

Software Enabled Control Principle Investigators Meeting November 13-15, 2001

Major Andrew "Rocket" Thurling USAF Test Pilot School

Mr. Thomas Landers Veridian Engineering

Outline

-VERIDIAN

#048

- Outline
- · VISTA.....
- What is it?
- What has it done?
- How would I use it?
- What can it do for me?

VISTA

- Variable-stability Inflight Simulator Test Aircraft
- Very Highly Modified NF-16D Aircraft
 - -S/N 86-048
 - -Block 30 Airframe, Peace Marble II Configuration
 - -Block 40 DFLCC (Digital Flight Control Computer)
 - -Block 40 (FMS) Avionics System
 - -Heavy Weight Landing Gear
 - Variable Stability System (5-DOF Simulator)

VERIDIAN

VISTA History

- Removed from F-16 production line late in production for modification
 First flight April 9, 1992
- Four more initial checkout flights in April, 1992
- MATV (Multi-Axis Thrust Vectoring) test bed 1993-1994 (95 flights)
- VSS Test Flights, July 1994 Jan. 1995 (63 flights)
- Delivered to USAF (Wright-Patterson AFB) in Jan. 1995

VISTA in the MATV Configuration

VISTA History (con't)

Operated by Veridian Engineering (Calspan) since January, 1995 under USAF contract July '96 – June '97: P/W-229 engine conversion, along with wiring modification for P/W Thrust Vectoring, HMD system

October 2000: relocated to USAF TPS (Edwards AFB)

VISTA Equipment Layout

VERIDIAN'

VISTA VSS Computers

- Full ATR Size 15 Slot Chassis
- VME Open Architecture
- Each Chassis:
 - 233 Mhz Pentium w/512KB Cache
 - 128 MB ECC RAM
 - Analog and discrete I/O
 - 6 Dual Redundant 1553 Bus Interfaces
 - Flash Card Memory (85-330 MB)
 - RS-232, RS-422, SVGA, SCSI-2, Ethernet
- Interfaced to F-16 Core avionics, flight controls, "experimental systems"
- Programmed by Veridian
 - NOT safety of flight critical
 - Reprogramming can be done with a minimal amount of "administrative overhead"
 - Changes can be made in less than one hour (ready to fly!)

VER<u>IDIAN'</u>

VISTA Flight Envelope

VERIDIAN

 VSS operational envelope slightly reduced from basic F-16 (Nz limits are +6.8/-2.44 G's)

VSS Computer Operation and Control

- VSS computers are interfaced with the Multi-Function Display System (MFDS) and Up-Front Controller (UFC) to allow the VSS computers to display information and receive keystrokes
- This allows test parameters to be varied *in-flight* at the touch of a button

GAIN		SYM U
	BUILT IN TEST SAFETY TRIPS	
	GND SIM CONFIG UTILITIES	
	CCS PROG DISPLAY SYSTEM	
	ATTITUDE DISPLAY SENSOR CUEING	
BRT	SWAP VSS1 FCR	

 "04R	
CONF STBY PAGE LIST XTRA +107 +001 1/4 PAGE CMDS D UA CONF F G CMD LINCOMP STICK CNTR * +001	
C+6/-2 NZ LIMAB ALLOWED *000CUSTOME KDES CS +300GAINS STOPE KFES CS +300	
COPY A KDAS CS +100 A KFAS CS +100	
PASTE E KQ1 +050 SYM FLAP +01.5 E KQ1 +050 PITCH TRIM +0.07	
TEST INPUT HUD CTRL 5 +000 OFF TT S0S D1S +006	
PRE IC SWAP VSS1 FCR MAIN	

VERIDIAN

LM JSF

VISTA - Research Role

- In-flight simulation of flight control system & aircraft combinations
- Basic research in the development of FCS requirements
- F-22, Indian light combat aircraft, AFRL fighter handling qualities projects, self designing controller, LM JSF, X-38

VISTA PROGRAMS

- F-22 In-Flight Simulation (Jan-May '96)
 - Powered approach evaluations (offset approaches to touchdown)
 - Mid weight/Mid CG
 - Light weight/Aft CG
 - Aero uncertainty
 - Single Engine failure
 - Single and Dual Hydraulic failure

-Aerial Refueling

- Simulated in-flight refueling with KC-135 tanker
- Air to Air tracking with Learjet
- Formation with Learjet and KC-135

VERIDIAN

VISTA PROGRAMS

- LCA Simulation (May-July '96)
 - Powered Approach evaluations
 - Heavy weight/Nominal CG
 - Mode transitions
 - Failure modes

