
 
LINEARIZATION OF NONLINEAR EQUATIONS 

By Dominick Andrisani  
 

A. Linearization of Nonlinear Functions 

A.1 Scalar functions of one variable. 

We are given the nonlinear function g(x).  We assume that g(x) can be 

represented using a Taylor series expansion about some point x
R

 as follows 

g(x) = g(x) |x=xR +
dg(x)

dx
|x=xR (x ! xR ) +

1

2!

d
2
g(x)

dx2
|x= xR (x ! xR)

2

+ higher order terms 

 

A linear approximation for g(x) involves taking only the first two terms 

g(x) ! g(x) |x=xR +
dg(x)

dx x=x
R

(x " xR )
 

This approximation is most accurate if (x ! xR )  is small so that the neglected higher 

order terms are negligible. 

 

 

 

 

 

 

 

 



Example:  g(x) = x
2  

 

Expanding g(x) about x
R
= 2  gives 

g(x) ! g(x) |x=xR +
dg

dx
|x=xR (x " xR )  

! 2
2
+ 2x |x=xR (x " 2)  

= 4 + 4(x ! 2) = !4 + 4x  

Notice that this is a linear function of x. The simplification resulted because we evaluated 

all nonlinear terms at the number x = x
R
= 2 . Because we evaluated the terms on the 

right hand side of the equation above at x = x
R
= 2 , the only term that depends on x 

is the x-2 term, and this is a linear term. This approximation to g(x) is valid near x=2. 

 

We can generate another approximation to g(x) by expanding g(x) about x
R

=1 gives 

g(x) = 1
2
+ 2x |x=1 (x ! 1) = 1 + 2(x ! 1)  

= !1 + 2x  

This second approximation is valid near x=1. Clearly the linear approximation depends 

on the choice of reference point x
R

. 

A.2 Scalar function of 2 variables 

Given the nonlinear function g(x1 ,x2 ) .  This function can be represented by 

a Taylor series expansion about x1R ,x2R  as follows 



g(x1 ,x2 ) = g(x1R ,x 2R ) +
!g

!x
1

|x1 =x1R ,x 2 =x2R
(x1 " x1R ) +

!g

!x
2

|x1 =x1R ,x 2 =x2R
(x 2 " x2R )

 

1

2!

!

!x
1

!g

!x
1

|x1 =x1R
,x2 =x2R

(x1 " x1R )
2
 +  

!

!x
2

!g

!x
2

|x1=x1R
,x 2 =x2R

(x 2 " x2R )
2

# 

$ 

% 

& 

' 

(  

+
!

!x
1

!g

!x
2

|x1 =x1R ,x 2= x2R
(x1 " x1R )(x2 " x2R ) + h.o.t.  

A linear approximation of g can be obtained by retaining the first three terms above 

(underlined).  The two variables in this problem can be associated together in a vector 

x as follows 

g(x )  where x =
x

1

x
2

! 

" 
# 

$ 

% 
&  

 

Example: 

g(x1 ,x2 ) = x1
2 cos x 2  

can be approximated about x1R = 2,   x2R = 0  as follows 

g(x1 ,x2 ) = (x1
2 cos x2 ) |x1R =2 , x2R

=0 +(2x1 cos x2 ) |x1R =2 , x2R
=0 (x1 ! 2)

 

!(x1
2 sin x2 ) |x1R = 2,  x2R =0

(x2 ! 0)  

= 4 + 4(x1 ! 2) + 0 = !4 + 4x1  

The same function can be approximated about x
1R

= 2      x
2R

= ! / 4  

g(x1 ,x2 ) = 2
2
cos(

!

4
) + (2x1 cos x2 ) |

x1R
=2, x2R

=
!

4

(x1 " 2)  

!(x1
2 sin x2 ) |

x1R
= 2,  x2R

=
"

4

(x2 !
"

4
)  

= 0 + 0 ! 4(x2 !
"

4
) = " ! 4x2  

Notice again how important the linearization point or reference point is to the linearized 

result. 

A.3 Vector function of a vector of variables. 



Let g (x )  be an nx1 vector of nonlinear functions.  Let x  be an nx1 vector of 

variables 
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g
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g
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M

g
n
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A linear approximation about x 
R

 is 

g ! g (x R ) +
"g 

"x 
|x =x R

(x # x R )  

where 

  

g (x R ) =

g1

M

gn

(x1 R
, L xnR

)

(x1 R
, L xnR

)
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 =nx1 vector 
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 = Jacobian Matrix = nxn matrix 

 

A.4 Accuracy of linearized solution. 

