AGARD-AG-300 Vol. 14

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT

7 RUE ANCELLE, 92200 NEUILLY-SUR-SEINE, FRANCE

AGARDograph 300 Flight Test Techniques Series — Volume 14

Introduction to Flight Test Engineering

(Introduction à la technique d'essais en vol)

by

F.N. Stoliker 808, Skeel Drive Camarillo, CA 93010-2964 United States

This AGARDograph has been sponsored by the Flight Vehicle Integration Panel of AGARD.

North Atlantic Treaty Organization Organisation du Traité de l'Atlantique Nord

·····	REPORT DOCU	MENTATION PAGE	
1. Recipient's Reference	2. Originator's Reference AGARD-AG-300 Volume 14	3. Further Reference ISBN 92-836-1020-2	4. Security Classification of Document UNCLASSIFIED/ UNLIMITED
North A	Group for Aerospace Ro tlantic Treaty Organization celle, 92200 Neuilly-sur-		J
6. Title Introduct	tion to Flight Test Engine	eering	
7. Presented at/sponsored b The Flig	by ht Vehicle Integration Pa	nel of AGARD	
8. Author(s)/Editor(s) F.N. S	toliker		9. Date September 1995
	keel Drive illo, CA 93010-2964		11. Pages 452
12. Distribution Statement There are no restrictions on the distribution of this document. Information about the availability of this and other AGARD unclassified publications is given on the back cover.			
13. Keywords/Descriptors			
Flight tests Aircraft Project managemen Project planning Test facilities	it C	Fest equipment Reporting Certification Aviation safety	
14. Abstract			
activities and aspects of flight test program. Its	f Flight Test Engineering that i	chniques Series. It is a general intr nust be considered when planning ad overview to the novice enginee ast community.	, conducting, and reporting a
engineering. Sections 3 preliminary factors that	through 10 deal with the prep must be considered; the comp a processing requirements; the	uestion of why flight test and give aration for flight testing. They pro osition of the test team; the logist flight test plan; the associated pre	vide guidance on the ic support requirements; the
Sections 11 through 27 describe the various types of flight tests that are usually conducted during the development and certification of a new or modified aircraft type. Each Section offers a brief introduction to the topic under consideration, and the nature and the objectives of the tests to be conducted. It lists the test instrumentation (and, where appropriate, other test equipment and facilities) required, describes the test maneuvers to be executed, and indicates the way in which the test data is selected, analyzed, and presented.			
debrief; what type of re	ports to send where; types of	test flights are presented next. Iten data analysis required for next flig ction if there is not good agreeme	ht; review of test data to make
		f the test program are presented. To me of the uses of the flight test d	
-	ented of where present trends r as sponsored by the Flight Veh	nay be leading. icle Integration Panel of AGARD.	
0 "r" "			

The Mission of AGARD

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes:

- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community;
- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application);
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;
- Improving the co-operation among member nations in aerospace research and development;
- Exchange of scientific and technical information;
- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the authors.

Published September 1995

Copyright © AGARD 1995 All Rights Reserved

ISBN 92-836-1020-2

Printed by Canada Communication Group 45 Sacré-Cœur Blvd., Hull (Québec), Canada KIA 087

Contents

• • ----

		Page
Preface	e	ü
Préfac	e	iv
Forew	ord	v
Ackno	wledgement	vi
1.	Introduction	
	by J.K. Appleford	
	1.0 Introduction	1-1
	1.1 Definitions	1-1
	1.2 Background	1-1
	1.3 Why Flight Test?	1-2 1-2
	1.4 Development and Certification Flight Testing	1-2
	1.5 Scope of Volume	1-4
	1.6 Concluding Remarks Bibliography	1-4
		1,
2.	Historical Perspective, One Hundred Years of Flight Testing	
	by R.L. van der Velde	0.1
	2.0 Introduction	2-1
	2.1 Short History of Flight	2-1
	2.2 The Evolution of Flight Test Engineering Through the Decades	2-5 2-11
	2.3 Future Trends	2-11 2-12
	2.4 Concluding Remarks	2-12
	Acknowledgements	2-12
	References Bibliography	2-12
3		₩ 17
3.	Background Considerations by J.K. Appleford	
	3.0 Introduction	3-1
	3.1 Organisational Issues	3-1
	3.2 Programme Issues	3-3
	3.3 Review of Technical Data	3-4
	3.4 Concluding Remarks	3-5
	References	3-6
	Bibliography	3-6
4.	Establishing the Test Team	
	by R.J. Oblen	
	4.0 Introduction	4-1
	4.1 Test Team Selection	4-1
	4.2 Qualifications Required for Test Team	4-2
	4.3 Test Team Tasking	4-2
	4.4 Special Considerations	4-2
	4.5 Concluding Remarks Bibliography	4-3 4-3

5.	Logistics Support Considerations	
	by H.G. Kolwey 5.0 Introduction	5-1
		5-1
	5.1 Typical Logistics Support Considerations5.2 Objectives	5-2
	5.3 Provisioning Considerations	5-2
	•	5-2
	-	5-3
	5.5 Typical Products of Test Planning	5-3
	5.6 Special Considerations	5-3
	5.7 Concluding Remarks Bibliography	5-3
6.	Flight Test Instrumentation	
	by D.R. Crounse	
	6.0 Introduction	6-1
	6.1 The Instrumentation Specification	6-1
	6.2 Introduction to Instrumentation Systems	6-1
	6.3 Instrumentation Systems Management	6-5
	6.4 Design Considerations	6-6
	6.5 Operational Considerations	6-9
	6.6 Concluding Remarks	6-10
	Acknowledgement	6-10
	References	6-10
	Bibliography	6-11
7.	Data Processing by R.L. van der Velde	
	7.0 Introduction	7-1
	7.1 Objectives	7-2
	7.2 Preparations for Data Processing	7-2
	7.3 Data Processing Operations	7-4
	7.4 Data Processing Environment	7-5
	7.5 Some Advice to the Flight Test Engineer	7-5
	7.6 Special Considerations	7-6
	7.7 Concluding Remarks	7-7
	Acknowledgement	7-7
	References	7-7
	Bibliography	7-8
8.	Preparation of the Flight Test Plan	
0.	by R.J. Harney	
	8.0 Introduction	8-1
	8.1 Objectives of the Test Plan	8-1
	8.2 Contents of the Test Plan	8-1
	8.3 Testing of Civil Aircraft	8-6
	8.4 Concluding Remarks	8-6
	Acknowledgement	8-7
	References	8-7
	Bibliography	8-7
9.	Pre-Flight Tests	
	by P.W. Kirsten	0.1
	9.0 Introduction	9-1
	9.1 Wind Tunnel Tests	9-1
	9.2 Simulation Tests	9-4
	9.3 Propulsion Tests	9-7
	9.4 Weight and Balance Tests	9-10
	9.5 Ground Vibration Tests	9-12
	9.6 Structural Loads Tests	9-13
	9.7 Gain Margin Tests	9-15
	9.8 Verification and Calibration Tests	9-17

