A&AE 421 Homework #1 Solution of a simple nonlinear differential equation using linearization Due: Monday 8/27/07

Read the handout sheet entitled "Linearization of Nonlinear Equations."

Given the nonlinear differential equation	
$\dot{\mathbf{x}} = \cos(\mathbf{x}) .$	(1)

Define	$\Delta \mathbf{x}$ as a small perturbation variable and
	\mathbf{x}_1 as the steady state (reference or trim) variable
where	$\mathbf{x} = \mathbf{x}_1 + \Delta \mathbf{x}.$

When x is a function of time, we denote this as x(t). Since x_1 is a constant we do not use the explicit time dependent notation for it. Therefore, we can write for the time dependent case $x(t) = x_1 + \Delta x(t)$ where we show the explicit time dependence of the small perturbation variable $\Delta x(t)$.

a) Find constant values of x_1 that satisfy the steady state (reference or trim) differential equation $\dot{x}_1 = \cos(x_1) = 0$. Note there are an infinite number of constants, x_1 , that satisfy this condition.

b) Linearize the nonlinear differential equation (1) about x_1 . Express your answer in terms of Δx and x_1 (not in terms of x).

c) For your linear differential equation from part b, find the small perturbation time response, $\Delta x(t)$, to initial condition $\Delta x(0) = x(0) \cdot x_1$. Hint: use Laplace transforms, i.e., $\Delta x(t) = L^{-1} \Delta x(s) \cdot$

- d) For what values of x_1 does $\Delta x(t=\infty)=0$?
- e) For what values of x_1 does $\Delta x(t = \infty) = \infty$?