VISTA – a 21st Century Testbed

Software Enabled Control Principle Investigators Meeting
November 13-15, 2001

Major Andrew “Rocket” Thurling
USAF Test Pilot School

Mr. Thomas Landers
Veridian Engineering
Outline

- Outline
- VISTA.............
- What is it?
- What has it done?
- How would I use it?
- What can it do for me?
Variable-stability Inflight Simulator Test Aircraft

- Very Highly Modified NF-16D Aircraft
 - S/N 86-048
 - Block 30 Airframe, Peace Marble II Configuration
 - Block 40 DFLCC (Digital Flight Control Computer)
 - Block 40 (FMS) Avionics System
 - Heavy Weight Landing Gear
 - Variable Stability System (5-DOF Simulator)
- Removed from F-16 production line late in production for modification
- First flight April 9, 1992
- Four more initial checkout flights in April, 1992
- MATV (Multi-Axis Thrust Vectoring) test bed 1993-1994 (95 flights)
- Delivered to USAF (Wright-Patterson AFB) in Jan. 1995
- Operated by Veridian Engineering (Calspan) since January, 1995 under USAF contract

- July ‘96 – June ‘97: P/W-229 engine conversion, along with wiring modification for P/W Thrust Vectoring, HMD system

- October 2000: relocated to USAF TPS (Edwards AFB)
“Customer” sits in the front cockpit
- Minimal F-16 responsibility
Pilot-in-command sits in the rear cockpit
- Has all primary aircraft controls
VISTA VSS Computers

- Full ATR Size 15 Slot Chassis
- VME Open Architecture
- Each Chassis:
 - 233 Mhz Pentium w/512KB Cache
 - 128 MB ECC RAM
 - Analog and discrete I/O
 - 6 Dual Redundant 1553 Bus Interfaces
 - Flash Card Memory (85-330 MB)
 - RS-232, RS-422, SVGA, SCSI-2, Ethernet
- Interfaced to F-16 Core avionics, flight controls, “experimental systems”
- Programmed by Veridian
 - NOT safety of flight critical
 - Reprogramming can be done with a minimal amount of “administrative overhead”
 - Changes can be made in less than one hour (ready to fly!)
VISTA: Variable Flight Controls

- Sensors
- Variable Stability System
- Actuator commands (5)
- Throttle command
- Rear throttle
- DFLCC
- F-16 CLAW
- Pilot disengage, Automatic monitors
- Engine
- Actuators
VISTA: Simulation Architecture

![Diagram of VISTA Simulation Architecture]

- **Centerstick/Sidestick**
- **Simulation Throttle**
- **Model FCS**
 - **Command Feedforward Gains**
 - **Response Feedback Gains**
- **DFLCC**
- **Actuator and Airframe Dynamics**
- **VSS and F-16 Sensors**
- **Feel System**
- **Feel Sys Computer**
- **Rudder Pedals**

VSS Computers
VISTA Flight Envelope

- VSS operational envelope slightly reduced from basic F-16 (Nz limits are +6.8/-2.44 G’s)
VSS Computer Operation and Control

- VSS computers are interfaced with the Multi-Function Display System (MFDS) and Up-Front Controller (UFC) to allow the VSS computers to display information and receive keystrokes.
- This allows test parameters to be varied *in-flight* at the touch of a button.

![VSS Computer Operation and Control Diagram]
VISTA - Research Role

- In-flight simulation of flight control system & aircraft combinations
- Basic research in the development of FCS requirements
- F-22, Indian light combat aircraft, AFRL fighter handling qualities projects, self designing controller, LM JSF, X-38
VISTA PROGRAMS

- F-22 In-Flight Simulation (Jan-May ’96)
 - Powered approach evaluations
 (offset approaches to touchdown)
 - Mid weight/Mid CG
 - Light weight/Aft CG
 - Aero uncertainty
 - Single Engine failure
 - Single and Dual Hydraulic failure

 - Aerial Refueling
 - Simulated in-flight refueling with KC-135 tanker
 - Air to Air tracking with Learjet
 - Formation with Learjet and KC-135
VISTA PROGRAMS

- LCA Simulation (May-July ’96)
 - Powered Approach evaluations
 - Heavy weight/Nominal CG
 - Mode transitions
 - Failure modes

- Formation & Air to Air Tracking
 - Air to Air tracking with Learjet
 - Formation with Learjet and NT-33
 - Mode transitions
 - Air data failure
 - Aero uncertainty
VISTA PROGRAMS

- Self Designing Controller (SDC) (May-July ’96)
 - Demonstrated Real-time Parameter ID with simulated failure
 - Missing one horizontal tail
 - Modified Sequential Least Squares Parameter Estimation
 - Receding Horizon Optimal Control Law
 - Handling Qualities adequate for landing with failure
VISTA PROGRAMS