	9.9	Taxi Tests	9-20
	9.10	Concluding Remarks	9-22
		Acknowledgements	9-22
		References	9-22
		Bibliography	9-22
10.	Safety	Aspects	
		J.K. Appleford	
	10.0	Introduction	10-1
	10.1	Organisational Matters	10-1
	10.2	Facilities Required	10-2
	10.3	Crewing Considerations	10-5
	10.4	Test Planning	10-6
	10.5	Test Operations	10-7
	10.6	Concluding Remarks	10-8
		References	10-9
		Bibliography	10-9
11.	Airdat	a Measurement and Calibration	
		DE.A. Haering, Jr.	
	11.0	Introduction	11-1
	11.0	Test Objectives	11-2
	11.2	Measurement and Calibration of Airdata Quantities	11-2
	11.3	Parameters Required for Airdata Calibration	11-5
	11.4	Typical Calibration Techniques	11-6
	11.5	Data Processing and Analysis	11-8
	11.6	Special Cases	11-9
	11.7	Concluding Remarks	11-11
	11.,	References	11-11
		Bibliography	11-13
12.	Flight		
12.	-	Envelope P. H. Walgemoed	
	12.0	Introduction	12-1
	12.0	Airworthiness Requirements	12-1
	12.1	Limitations	12-3
	12.2	Design Loads	12-5
	12.5	The Flight Envelope	12-5
	12.5	Test Objectives	12-6
	12.5	Typical Measurands, Sampling Rates, and Frequency Requirements	12-0
	12.0	Typical Test Maneuvers	12-0
	12.7	Data Analysis Considerations	12-7
	12.0	Products of Testing	12-10
	12.7	Special Considerations	12-10
	12.10	Concluding Remarks	12-10
	12.10	References	12-11
		Bibliography	12-11
12A.	Dotono		
12A.		raft Flight Envelope Unique Considerations	
	12A.0	Introduction	12A-1
	12A.0	Test Objectives	12A-1 12A-1
	12A.1 12A.2	Types of Tests	12A-1 12A-1
	12A.2 12A.3	Test Instrumentation	12A-1 12A-2
	12A.5 12A.4	Special Rotorcraft Envelope Considerations	12A-2 12A-3
	12A.4 12A.5	Products of Testing	12A-3 12A-6
	12A.5 12A.6	Special Considerations	12A-0 12A-7
	12A.0 12A.7	Concluding Remarks	12A-7 12A-7
	12A./		12A-7 12A-8
		Acknowledgement References	12A-8 12A-8
		Bibliography	12A-8 12A-8
		Biolography	12A-9

v

13.

13.		rmance	
		y J.P.K. Vleghert	
	13.0	Introduction	13-1
	13.1	General Considerations	13-1
	13.2	Take-Off and Landing Tests	13-4
	13.3	Climb Tests	13-6
	13.4	Cruise Tests	13-10
	13.5	Combat Performance	13-11
	13.6	Descent Tests	13-12
	13.7	Concluding Remarks	13-13
		References	13-13
		Bibliography	13-14
14.		lasticity	
		y J.J. Meijer	
	14.0	Introduction	14-1
	14.1	Requirements	14-2
	14.2	Test Objectives	14-2
	14.3	Typical Measurements	14-3
	14.4	Typical Maneuvers	14-4
	14.5	Flight Test Procedures	14-5
	14.6	Data Acquisition and Analysis	14-6
	14.7	Typical Products	14-7
	14.8	Special Considerations	14-7
	14.9	Concluding Remarks	14-7
		Acknowledgement	14-8
		References	14-8
		Bibliography	14-8
15.	Hand	ling Qualities	
		y R.E. Lee, Jr.	
	15.0	Introduction	15-1
	15.1	General Considerations	15-1
	15.2	Stability and Control Tests	15-4
	15.3	Handling Qualities Tests	15-8
	15.4	High Angle of Attack Tests	15-11
	15.5	Parameter Identification	15-13
	15.6	Special Considerations	15-15
	15.7	Concluding Remarks	15-15
		References	15-15
		Bibliography	15-16
16	A :	aft External Noise	
16.		ny H. Heller	
	16.0	Introduction	16-1
	16.1	Aircraft Noise Certification	16-2
	16.2	Testing Procedures	16-2
	16.3	Data Acquisition and Evaluation	16-3
	16.4	Special Problems	16-6
	16.5	Concluding Remarks	16-7
		References	16-8
		Bibliography	16-9
17.	Airfr	ame Tests	
- • •		y J.K. Appleford	
	17.0	Introduction	17-1
	17.1	General Considerations	17-1
	17.2	Anti/De-Icing	17-4
	17.3	Electrical System	17-8
	17.4	Engine Installation	17-11
	17.5	Environmental Control System	17-13

Engine Installation Environmental Control System 17.4 17.5

	17.6	Escape System	17-15
	17.7	Flying Controls	17-19
	17.8	Fuel System	17-23
	17.9	Hydraulic System	17-26
	17.10	Oxygen System	17-28
	17.11	Secondary Power System	17-30
	17.12	Undercarriage, Wheels, and Brakes	17-33
	17.13	Concluding Remarks	17-35
		Acknowledgements	17-36
		References	17-36
18.		Under Environmental Extremes	
		J.A. Ford	10.1
	18.0	Introduction	18-1
	18.1	Typical Test Objectives	18-1
	18.2	Typical Instrumentation, Measurands, and Data Rates	18-2
	18.3	Typical Tests	18-3
	18.4	Data Analysis Considerations	18-4
	18.5	Typical Products of Testing	18-4
	18.6	Special Considerations	18-4
	18.7	Concluding Remarks	18-4
		References	18-5
19A.		Cross Section	
		R.W. Borek	10.4.1
	19A.0	Introduction	19A-1
	19A.1	The Radar Cross Section Concept	19A-1
	19A.2	Types of RCS Measurements	19A-3
	19A.3	The RCS Test Range	19A-5
	19A.4	Data Collection, Reduction, and Presentation	19A-7
	19A.5	Concluding Remarks	19A-9
		References	19A-9
		Bibliography	19A-10
	Append	lix 19A-A Radar Cross Section Reduction	19A-13
19 B .		a Radiation Patterns	
	-	H. Bothe	100.1
	19B.0	Introduction	19B-1
	19 B .1	Test Objectives	19B-1
	19B.2	Measurement Requirements	19B-2
	19B.3	The Determination of the ARP by Static Methods	19B-6
	19 B .4	The Determination of ARP of Full-Size Aircraft in Flight	19B-8
	19B.5	Data Analysis	19B-9
	19B.6	Dynamic Radar Cross Section (RCS) Measurements	19B-10
	19 B .7	Concluding Remarks	19B-10
		References	19B-10
		Bibliography	19B-11
		lix 19B.A LRP Determination of a Glide Slope Antenna	19B-18
	Append	lix 19B.B Examples of Measurement Results	19B-21
20.		1 Factors	
	•	P.A.A. Verbaarschot	~ 1
	20.0	Introduction	20-1
	20.1	Test Objectives	20-2
	20.2	Test Techniques	20-3
	20.3	Test Preparations	20-5
	20.4	Ground Test Program	20-5
	20.5	Flight Test Program	20-9
	20.6	Data Analysis	20-10
	20.7	Test Results	20-10

	20.8 20.9	New Developments Concluding Remarks	20-11 20-13
		Acknowledgements	20-13
		References	20-13
		Bibliography	20-14
21.	Avioni	ies	
41.		y R. Mahlum	
	21.0	Introduction	21-1
	21.1	General Considerations	21-1
	21.2	Autopilot System	21-4
	21.3	Navigation and Communications Systems	21-6
	21.4	Offensive Sensor Systems	21-9
	21.5	Defensive Systems	21-12
	21.6	System Integration	21-14
	21.7	Concluding Remarks	21-15
		Acknowledgements	21-15
		References	21-15
		Bibliography	21-15
22.		bility and Maintainability	
		y J.M. Howell	22.1
	22.0	Introduction	22-1 22-2
	22.1	R&M Test Objectives	22-2
	22.2	Test Planning	22-3
	22.3	Test Conduct	22-7
	22.4	Concluding Remarks	22-9
		References	22-9
		Bibliography	
23.		tics Test and Evaluation by F.W. Baxley	
	23.0	Introduction	23-1
	23.0	Personnel, Training, and Training Equipment	23-1
	23.1	Technical Data	23-3
	23.2	Support Equipment	23-4
	23.3	Spares and Repair Parts	23-5
	23.5	Facilities	23-7
	23.6	Packaging, Handling, Storage, and Transportation	23-7
	23.7	Data Collection/Reduction	23-8
	23.8	Special Considerations	23-8
	23.9	Concluding Remarks	23-8
		Bibliography	23-9
24.	Propu		
		by L.A. Thomas	24-1
	24.0	Introduction	24-1
	24.1	Test Objectives	24-2
	24.2	Instrumentation	24-5
	24.3	Typical Test Techniques	24-7
	24.4	Application of Test Techniques	24-7
	24.5	Data Analysis Product of Testing	24-10
	24.6	Product of Testing	24-10
	24.7	Special Considerations	24-11
	24.8	Concluding Remarks Acknowledgements	24-12
		References	24-12
		Bibliography	24-12

.

