LINEARIZATION OF NONLINEAR EQUATIONS
By Dominick Andrisani

Linearization of Nonlinear Functions

Al Scalar functions of one variable.

We are given the nonlinear function g(x). We assume that g(x) can be

represented using a Taylor series expansion about some point X as follows

2
d§_0() Ix=xR (X - XR)+ ldg—(X) Ix=xR (X - XR)2
X

g(X) = g(X) Ix=xR + 2! dXZ

+ higher order terms

3-‘.*) y
q(Xa)

A linear approximation for g(x) involves taking only the first two terms

dg(x)

dx | (X —Xg)

R

g(x) =g(x) |, +

This approximation is most accurate if (X - XR) is small so that the neglected higher

order terms are negligible.
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Example: g(X) = X2

Y
>

Expanding g(x) about X p = 2 gives

d
g(x)~ g, +d—gIX=XR (X=Xg)
X

~2% +2xl,_, (x—2)

= 4+4(x—2)= 4+4x

Notice that this is a linear function of x. The simplification resulted because we evaluated

all nonlinear terms at the number X = X = 2. Because we evaluated the terms on the

right hand side of the equation above at X = X = 2, the only term that depends on x

is the x-2 term, and this is a linear term. This approximation to g(x) is valid near x=2.

We can generate another approximation to g(x) by expanding g(x) about X g =1 gives

g(x)=1+2x|_, (x =) =1+2(x-1)

=—1+2x

This second approximation is valid near x=1. Clearly the linear approximation depends

on the choice of reference point X .

Scalar function of 2 variables

Given the nonlinear function g(X1 ,Xz) . This function can be represented by

a Taylor series expansion about XIR 9X2R as follows
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g(xl ’XZ) =g(X1R ’XZR )+ aXl Ix1=x1R,x2=x2R (Xl _XIR)+ aX2 Ix1=x1R,x2=sz (XZ _XZR)
lia_g (x, — X )2+iag| (x,—X )2
2! aXl axl X1 =Xpp »Xp =X 1 1g aXZ axz X1=X 1 ,X2 =X 2 2R
9 0g,

+ ox. Ox X1 =X X =Xg (Xl _XIR )(X2 - XZR )+ h.o.t.
1 2

A linear approximation of g can be obtained by retaining the first three terms above
(underlined). The two variables in this problem can be associated together in a vector

X as follows
X

g(i) where X = !

2

Example:
— 2
g(X,X,) =X, COSX,
can be approximated about XlR = 2, XZR = 0 as follows

2
g(x,,X,)=(X,"cos X,) IX]R =2,5%5, =0 +(2x, cosX,) IXlR 22,53, =0 (x,—2)

2 .
—(x,” sinx,) |X1R=2’ X =0 (x,—=0)

= 4+4(x, —2)+0=—4+4x,

The same function can be approximated about X =2 X =T /4
pp 1 R 2R

g(Xl,X2)=22 c0s(§)+(2x1cos x,) | _(x,=2)
_(X12 sinx,) | (X2 — E)
X1R™ ’X2R=Z 4

=0+0—4(X2—§)=ﬂ:—4x2

Notice again how important the linearization point or reference point is to the linearized
result.

A3 Vector function of a vector of variables.




Let g(i) be an nx1 vector of nonlinear functions. Let X be an nx1 vector of

variables
gl Xl
- _ gZ = _ XZ
g=| .| X=| .
_gn_ _Xn_

A linear approximation about iR is

where
81 (XIR’ XnR)
g(iR) ll =nx1 vector
gn(XlR’ XnR)
agl Jg, g,
ag axl ax2 aXn
a_i - : = Jacobian Matrix = nxn matrix
9g, dg, ... 0g,
0xX, 9x, Ox,
A4 Accuracy of linearized solution.

When we approximate g(i) by retaining only the linear terms, we must

guarantee that the deleted terms, i.e., the h.o.t. are negligible. This is true only when

X— iR is small, i.e. when the perturbations from the reference point are small.

Linearization on Nonlinear Differential Equations in First Order Form
B.1 First order form

Nonlinear differential equations in first order form can be written as
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where
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X = g(x,u),
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Note that U represents specified forcing functions and i(ﬂ) is a specified initial

condition vector.

Example B.1a

2 2
= s = 2
_Xz_ _Xl +1
$ 2 2
X, x,” —u
S 2
_X2_ _Xl +1

The reference or trim solution

When we were linearizing nonlinear functions, we saw how important the
choice of reference point was. In linearizing nonlinear differential equations, we are also
concerned with the reference about which we linearize. However, we are now interested
in obtaining a linearized solution valid for all time. This requires that we linearize around

a reference solution, which is valid for all time.
Let iR(t) be a known solution to the nonlinear differential equation with
specified forcing function ﬁR(t) and specified initial condition iR (0) ie.,
X(t) =8(Xg (), ug (1)) Xr(0)

XRr (t) is said to be the reference solution to the nonlinear differential equation.