- LM JSF CDA (Mar-Jun ’98)
 - Evaluated flying Qualities in PA, AR and UA flight conditions
 - Various flight control options evaluated
 - Clearance of 370 gal ARTS with VISTA
- Evaluation of Landing, AR, UA (formation and A-A)
 - Contractor and Government pilots
 - Conventional and Carrier type with FLOLS approaches (98)
 - Air-to-air tracking & formation with F-18
 - Probe and drogue refueling (no fuel transfer) w/ KC-130
FIRST UAV-CLASS VISTA PROGRAM

- X-38 CRV IFS (Oct ’98)
 - First IFS of UAV by VISTA
 - IFS performed on V132 Configuration
 - Equipped with GN&C
 - GN&C -- C Autocode from MatrixX integrated easily with VSS
 - Validate performance of aerodynamics and control law prior to V132 flight
 - Generate data for comparison with flight tests
 - FADS fail performance
 - Exercise the VISTA model development path in preparation for V201 (Re-entry vehicle) testing
WHY VISTA?

- Use VISTA as closed-loop test bed to minimize risks associated with unknown/unproven control laws
 - VISTA provides fewest compromises in conduct of tests
 - Minimal modification of aircraft required
 - VSS concept allows for rapid prototyping, easy design “tweaks”
 - Evaluates complete system
 - Dynamics
 - GN&C
 - Weapons system surrogates
 - Up/Down links, if necessary
 - Saves $$$
UAV TESTING

- VISTA is an ideal test bed for UAVs
 - VISTA can represent the L/D and responses typical of UAVs
 - Simulates UAV flight profiles (up to and including landing)
 - On board safety pilot provides for safe testing
 - Failures
 - Aero-uncertainty
 - Unproven control law strategies/methodologies
 - Rapid prototyping allows for proof of concept testing
 - Reduced Verification and Validation
 - Rapid turn around between software changes
 - Customer software development cycle limiting factor
- Pilot backup allows increased productivity
 - Mission planning errors not program stoppers
 - Increased aggressiveness in envelope expansion
 - Increased aggressiveness in failure mode investigation
 - Mission may be broken into logical segments
- Range safety considerations reduced with pilot onboard
 - Flight Termination Systems not required
 - Footprint analysis simplified
- Easily integrated with manned aircraft
 - Reduced risk
 - Less interference with manned operations
 - Leads to less resistance to UAV testing
UAV TESTING

• Additional equipment space in Dorsal Equipment Bay
 – Closed-loop test with hardware-in-the-loop
 – Cooling & power available
 – VME slots available
 – Mounting locations for additional equipment
UAV SIMULATION

- VISTA Capable Of Simulating UCAV class Dynamic Responses
 - VSS uses VISTA control surfaces to simulate open-loop vehicle dynamics

- HIMAT RPV Simulation Example
 - NASA RPV, flight tested circa ‘79-’81
 - Geometric Data
 - Wing area 58.0 ft\(^2\)
 - Span 14.93 ft
 - MAC 4.35 ft
 - Weight 3163 lbs
 - Ixx= 436 slugs-ft\(^2\)
 - Iyy= 1593 slugs-ft\(^2\)
 - Izz= 2013 slugs-ft\(^2\)
 - Ixz= -81.26 slugs-ft\(^2\)
UAV SIMULATION

- Response Feedback Utilized
 - Longitudinal Response Evaluated
 - Elevator, Elevon & Canard inputs
 - M.6/10Kft
 - Open Loop response due to surface inputs examined
 - Model Following allows full envelope simulation, with non-linearities

- Response Feedback Gains
 - Eigenstructure Assignment, Output feedback
 - Pseudo-inverse of VISTA surface effectiveness
 - HIMAT actuator models not used
 - VISTA actuators impact time delay associated with simulating dynamics
HIMAT CANARD COMMAND

HIMAT

VISTA

- canard cmd
- pitch rate (d/s)
- alpha (deg)
- time

HIMAVISTA
HIMAT ELEVATOR COMMAND

HIMAT

VISTA
UAV SIMULATION

- HIMAT Representative Of Small To Mid-sized UAV
 - Larger vehicles possible
 - Flight Control & Guidance System would be implemented identically to vehicle in question
- Possible Objectives
 - Control Law Development/Refinement/Validation
 - Failure modes and reconfiguration strategy testing/validation
 - Data Link Evaluation and Development
 - Weapons System Development
 - Concept of Operations development
UAV TESTING

- Potential Evaluations
 - Nominal and Failure states
 - Possible UAV or RLV testing:
 - Approach and Landings
 - Wave-off/go-around
 - Probe and Drogue refueling
 - Boom refueling (pre-contact position only)
 - Formation
 - Air-to-Air engagements
 - Air-to-Ground engagements
 - Failure modes
 - Reconfiguration/Safe modes
Model/Data Requirements