.....

25.		nent Testing and Stores Separation R.E. Mosher	
	25.0	Introduction	25-1
	25.1	Aircraft Armament Control System	25-1
	25.2	Flutter	25-2
	25.3	Aircraft and Store Loads	25-2
	25.4	Stability and Control	25-2
	25.5	Flying Qualities	25-3
	25.6	Performance	25-3
	25.7	Vibration	25-3
	25.8	Aeroacoustic	25-3
	25.9	Thermal	25-3
	25.10	Safe Separation	25-4
	25.11	Gunfire	25-4
	25.12	Special Considerations	25-4
	25.12	Concluding Remarks	25-4
	25.15	References	25-4
		Bibliography	25-5
26.		re Test and Evaluation K. Rodger	
	26.0	K. Roager Introduction	26-1
	26.0	The Nature of Software	26-1
	26.2	The Design and Development of Software	26-2
	26.2	Software Test Techniques	26-2
	26.4	Hardware/Software Integration	26-6
	26.5	Future Developments	26-7
	26.6	The Role of the Flight Test Engineer	26-7
	26.7	Concluding Remarks	26-8
	-0.1	References	26-9
	Append	lix 26-1 Glossary	26-10
26A.		re Test and Evaluation: A View from the US	
	-	L.O. Campbell	26A-1
	26A.0	Introduction	26A-1 26A-2
	26A.1 26A.2	Software Development, Test, and Evaluation Phases	26A-2 26A-5
	26A.2 26A.3	The Role of "Tools" in the Software Development Process Test Objectives	26A-5 26A-6
	26A.5 26A.4	Typical Measurands and Data Rates	26A-0 26A-7
	26A.4 26A.5	Typical Test Techniques	26A-7
	26A.5	Data Analysis Considerations	26A-8
	26A.7	Typical Products of Testing	26A-9
	26A.8	Special Considerations	26A-9
	26A.9	Concluding Remarks	26A-10
	20A.9	References	26A-10
		Bibliography	26A-11
	Append	lix 26A-1 List of Acronyms	26A-12
27.		magnetic Interference/Electromagnetic Compatibility	
	<i>by</i> 27.0	R.W. Borek Introduction	27-1
	27.0	The Philosophy of Standards and Specifications	27-1
	27.1	The Role of the Flight Test Engineer	27-1
	27.2	Typical EMI/EMC Test Objectives	27-2
	27.3	Sources of EMI	27-2
	27.5	Testing for EMI	27-9
	27.6	Measurement Error Analysis Considerations	27-13
	27.7	Some Guidelines for Design	27-13

	27.8	Concluding Remarks	27-14
		References	27-15
		Bibliography	27-15
28.	Post I	Flight Operations	
	b	y Y. Zundel	
	28.0	Introduction	28-1
	28.1	Post Flight Debrief (PFD)	28-1
	28.2	Reports	28-3
	28.3	Data Reduction	28-4
	28.4	Data Analysis	28-4
	28.5	Planning the Next Flight	28-7
	28.6	Special Considerations	28-7
	28.7	Concluding Remarks	28-8
		Acknowledgements	28-8
		Bibliography	28-8
29.	Post-7	Test Operations	
	b	y R.J. Oblen	
	29.0	Introduction	29-1
	29.1	Post-Test Briefings	29-1
	29.2	Preparation for Reporting	29-1
	29.3	Reporting	29-3
	29.4	Special Considerations	29-6
	29.5	Concluding Remarks	29-6
		Acknowledgements	29-7
		References	29-7
		Bibliography	29-7
30.	Futur	e Trends	
	b	y R.R. Hildebrand	
	30.0	Introduction	30-1
	30.1	Near-Future Environment	30-1
	30.2	Impacts on the Flight Test Engineers' Tasks	30-3
	30.3	Concluding Remarks	30-4
Epilog	ue		E-1
Annex	— AG.	ARD Flight Test Instrumentation and Flight Test Techniques Series	A-1

Preface

Soon after its founding in 1952, the Advisory Group for Aerospace Research and Development (AGARD) recognized the need for a comprehensive publication on Flight Test Techniques and the associated instrumentation. Under the direction of the Flight Test Panel (now the Flight Vehicle Integration Panel) a Flight Test Manual was published in the years 1954 to 1956. This original Manual was prepared as four volumes: 1. Performance, 2. Stability and Control, 3. Instrumentation Catalog, and 4. Instrumentation Systems.

As a result of the advances in the field of flight test instrumentation, the Flight Test Instrumentation Group was formed in 1968 to update Volumes 3 and 4 of the Flight Test Manual by publication of the Flight Test Instrumentation Series, AGARDograph 160. In its published volumes AGARDograph 160 has covered recent developments in flight test instrumentation.

In 1978, it was decided that further specialist monographs should be published covering aspects of Volumes 1 and 2 of the original Flight Test Manual, including the flight testing of aircraft systems. In March 1981, the Flight Test Techniques Group was established to carry out this task. The monographs of this latter series (with the exception of AG 237 which was separately numbered) are being published as individually numbered volumes in AGARDograph 300. In 1993, the Flight Test Techniques Group was transformed into the Flight Test Editorial Committee, thereby better reflecting its actual status within AGARD. Fortunately, the work on volumes could continue without being affected by this change.

An Annex at the end of each volume of both AGARDograph 160 and AGARDograph 300 lists the volumes that have been published in the Flight Test Instrumentation Series (AG 160) and the Flight Test Techniques Series (AG 300) plus the volumes that were in preparation when this volume was published.

In 1987 when several volumes in the Flight Test Techniques Series had already been published, it was decided that it was an omission not to have an introductory volume to the Flight Test Techniques Series. This volume was to provide an overview of the field of flight test engineering for the novice engineer engaged in this field. It took some time before an editor was found who would work closely with over fifty lead authors and contributing authors. Mr. F.N. Stoliker, former Technical Director of the US Air Force Flight Test Center at Edwards Air Force Base in California, was willing to undertake this heavy task and he started his preparations in 1989. The first authors started writing in 1991.

In 1995 the Volume has now been published and AGARD is convinced that it is a significant volume that will be met with great appreciation in the flight test community.

Foreword

The volumes that currently exist in the Flight Test Techniques Series are quite specific in their focus and are generally aimed at the engineer who has some knowledge in the field of flight test engineering. Even though these volumes meet a strong need for this type of information it was felt that there was a need to provide information to the novice engineer or to other people who have a need to interface with the flight test community. This volume is intended to lightly touch all those areas that must be considered when planning, establishing, conducting, closing out, and reporting on a flight test program. This volume is NOT intended to be a complete guide as to how to conduct a flight test program. Rather, it is a primer and contains references to additional material that will provide greater detail. The serious reader is encouraged to do further reading in the various volumes of the AGARD Flight Test Techniques series and the Flight Test Instrumentation series, AGARDographs 300 and 160, respectively, and other documents which are referenced in each Section of this volume.

The first two Sections are the Introduction and Historical Perspective. They provide some insight into the question of why flight test and give a short history of flight test engineering.

Sections 3 through 10 deal with the preparation for flight testing. They provide guidance on the preliminary factors that must be considered, such as the technical, commercial, and political background to the tests, and any relevant existing data or considerations (Section 3); the composition of the test team (Section 4), the logistic support requirements (Section 5); the instrumentation and data processing requirements (Sections 6 and 7); the overall flight test plan and the associated preliminary ground tests (Sections 8 and 9); and last, but by no means least, Section 10 discusses safety aspects.

Sections 11 through 27 describe the various types of flight tests that are usually conducted during the development and certification of a new or modified aircraft type. Each Section offers a brief introduction to the topic under consideration, and the nature and the objectives of the tests to be made. It lists the test instrumentation (and, where appropriate, other test equipment and facilities) required, describes the test maneuvers to be executed, and indicates the way in which the test data is selected, analyzed, and presented.

