695	46.24	098	0.0	0.0	0. 562	0. 888	0.0	0.0180
	2.937	50.16	11182	1.323	. 160	1. 028	. 808	. 0182	. 02835
	2.626 8.020	40.20	1107.	1.323	. 214	. 948	. 818	. 0144	. 0248
	8.020 8.800	50.87	1317 1227	2. 2.877	. 8208	I.	. 742	. 02278	. 020804
	2. 600	458. 96	1227	2.977	. 8880	1. 2800	. 7198	. 02788	. 03037
	${ }_{2}{ }^{3} .0020$	46.28	1387	5. 2022	. 670	2. 120	. 641	. 0303	. 0854
8	3.024	80.91	1627	8. 209	. 850	8046	. 601	. 0454	. 0374
	2800	4688	1057	8. 208	. 008	2.956	. 674	. 0482	. 0388
10.	\% 8.041	5105	1800	11910	1150	4.042	. 812	. 0638	. 0408
11.	.- 2591	56. 89	1751	11.910	1.221	\% ${ }^{951}$. 14	. 05559	. 0415
12.	8.116	51.72	1909	16.210	1.610	${ }^{8} 167$. 488	. 0585	. 0418
18.	$\begin{array}{r}1 \\ 8 \\ 8 \\ \hline 273\end{array}$	47.40 58	1955	${ }_{21}^{16.210}$	1.663 2.120	6.938 0.457	. 468	. 06812	. 040438
	82785 2065	47.56	2153	22.170	2121	Q. 215	. 424	. 00662	. 0494
16...	2.779	48.74	2370	28.780	2729	7. 612	395	. 0601	. 0440
	3.338	58.80	2029	${ }^{33.070}$	8.340	9. 284	891	. 0704	.0444
18	- 2.810	49.88	2588	33.070	2 307	9. 128	. 370	. 0717	. 0442
18.	. 2364	45.08	2870	37.480	3.764	9. 728	. 324	. 0785	. 0444
20	\bigcirc	11.12	1844	22.050	2.340	4.412	. 126	. 0940	. 0421
PROPELLER D^{\prime}									
	2840	47.89	805	0.0	0.0	0.274	1. 105	0.0	0.0168
	2.74	48.61	1050	1. 322	. 204	. 701	. 266	. 0232	
	2709	48.68	1108	\% 2978	. 409	1. 335	. 84	. 0409	0465
	2.648	48.08	1378	5. 293	. 638	2.057	. 728	. 0563	0548
	2.613	47.75	1576	8. 269	. 988	2. 898	- 632	. 0672	. 0588
	2786	4821	1798	11. 910	L 418	8. 929	. 571	. 0740	-0609
	- 692	48. 83	2915	16. 210	I. 873	5. 074	. 502	. 0810	. 0628
	2718	48.81	2488	21. 170	2420	6. 875	. 454	-. 0858	. 0637
	2718	48.81	2463	28.800	8.040	7. 688	. 415	. 0909	. 00652
10.	2810	48.64	2888	33.080	3.859	9. 284	. 386	. 09332	. 0040
	[788	49. 48	2888	33.080	8.808	9. 273	. 884	. 0933	. 0064
12-	. 181	12, 54	2236	27.310	8. 220	7.075	. 117	. 1100	. 0602
PROPELLER I									
	2455	45.80	948	0.0	0.0	0.360	0.872		0.0181
	8691	47.83	1087	1.323	. 299	. 851	. 880	. 0170	. 0298
	2609	4801	1218	2.977	. 434	1.371	. 792	. 0340	. 0383
	2639	48.34	1385	5. 201	. 698	2100	-899	. 0471	. 0461
5.	2705	48.01	1882	8. 270	1.012	2958	. 619	. 0070	. 0485
0	2714	48. 80.	1783	11.810	1.365	8.044	. 5650	. 08081	. 0510
	\% 8688	48, 80	1849	18. 210					
	2.639	48.71	${ }_{2}^{2170}$	21. 170	2.231 2.768		. 440	. 0871	. 050548
10.	2.723	48.44	2591	83. 070	3. 441	- 2236	. 374	. 0810	. 0552
11.	. 088	8. 65	1418	12180	1. 248	-2. 546	. 127	. 1040	. 0510
12.	. 181	12. 80	2094	20.680	2.775	5. 545	. 119	. 1048	. 0507

