A&AE 421 Homework #1
Solution of a simple nonlinear differential equation using linearization
' Due: Monday 8/28/06

Read the handout sheet entitled "Linearization of Nonlinear Equations."

(Given the nonlinear differential equation
x = sin(x). 1)

Define Ax as a small perturbation variable and
Xy 88 the steady state (reference or trim) variable

where X=Xy + Ax

a} Find constant values of Xq that satisfy the steady state (reference or trim)

differential equation Xx; = sin(x;) =0.

b) Linearize the nonlinear differential equation (1) about Xy Express your

answer in terms of Ax and Xq (not in terms of x).

¢) For your linear differential equation from part b, find the small
perturbation response (time response) to initial condition Ax(0) = x(0)- Xy ie.,

find Ax(t). Hint: use Laplace transforms, i.e., Ax(t) = L_le(S) .

d) For what values of Xl does Ax( t= «0)=0?

e) For what values of x1 does Ax(t = o0)= 00 ?
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LINEARIZATION OF NONLINEAR EQUATIONS
By Dominick Andrisani

Linearization of Nonlinear Functions
Al Scalar functions of one variable,

We are given the nonlinear function g(x). We assume that g(x) can be

represented using a Taylor series expansion about some point X ¢ as follows

dg(x) 1 d’g(x)
g(x) =g(®)l_, +—§Tlmn (=) + 5 o (X=Xg)”

+ higher order terms

gy .

A linear approximation for g(x) involves taking only the first two terms

dg(x)

dX -, (X - XR)

gx)=g(x)l,., +

This approximation is most accurate if (X —X R) is small so that the neglected higher

order terms are negligible.



A2

Bxample: g(X)= x>

Expanding g(x) about X = 2 gives

d
g(x) =g(®)|,_,. +d—’°’IX:xR (X—Xp)
X

=2 +2xl,. (x-2)
=4+4(x —2)= -4 +4x

Notice that this is a linear function of x. The simplification resulted because we evaluated

all nonlinear terms at the number X = X R = 2. Because we evaluated the terms on the

right hand side of the equation above at X =Xy = 2, the only term that depends on x

is the x-2 term, and this is a linear term. This approximation to g(x) is valid near x=2.

We can generate another approximation to g(x) by expanding g(x) about X g =1 gives -

gx)=1"+2x1_, (x=1)=1+2(x-1)

=—1+2x
This second approximation is valid near x=1. Clearly the linear approximation depends

on the choice of reference point X g .

Scalar function of 2 variables

Given the nonlinear function g (Xl » X '2) . This function can be represented by

a Taylor series expansion about XlR ’ sz as follows
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og og
g(x,,x,;)= g(x1R )Xz, )+ I =X, %, =%y (x, —X;, )+ ox Iy, =Xy Xy =Xy, (x, —x
2 —

ox,

1| 0 dg 2
= .._._......_I ~ B —_ +
21{ 0x, dx, MR (X1 = Xq,)

A

==l e, (X=X, )7
ox, ox, TR Xz =%s,)
0 dg

+ aX aX X =K1 X=Xy, (Xl _Xlg)(xz —_— sz )+ h.o.t.
1 2

A linear approximation of g can be obtained by retaining the first three terms above
(underlined). The two variables in this problem can be associated together in a vector

X as follows

Xl
g(f) where X = Iji J

2

Example:
2
g(x,,X,)=X;" cosx,
can be approximated about XIR = 2, X0 & 0 as follows

2
g(x,,X,)=(x,"cosx,) Ile =2, x5, =0 +(2x, cosXx,) leR =25, =0 (x,—2)

2 .
—(x,” sinx,) IX1R=2, X3 = (x, —0)

=4+4(x, -2)+0=—4+4x,

The same function can be approximated about Xy, = 2 x 2g = T® /4

g(x,,x,)=2" cos(g) +(2x, cos X, )| (%, -2)
—~(x,” sinx, )| . 0, =)
¥1p=% X =y 4

=0+0—4(x2—;:-)=‘n:—4x2

Notice again how important the lincarization point or reference point is to the linearized

result.
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A3 VYector function of a vector of variables.