Section 28 "Post-flight Operations" discusses the various activities that should take place between test flights. Items that are covered include who to debrief, what type of reports to send where, types of data analysis required for the next flight, review of test data to make a comparison to predicted data, some courses of action if there is not good agreement, and comments on selecting the next test flight.

Section 29 "Post Test Operations" covers the activities that must take place upon completion of the test program. Briefly discussed are the types of reports and briefings that should take place and a discussion of some of the uses of the flight test data.

Section 30 "Future Trends" gives a brief forecast of where present trends may be leading.

The material presented in the Volume reflects the experience of the prime author and any contributing author(s) for each Section. The Sections will normally be typical of the procedures and practices of the author's home station; however, they are representative of those used by many organizations. As such, an individual Section may or may not include comments about civil and/or rotary wing aircraft. Wherever possible the authors and reviewers have provided bibliographic entries that would be useful to those who desire to test other than fixed wing military aircraft. The users of this Volume are reminded that they should interpret the advice given in the context of the rules, processes, and procedures of their parent/home organization.

Also, the reader must be aware that terms such as "project" are used in the context of the Section author's home base and experience. The same term could have an entirely different meaning at another base or another country. For example, in the US, "project" normally means a given set of tests whereas in the UK "project" usually means "aircraft type" such that "AV-8B Project" would encompass all aspects of that aircraft type's development.

Acknowledgements

ACKNOWLEDGEMENTS BY THE EDITOR

The Editor is deeply grateful to the many authors and contributing authors for their diligence in preparing the various Sections of this Volume. Obviously, this Volume could never have been completed without their dedication, perseverance, technical knowledge, and writing skills.

The support and cooperation of the Flight Test Editorial Committee (FTEC) was invaluable throughout this whole process. They identified the various authors and reviewed and provided valuable comment on each of the various sections. In particular, the Editor would like to acknowledge the support of FTEC Members Messrs. J.K. Appleford (UK), R.R. Hildebrand (US), R.A. Russell (US), and R.L. van der Velde (NE).

F.N. Stoliker Camarillo, CA, US March 1995

ACKNOWLEDGEMENT TO FLIGHT TEST EDITORIAL COMMITTEE MEMBERS

The Flight Test Editorial Committee, formerly the Flight Test Techniques Working Group 11, was fortunate to have one of its past members and former chairman take on the difficult task of Editor for this AGARDograph. The committee is most grateful for the hard work and persistence of the Editor, Mr. Fred Stoliker, in bringing this volume into existence.

Besides the Editor, the following current and past members of the Flight Test Editorial Committee have taken an active part in the preparation of this Volume:

Appleford, J.K.	A&A/AEE/UK
Bever, G.	NASA/US
Bothe, H.	DLR/Germany
Campos, L.M.B.	IST/Portugal
Hildebrand, R.R.	AFFTC/US
Krijn, R.	NLR/Netherlands
van der Velde, R.L.	NLR/Netherlands
Van Norman, C.	AFFTC/US
Zundel, Y.	CEV/France

R.A. Russell Member, Flight Vehicle Integration Panel Chairman, Flight Test Editorial Committee

AEROELASTICITY

J.J. Meijer National Aerospace Laboratory (NLR) Anthony Fokkerweg 2 1059 CM Amsterdam The Netherlands

14.0 INTRODUCTION

Flutter is an aeroelastic phenomenon in which aerodynamic, elastic and inertia forces couple unfavorably at a sufficiently high speed to produce an unstable oscillation which may grow without limit and so result in a structural failure. Flutter is, unfortunately, not a problem that will just "go away": modern aircraft, in particular, are progressively more flexible, fly faster, and are highly control configured, more maneuverable and more system dependent. The development of active control systems for flutter suppression will actually complicate the problem by introducing a fourth "servo" dimension into the aeroelastic scene and will at best only defer flutter to higher speeds.

Clearly, an important problem during the design of new aircraft is to make sure that the proposed and actual structure is free from flutter within the proposed flight envelope. This requirement is essential since flutter involves a structural instability and as such will cause damage to the structure when it occurs. Flutter can only be prevented by a proper design of the structure and, as a consequence, the study of flutter must start at an early stage of the development of a new aircraft. It will continue along with this development up to and into the early flight test stage. For modified aircraft, structural modifications or flight control modifications require that the flutter stability has to be re-established. It must be remembered that even a minor structural modification could have major implications for flutter stability. For military aircraft which are to be equipped with a large variety of external stores, the study of the flutter problem will often extend well beyond the first stage of flight testing. This is caused by the fact that variations in the external loading of an aircraft, due to new requirements, may change its flutter characteristics appreciably and by the fact that "intermediate" configurations (after release of stores and with fuel tank partial loadings or fuel transfer failures) must also be considered.

Flutter was recognized as a problem even in the early days of flying and although considerable effort has been made towards the understanding of the problem, flutter still remains a major consideration when designing new aircraft. This is due in part to the fact that newer construction materials and more sophisticated construction techniques have led to an ever decreasing relative thickness of the aircraft's lifting surfaces. The stiffness of these structures has, however, hardly increased and, therefore the sensitivity to flutter has increased accordingly. On the other hand flying speeds have also increased considerably from subsonic to transonic and supersonic speeds and, as a consequence, the aerodynamic loads related to flutter have not only grown but have also changed their character due to encountering shock waves.

Because of the direct impact flutter may have on the design of a new aircraft, the eventuality of flutter is considered from the beginning of a new design. During the development phase this investigation will pass various stages as indicated in figure 14-1 obtained from reference 14-1.

Flight flutter tests are conducted to demonstrate freedom from flutter for critical aircraft conditions. The stability results derived from those tests are used to validate the flutter analysis. Both test results and calculated

results are used to demonstrate compliance with the airworthiness requirements. Active control systems (ride control, gust load alleviation, flutter suppression, etc.) add to the scope and complexity of these tests in that control system instability due to aeroelastic interactions must also be considered. Wind tunnel tests usually form part of the validation process and flutter in this environment can result in costly damage or loss to the wind tunnel.

Reliable flight and wind tunnel test procedures are therefore required to minimize the hazard of these tests. This requires that effective methods be used for exciting the aircraft or model and that reliable, on-line and off-line methods be used for estimating the stability from the measured structural and control system responses (parameter estimation). In addition, effective procedures for preventing damage must be available in the event that an instability is experienced. In some instances this has led to the use of active flutter suppression systems on wind tunnel models.

The principal impediments to achieving reliable estimates for stability parameters are the short test time on condition and the high noise levels in the data collected. A number of methods have been developed or are being proposed to address these problems and will be discussed below.

Nonlinear aerodynamics, structural dynamic, or control system characteristics provide further impediments to reliable stability parameter estimates because a larger data base is required to identify and characterize the nonlinear behavior and because estimation methods generally used assume linear processes. It is therefore important to determine what parameter estimation methods have been used and how successful those methods have been particularly in the presence of nonlinear conditions.

This section will spell out the airworthiness requirements, the subcritical clearance philosophy, typical test objectives and procedures, denote excitation devices used and excitation signal types, instrumentation/recording required, and touch upon data analysis techniques and typical products of the test conduct. Finally, some practical problems and future needs will be considered. More details can be found in references 14-1, 14-2 and 14-3.

14.1 REQUIREMENTS

Analyses, wind tunnel and laboratory tests, and aircraft ground and flight tests shall demonstrate that flutter, divergence, and other related aeroelastic or aeroservoelastic instability boundaries occur outside the 1.15 times design limit speed envelope. The aircraft shall meet the following stability design requirements for both normal and emergency conditions: • Flutter margin: Fifteen percent equivalent airspeed margin on the applicable design limit speed envelope, both at constant altitude and constant Mach number as indicated in Figure 14-2a obtained from reference 14-4. • Damping: The damping coefficient, g, for any critical flutter mode or for any significant dynamic response mode shall be at least three percent (0.03) for all altitudes on flight speeds up to the design limit speed as indicated in Figure 14-2b, also obtained from reference 14-4.