PROPELLER K ${ }^{\prime}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1. \& 8.837 \& 51.61 \& 1008 \& 0.0 \& 0.0 \& 0.875 \& 0.286 \& 0.0 \& 0.0134 \\
\hline 2 \& \({ }^{2} .644\) \& 4784 \& 1096 \& \({ }_{2}^{1.328}\) \& \({ }^{-602}\) \& \({ }^{.788}\) \& . 888 \& . 010285 \& . 02036 \\
\hline \& - 709 \& \({ }_{47.92}\) \& 1455 \& 6. 813 \& . 814 \& 2.044 \& 680 \& . 0418 \& :0981 \\
\hline \& 3.138 \& \({ }_{62}^{68}\) \& \({ }_{1752}^{174}\) \& \({ }_{8}^{8.270}\) \& \({ }_{\text {L }}^{1.150}\) \& 2887 \& . 618 \& . 0.0774 \& . 0402 \\
\hline 7 \& -2548 \& 67.41 \& \({ }_{1917}\) \& \({ }^{8.1260}\) \& \({ }^{1.4883}\) \& 2812 \& 547 \& .0539 \& :0621 \\
\hline \& \% \({ }^{\text {P }}\) \& ¢8.28 \& \({ }_{2185}^{185}\) \& 11.910 \& 1.478 \& 2,748 \& 542 \& . 0.074 \& -0032 \\
\hline \& \& \begin{tabular}{l}
63.18 \\
47.92 \\
\hline 8
\end{tabular} \& \begin{tabular}{l}
2185 \\
2108 \\
\hline
\end{tabular} \& 16.210
16.280 \& 2.045
1.813 \& 4971
4793 \& \({ }_{4}^{491}\) \& . 000391 \& . 00438 \\
\hline \& 2.845 \& 49.23 \& 2217 \& 21. 170 \& 2569 \& 51887 \& . 225 \& . 0660 \& . 0442 \\
\hline 12 \& \({ }^{2} 8885\) \& ¢50.42 \& 2545 \& 28.000 \& \({ }^{2} 093\) \& 7.340 \& . 388 \& 0008 \& 0449 \\
\hline 18 \& 8.129
8.339 \& \begin{tabular}{l}
52.87 \\
68.85 \\
\hline
\end{tabular} \& \begin{tabular}{l}
2818 \\
8004 \\
\hline
\end{tabular} \& 33.070

41000 \& 3.833 \& \& . 8188 \& . 070748 \& +0451

\hline 15. \& ${ }^{2}{ }^{2} 1418$ \& 4814 \& ${ }_{3001}^{2007}$ \& 41.900
41200 \& 4.624 \& ${ }^{10.6830}$ \& . 8182 \& \% \& 045

\hline 18 \& 2.141
.217 \& - 43888 \& (3062 \& - 28.4800 \& 年.870 \& (10.1818 \& ${ }^{288}$ \& ${ }_{0} 0803$ \& 0397

\hline
\end{tabular}

propeller L^{\prime}

					0.0	0.428	1010	0.0	0. 0198
2-----	2. 2809	4516	1009	${ }_{1}^{0.323}$. 191	0.874	${ }^{2} .895$. 02020	. 0.030
	2.447		${ }_{1341}^{1141}$	2. 2077	. 314	${ }_{2}^{1.187}$:801	. 0.02878	.00488
	2 427	45.78	1475	8.288	-899	8. 033	-601	-0845	. 0555
	$\frac{3}{2} 5200$	${ }_{4}^{45.85}$	1860 1887		${ }_{1}^{1.713}$	${ }^{4} \mathbf{6} .274$. 6001	.0802	. 06011
	2714	4831	2270	28.700	2784	8.180	. 422	. 0699	. 00338
-	2.718 .177	48.35	${ }_{1057}^{2466}$	${ }_{28.680}$		- ${ }^{0.722}$. 1272	. 1189	. 06028

TABLE VI
FINAL ADJUSTED COEFFICIENTSmodel Propellers alone PROPELLER B^{\prime}

$7 / \mathrm{n} D$	C_{r}	c_{P}	7
0.30	0.0822	0.0441	0.659
${ }^{.35}$	-0888	-0438	${ }_{-612}^{605}$
-40	${ }^{-0645}$	-0,018	:697
. 50	. 0575	. 0400	. 788
: 66	-0438	-0351	-738
:65	:0862	-0331	. 711
- 78	. 010388	- 03680	. 658
. 88	.00980	. 02338	${ }_{.0}^{-526}$