When we approximate g (x )  by retaining only the linear terms, we must 

guarantee that the deleted terms, i.e., the h.o.t. are negligible.  This is true only when 

x ! x 
R

 is small, i.e. when the perturbations from the reference point are small. 

B. Linearization on Nonlinear Differential Equations in First Order Form 

B.1 First order form 

Nonlinear differential equations in first order form can be written as 



˙ x = g (x , u ),      x (0)  

where 

  

x =

x1

M

xn
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Note that u  represents specified forcing functions and x (0)  is a specified initial 

condition vector. 

Example B.1a 

x =
x

1

x
2
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B.2 The reference or trim solution 

When we were linearizing nonlinear functions, we saw how important the 

choice of reference point was.  In linearizing nonlinear differential equations, we are also 

concerned with the reference about which we linearize.  However, we are now interested 

in obtaining a linearized solution valid for all time.  This requires that we linearize around 

a reference solution, which is valid for all time. 

 Let x R(t)  be a known solution to the nonlinear differential equation with 

specified forcing function u R(t)  and specified initial condition x R(0) .  i.e., 

˙ x (t) = g (x R (t), uR (t))     x R(0)  

x R(t)  is said to be the reference solution to the nonlinear differential equation. 

Example B.1b 

 For the differential equations given in Example B.1a 

x R(t) =
1

1

! 

" 
# 

$ 

% 
& ,    uR(t) = 1,    ˙ x R(t) =

0

0

! 

" 
# 

$ 

% 
&  



is a constant solution to the nonlinear differential equation.  Verify this fact for yourself 

by substituting this solution into the differential equation given in Example B.1a.  Please 

keep straight in your mind the difference between a differential equation (e.g. ˙ x = x)  

and a solution to a differential equation (e.g. x = 0  for  ˙ x = x) . 

Example B.1c 

 For the differential equations given in Example B.1a 

x R(t) =
!1

!1

" 

# 
$ 

% 

& 
' ,   uR (t) = !1      ˙ x 

R
= [

0

0
]  

is another constant solution to the nonlinear differential equations. 

Example B.1d 

 For the differential equations given in Example B.1a 

x 
R

=

x
1

= ±1

x
2

= ± u
R

= const

! 

" 
# 

$ 

% 
&      uR = const      ˙ x 

R
=

0

0

! 

" 
# 

$ 

% 
&  

is a constant solution to the nonlinear differential equations for any constant. 

B.3 Linearization about a reference solution 

 Let x R(t),  u R (t)  be a reference solution.  We now want to find a linearized 

solution to the nonlinear differential equation about this reference solution. 

 We again expand g (x )  in a Taylor series expansion about x 
R

 and u 
R

 i.e., 

˙ x = g (x R, u R ) +
!g 

!x 
|x= x R ,  u=u R

(x " x R ) +
!g 

!u 
|x=x R , u =u R

(u " u R ) 

+h.o.t. 

The linear approximation is obtained by assuring that x ! x 
R

 and u ! u 
R

 are small 

enough that the h.o.t. can be neglected. 

B.4 Definition of small distribution variables 

Define 
!x = x " x

R

!u = u " u 
R

!˙ x = ˙ x " ˙ x 
R

 

For the linearized solution to be valid, these perturbations must be “small.” 



B.5 Separation of the linearized differential equations into two parts 

 Assuming that the perturbations are small, we can write the approximation to the 

differential equations as 

˙ x = g (x R, u R ) +
!g 

!x
|R (x " x R ) +

!g 

!u 
|R (u " u R ) 

we can now substitute the small perturbation variables 

˙ x R + ! ˙ x = g(x R, u R ) +
"g

"x
|R !x +

"g

"u
|R !u  

In the equation above we have simplified the notation with |
R

 to denote |x =x R ,   u =u R
. 

Notice that the underlined terms are numerically equal from the definition of reference 

solution.  Since they are equal, they can be cancelled out leaving 

!˙ x =
"g

"x
|R !x    +    

"g

"u
|R !u  

This is a set of linear small perturbation differential equations.  In summary, the original 

nonlinear problem 

˙ x = g (x , u ),      x (0)  

with solution x (t)  for specified input u(t) has been decomposed into two separate 

problems. 