14.2 TEST OBJECTIVES

The prime objective must always be to provide flutter free operation in the intended envelope of the test aircraft in a safe and economical fashion. This objective must be reflected in all subsequent flutter test activities.

The preliminary flight test plan should always be prepared by experienced flutter engineers based upon their analysis of flutter calculations and wind tunnel tests. They will determine where, in the planned flight envelope, it

14-2

is safe to fly without flutter testing and where flutter testing is required. Where it is required they will specify the vibration sensors (accelerometers, preferably, and/or strain gage bridges, mostly available for other purposes), and their location in the aircraft. Using the same analysis and information they will specify the type of vibration exciters and where they are to be located. At this point the flight test and instrumentation engineers will participate in the detailed design of the instrumentation system and the excitation system.

Next, the flutter and flight test engineers must prepare a detailed flight test plan showing the combinations of speed and altitude that must be flown to demonstrate the freedom from flutter. Then a detailed sequence of testing must be prepared wherein tests are first flown at the conditions where analysis indicates that there are no predicted flutter problems. As each test point is flown, the test results are reviewed to ensure flight safety and compared to the predicted results. If the test results and the predictions disagree to a significant degree in the view of either the flutter or flight test engineer, the tests are halted until the cause of the variance is explained.

The test plan must clearly specify the duties and responsibilities of all the test participants to include who has the specific responsibility for calling a halt to or proceeding on with a test series. In all cases, the test pilot has the authority to stop any test series if he detects any items that indicate any type of a departure from anticipated results.

14.3 TYPICAL MEASUREMENTS

Flight flutter testing comprises three steps: structural excitation, structural response measurements, and stability analysis. Accordingly, the data to be collected during the flight flutter tests can be divided into two groups: those for measuring the excitation force and those for measuring the response of the aircraft.

In the first group, for measuring excitation forces, the sensor used will depend entirely upon the type of exciter used. For example, an electromagnetic exciter will require the measurement of a current while a strain gage bridge will be required for measuring the vane excitation force.

In the second group, the most commonly used transducers are accelerometers and strain gage bridges. If amplitude accuracy is not critical, there is no clear preference between the two types. Strain gages are normally used only on new aircraft as they need to be installed during assembly of the aircraft since they are generally located in areas which are inaccessible once the aircraft has been assembled. On the other hand, accelerometers can be installed in many cases after the aircraft has been assembled. If the flutter tests are to be conducted on an existing vehicle, which is being equipped with new external stores, for example, the use of accelerometers may be dictated by the relative ease of installation. The two different types of sensor require quite different placement. In a wing, for example, the strain gage bridge will generally be applied near the wing root where the structural loads are large, whereas the accelerometer would be placed near the wing tip where the displacements are large. In the case of "classical" flutter, amplitude accuracy is not very critical since the engineer will be concerned with damping ratios rather than absolute amplitude. Good linearity is required for this case and it is essential that the phase relationship between the various sensors is of good quality. However, if nonlinear phenomena, such as transonic aerodynamics and nonlinear control system characteristics are present, absolute displacement amplitude sizes become important as well. Consequently, a preference for accelerometers is becoming more common.

The selection of sampling rates for digitized data is critical. The consequence of sampling a fluctuating signal at too low a rate can be that high frequency signal components are interpreted as low signal components. To avoid this problem which is called data aliasing, the sampling rate for digitized signals should be at least twice the maximum frequency present in the original signal. It should be noted that the frequencies encountered in flight tests normally range up to about 50 Hz for transport type aircraft and 50 to 100 Hz for fighter type aircraft.

Despite the considerable improvements in test/analysis techniques that have been made in recent years, flutter testing is still a hazardous exercise. It is therefore important that the test aircraft not significantly overshoot the test points as it progressively clears the envelope. Therefore, airspeed and altitude must be controlled very accurately. As the testing approaches the boundaries of the envelope the airspeed tolerances usually become even more restricted with no positive tolerance allowed. In order to achieve these tight tolerances special airspeed and pressure instrumentation is generally required such as a trailing cone or special instrumentation mounted in a flight test nose boom.

14.4 TYPICAL MANEUVERS

It will be necessary to excite an aircraft in order to obtain the resonance frequencies and the corresponding damping coefficients of all required structural vibration modes to establish the flutter characteristics of the aircraft (see figure 14-3 obtained from reference 14-2). The means of excitation of the aircraft may be "natural" or "deliberate". Natural in this context means that the aircraft response to the naturally occurring atmospheric turbulence is used so that no excitation equipment is required. Whilst this option may appear attractive it is not ideal as will become clear later on. Several means of "deliberate" excitation have been developed and applied that appear to be quite different from each other. However, a detailed examination reveals that they are based on a limited number of basic principles, such as aerodynamic, moving mass, and pyrotechnic exciters. A brief description of each and their relative advantages and disadvantages are listed below. More detailed descriptions, factors involved in the choice of excitation device, and discussion are contained in references 14-1 and 14-2.

14.4.1 Aerodynamic Excitation

There are basically three types of aerodynamic excitation sources used in flutter testing. These are the aircraft control surfaces, special oscillating vanes attached to the tips of the lifting surfaces or to external stores, and atmospheric turbulence. The advantages of these excitation sources are that they add very little mass to the structure and that they can be used to provide a wide range of input frequencies.

In case of the control surface and oscillating vane excitation sources, the oscillating input force to the aircraft structure comes from changes in the aerodynamic lift on the oscillating surface. Such changes in aerodynamic lift can also be obtained by a rotating slotted cylinder along the trailing edge of a fixed vane, as described in reference 14-5. These sources can be used to provide either frequency sweep inputs (i.e., sweeping from low to high frequencies or vise-versa), constant frequency burst inputs, or random frequency inputs. In addition, control surfaces are also used for pulse or rap inputs which simulate impulse inputs to the structure. A further advantage is that it is usually possible to arrange aerodynamic excitation to be symmetric or asymmetric about the centerline of the aircraft, so aiding the process of separating out the structural vibration modes.

14-4

Atmospheric turbulence provides a random input to the structure which generally encompasses a spectrum of frequencies up to about 10 Hz. Even though the input is not generally felt by the pilot, there is always some energy content transferred to the structure from the air mass. However, the amount of input from this source is generally very small, which results in slow, unreliable, poor quality test data, compared to the other types of "deliberate" aerodynamic excitation sources and therefore is less satisfactory as pointed out in references 14-2 and 14-6.

14.4.2 Moving Mass Excitation

There are basically two types of moving mass excitation sources: inertia exciters and electrodynamic exciters. These exciters impart a force into the structure via reacting the inertia of a moving mass attached to the aircraft structure. They are generally mounted inside the aircraft and therefore do not present any aerodynamic interference. These can provide frequency sweep, frequency burst and, in some cases, random inputs similar to the aerodynamic exciters.

Inertia exciters generally consist of a rotating out-of-balance mass mounted on a shaft which can be driven through the frequency range of interest. In some cases a "wand" is used which consists of a mass placed at the end of a pivoted arm attached to a shaft located at the tip of a wing or tail surface. One disadvantage of this system is that larger masses are needed to excite the lower frequencies and the overall system weight may become prohibitive.

Electrodynamic exciters are akin to the electrodynamic shakers used in ground vibration tests (GVTs) as presented in paragraph 9.5. In this case the force is generated by a mass excited by a electromagnetic field. The mass is suspended by springs and consists of a permanent magnet with coil windings attached. When an alternating current is sent through another set of coils in close proximity, the mass can be made to move within the electric field. The frequency of movement is proportional to the electric signal. This system has the same advantages and disadvantages as the inertia exciter.

14.4.3 Pyrotechnic Excitation

The pyrotechnic excitation source which is sometimes called a "bonker" consists of a very small explosive charge that is typically placed externally on the aircraft structure and detonated electrically. The tiny explosion produces an excitation of short duration. The actual time history of this force and, thus the frequency content, can be controlled by the design of the exciter. Some of the advantages of this type of exciter are that the short duration of the excitation makes it useful for short flight maneuvers such as dives, and since the exciter is small, a number of them can be mounted almost anywhere on the aircraft without disturbing its vibrational characteristics. The disadvantage of this excitation source is the limited number of excitations (one per exciter) that can be produced during a given flight.

