
A&AE 421 Dynamic Analysis of a Simple Pendulum
(with corrected damping term, 1/12/01)

Assume that a simple pendulum consists of a ball on a string. Gravity tends to make the
pendulum (ball) return to the vertical position. If the ball is given an initial angle, θ, and

let go it will oscillate. The aerodynamic drag on the ball tends to make the ball slow
down and eventually stop.

Pendulum differential equation
˙̇ sin() . ˙ [(˙)] /θ θ ρ θ θ= − −g

l
SC l sign mD5 2

where g is the acceleration of gravity, l is the length of the pendulum, ρ is the air density,

S is the cross-sectional area of the ball of the pendulum, m is the mass of the ball, and CD

is the drag coefficient of the ball. Motion variable θ is the angle that the pendulum makes

with a vertical line. The sign function is required to insure that the drag force always
resists the motion due to the rate of change of angle θ.

Pendulum state space model

x
x

x

x
x

x

x
g
l

x SC lx sign x m
g x x

g x xD

=

=

=

=

 = − −

=

1

2

1

2

2

1 2
2

2

1 1 2

2 1 2
5

θ
θ

θ
θ ρ

˙

˙
˙

˙

˙

˙̇ sin() . () /
(,)

(,)

l

θ

Simulink Model for the Simple Pendulum

Simulink is a MATLAB toolbox for simulating dynamic systems, i.e., for determining
time responses of linear or nonlinear systems. It is a graphical environment that is quite
easy to use with a little practice. It is very easy to add control systems to dynamical

models.

All software described in this document can be found in the class web site
http://roger.ecn.purdue.edu/~andrisan/Courses/AAE421_S2001/Index.html

The graphical Simulink model is contained in two files. The first is the Simulink model
file. For the pendulum this file is called pendulum.mdl. Files that end in .mdl are
interpreted by MATLAB as Simulink model files.

The Simulink toolbox is executed from the MATLAB command window by typing
simulink. The contents of the .mdl files need not be directly viewed or edited. Instead

.mdl files are opened in MATLAB when Simulink is active. The graphical depiction of
the simulation model is then displayed and the can be modified in a graphical way.
Dynamical simulations may also be run from the Simulink window using the Start option
from the Simulation menu.

The actual differential equations of the pendulum are stored in the MATLAB m-file
called pendeom.m. This file is writen in S-function protocol. A brief description of this
protocol is attached. The m-file below contains the nonlinear differential equation model
for the pendulum written in S-function protocol.

If you click (or double click or right click or something click) on the Simulink block
called “Pendulum Subsystem”, a window of parameters for the pendulum will pop up.
This is where g, l, the drag parameter (HalfRhoSCd) and the initial conditions are set.
The subsystem “Pendulum Subsystem” is said to be Masked and you are looking at the
parameters of the mask. These parameters are passed to the S-function programmed in
pendeom.m

Student Assignment (Due Thursday, 1/18/01)

PART 1 Running Simulink for the Pendulum
Find a computer that can run MATLAB 5 and Simulink. Copy to that computer the
Simulink model file pendulum.mdl, the m-file pendeom.m and the MATLAB script

called PendAnal.m. These can be found on the class web site at
http://roger.ecn.purdue.edu/~andrisan/Courses/AAE421_S2001/Docs_Out/Docs_Out.htm
l

Start MATLAB. Type simulink form the MATLAB command window. Open the file
pendulum.mdl to view the graphical representation of the pendulum model. Click on the
scope to bring up a window that will contain the plots of the dynamic response of the
pendulum. With the model window active, select the Start option from the Simulation
menu. The time history of the pendulum should appear on the Scope window. One time
history s for θ and the other is for the rate of change of θ.

The time histories of θ, the rate of change of θ, and time are saved in the MATLAB

workspace in matrices ynlsim and tnlsim. We will use these later.

From the MATLAB command window run the script PendAnal.m by typing PendAnal. A
linear simulation will be created and executed from the nonlinear Simulink model.
Comparisons of the nonlinear and linear simulations are plotted.

Modify the script PendAnal.m to include your name in the titles of the two figures and
hand them in to verify that you have done all this.

PART 2
The script PendAnal.m generates Jacobian matrices (a matrix) for two reference

conditions. The first is for xR=[0,0]T, and the second is for xR=[0,1]T. Analytically
generate these Jacobian matrices by taking the indicated partial derivatives and
evaluating the partials at the reference conditions. Specifically find

Jacobian = a matrix =
∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

g
x

g
x

g
x

g
x

g
x

1

1

1

2

2

1

2

2

where g1, g2, x1 and x2 were defined earlier for the pendulum. Then evaluate the Jacobian
at for xR=[0,0]T, and at xR=[0,1]T. Compare these two results to the a matrices computed

by the script PendAnal.m.