Let @(X) be an nx1 vector of nonlinear functions. Let X be an nx1 vector of

variables
&1 Xy
— 82 - | %
g=| . L X=|.
_gn_ _Xn..

A linear approximation about iR is

- _—— .. d - -
gzg(xk)+a_§lx=xR (X—Xg)

where
gl(XIR! Xnk)
gXg)= : =nx1 vector
8o (Xips 0 X))

a— aXI aXZ ax
oX |dg,93g  dg,
“Bxl ox, 0X, |

n

= Jacobian Matrix = nxn matrix

A4 Accuracy of linearized solution.

When we approximate @(X) by retaining only the linear terms, we must

guarantee that the deleted terms, ie., the h.ot. are negligible. This is true only when

X— iR is small, i.e. when the perturbations from the reference point are small.

Linearization on Nonlirear Differential Equations in First Order Form
B.1 First order form

Nonlinear differential equations in first order form can be written as

Z7£



X=g(X,a), X(0)

where
X g X1 1
1 1 )
— : — . - XZ —— uz
X= , = , X= , U=| .
Xl'.l. gl'.l *
ST | B —um—

Note that T represents specified forcing functions and X{(0) is a specified initial

condition vector,

Example B.1a B

%] L |xt-u
X = g= )
| X, | —X, +1
¢ ] 2 2
X, | |x,"—u
X, | |[-x.*+1

The reference or trim solution

When we were linearizing nonlinear functions, we saw how important the
choice of reference point was. In linearizing nonlinear differential equations, we are also
concerned with the reference about which we linearize. However, we are now interested
in obtaining a linearized solution valid for all time. This requires that we linearize around

a reference solution, which is valid for all time.

Let iR (t) be a known solution to the nonlinear differential equation with
specified forcing function l_lR(t) and specified initial condition ik(ﬂ) . le,
X(t) = E(Xg (1), ug (1))  Xg(0)
Xgr (t) is said to be the reference solution to the nonlinear differential equation.

Example B.1b

For the differential equations given in Example B.la

1 .
Xp(t)= 1 ug(t)=1, Xz(t)=

5



is & constant solution to the nonlinear differential equation. Verify this fact for yourself

by substituting this solution into the differential equation given in Example B.1a, Please

keep straight in your mind the difference between a differential equation (e.g. X = X)

and a solution to a differential equation (e.g. X =0 for X= X) .

Example B.1c

For the differential equations given in Example B.1a

_ - . 0
Xg(t)= 1! ug (t)=-1 XR_'[ 0 ]

is another constant solution to the nonlinear differential equations.

Example B.1d

For the differential equations given in Example B.1a
x, =%1 0

Xg = g =const Xp= 0

X, = iuR = const

is a constant solution to the nonlinear differential equations for any constant.

B3 Linearization about a reference solution

Let -fR (t), ﬁR (t) be a reference solution. We now want to find a linearized

_solution to the nonlinear differential equation abeut this reference solution.

‘We again expand 2(X) in a Taylor series expansion about Xy and Uy ie.,

c e — . OF - - g —
'X=g(XR’uR)+a_.XIX=XR,n=iR (X_XR)+a_ﬁ|x=YR,u=ﬂR (l]—llR)
+h.o.t.

The linear approximation is obtained by assuring that X— ER and U — l_lR are small

enough that the h.o.t. can be negiected.

B4 Definition of small distribution variables

Define

on
S
T
e =]
O
. e
P:g[ =

o
we|
il
|
]
=

For the Iinearized solution to be valid, these perturbations must be “small.”