14.5 FLIGHT TEST PROCEDURES

In the conduct of flutter tests, a subcritical envelope expansion procedure is used whereby less critical points are flown prior to the more critical ones. The aircraft structural response data and flight parameters are also monitored in real time. This procedure provides the test engineer an opportunity to determine damping and frequency trends as dynamic pressure and airspeed increased during the test.

Generally, the buildup will consist of points of incrementally increasing airspeeds or Mach number which are flown at either a constant altitude or along a constant dynamic pressure line. If the buildup is flown at a constant altitude then it usually begins at a high altitude where the dynamic pressure will be the lowest. The airspeed increments between points will depend upon the proximity to the predicted flutter boundary and the confidence in the flutter analysis. Smaller steps are required when close to a flutter condition or when a rapid decrease in damping is observed. Some practical initial airspeed must be selected to begin the buildup sequence since the aircraft must take off and climb to the first test altitude. The choice of the initial test airspeed and altitude is based on a conservative review of the predicted flutter modes and flutter margin.

Clearly, the test program will differ according to whether the aircraft is to be cleared for low subsonic, high subsonic or transonic/supersonic speed regimes. In all cases a part of the flight envelope is cleared by calculations for initial flying, obviously allowing a good margin of safety. Typical procedures for testing of these speed regimes are shown in figure 14-4, obtained from reference 14-1.

The maneuvers used in flutter testing depend upon the type of aircraft structural excitation available and the data to be collected. If sweep, burst, or random data is to be required, the aircraft will stabilize on condition (i.e., fly at a constant airspeed and altitude) for the time required to do the excitation. Generally, when dive test points have to be flown, the aircraft will reach a target airspeed, and the excitation data will be taken between a band of altitudes to prevent significant changes in the dynamic pressure during the maneuver. Sometimes, windup turns are carried out to determine the effect of g-forces on the aircraft flutter characteristics.

14.6 DATA ACQUISITION AND ANALYSIS

Until relatively recently, the measured signals were handled manually all the way to analysis in an analog format. This meant that only simple procedures could be applied unless time lapse did not play a significant role. In fact, trace recordings of time histories, particularly those of decaying oscillations, were processed manually and further evaluations in the frequency range domain were seldom performed. This process is still used, along with more sophisticated methods, for aircraft that are expected to exhibit one predominate critical modal response such as with aircraft with external stores or large transport type aircraft.

With the advent of computers, plus improved data acquisition systems and the development of Fast Fourier Transform techniques, more complex analysis procedures involving two signals simultaneously in both the time and frequency domain have been developed. It is now possible to produce real-time quantities such as auto spectra of input or output and transfer functions in the frequency domain and auto correlations of input or output, cross correlations, and impulse responses in the time domain as discussed in chapter 11 of reference 14-3. In addition, new near real-time curve fitting techniques in both the frequency and time domains help expedite damping and frequency calculations.

Signals from the sensors often contain components of no interest to the flutter investigation and the data is subject to filtering before recording and/or analysis. Data from the sensors are normally always recorded on board the aircraft utilizing magnetic tape recorders and selected parameters are usually sent to the ground for "quick look" and intermaneuver analysis by suitable specialists (Large transport/cargo aircraft will often have equipment on board for analysis in flight). This not only reduces risk but permits more test points per flight. In figure 14-5 a block diagram of a typical data acquisition and analysis system is shown. The analysis system is normally part of telemetry ground station. Data analysis can be done in real

14-6

time using the data coming in via a telemetry link, or postflight, using data recorded on board the aircraft or on the ground station itself.

There is no need to process much of the data past the "quick look" stage. Data that is required to be processed further must be judiciously selected by the flutter engineer to avoid saturation of the data processing facilities. Typical results during flight tests are shown in figure 14-6 and the final result of flutter stability in figure 14-7.

14.7 TYPICAL PRODUCTS

The most important product resulting from the flutter test is the report providing clearances/limitations/special operating procedures as derived from test and data analysis.

Other products of importance to the flutter community are the quantities such as (in the frequency domain) autospectra of input or output, cross transfer and transfer functions and (in the time domain) autocorrelations of input or output, cross-correlations, and impulse responses.

Another very important product is the validation or updating, as appropriate, of the flutter model developed as a result of the wind tunnel testing and data analysis.

14.8 SPECIAL CONSIDERATIONS

Safety of flight must be the prime consideration when conducting flutter tests. Tests should not be continued, if in the opinion of the test pilot or the flutter engineer, unexpected results are encountered. Procedures must be clearly spelled out as to who has the authority to interrupt any given set of data points of the specified flight test program in order to conduct an inserted detailed data analysis.

All flutter tests should begin in that part of the flight envelope where wind tunnel data and data analysis unambiguously indicate freedom of flutter. Further tests should progress toward the anticipated edges of the envelope in carefully calculated increments that get smaller as less safe conditions are expected. Flight test data that show differences from predicted flutter and/or damping characteristics should result in a stand-down until the differences are explained and/or rectified.

The flight test engineer and the flutter engineer should carefully debrief the test pilot after each flight. Special attention should be given to pilot comments about any vibrations or oscillations experienced during each test point. These comments could provide valuable clues of which data to further process or of items to look for when processing data.

During real-time testing the flight test engineer should be continually on the look-out for trends in the damping and frequency that indicate that flutter could be imminent. This is performed primarily by monitoring the time signals or the processed data frequency and damping of the critical modes as a function of airspeed and/or dynamic pressure. If the damping starts to decrease at a faster rate than anticipated, then testing should be done at smaller increments or terminated. If the structural time history response starts to become more sinusoidal, with less relative noise, as the test progresses from point to point then the tests should proceed with extreme caution since flutter may occur. In any event, the damping coefficient should not be allowed to go below three percent as specified in figure 14-2b.

14.9 CONCLUDING REMARKS

Flutter can destroy or seriously damage an aircraft. Therefore, flutter considerations must be addressed early in the design process and the concern for flutter problems must be addressed at every stage of the aircraft's development and as early as reasonable in the flight test program. However, a vehicle representative of the production version must still be tested to provide representative data, especially if the aircraft is designed to carry a variety of stores.

Rapid strides are being made in flutter analysis and suppression techniques. The entire subject of flutter is being addressed by a planned AGARD Structure and Materials Panel Specialist's Meeting to review the state-of-the-art and consider future directions (to be held in the spring, 1995).

ACKNOWLEDGEMENT

Mr. L. Tracy Redd of the US Air Force Flight Test Center made substantial contributions to the preparation of this Section.

REFERENCES

14-1. Nunen, J.W.G.van and Piazzoli, G., "Aeroelastic Flight Test Techniques and Instrumentation", AGARD-AG-160, Flight Test Instrumentation Series Volume 9, 1979.

14-2. Wright, J.R., "Introduction to Flutter of Winged Aircraft: Flight Flutter Testing", Lecture Series 1992-01, von Karman Institute for Fluid Dynamics, Chaussee de Waterloo 72, B-1640 Rhode Saint Genese, Belgium.

14-3. Norton, W.J., Captain, USAF, "Structures Flight Test Handbook", AFFTC-TIH-90-001, November 1990.

14-4. Military Specification, MIL-A-8870C, "Airplane Strength and Rigidity, Vibration, Flutter, and Divergence", 25 Mar 1993.

14-5. Reed III, W.H., "Development and Flight Application of the DEI Flutter Exciter", Aerospace Flutter and Dynamics Council Meeting, Orlando, Florida, October 1989.

14-6. Norton, W.J., Captain, USAF, "Random Air Turbulence as a Flutter Test Excitation Source", Society of Flight Test Engineers 20th Annual Symposium Proceedings, September 1989.

BIBLIOGRAPHY

Mazet, R., "Some Aspects of Ground and Flight Vibration Tests", AGARD Report 40-T, April 1956.