Example B.1b

For the differential equations given in Example B.1a

iR(t) = llR(t) = 19 §R(t) =

1[ 0



is a constant solution to the nonlinear differential equation. Verify this fact for yourself

by substituting this solution into the differential equation given in Example B.1a. Please

keep straight in your mind the difference between a differential equation (e.g. X = X)

and a solution to a differential equation (e.g. X =0 for X = X) .

Example B.1c

For the differential equations given in Example B.1a

-1 . 0
Xg(t)= 1! up(t)=-1 iR=[ 0 ]

is another constant solution to the nonlinear differential equations.

Example B.1d

For the differential equations given in Example B.1a
x, =1 . 0
u; =const Xy = 0

Xg =
X, =xu, = const

is a constant solution to the nonlinear differential equations for any constant.

B.3 Linearization about a reference solution

Let iR (t), ﬁR (t) be a reference solution. We now want to find a linearized

solution to the nonlinear differential equation about this reference solution.

We again expand g(i) in a Taylor series expansion about iR and l_lR ie.,
2
ou

§=g(iR’l—lR)+_gl

ai x=%g , u=Tg (i_iR)-l_

x=Xpg,u=ly (ﬁ - ﬁR)

+h.o.t.

The linear approximation is obtained by assuring that X— iR and U — l_lR are small

enough that the h.o.t. can be neglected.

B4 Definition of small distribution variables
Define
OX =X — X
8U =T — 1,
X=X —X,

For the linearized solution to be valid, these perturbations must be “small.”
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Separation of the linearized differential equations into two parts

Assuming that the perturbations are small, we can write the approximation to the

differential equations as

98, < <, 98
aXIR x XR)+aﬁlR

we can now substitute the small perturbation variables

X =g(Xg, Ug)+ U-1uy)

i_R+8§=g(iR,uR)+a— OxX + agI ou

dx du

In the equation above we have simplified the notation with IR to denote Ii

=Xy, U=UgR "

Notice that the underlined terms are numerically equal from the definition of reference

solution. Since they are equal, they can be cancelled out leaving

dg o g
OX = aXI oX + auIRSu

This is a set of linear small perturbation differential equations. In summary, the original
nonlinear problem
X=gX, X(0)
with solution i(t) for specified input u(t) has been decomposed into two separate
problems.
e  The reference problem
§R = g(Xg,Ug)
with initial condition Xg (0) with solution X (t) to input Ug(t)

e  The small perturbation problem

- ag _ ag
X = r OX +a I, ou

with initial condition
8%(0)= X(0)— X (0)
with solution Si(t) to input Sﬁ(t)
Finally the total approximate solution is given by the entire solution procedure is shown

in Figure 1.

X(t) = Xg () + 8X(t)



B.6

B.7

On picking a reference solution

Any solution to X = g(X,U) makes a good reference solution but these

solutions can be hard to find. An easier set of solutions are constant solutions i.e.,

solutions so that iR(t) = 6 and iR(t) = constant for l_lR(t)= constant. For

constant reference solutions, finding the reference solution to a nonlinear differential

equation becomes a problem of finding the solution to a nonlinear algebraic equation

g(Xg,Ug)=10
Linearization Example
. Xl X22 _ u2
X(t) =l . = 2 1
a) Choice of Reference Solution

To simplify our choice, assume that the reference solution is constant,

. 2
e, X; =X, = 0. This requires that X22 —u =0 and
2 . .
—-X, + 1=0. These equations can be satisfied whenever
2
X, =u adx,>=1
Values of X; and X, which satisfy these equations are

X, = tu where u is any constant

x;, =11



Exact
Nonlinear
Solution (x(t))
(e.g., from numerical
integration)

Nonlinear Differential

Equations
X =g(x,w), x(0)
y=hEm)

u(t)= specified

Nonlinear Reference
Problem

Xp = 8(Xg,Uy)
X, (0), w, specified

where typically xg and ugr
are constants

v

5c =%

Linear Small
Perturbation Problem

_ 08, «_

| OX+-=1 O
x X o "
h h

8y—a—XIR 8x+$lk du

0x(0)=x(0)-x,(0)

Su(t)=u(t) — U,

Nonlinear Reference
Solution
(e.g., constant
solution)
XgoUyg

'

v
Linear
Solution
(i.e., from Laplace
Transforms)

ox(t), dy(t)

'

Total Approximate Solution

X(t) =X, + OX(t)
y(t) =y, +0y(t)
x(0) =x_+06x(0)
a(t)=u_ _+ou(t)