PROPELLERR D^{\prime}

a 30	0.1128	0.0662	0.810
. 80	- 1073	. 06865	- 665
- 65	-0980	.0658	:657
- 50	. 0838	. 06815	. 694
..$^{\text {. } 80}$	${ }_{0}^{0631}$	-0607	:782
. 65	-0636	. 0535	. 74
. 70	-0883	-	-798
. 80	-0468	-0478	. 783
. 85	-0382	-0330	. 732

PROPELLERI

a 30	0.0958	0.0054	0.654
. 85	. 09885		. 687
45	-0814	-0545	-683
50	-0049	-0332	- 772
-60	-0616	.00192	.7721
${ }^{65}$. 00540	. 04628	. 780
. 75	-0377	.0388	. 728
. 80	-088	. 0.0349	. 880
. 20	.0093	. 0281	. 321

PKOPELLER K ${ }^{\prime}$

0.30	0.0833	0.0451	0.554
${ }^{.85}$	-0780	. 04512	. 611
. 40	.0660	. 0444	: 700
. 50	- 0638	.0133	. 734
. 50	. 0.0518	-0317	. 880
-65	-0154	-0375	. 78
. 75	0315	. 0338	. 742
:80	.0237	-0282	. 6728
. 90	.0058	:0198	. 288

PROPELIER L

0.30	0.1110	0.0659	0.805
${ }^{.85}$	- 10055	. 00634	. 660
. 45	$\bigcirc 0012$	-0623	-656
. 65	-0848	. 00088	-6938
-60	-0692	-0568	. 74
-705	${ }^{-0612}$	-00487	-788
. 75	-0434	.0448	. 726
.80	-0339	-0000	${ }^{-688}$
:80	:0127	.0294	. 382

TABLE VII
FINAL ADJUSTED COEFFICIENTSMODEL PROPELLERS WITH MODEL VE-7 PROPELLER B^{\prime}

V7aD	$C^{\text {r }}$	c_{F}	*
a 30	0.0887	0.044	${ }^{0.581}$
- 60	-06s8	-. 0440	-627
- 55	$\stackrel{0639}{ }$.0432	. 6695
-65	-0517	-0998	: 74
:60	-0352	-0375	:744
- 70	-0306	-00316	-688
:80	:0151	-0248	:488

PROPELLER D

PROPELLER I

0.30	0.0912	0.0550	0.498
. 85	. 0855	. 0555	. 548
. 40	. 0818	. 0550	. 505
-45	. 0764	. 054F	. 685
. 50	. 0710	. 0522	. 671
. 55	. 0052	. 0514	. 088
- 00	. 0593	. 0496	. 777
.65	. 0530	. 0473	. 728
. 70	- 0468	. 0446	. 725
. 76	. 0836	. 0412	. 709
.80	. 0309	. 0872	. 656
. 85	-0223	. 0324	. 888
. 90	. 0134	. 0271	. 445

PROPELLER K'

PROPELLER L'

0.30	0.1034	0.0048	0.478
. 35	${ }^{-0850} 0$	-0847	. 530
. 45	-0868	-.0630	:620
- 50	- 0808	. 0613	${ }_{689}^{688}$
. 60	-0675	-00688	-713
-65	-0605	. 05338	. 739
:75	.0139	:0465	. 732
. 85	- 0378	. 0329	. 805
:90	:0200	:0335	: 637

TABLE VIII
ORDINATES FQR GEOTIONS OF PROPELLER L'

Redlus	10.88'		$19.05^{\prime \prime}$		27.22'	88.39'	43.58 ${ }^{14}$	47.63'
Camber.	Upper	Lower	Upper	Lower	Upper	Upper	Upper	Uppor
Rad. L. E.......	$0.980^{\prime \prime}$		$0.03^{0.32^{\prime \prime}} 0$		$\begin{gathered} 0.161^{\prime \prime} \\ .060 \\ .947 \end{gathered}$	0. $104{ }^{\prime \prime}$	$\begin{aligned} & 0.059^{\prime \prime} \\ & .245 \end{aligned}$	$\begin{gathered} 0.038^{\prime \prime} \\ .167 \end{gathered}$
	0.846I. 235	0.516		0.059				
${ }^{5} 0$. 738	1.816	. 082	1.877	. 814	. 3450	. 2209
		1.192	2. 117	. 134	1.529	988	. 565	.366.385
	2. 088	1. 261	2.228	. 140	1. 004	1039	. 594	
40	2.088	1. 241	2208	. 140.	1. 694	1.029	-. 588	. 382
	1.9801.816	1.192	${ }^{2} 117$. 134	1529	. 988	. 585	. 360
80		1,091	1.840	. 121	I 398	. 205	. 1416	. 388
70	1.5481.173.732	- 088	1. 248	-1048	1. 1801	. 788	. 314	. 216
80.			$\begin{array}{r} 1.248 \\ .781 \end{array}$		$.5623^{\prime \prime}$. 3882	. 20409	. 134
		$0.361^{\prime \prime}$	${ }^{78 \mathrm{I}} \mathrm{O}_{16^{\prime \prime}} .049$					