"Several Techniques for Flight Flutter Testing", AGARDograph 56, 1960.

Piazzoli, G., "Aeroelastic Test Methods, Experimental Techniques", AGARD Report, 1970.

Skingle, C.W. and Baldock, J.C.A., "Flutter Techniques in the UK - a Survey", AIAA 73-330, March 1973.

Dat, R., "The Theoretical and Experimental Methods used in France for Flutter Prediction", AIAA 73-329, March 1973.

Larue, P., Millet, M., and Piazzoli, G., "Pyrotechnic Bonkers for Structural Tests in Flight", La Recherche Aerospatiale, May-June 1974, pp. 137-146.

14-8

Rosenbaum, R., "Survey of Aircraft Subcritical Flight Flutter Testing Methods", NASA CR 132479, August 1974.

Nash, D.E., Katz, H., and Noody, W.C., "F-15 Flight Flutter Testing: Aircraft Systems and Test Operations", AIAA Aircraft Systems and Technology Meeting, Los Angeles, CA, August 1975.

"Flight Flutter Testing Symposium", New printing of 1958 Symposium NASA SP-285, 1975.

"Flutter Testing Techniques" Proceedings of Conference in 1975, NASA SP-415, 1975.

Collar, A.R., "The First Fifty Years of Aeroelasticity", Aerospace 545, (publication of the Royal Aeronautical Society), February 1978.

Koenig, K., "Experience from Flight Flutter Testing with Tip-Vanes on Airbus", International Symposium on Aeroelasticity, Nuremberg, Germany, October 1981.

Zimmermann, H. and Destuynder, R., "Flight Flutter Testing with Emphasis on the Tip Vane Method", AGARD-CP-339, October 1982.

Garrick, I.E. and Reed III, W.H., "Historical Development of Aircraft Flutter", Journal of Aircraft, Vol.8, No.11, November 1982.

Kehoe, M.W., "Aircraft Flight Flutter Testing at the NASA Ames-Dryden Flight Research Facility", NASA TM-100417, May 1988.

Reed III, W.H., "A New Flight Flutter Excitation System", Society of Flight Test Engineers 19th Annual Symposium Proceedings, August 1988.

Auweraer, H. van der, Leuridan, J., Pintelon, R., and Schoukens, J., "A Frequency Domain Maximum Likelihood Identification Scheme with Application to Flight Flutter Data Analysis", 8th International Modal Analysis Conference Proceedings, Kissimmee, FL, January-February 1990.

Ricketts, R.H., "Experimental Aeroelasticity, History, Status and Future in Brief", AIAA-90-0978, April 1990.

Bucharles, A., Cassan, H., and Roubertier, J., "Advanced Parameter Identification Techniques for Near Real Time Flight Flutter Test Analysis", 5th Biannual Flight Test Conference Proceedings, Ontario, CA, May 1990.

Air Force Guide Specifications, "General Specifications For Aircraft Structures", AFGS-87221a, 8 June 1990.

Norton, W.J., "Limit Cycle Oscillation and Flight Flutter Testing", Society of Flight Test Engineers 21th Annual Symposium Proceedings, August 1990.

Guillaume, P., Pintelon, R., and Schoukens, J., "Description of a Parametric Maximum Likelihood Estimator in the Frequency Domain for Multi-input, Multi-Output Systems and its Application to Flight Flutter Analysis", Mechanical Systems and Signal Processing, Vol.4, September 1990.

Cooper, J.E., "Model Parameter Identification Techniques for Flight Flutter Testing", 71st AGARD SMP Proceedings, Povoa de Varzim, Portugal, October 1990.

Nissim, E., "The Effectiveness of Vane-Aileron Excitation in the Experimental Determination of Flutter Speed by Parameter Identification", NASA TP-2971, 1990.

14-10

Buckley, W.R. and Poland, J.B., "Modal Analysis in the Certification of a Commercial Aircraft", 9th International Modal Analysis Conference Proceedings, Florence, Italy, April 1991.

.....

Marshall, M.A., "Determination of In-Flight Modal Characteristics of a Fighter Type Aircraft", 9th International Modal Analysis Conference, Florence Proceedings, Italy, April 1991.

Shibata, K. and Matsuzaki, K., "Preliminary Study of Algorithm for Real-Time Flutter Monitoring", 29th International Pacific Air and Space Technology Conference and Aircraft Symposium Proceedings, Gifu, Japan, October 1991.

Meijer, J.J., "NLR Investigations of Flutter Behaviour of Fighter Aircraft with External Stores", NLR TP 91134 U, National Aerospace Laboratory/NLR, Amsterdam, 1991.

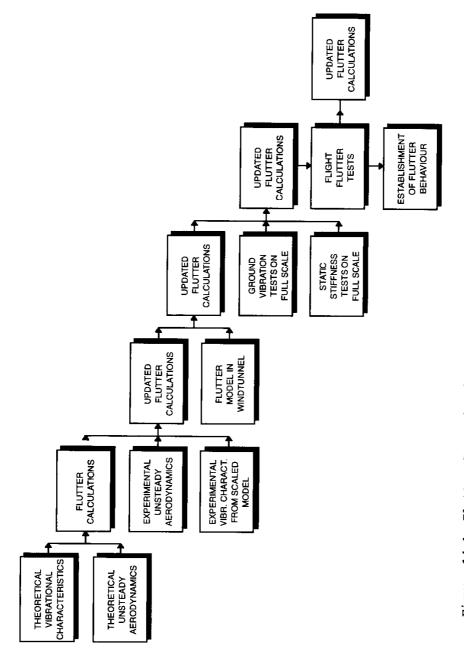
Girone, M. and Jones, W., "Increasing the Lethality and Combat Mission Flexibility of the F-111 Through Flight Test and an Enhanced Flutter Computer Program", Society of Experimental Test Pilots 36th Symposium Proceedings, September 1992.

Lee, B.H.K. and Ben-Neticha, Z., "Analysis of Flight Flutter Test Data", Canadian Aeronautics and Space Journal, Vol.38, No.4, December 1992.

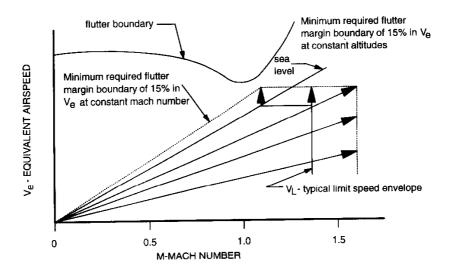
Cooper, J.E., Emmet, P.R., Wright, J.R., and Schofield, M., "Envelope Function - A Tool for Analyzing Flutter Data", Journal of Aircraft, Vol.30, No.5, September-October 1993, p. 785-790.

Hodson, C.H., Dobbs, K., Brosnan, M.J., and Chen, J.B., "X-31A Flight Flutter Test Excitation by Control Surfaces", AIAA 93-1538, 1993.

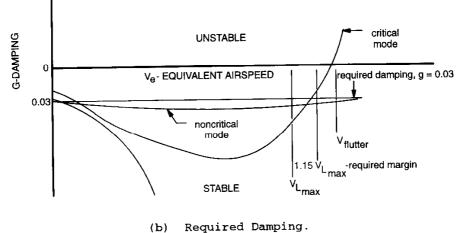
Pinkelman, J.K., Batill, S.M., Vernon, L.E., and Kehoe, M.W., "An Evaluation of Excitation Techniques for Time Domain Based Flutter Data Processing", AIAA 93-1602, 1993.


Vernon, L., "In-flight Investigation of a Rotating Cylinder-Based Structural Excitation System for Flutter Testing", NASA TM-4512, 1993.

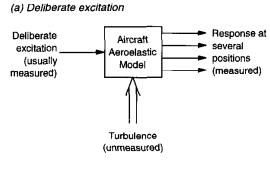
Nissim, E., "Improvement of Method for Experimental Determination of Flutter Speed by Parameter Identification", NASA CR-193555, 1993.