- Model and FCS Software
 - VISTA has successfully hosted the following software:
 - Ada 83 & 95 (primary software of VSS)
 - FORTRAN 77, 90
 - C, C++
 - VISTA has successfully hosted the following Autocode:
 - MatrixX C & Ada Autocode
 - Simulink/Matlab C Autocode
CONCLUSIONS

- VISTA is a proven risk reduction tool
- VISTA provides simulated vehicle dynamics
- Minimal modifications to VISTA needed for your project (saves time and money in test prep.)
- Requires few compromises in test conduct
- Manned backup provides safety/risk mitigation
- Weapon systems surrogate for combat UAV test

- Low-cost insurance policy
VISTA ORGANIZATION

USAFTPS/CC
Col George Ka’iliwai

VISTA Program Manager
Major Andy Thurling

Deputy Program Manager
Sharlene Lim

Production & Mx Super
MSgt Charles Olden

VISTA Maintenance Team
Veridian/USAF

Contract Manager
Jeanne Gare

Plans/Programs
Major Thurling

Veridian Program Mgr
Tom Landers

Technical Advisor, Systems Research
John Minor

VISTA Test Pilots
- Major Andy Thurling - Chief Research & Development Pilot
- Major Rick Palo - Chief Systems Instructor Pilot
- Mark Dickerson - Veridian/Edwards Instructor Pilot
- Jeff Peer - Veridian/Buffalo Chief Instructor Pilot
- Major Om Prakash - Instructor Pilot

Veridian Flight Research
Buffalo, NY
VISTA Continuing Development
Test Pilot Training
Engineering Support
Maintenance Support
Who To Contact

- **USAF TEST PILOT SCHOOL Points of Contact**
 - Maj. Andy Thurling, VISTA Program Manager & Chief R&D Pilot
 - Comm. (661) 277-6554, DSN 527-6554
 - email: andrew.thurling@edwards.af.mil
 - Ms. Sharlene Lim, Deputy PM, Chief of Maintenance and Logistics
 - Comm. (661) 277-3046, DSN 527-3046
 - email: sharlene.lim@edwards.af.mil

- **Veridian Flight Research POC**
 - Mr. Thomas Landers, VISTA Program Manager
 - Comm. (716) 631-6943
 - email: tom.landers@veridian.com
X-38 VISTA SUPPORT
UAV TESTING

• Validation Process
 – Reference Time histories provided by Contractor
 • P, R, Y, Throttle steps, doublets
 • Small, moderate and large
 – Predict characteristics of VISTA simulating model checked with off-line simulation
 • Verified on aircraft with ground simulation
 – Flight Time Histories obtained during Calibration flights
 • Identical test inputs injected into system
 – Overlaid with Reference Time histories
 – Contractor/Veridian agree VISTA simulating model
UAV TESTING

- **Testing Procedures**
 - Test Plan written by Contractor, TPS, or Veridian
 - Contractor review during generation (if needed)
 - Submitted to TPS and Veridian for review and approval
 - AFFTC Process
 - Technical Review Board (TRB)
 - Safety Review Board (SRB)
 - Evaluation Flights
 - Contractor Test Engineer(s) and Pilots on-site
 - Responsible for test points and objectives of evaluation flights
 - Access to data within 1-2 hours of landing
 - 1 to 2 flights per day typical (surge to 4 possible based upon project needs/schedules)
UAV TESTING

- Data
 - Post Flight data
 - Available 1 - 2 hours from landing
 - Hi-8 Video for Event log, pilot comments
 - Telemetry
 - Real time monitoring of flight data
 - Backup of flight data if necessary (loss of tape data)
- Test Report
 - Written by Veridian or TPS
 - Contractor review prior to distribution
 - Submitted to AFTPS, AFFTC, Contractor and Project Office
 - VISTA Contractual Requirement
UAV TESTING

- Model/Data Requirements
 - Flight Control System Block Diagrams/Code
 - Known FCS variations to be tested
 - FCS Gains & variations to be tested
 - Update rates
 - Un-augmented non-linear aero model
 - For specific flight conditions (if necessary)
 - Simulation model preferred
 - Bare airframe modal characteristics
 - Open & closed loop time histories
- Datalink Characteristics
 - Update rates and Format
 - Frequency
 - Special Antennas
Model/Data Requirements (cont’d)
 - Actuator models
 - Frequency response, rate & position limits
 - Sensor and signal conditioning
 - Sensor dynamics
 - Special compensation (e.g., complementary filters)
 - Definition of Axis Systems & Sign conventions
 - CG and Sensor Locations