Figure 1 Solution Procedures for Nonlinear Differential Equations




We will consider two different reference solutions

Ref#1 Ref #2
~ +1 ~ -1
Xg(t) = 41l ug(t)=+1 Xg (1) = 1 ug (t)=-1
N -1
% 0= X (0)=|
b) Small Perturbation Equations of Motion
- 0%, o g
X="21,0Xx + —=I; 0
x " Tt

where X =X — Xz OU=U— U,

1
Using Ref. #1 Xg ={ , Up =1

1
{8}’(1 {0 +2JFXIJ {—2J
.= + ou
ox,| -2 0 ]dx, 0
_ -1
Using Ref. #2 Xg = b up =1
FXIJ {0 —2JFXIJ er
.= + ou
Ox, +2 0 ] ox, 0
C. The Linear Solution for Reference #1

18X, =28x, —28u



@  Ox, =-20x,

take Laplace transforms
) sOx, (s) — Ox,(0) = 20x, (s) — 20u(s)
) SOX ,(s) — O0x, (0) =—20x,(s)

multiply (2) by s
s%8x, (s) — s0x, (0) = —2s3x, (s)

multiply (1) by -2
—2s50x,(s) = —40x,(s) + 40u(s) — 20x, (0)

set these equal

570, (s) — s0x, (0) = —49x,, (s) +4du(s) — 28x,(0)

8x, (s)[s” + 4] = s8x, (0)— 28x,(0) + 43u(s)

SSXZ(O)Z— 25X1(0)+( 24 \Su(s)
s +4 s +4

Ox, (s) =

The first term on the right gives initial condition response. The second term on the right

Ox, (S) __4
du(s) s*+4
To find X (t) take the inverse Laplace transform. From (2)
SOX ,(s) — O0x, (0) =—20x,(s)
dx,(s) =— % [s6x, (s) —8x,(0)]

contains the transfer function

To find the solutions SXI(t) and OX , () you must be given the input du(t) and the initial

conditions (SXI (0), 8X 2(0)) . Then the solutions can be found using inverse Laplace
transforms.
d) Total Solution for Reference #1
{xl (t)J B {XIR (t) . FXI(t)J 1+3x,(t)
x,(t)] X, (1) dx,(t)] |1+8x (t)
u(t) =ug(t) +ou(t) =1+ du(t)

< 0 _{1+8x1(0)
%O=]1 5,0,




e) Comment:
For this procedure to be valid the perturbations must be small, i.e.,

all must be small.

Suppose we have the nonlinear problem with
x,(0)=1.01
x,(0)=.99
u(t) =1.0+.01sin ot

then we can use Ref#1 and then we can have
8x,(0)=.01
8x, (0) = —.01
du(t) =.01sin ot
On the other hand if for the nonlinear problem we have
x,(0) = —1.01
x,(0)=—.99
u(t)=-1-.01sinmt
We would use Ref. #2 with
8x,(0)= —.01
8x, (0) = .01
ou(t) =—.01sinwt



C. Output Equations
Often nonlinear differential equations are associated with nonlinear output equations. This may
come about in modeling the sensors aboard an aircraft. The sensors are often nonlinear functions of the
state vector and control vector. Output equations can be expressed as follows.
y= H(i,l_l) where is ¥ apx1 vector
This can also be linearized about reference solution xg and ug as follows.

y=yR+8yzh(x,u)IR+@IR (X—XR)+@|R (u—uy)
= — X ou

The underlined terms are equal by definition of y on the reference and can be cancelled out on both sides of
the equation. That leaves the linear small perturbation output equations in terms of small perturbation

variables.
Oy = a—hIR 8x+a—h|R ou=C-0x+D-du
ox Jdu

The total output equation in linear form is then given by the following.

y(t)=yg +3y(t)

D. Stability
One of many possible definitions of dynamic stability for nonlinear systems is given in terms of the

dg, 0g,

A_agl _| ox, ox,

eigenvalues of the Jacobian matrix, _a_i R™ agz agz
ox, ox, |,

If all the eigenvalues of A have negative real parts we say that the reference solution, (XR ’ uR) ,
is stable.

If at least one of the eigenvalue of A has a positive real part we say that the reference solution,
(XR ) uR) , 1s unstable.

If at least one eigenvalues of A has a zero real part, and if all the other eigenvalues have negative
real parts, we can draw no conclusion about the stability of the reference solution, (XR ,uR) .

E. Concluding Comments

We have seen how the solution to nonlinear differential equations can be found by decomposing
the problem into two simpler parts. The reference part is simpler because it is often a nonlinear algebraic
problem. The second small perturbation part is simpler because it often involves solving linear differential
equations with constant coefficients. The total approximate solution to the original nonlinear differential

equation was shown to be the sum of the two simpler parts.