Farrell, P.A. and Ryall, T.G., "Flight Flutter Test Techniques at ARL", ARL-STRUC-TM-569, Aeronautical Research Labs., Melbourne, Australia.

JAR 25.629, "Joint Airworthiness Requirements".


FAR 25.629, "Federal Airworthiness Requirements".

Flutter Investigation During Development Stage of a New Aircraft. Figure 14-1



(a) Minimum Required Flutter Margin.

(D) Reduited pamping:

Figure 14-2 Flutter Requirements.

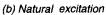


Figure 14-3 Identification of Dynamic Characteristics.

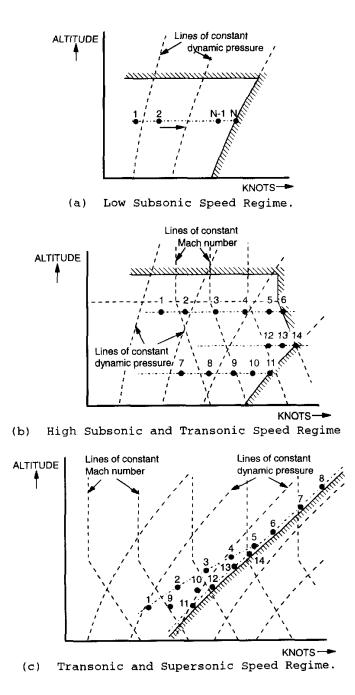


Figure 14-4 Flutter Test Procedures.

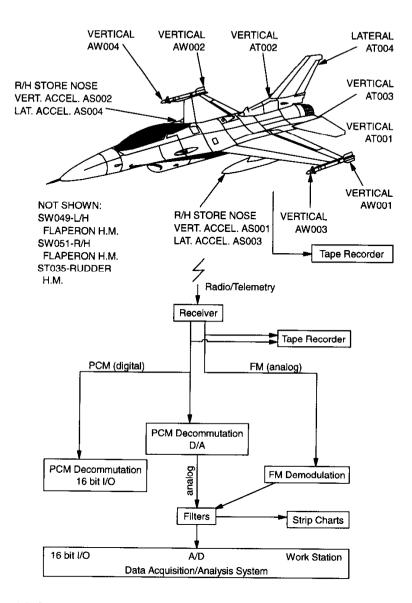


Figure 14-5 Typical Flutter Data Acquisition and Analysis System.

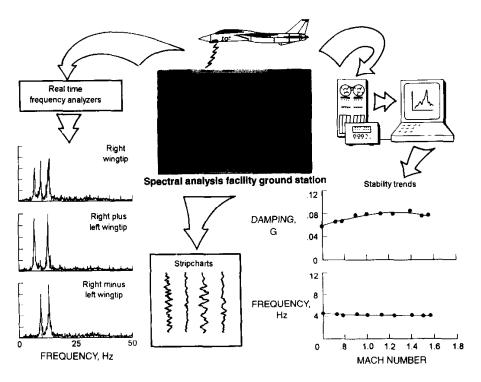


Figure 14-6 Typical Results Obtained from Flight Tests.

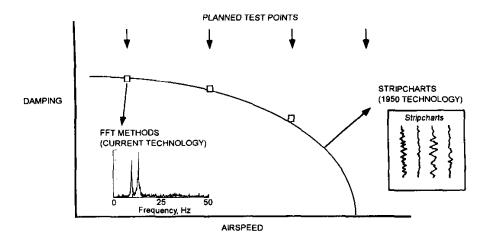


Figure 14-7 Current Stability Determination for Most Airframe Companies/Government Agencies.

You are here: Home » search » tr » rto » agardographs

AGARDograph Series 160 and 300

Public TR Searches 🖻

Font size: A A

Simple - Advanced Searches DTIC Collection Searches Special Collection Searches

AGARDograph Series 160 (AG-160 AGARD Flight Test Instrumentation Series)

Volume 1	Basic Principles of Flight Test Instrumentation Engineering	AD780062
Volume 1	Issue 2. Basic Principles of Flight Test Instrumentation Engineering	ADA296880
Volume 2	In-Flight Temperature Measurements	AD758589
Volume 3	The Measurement of Fuel Flow	AD741610
Volume 4	The Measurement of Engine Rotation Speed	AD771192
Volume 5	Magnetic Recording of Flight Test Data	AD776657
Volume 6	Open and Closed Loop Accelerometers	AD784944
Volume 7	Strain Gauge Measurements on Aircraft	ADA026838
Volume 8	Linear and Angular Position Measurement of Aircraft Components	ADA036095
Volume 9	Aeroelastic Flight Test Techniques and Instrumentation	ADA065938
Volume 10	Helicopter Flight Test Instrumentation	ADA089909
Volume 11	Pressure and Flow Measurement	ADA090961
Volume 12	Aircraft Flight Test Data Processing. A Review of the State of the Art	ADA097225
Volume 13	Practical Aspects of Instrumentation System Installation	ADA107355
	The Analysis of Random Data	ADA111412
Volume 15	resung	ADA123249
Volume 16	Trajectory Measurements for Take-Off and Landing Tests and Other Short-Range Applications	ADA152278
Volume 17	Analogue Signal Conditioning for Flight Test Instrumentation	ADA171303
Volume 18	Microprocessor Applications in Airborne Flight Test Instrumentation	ADA178983
Volume 19	Digital Signal Conditioning for Flight Test	ADA240140

AGARDograph Series 237

Guide to In-Flight Thrust Measurement of Turbojets and Fan Engines ADA065939

AGARDograph Series 300 (AG-300 Series: AGARD Flight Test Techniques Series)

Volume 1	Calibration of Air-Data Systems and Flow Direction Sensors	ADA137367
Volume 2	Identification of Dynamic Systems	ADA153321
Volume 3	Identification of Dynamic Systems - Applications to Aircraft. Part 1. The Output Error Approach	ADA178766
Volume 3	Identification of Dynamic Systems-Applications to Aircraft. Part 2. Nonlinear Analysis and Manoeuvre Design	ADA288774
Volume 4	Determination of Antennae Patterns and Radar Reflection Characteristics of Aircraft	ADA169584
Volume 5	Store Separation Flight Testing	ADA171301
Volume 6	Developmental Airdrop Testing Techniques and Devices	ADA189621
Volume 7	Air-to-Air Radar Flight Testing	ADA197412
Volume 8	Flight Testing under Extreme Environmental Conditions	ADA197579
Volume 9	Aircraft Exterior Noise Measurement and Analysis Techniques	ADA237358
Volume 10	Weapon Delivery Analysis and Ballistic Flight Testing	ADA296888
Volume 11	The Testing of Fixed Wing Tanker and Receiver Aircraft to Establish Their Air-To-Air Refuelling Capabilities	ADA296889
Volume 12	The Principles of Flight Test Assessment of Flight-Safety- Critical Systems in Helicopters	ADA296890
Volume 13	Reliability and Maintainability	ADA295822
Volume 14	Introduction to Flight Test Engineering	ADA303918
Volume 15	Introduction to Avionics Flight Test	ADA322378
Volume 16	Introduction to Airborne Early Warning Radar Flight Test	ADA370778
Volume 17	Electronic Warfare Test and Evaluation	ADA377365
Volume 18	Flight Testing of Radio Navigation Systems	ADA380950
Volume 19	Simulation in Support of Flight Testing	ADA385006
Volume 20	Logistics Test and Evaluation in Flight Test	ADA400520
Volume 21	Flying Qualities Flight Testing of Digital Flight Control Systems	ADA398738
Volume 22	Helicopter/Ship Qualification Testing	ADA411975
Volume 23	Flight Test Measurement Techniques for Laminar Flow	ADA419418
This site is	s best viewed with "JavaScript" enabled.	

Last modified: 06/27/08

DEFENSE TECHNICAL INFORMATION CENTER 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

No Fear Act | Privacy Act | Web Accessibility | FOIA | Contact Us | DTIC Online Help Site Map | Registration | DTIC A-Z | Submit Documents | Interest Areas | Customer Support | S&T Resources Announcements | Forms & Guides | IACs | Find It | About Us | USA.gov