Simulink Block Diagram to Analyze the Nonlinear Behavior of the Simple Pendulum

With corrected damping term (1/12/01)

tnlsim

To Workspace1

ynlsim

To Workspace

Scope

Out1

Pendulum Subsystem

Clock

Simulink Subsystem containing an S-function
 called pendeom which has the nonlinear

differential equations for the the Simple Pendulum

This S-function
 links to an m- file called pendeom.m

which is writen using in S-function protocol.

With corrected damping term (1/12/01)

1

Out1

pendeom

S-Function

The m-file describing the pendulum (pendeom.m)

This is the contents of the file pendeom.m which is written using the S-

function protocol. It contains the differential equations in for the simple
pendulum.

function [sys,x0,str,ts] =
pendeom(t,x,u,flag,g,l,HalfRhoSCd,mass,theta0,thetadot0)

% S-file for pendulum (with corrected damping term, 1/12/01)
% This is an S-file subsystem that models a simple pendulum.
% g is the acceleration of gravity.
% l is the length of the pendulum.
% mass is the mass of the ball that forms the massive part of the pendulum.

% theta0, thetadot0 are the initial condition on theta and thetadot.
switch flag,
 case 0, % Initialization
 [sys,x0,str,ts]=mdlInitializeSizes(theta0,thetadot0);
 case 1, % Compute derivatives of continuous states
 sys=mdlDerivatives(t,x,u,g,l,HalfRhoSCd,mass) ;

 case 2,
 sys=mdlUpdate(t,x,u);
 case 3,
 sys=mdlOutputs(t,x,u); % Compute output vector
 case 4, % Compute time of next sample

 sys=mdlGetTimeOfNextVarHit(t,x,u);
 case 9, % Finished. Do any needed
 sys=mdlTerminate(t,x,u);
 otherwise % Invalid input
 error(['Unhandled flag = ',num2str(flag)]);

end

%***
%* mdlInitializeSizes *
%***

function [sys,x0,str,ts]=mdlInitializeSizes(theta0,thetadot0)
% Return the sizes of the system vectors, initial
% conditions, and the sample times and offets.
sizes = simsizes; % Create the sizes structure
sizes.NumContStates = 2;

sizes.NumDiscStates = 0;
sizes.NumOutputs = 2;
sizes.NumInputs = 0;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes); % load sys with the sizes structure
x0 = [theta0,thetadot0]; % Specify initial conditions for all states
str = []; % str is always an empty matrix
ts = [0 0]; %initialize the array of sample times

%***
%* mdlDerivatives *
%***

function sys=mdlDerivatives(t,x,u,g,l,HalfRhoSCd,mass)
% Compute derivatives of continuous states

x_dot = [x(2); -(g/l)*sin(x(1))-HalfRhoSCd*l*x(2)*x(2)*sign(x(2))/mass] ;
sys = [x_dot(1),x_dot(2)] ;

%***
%* mdlUpdate *

%***
function sys=mdlUpdate(t,x,u)
% Compute update for discrete states. If necessary, check for
% sample time hits.
sys = []; % Empty since this model has no discrete states.

%***
%* mdlOutputs *
%***
function sys=mdlOutputs(t,x,u)
% Compute output vector given current state, time, and input

sys = x ;

%***
%* mdlGetTimeOfNextVarHit *
%***

function sys=mdlGetTimeOfNextVarHit(t,x,u)
% Return the time of the next hit for this block. Note that
% the result is absolute time. Note that this function is
% only used when you specify a variable discrete-time sample
% time [-2 0] in the sample time array in sampleTime = 1;

sys = [] ;

%**
%* mdlTerminate *
%**

function sys=mdlTerminate(t,x,u)
% Perform any necessary tasks at the end of the simulation
sys = [];

MATLAB Script to analyze the pendulum(PendAnal.m)

The MATLAB script below should be run only after the Simulink simulation has been
run. This allows the nonlinear simulation ot be stored in the matrices ynlsim and tnlsim.

