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Error Anal ysis

VWat follows is an annotated version of the results of
running a MATLAB script called CLerror_analysis.m This
script and related functions can be found on the course web
site.

http://roger. ecn. purdue. edu/ ~andri san/ Cour ses/ AAE490A S2003
/1 ndex. ht m

Start here

% This is a MATLAB script to study error analysis

% of two types,

% absol ute errors and root-nmean square (rss) errors.

% The script assunes that |ift coefficient is to be
conput ed

% from neasured val ues of weight (W, air density (rho),
% speed (v), and wing area (S).

%

% CL=W (. 5*pho*v”"2S)

%

% x( 1) =\Wewei ght i n pounds

% x(2)=rho=air density in slugs per ft"3

% x(3)=v=speed in ft/sec

% x(4)=S=wing area in ft"2

%

% Unfortunately, the neasured val ues of

% these four quantities are all slightly in error.

% These errors nean that the

% conput ed values for lift coefficient will also be in
error.

% This script studies the relationship between the errors
%in the four inputs (W rho, v S) and the error in the
out put (CL).

Wrue = 5500
rhotrue =0.0023769
vKnots =70

vtrue =118. 15



Strue =199. 2

CLtrue =1. 6644

The individual input errors in the four quantities used to
conpute CL are given bel ow.

error = [7 le-05 0.1 0. 1]

The individual contributions to the output error fromthese
four input errors (errors in W rho, v and S) can be

exam ned to see which input creates the biggest errors in
the output (CL).

Qut put _error(i)=absolute value of [(partial of CL wt
x(i1))*(error in x(i))]

Nurmeri cal val ues of these output errors are given bel ow
err_vec = [0.0021183 0. 0070023 0. 0028175
0. 00083553]

From these output errors, the total error in the output CL
can be conputed in two ways.

The absolute error as printed out above (abs error) is
defined as

abs _error=sun(error(i)) for i=1,2,3,4

The nunerical value of the absolute error is
abs error = 0.012774

The root-sum square error as printed out above (rss_error)
is defined as

rss_error=sqgrt(sumerror(i)”2)) for i=1,2,3,4

The nunerical value of the root-sumsquare error is
rss_error =0.0078839

The four output errors are plotted below Their relative
size is very apparent in the plot bel ow
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Notice how the error due to rho (air density) dom nates the
total output error (absolute error and rss error. This
suggests that it is worthwhile to try to reduce this input
error due to rho.

Let’'s sinul ate neasurenents that have errors on them To do
this, we have to assune an error nodel for the neasurenent
errors.

% Anal ysi s using absolute errors

% Assune that weight, density, speed and wing area are al
% measured with errors.

% Assune that the errors are uniformly distributed around
% the true values plus and m nus the absolute error.

% The vector error is interpreted as the +- (absol ute)
errors

% of a uniformy distributed random vari abl e.

echo off



Plotted below is a random sanple of errors in weight that
are uniformy distributed around zero and lie in the range
+1 7 pounds.
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We have al so generated uniformy distributed errors in rho,
v, and S, with +- bounds of 1e-05, 0.1, and O.1.



Based on this noisy (random neasurenents of W rho, v and
S we can conpute CL and determ ne the absolute error bounds
for CL.

CL computed using multiple data points with uniform errors. Error bars are +- 1 abs error
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Noti ce above that the conputed value of CL +- the tota
absolute error forma vertical line for each data point.
The vertical line always brackets the true value of CL.
This is a desirable property of absolute error analysis. A
di sadvant age of absolute error analysis is that it tends to
produce | arger error bounds then does the root-nean square
error anal ysis.



In a simlar way we can sinul ate neasurenents that have
errors on themof a different type. To do this, we have to
assune a different error nodel for the neasurenent errors.

% Anal ysi s using Gaussian errors

% Assune that weight, density, speed and wing area are al
% nmeasured with errors.

% Assunme that the errors are Gaussi an distributed around
% the true values with a signma as specified

%%wth the array error.

% The vector error is interpreted as the

% si gma or root-nmean square of a

% CGaussi an distributed random vari abl e.

»

Plotted below is a random sanple of errors in weight that
follow the Gaussian (normal) distribution. These val ues are
centered around zero and have an root-nean square (rss or
sigma) of 7 pounds.
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We have al so generated gaussian distributed errors in rho,
and 0.1. Based

v, and S, with signma errors of 1e-05, 0.1,
on this noisy (randonm) neasurenents of W

rho, v and S we

can conpute CL and determ ne the RSS (signma) bounds for CL.

CL computed using multiple data points with Gaussian errors. Error bars are +- 1sigma
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Noti ce above that the conputed value of CL +- 1 sigma form
a vertical line for each data point. The vertical |ine
bracket the true value of CL about 68% of the tine.



A better bound is to take CL +- 2 sigma, as shown bel ow.

The vertical line bracket the true value of CL about 95% of
the tine.
171 CL computed using multiple data points with Gaussian errors. Error bars are +- 2sigma
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When using a root-nean square (Gaussian) error nodel, it is

generally preferable to use +- 2 sigma error bounds around
conput ed data points.

St udents shoul d al ways conpute error bars around
experinentally determ ned quantities. The error nodel they
use (absolute errors or root-nean square errors) nmay be
deci ded on a probl em by-probl em basis but nust be clearly
descri bed when docunenting results.