• The reference problem 

  
˙ x R = g (x R,

r 
u R )  

with initial condition x R(0)  with solution x R(t)  to input u R(t)  

• The small perturbation problem 

!˙ x =
"g 

"x 
|R !x +

"g 

"u 
|R !u  

with initial condition 

!x (0) = x (0) " x R(0)  

with solution !x (t)  to input !u (t) . 

Finally the total approximate solution is given by the entire solution procedure is shown 

in Figure 1. 

x (t) = x R (t)+ !x (t) 



B.6 On picking a reference solution 

 Any solution to ˙ x = g (x , u )  makes a good reference solution but these 

solutions can be hard to find.  An easier set of solutions are constant solutions i.e., 

solutions so that ˙ x R(t) = 0  and x R(t) =  constant for u R(t) = constant.  For 

constant reference solutions, finding the reference solution to a nonlinear differential 

equation becomes a problem of finding the solution to a nonlinear algebraic equation 

g(x R, u R ) = 0  

B.7 Linearization Example 

˙ x (t) =

˙ x 
1

˙ x 
2

! 

" 
# 

$ 

% 
& =

x
2

2 'u2

'x
1

2
+ 1

! 

" 

# 
# 

$ 

% 

& 
& 

 

a) Choice of Reference Solution 

To simplify our choice, assume that the reference solution is constant, 

i.e., ˙ x 
1
= ˙ x 

2
= 0 .  This requires that x

2

2
! u

2
= 0  and 

!x
1

2
+ 1 = 0 .  These equations can be satisfied whenever 

x
2

2
= u

2
 and x

1

2
= 1  

Values of x
1

 and x
2

 which satisfy these equations are 

x
2
= ±u  where u is any constant 

x
1
= ±1  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Solution Procedures for Nonlinear Differential Equations 

Exact 
Nonlinear 

Solution (x(t)) 
(e.g., from numerical 

integration) 

Nonlinear Differential 
Equations 

� 

˙ x = g(x,u),  x(0)

y = h (x ,u )

u(t) = specified

 

Linear 
Solution 

(i.e., from Laplace 
Transforms) 

 

� 

!x (t ),   !y (t ) 

Total Approximate Solution 

� 

x (t) = x 
R

+ !x (t)

y (t) = y 
R

+ !y (t)

x (0) = x 
R

+!x (0)

u (t) = u 
R

+!u (t)  

 
Nonlinear Reference 

Solution 
(e.g., constant 

solution) 
  x R,

r 
u R  

 
Nonlinear Reference 

Problem 

  

˙ x 
R
= g (x 

R
,
r 
u 

R
)

x 
R

(0),  u 
R

 specified  
where typically xR and uR  

are constants 

Linear Small 
Perturbation Problem 

� 

!˙ x =
"g 

"x 
|

R
!x +

"g 

"u 
|

R
!u 

� 

!y =
"h

"x
|
R
!x+

"h

"u
|
R
!u

 

� 

!x (0) = x (0)" x 
R

(0)

!u (t) = u (t) " u R

 

 



 We will consider two different reference solutions 
Re f.# 1

x R(t) =
+1

+1

! 

" 
# 

$ 

% 
& ,   uR(t) = +1

x 
R
(0) =

1

1

! 

" 
# 

$ 

% 
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Re f.# 2

x R (t) =
'1

'1

! 

" 
# 

$ 

% 
& ,   uR (t) = '1

x
R
(0) =

'1

'1

! 

" 
# 

$ 

% 
& 

 

b) Small Perturbation Equations of Motion 

!˙ x =
"g 

"x 
|R !x   +   

"g 

"u 
|R !u  

where !x = x " x 
R

     !u = u " u
R
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!g 

!x 
=
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!g
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=
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=
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Using Ref. #1 x R =
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Using Ref. #2 x R =
!1

!1

" 

# 
$ 

% 

& 
' ,   uR = 1  

 
!˙ x 

1

!˙ x 
2

" 

# 
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+2 0
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1
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' !u  

c. The Linear Solution for Reference #1 

(1) !˙ x 
1
= 2!x

2
" 2!u  



(2) !˙ x 
2
= "2!x

1
 

take Laplace transforms 

(1) s!x1 (s) " !x1(0) = 2!x2 (s) " 2!u(s)  