All ordinates in inches.
8tations in per cent of chord.
ORDINATES FOR BECTIONS OF PROPELLER K'

Radius.	10.88'		$19.05^{\prime \prime}$		27.22'	$36.39^{\prime \prime}$	43.65'	47.68"
Camber.	Opper	Lower	Upper	Lower	Upper	Upper	Upper	Opper
Rad. L. E.	0.784'		$0.281^{\prime \prime}$		$\begin{aligned} & 0.108^{\prime \prime} \\ & .441 \\ & .634 \end{aligned}$	$0.068^{\prime \prime}$.248	$\begin{aligned} & 0.039^{\prime} \\ & .168 \\ & .1899 \end{aligned}$	$0.088{ }^{\prime \prime}$.106
2.6.-......	0.571.820	0.343	0.811	0.036				
${ }_{10}^{5}$. 483	. 879	. 0505		. 408	. 232	. 1688
20	1.323	. 794	1.411	. 088	1.019	. 657	. 376	. 247
	1. 288	. 836	I. 483	. 001	1. 072	. 682	. 295	. 259
40.		. 830	1.470	. 001	1.062	-688	- 392	. 288
50	$\begin{aligned} & 1.329 \\ & 1.200 \end{aligned}$. 794	1.411	.088	1.019	-687	. 8748	. 228
	$\begin{aligned} & 1.209 \\ & \text { 1. } 229 . \end{aligned}$. 621	1. 101	. 068	. 794	. 13	294	. 192
80	.781.487.0 .1	. 467	. 833	052	. 601	. 389	. 222	. 14.5
Rad. ${ }^{90}$		-0.170'	.$^{618}{ }_{0.120}{ }^{\text {. } 033}$. $8088{ }^{\prime \prime}$. 242	$.1374$. 0911

All ordinates in inches.
Stations in per cent of chord.
ORDINATES FOR GEOTIONS OF PROPELLER I

All ordinates in inches.
Stations in per cent of ohord.

TABLE VIII-Continued

ORDINATES FOR BEOTIONS OF PROPELLER D'

All ordinates in inches
Station in per cent of chord.
ORDINATES FOR SFCTIONS OF PROPELLER B'

Radius.	11. 33 "		19.83*		28.33'	36.83'	45. $33^{\prime \prime}$	49.54"
Camber	Upper	Lower	Upper	Lowrer	Opper	Upper	Upper	Upper
Rad. L. E	Q 952"		a 300'		0.1801	0.09011	$0.0011^{\prime \prime}$	$0.033^{\prime \prime}$
2.5	0.745	0.445	0. 792	0.051	. 881	. 367		
5	1.071	- 85	1.142	- 071	-823	- 710	. 403	- 2010
10	1. 438	-857	1.830 1.836	. 095	I. 102	. 710	-485	. 3298
	1. 824	1.081	1. 828	.122	1.394	. 901	. 613	. 340
40	1.785	1.075	1.915	. 122	1394	.891	. 510	. 337
50	1724	1.030	1.836	- 115	1.320	-854	. 486	. 323
60	1.578	. 942	1.683	. 105	1.214	. 789	. 445	. 205
70	1.343	. 802	1.432	. 092	1.034	. 667	. 381	. 252
		.605 .381	1.081 .651					. 1119
Rad. T. ${ }^{\text {E }}$. $100^{\prime \prime}$. 01811	. $1838{ }^{\prime \prime}$	$.080{ }^{\prime \prime}$

All ordinates in inches.
 Etations in per cent of chord

REFERENCE

1. F. S. Dienl: The Variation of Aerofoil Lift and Drag Coefficients with Changes in Size and Speed. N. A. C. A. Technical Report 111. 1921.