VERIDIAN

- -Formation & Air to Air Tracking
 - Air to Air tracking with Learjet
 - Formation with Learjet and NT-33
 - Mode transitions
 - Air data failure
 - Aero uncertainty

- Self Designing Controller (SDC) (May-July '96)
 - -Demonstrated Real-time Parameter ID with simulated failure
 - Missing one horizontal tail
 - Modified Sequential Least Squares Parameter Estimation
 - -Receding Horizon Optimal Control Law
 - -Handling Qualities adequate for landing with failure

VERIDIAN'

VISTA PROGRAMS

• LM JSF CDA (Mar-Jun '98)

- Evaluated flying Qualities in PA, AR and UA flight conditions
- Various flight control options evaluated
- Clearance of 370 gal ARTS with VISTA
- Evaluation of Landing, AR, UA (formation and A-A)
 - Contractor and Government pilots
 Conventional and Carrier type with FLOLS approaches (98)
 - Air-to-air tracking & formation with F-18
 - Probe and drogue refueling (no fuel transfer) w/ KC-130

VERIDIAN

-VERIDIA-N

FIRST UAV-CLASS VISTA PROGRAM

- X-38 CRV IFS (Oct '98)
 - First IFS of UAV by VISTA
 - IFS performed on V132 Configuration
 - Equipped with GN&C
 - GN&C -- C Autocode from MatrixX integrated easily with VSS
 - Validate performance of aerodynamics and control law prior to V132 flight
 - Generate data for comparison with flight tests
 - FADS fail performance
 - Exercise the VISTA model development path in preparation for V201 (Re-entry vehicle) testing

WHY VISTA?

- Use VISTA as closed-loop test bed to minimize risks associated with unknown/unproven control laws
 - -VISTA provides fewest compromises in conduct of tests
 - -Minimal modification of aircraft required
 - -VSS concept allows for rapid prototyping, easy design "tweaks"
 - Evaluates complete system
 - Dynamics
 - GN&C
 - Weapons system surrogates
 - Up/Down links, if necessary
 - -Saves \$\$\$

- VISTA is an ideal test bed for UAVs
 - -VISTA can represent the L/D and responses typical of UAVs
 - Simulates UAV flight profiles (up to and including landing)
 - On board safety pilot provides for safe testing
 - Failures
 - Aero-uncertainty
 - Unproven control law strategies/methodologies
 - Rapid prototyping allows for proof of concept testing
 - Reduced Verification and Validation
 - Rapid turn around between software changes
 - Customer software development cycle limiting factor

- Pilot backup allows increased productivity
 - -Mission planning errors not program stoppers
 - –Increased aggressiveness in envelope expansion
 - -Increased aggressiveness in failure mode investigation
 - -Mission may be broken into logical segments
- Range safety considerations reduced with pilot onboard
 - -Flight Termination Systems not required
 - -Footprint analysis simplified
- Easily integrated with manned aircraft
 - -Reduced risk
 - -Less interference with manned operations
 - -Leads to less resistance to UAV testing

- Additional equipment space in Dorsal Equipment Bay
 - -Closed-loop test with hardware-in-the-loop
 - -Cooling & power available
 - -VME slots available
 - -Mounting locations for additional equipment

#048

VERIDIAN

UAV SIMULATION

VISTA Capable Of Simulating UCAV class Dynamic Responses

 VSS uses VISTA control surfaces to simulate open-loop vehicle dynamics

HIMAT RPV Simulation Example

- NASA RPV, flight tested circa '79-'81
- Geometric Data
 - Wing area 58.0 ft²
 - Span 14.93 ft
 - MAC 4.35 ft
 - Weight 3163 lbs
 - Ixx= 436 slugs-ft²
 - lyy= 1593 slugs-ft²
 - Izz= 2013 slugs-ft²
 - Ixz= -81.26 slugs-ft²

:048

UAV SIMULATION

- Response Feedback Utilized
 - -Longitudinal Response Evaluated
 - -Elevator, Elevon & Canard inputs
 - -M.6/10Kft
 - -Open Loop response due to surface inputs examined
 - Model Following allows full envelope simulation, with nonlinearities
- Response Feedback Gains
 - -Eigenstructure Assignment, Output feedback
 - Pseudo-inverse of VISTA surface effectiveness
 - -HIMAT actuator models not used
 - VISTA actuators impact time delay associated with simulating dynamics