% Script to analyse the pendulum system.
% Point about which to linearize
disp(' ');disp('Start here');disp(' ');
disp('Find trim condition')
[X,U,Y,DX]=trim('pendulum')
disp('Reference point about which to linearize')
xR=[0;0]

[a,b,c,d]=linmod('pendulum',xR,[]) %Find linear model of
nonlinear pendulum
b=[0;0]
c=[1,0;0,1]
d=[0;0]
[Wn,Z]=damp(a) % Find properties of the poles of linearized
system
period=2*pi/Wn(1)
% Periods in 10 second
disp('Periods in ten seconds')
P10=10/period
PSYS=ss(a,b,c,d) %Create a linear state space system
disp('Initial condition for linear simulation')
x0=[.5;0] %Use this initial condition for linear simulation
t=0:.1:10';
u=zeros(size(t));
[y,t]=lsim(PSYS,u,t,x0); %Do linear simulation
%Plot the linear results and the nonlinear results
% which have been stored in tnlsim and ynlsim.
figure(1)
str1=['For Pendulum linearized about theta=
',num2str(xR(1)),', thetadot= ',num2str(xR(2))];
str2=[', Wn= ',num2str(Wn(1)),', Zeta= ',num2str(Z(1))];
subplot(211)
plot(t,y(:,1),'-',tnlsim,ynlsim(:,1),'x')
title([str1,str2])
xlabel('time (sec)')
ylabel('theta (rad)')
legend('linear sim','nonlinear sim')
subplot(212)
plot(t,y(:,2),'-',tnlsim,ynlsim(:,2),'x')
xlabel('time (sec)')
ylabel('thetaDot (r/s)')
legend('linear sim','nonlinear sim')

% Do everything over again at another linearization point
disp(' ');disp('New reference point');disp(' ');
xR=[0;1]
[a,b,c,d]=linmod('pendulum',xR,[])
b=[0;0];
c=[1,0;0,1];
d=[0;0];

[Wn,Z]=damp(a)
PSYS=ss(a,b,c,d);
disp('Initial condition for linear simulation')
x0=[.5;0] %Use this initial condition for linear simulation
t=0:.1:10';
u=zeros(size(t));
[y,t]=lsim(PSYS,u,t,x0);
figure(2)
str1=['For Pendulum linearized about theta=
',num2str(xR(1)),', thetadot= ',num2str(xR(2))];
str2=[', Wn= ',num2str(Wn(1)),', Zeta= ',num2str(Z(1))];
subplot(211)
plot(t,y(:,1),'-',tnlsim,ynlsim(:,1),'x')
title([str1,str2])
xlabel('time (sec)')
ylabel('theta (rad)')
legend('linear sim','nonlinear sim')
subplot(212)
plot(t,y(:,2),'-',tnlsim,ynlsim(:,2),'x')
xlabel('time (sec)')
ylabel('thetaDot (r/s)')
legend('linear sim','nonlinear sim')

Output from the above script

Start here

Find trim condition
X =
 -1.20915443998539e-14
 -3.50494170623093e-26
U =
 Empty matrix: 0-by-1
Y =
 Empty matrix: 0-by-1
DX =
 -3.50494170623093e-26
 1.94673864837647e-13
Reference point about which to linearize
xR =

 0
 0
a =
 0 1
 -16.0999999997317 -1.402463019451e-07
b =
 Empty matrix: 2-by-0
c =
 Empty matrix: 0-by-2
d =
 []
b =
 0
 0
c =
 1 0
 0 1
d =
 0
 0
Wn =
 4.01248052951434
 4.01248052951434
Z =
 1.74762595506195e-08
 1.74762595506195e-08
period =
 1.565910478808
Periods in ten seconds
P10 =
 6.38606110332193

a =
 x1 x2
 x1 0 1
 x2 -16.1 -1.4025e-07

b =
 u1
 x1 0
 x2 0

c =
 x1 x2
 y1 1 0
 y2 0 1

d =
 u1
 y1 0
 y2 0

Continuous-time system.
Initial condition for linear simulation
x0 =
 0.5
 0

New reference point

xR =
 0
 1
a =
 0 1.00000000000047
 -16.0999999997316 -0.0280494007755387
b =
 Empty matrix: 2-by-0
c =
 Empty matrix: 0-by-2
d =
 []
Wn =
 4.01248052951528
 4.01248052951528
Z =
 0.00349526939373441
 0.00349526939373441
Initial condition for linear simulation
x0 =
 0.5
 0
»

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5
For Pendulum linearized about theta= 0, thetadot= 0, Wn= 4.0125, Zeta= 1.7476e-08

time (sec)

th
et

a
(r

ad
)

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

time (sec)

th
et

aD
ot

 (
r/

s)

linear sim
nonlinear sim

linear sim
nonlinear sim

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5
For Pendulum linearized about theta= 0, thetadot= 1, Wn= 4.0125, Zeta= 0.0034953

time (sec)

th
et

a
(r

ad
)

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

time (sec)

th
et

aD
ot

 (
r/

s)

linear sim
nonlinear sim

linear sim
nonlinear sim