A



B.5

Separation of the linearized differential equations into two parts

Assuming that the perturbations are small, we can write the approximation to the

differential equations as
8 d —
X= g(XRauR)"' g X—Xp)+ =1 (@—1uy)
ou
we can now substitute the small perturbation variables

dg
du

In the equation above we have simplified the notation with IR fo denote Ith, D=t -

i_R+8§'-=g(§R,uR)+g—l X+==1, &u

Notice that the underlined terms are numericaily equal from the definition of reference

solution. Since they are equal, they can be cancelled out leaving

A
ox " g OX + aulkﬁu

This is a set of linear small perturbation differential equations. In summary, the original
noniinear problem

X=3(510), X0)
with solution i(t) for specified input u(t) has been decomposed into two separate

problems.

¢  The reference problem

Xg = 8(Xg,Uyg)
with initial condition 'X"R (0) with solution -fR (t) to input ﬁR (t)

¢  The small perturbation problem

sx=28) ox+%8

X e ==, ou
with initial condition

OX(0) = X(0) - X, (0)
with solution OX(t) to input ST(E).

Finally the total approximate solution is given by the entire solution procedure is shown

in Figure 1.
X(t) =X (£) + O5X(t)
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B.6

B.7

On picking a reference solution

Any solution to X = 2(X, W) makes a good reference solution but these

solutions can be hard to find. An easier set of solutions are constant solutions e,

solutions so that ffR (t) = 6 and iR(t) = constant for i_lR (t)=constant. For

constant reference solutions, finding the reference solution to a nonlinear differential

equation becomes a problem of finding the solution to a nonlinear algebraic equation

g(Xg,Uz)=10
Linearization Example
) 2 2
- X 1 X 2 - ll
x(t)=]. |= )
a) Choice of Reference Solution

To simplify our choice, assume that the reference solution is constant,
ie, X;=X,=0. This requires that X, —u’=0 and
—X12 +1 =0. These equations can be satisfied whenever
X22 =112 and Xlz =1
Values of X; and X , which satisfy these equations are

X, =20 where uis any constant

x, =11



Exact
Nonlinear
Solution (x(t))
(e.g., from numerical
integration)
A
Nonlinear Differential
Equations

x =g(x,w), x(0)

y = h(X,u)

u(t) = specified

v v
Linear Small
Nonlinear Reference Perturbation Problem
Problem oZ 0% o
XR =§(X_R3ﬁR) 8 a | ox4+-= | oil
X (0), T, specified Sy= g—hl 8x+g I, Su
where typically xg and ug _
are constants . Ox 0)=x@0) Xx X, 0)
Sﬁ(t) = u(t) — [T

v v

Linear
Nonlinear Reference Solution
Solution (i.e., from Laplace
(e.g., constant Transforms)
solution)
XR’ i:iR Si“(t)Q 83}»(t)

l Total Approximate Solutioln
X(t) =x_+Ox(t)
y(t) =y, +¥(t)
x(0)=x_+06x(0)
u(t)=u_ +du(t)

Figure 1 Solution Procedures for Nonlinear Differential Equations



We wiil consider two different reference solutions

Ref#1 Ref.#2

_ +1| _ |—1'

Xn(t)=[+1 , up(t)=+1 Xg(t)= 1 up (t)=-1
N -1
o o=

b) Small Perturbation Equations of Motion 3
- 08, o g
8X=8_XIR8X + B_§IR ou
where 8§=E—ER 811=ll—llR

dg, 98, dg,
A_,E_J:g__ dx, dx, _9%2 _|ou
ox |93, % [ " du |%,
ox, Jx, du

1
Using Ref. #1 Xg =[ J, u, =1
5k,1 -2 o lex, | [ o™

—1
Using Ref. #2 Xy =[ , Uy =1

-1
'[Bf;IJ [ 0 —2][5le [+2]
= + du
o, | |+2 01 dx, 0
c. \ The Linear Solution for Reference #1