HIMAT CANARD COMMAND

HIMAT ELEVON COMMAND

HIMAT ELEVATOR COMMAND

UAV SIMULATION

- HIMAT Representative Of Small To Mid-sized UAV
 - -Larger vehicles possible
 - Flight Control & Guidance System would be implemented identically to vehicle in question
- Possible Objectives
 - -Control Law Development/Refinement/Validation
 - -Failure modes and reconfiguration strategy testing/validation
 - -Data Link Evaluation and Development
 - -Weapons System Development
 - -Concept of Operations development

VERIDIAN

:048

- Potential Evaluations
 - -Nominal and Failure states
 - -Possible UAV or RLV testing:
 - Approach and Landings
 - Wave-off/go-around
 - Probe and Drogue refueling
 - Boom refueling (pre-contact position only)
 - Formation
 - Air-to-Air engagements
 - Air-to-Ground engagements
 - Failure modes
 - Reconfiguration/Safe modes

VERIDIAN'

- Model/Data Requirements
 - -Model and FCS Software
 - VISTA has successfully hosted the following software:
 - -Ada 83 & 95 (primary software of VSS)
 - -FORTRAN 77, 90
 - -C, C++
 - VISTA has successfully hosted the following Autocode:
 - -MatrixX C & Ada Autocode
 - -Simulink/Matlab C Autocode

VERIDIAN

- VISTA is a proven risk reduction tool
- VISTA provides simulated vehicle dynamics
- Minimal modifications to VISTA needed for your project (saves time and money in test prep.)
- Requires few compromises in test conduct
- Manned backup provides safety/risk mitigation
- Weapon systems surrogate for combat UAV test
- Low-cost insurance policy

• USAF TEST PILOT SCHOOL Points of Contact

- Maj. Andy Thurling, VISTA Program Manager & Chief R&D Pilot
 - · Comm. (661) 277-6554, DSN 527-6554
 - email: andrew.thurling@edwards.af.mil
- Ms. Sharlene Lim, Deputy PM, Chief of Maintenance and Logistics
 - · Comm. (661) 277-3046, DSN 527-3046
 - email: sharlene.lim@edwards.af.mil
- <u>http://www.edwards.af.mil/tps/vista/vista.htm</u>

Veridian Flight Research POC

- Mr. Thomas Landers, VISTA Program Manager
 - · Comm. (716) 631-6943
 - email: tom.landers@veridian.com

VERIDIAN

X-38 VISTA SUPPORT

VERIDIAN

Validation Process

- -Reference Time histories provided by Contractor
 - P, R, Y, Throttle steps, doublets
 - Small, moderate and large
- -Predict characteristics of VISTA simulating model checked with off-line simulation
 - Verified on aircraft with ground simulation
- -Flight Time Histories obtained during Calibration flights
 - Identical test inputs injected into system
- -Overlaid with Reference Time histories
- -Contractor/Veridian agree VISTA simulating model

VERIDIAN

Testing Procedures

- Test Plan written by Contractor, TPS, or Veridian
 - Contractor review during generation (if needed)
 - Submitted to TPS and Veridian for review and approval
- -AFFTC Process
 - Technical Review Board (TRB)
 - Safety Review Board (SRB)
- -Evaluation Flights
 - Contractor Test Engineer(s) and Pilots on-site
 - Responsible for test points and objectives of evaluation flights
 - Access to data within 1-2 hours of landing
 - 1 to 2 flights per day typical (surge to 4 possible based upon project needs/schedules)

VERIDIAN

:048

• Data

- -Post Flight data
 - Available 1 2 hours from landing
 - Hi-8 Video for Event log, pilot comments
- -Telemetry
 - Real time monitoring of flight data
 - Backup of flight data if necessary (loss of tape data)
- Test Report
 - -Written by Veridian or TPS
 - -Contractor review prior to distribution
 - -Submitted to AFTPS, AFFTC, Contractor and Project Office
 - -VISTA Contractual Requirement

VERIDIAN

:048

Model/Data Requirements

- -Flight Control System Block Diagrams/Code
- -Known FCS variations to be tested
- -FCS Gains & variations to be tested
- -Update rates
- -Un-augmented non-linear aero model
 - For specific flight conditions (if necessary)
 - Simulation model preferred
- -Bare airframe modal characteristics
 - Open & closed loop time histories
- **–Datalink Characteristics**
 - Update rates and Format
 - Frequency
 - Special Antennas

VERIDIAN'

2048

Model/Data Requirements (cont'd)

- -Actuator models
 - Frequency response, rate & position limits // 5
- -Sensor and signal conditioning
 - Sensor dynamics
 - Special compensation (e.g., complementary filters)
- -Definition of Axis Systems & Sign conventions
- -CG and Sensor Locations