(2) s!x 2(s) " !x2 (0) = "2!x1(s)  

multiply (2) by s 

s
2
!x2 (s) " s!x2 (0) = "2s!x1 (s) 

multiply (1) by –2 

!2s"x1(s) = !4"x2(s) + 4"u(s) ! 2"x1 (0)  

set these equal 

s
2
!x2 (s) " s!x2 (0) = "4!x2 (s) + 4!u(s) " 2!x1(0) 

!x2 (s) s
2
+ 4[ ] = s!x2 (0)" 2!x1(0) + 4!u(s)  

!x2 (s) =
s!x

2
(0)" 2!x

1
(0)

s 2 + 4
+ (

4

s2 + 4
)!u(s)  

The first term on the right gives initial condition response. The second term on the right 

contains the transfer function 
!x2 (s)

!u(s)
=

4

s 2 + 4
. 

To find !x1(t)  take the inverse Laplace transform.  From (2) 

s!x 2(s) " !x2 (0) = "2!x1(s)  

!x1(s) = "
1

2
s!x2 (s) " !x2 (0)[ ] 

To find the solutions !x1(t)  and !x2 (t)  you must be given the input !u(t)  and the initial 

conditions !x1 (0),!x2(0)( ) .  Then the solutions can be found using inverse Laplace 

transforms. 

d) Total Solution for Reference #1 
x
1
(t)

x
2
(t)
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" 
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$ 

% 
& =

x
1R
(t)

x
2R
(t)
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+
'x1(t)

'x2 (t)
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& =

1 + 'x
1
(t)

1 + 'x (t)
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u(t) = uR(t) + !u(t) = 1 + !u(t)  

x 1 (0) =
1 + !x1 (0)

1 + !x2 (0)

" 

# 
$ 

% 

& 
'  



e) Comment: 

For this procedure to be valid the perturbations must be small, i.e., 

 all must be small. 

 Suppose we have the nonlinear problem with 

x1 (0) = 1.01  

x 2(0) = .99  

u(t) = 1.0 + .01sin!t  

then we can use Ref.#1 and then we can have 

!x1(0) = .01  

!x2 (0) = ".01  

!u(t) = .01sin"t  

On the other hand if for the nonlinear problem we have 

x1 (0) = !1.01  

x 2(0) = !.99  

u(t) = !1 ! .01 sin"t  

We would use Ref. #2 with 

!x1(0) = ".01  

!x2 (0) = .01  

!u(t) = ".01 sin#t  



 

C. Output Equations  
 

Often nonlinear differential equations are associated with nonlinear output equations. This may 

come about in modeling the sensors aboard an aircraft. The sensors are often nonlinear functions of the 

state vector and control vector. Output equations can be expressed as follows. 

y = h (x , u )  where  is y  a px1 vector 

This can also be linearized about reference solution xR and uR as follows. 

y = yR + !y " h(x,u) |R +
#h

#x
|R (x $ xR ) +

#h

#u
|R (u $uR )  

 
The underlined terms are equal by definition of y on the reference and can be cancelled out on both sides of 
the equation. That leaves the linear small perturbation output equations in terms of small perturbation 
variables. 

!y =
"h

"x
|R !x +

"h

"u
|R !u =C # !x + D #!u  

The total output equation in linear form is then given by the following. 
y(t) ! yR + "y(t)  

D. Stability 
One of many possible definitions of dynamic stability for nonlinear systems is given in terms of the 

eigenvalues of the Jacobian matrix,  A =
!g 

!x 
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1
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R
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If all the eigenvalues of A have negative real parts we say that the reference solution, (xR ,uR) , 
is stable. 
 
If at least one of the eigenvalue of A has a positive real part we say that the reference solution, 
(xR ,uR) , is unstable. 
 
If at least one eigenvalues of A has a zero real part, and if all the other eigenvalues have negative 
real parts, we can draw no conclusion about the stability of the reference solution, (xR ,uR) . 

E. Concluding Comments 

 We have seen how the solution to nonlinear differential equations can be found by decomposing 

the problem into two simpler parts. The reference part is simpler because it is often a nonlinear algebraic 

problem. The second small perturbation part is simpler because it often involves solving linear differential 

equations with constant coefficients. The total approximate solution to the original nonlinear differential 

equation was shown to be the sum of the two simpler parts. 