@  Ox, =20x, —28u

/0



@  6x, =-20x,

take Laplace transforms .
m  sox, (s) —8x,(0)= 28x, (s) —28u(s)
@ SﬁXZ(S)-— 0x, (0) =-20x,(s)

multiply (2) by s
578x, (s) — $8x, (0) = —2s8x, (s)

multiply (1) by 2
—2s50x,(s) = —408x,(s) + 48u(s) — 28x, (0)

set these equal

s8x, (s) — s8x, (0) = —48x,, (s) + 4du(s) — 28x, (0)

8x, (s)[s” + 4] = s8x, (0)— 28x,(0) + 45u(s)

sdx, (0)— 26x,(0) 4
s +4 * (52 + 4)8u(s)

0x, (s) =

The first term on the right gives initial condition response. The second term on the right

0x, (5) _ 4
du(s) s?+4°
To find OX, (1) take the inverse Laplace transform. From (2)
sOx,(s)— Ox, (0) =-28x,(s)
3x,(s) = -—%[SSXZ (s)—8x,(0)]

contains the transfer function

_ To find the solutions 8X1 (t) and SXZ (t) you must be given the input §u(t) and the initial

conditions (8X1 (0),8X2(0)). Then the solutions can be found using inverse Laplace

transforms.
d) Total Solution for Reference #1
[xl (t):] ~ lxlk (t)J [ﬁxl(t) J_ 1 +8x1(t)J
x,(0] [, (1) * ox,(t) | [1+8x (¢)
u(t) =uy (t) +du(t) =1+ du(t)
- (0 _[1+ 8x, (0)
%= 4 5x, 0),

(f



e) ‘Comment:
For this procedure to be valid the perturbations must be small, i.e.,

all must be small.

Suppose we have the nonlinear problem with
x,(0)=1.01
x,(0)=.99
u(t) = 1.0 +.01sin ot

then we can usc Ref#1 and then we can have
ox,(0)=.01
0x, (0)=—-.01
du(t) =.01sin t
On the other hand if for the nonlinear problem we have
x,(0)=-1.01
x,(0)=-99
u(t) =--1-.01sinwt
We would use Ref. #2 with
0x,(0)=-01
ox,(0)=.01
du(t)=—01sinwt

[Z-



C. Output Equations

Often nonlinear differential equations are associated with nonlinear output equations. This may
come about in modeling the sensors aboard an aircraft. The sensors are often nonlinear functions of the

state vector and control vector. Output equations can be expressed as follows.
y= h(i,ﬁ) where is ¥ a px1 vector

This can also be linearized about reference solution g and ug as follows.
ch dh
Yy =Yg + 0y =h(x,u)ly +$(~I]R (X_XR)+8_uIR (u—uy)

The underlined terms are equal by definition of y on the reference and can be cancelled out on both sides of
the equation. That leaves the linear small perturbation output equations in terms of small perturbation

variables.
' oh dh
Sy—-a;IR 8x+au I ou=C-8x+D-du

The total output equation in linear form is then given by the following.

y(t)=yg +0y(t)

D. Stability
One of many possible definitions of dynamic stability for nonlinear systems is given in terms of the

9g, 9g;
og ox, dx,

. . . = l,=
— R
eigenvalues of the Jacobian matrix, 9 agz agz

| dx, ox

2R

If all the eigenvalues of A have negative real parts we say that the reference solution, (XR ) llR) ,
is stable.

If at least one of the eigenvalue of A has a positive real part we say that the reference solution,
(XR ,HR) , is unstable.

If at least one eigenvalues of A has a zero real part, and if all the other eigenvalues have negative
real parts, we can draw no conclusion about the stability of the reference solution, (XR N “R) .

E. Concluding Comments

We have seen how the solution to nonlinear differential equations can be found by decomposing
the problem into two simpler parts. The reference part is simpler because it is often a nonlinear algebraic
problem. The second small perturbation part is simpler because it often involves solving linear differential
equations with constant coefficients. The total approximate solution to the original nonlinear differential

equation was shown to be the sum of the two simpler parts.
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