
LINEARIZATION OF NONLINEAR EQUATIONS
By Dominick Andrisani

A. Linearization of Nonlinear Functions

A.1    Scalar functions of one variable  .

We are given the nonlinear function g(x).  We assume that g(x) can be

represented using a Taylor series expansion about some point xR  as follows
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A linear approximation for g(x) involves taking only the first two terms
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This approximation is most accurate if ( )x xR−  is small so that the neglected higher

order terms are negligible.



Example:  g x x( ) = 2

Expanding g(x) about xR = 2  gives
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Notice that this is a linear function of x. The simplification resulted because we evaluated

all nonlinear terms at the number x xR= = 2 . Because we evaluated the terms on the

right hand side of the equation above at x xR= = 2 , the only term that depends on x

is the x-2 term, and this is a linear term. This approximation to g(x) is valid near x=2.

We can generate another approximation to g(x) by expanding g(x) about xR =1 gives
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This second approximation is valid near x=1. Clearly the linear approximation depends

on the choice of reference point xR .

A.2    Scalar function of 2 variables  

Given the nonlinear function g x x( , )1 2 .  This function can be represented by

a Taylor series expansion about x x
R R1 2,  as follows
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A linear approximation of g can be obtained by retaining the first three terms above

(underlined).  The two variables in this problem can be associated together in a vector

x as follows
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can be approximated about x x
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The same function can be approximated about x
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Notice again how important the linearization point or reference point is to the linearized

result.



A.3    Vector function of a vector of variables  .

Let g x( )  be an nx1 vector of nonlinear functions.  Let x  be an nx1 vector of

variables
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A linear approximation about xR  is
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A.4    Accuracy of linearized solution  .

When we approximate g x( )  by retaining only the linear terms, we must

guarantee that the deleted terms, i.e., the h.o.t. are negligible.  This is true only when

x xR−  is small, i.e. when the perturbations from the reference point are small.

B. Linearization on Nonlinear Differential Equations in First Order Form

B.1    First     order     form   

Nonlinear differential equations in first order form can be written as
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Note that u  represents specified forcing functions and x( )0  is a specified initial

condition vector.

Example      B.1a
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B.2    The reference or trim solution  

When we were linearizing nonlinear functions, we saw how important the choice

of reference point was.  In linearizing nonlinear differential equations, we are also

concerned with the reference about which we linearize.  However, we are now interested

in obtaining a linearized solution valid for all time.  This requires that we linearize

around a reference solution, which is valid for all time.

Let x tR ( )  be a known solution to the nonlinear differential equation with

specified forcing function u tR ( )  and specified initial condition xR ( )0 .  i.e.,

˙ ( ) ( ( ), ( ))x t g x t u tR R=      xR ( )0

x tR ( )  is said to be the reference solution to the nonlinear differential equation.

Example      B.1b

For the differential equations given in Example B.1a
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is a constant solution to the nonlinear differential equation.  Verify this fact for yourself

by substituting this solution into the differential equation given in Example B.1a.

Please keep straight in your mind the difference between a differential equation (e.g.

˙ )x x=  and a solution to a differential equation (e.g. x for x x= =0    ˙ ) .

Example      B.1c

For the differential equations given in Example B.1a
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is another constant solution to the nonlinear differential equations.

Example      B.1d

For the differential equations given in Example B.1a
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is a constant solution to the nonlinear differential equations for any constant.

B.3    Linearization     about     a     reference     solution  

Let x t u tR R( ), ( )  be a reference solution.  We now want to find a linearized

solution to the nonlinear differential equation about this reference solution.

We again expand g x( )  in a Taylor series expansion about xR  and uR  i.e.,
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The linear approximation is obtained by assuring that x xR−  and u uR−  are small

enough that the h.o.t. can be neglected.

B.4    Definition     of     small     distribution     variables  
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For the linearized solution to be valid, these perturbations must be “small.”



B.5    Separation     of     the     linearized     differential     equations     into     two     parts  

Assuming that the perturbations are small, we can write the approximation to

the differential equations as
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Notice that the underlined terms are numerically equal from the definition of reference

solution.  Since they are equal, they can be cancelled out leaving
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This is a set of linear small perturbation differential equations.  In summary, the original

nonlinear problem

˙ ( , ),x g x u=      x( )0

with solution x t( )  for specified input u(t) has been decomposed into two separate

problems.

• The reference problem

  ̇ ( , )x g x uR R R= r

with initial condition xR ( )0  with solution x tR ( )  to input u tR ( )

• The small perturbation problem
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with initial condition

δx x xR( ) ( ) ( )0 0 0= −

with solution δx t( )  to input δu t( ) .

Finally the total approximate solution is given by the entire solution procedure is shown

in Figure 1.

x t x t x tR( ) ( ) ( )= + δ



B.6    On     picking     a     reference     solution  

Any solution to ˙ ( , )x g x u=  makes a good reference solution but these

solutions can be hard to find.  An easier set of solutions are constant solutions i.e.,

solutions so that ˙ ( )x tR = 0  and x tR ( ) =  constant for u tR ( ) = constant.  For

constant reference solutions, finding the reference solution to a nonlinear differential

equation becomes a problem of finding the solution to a nonlinear algebraic equation

g x uR R( , ) = 0
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a) Choice of Reference Solution

To simplify our choice, assume that the reference solution is constant,

i.e., ˙ ˙x x1 2 0= = .  This requires that x u2
2 2 0− =  and

− + =x1
2 1 0 .  These equations can be satisfied whenever

x u2
2 2=  and x1

2 1=

Values of x1  and x2  which satisfy these equations are

x u2 = ±  where u is any constant

x1 1= ±



Figure 1 Solution Procedures for Nonlinear Differential Equations
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We will consider two different reference solutions
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b) Small Perturbation Equations of Motion
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c. The Linear Solution for Reference #1

(1) δ δ δẋ x u1 22 2= −



(2) δ δẋ x2 12= −

take Laplace transforms
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The first term on the right gives initial condition response. The second term on the right

contains the transfer function 
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To find δx t1 ( )  take the inverse Laplace transform.  From (2)

s x s x x sδ δ δ2 2 10 2( ) ( ) ( )− = −

δ δ δx s s x s x1 2 2

1
2

0( ) ( ) ( )= − −[ ]
To find the solutions δx t1 ( )  and δx t2 ( )  you must be given the input δu t( )  and the initial

conditions δ δx x1 20 0( ), ( )( ) .  Then the solutions can be found using inverse Laplace

transforms.

d) Total Solution for Reference #1
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e) Comment:

For this procedure to be valid the perturbations must be small, i.e.,

 all must be small.

Suppose we have the nonlinear problem with

x1 0 1 01( ) .=

x2 0 99( ) .=

u t t( ) . . sin= +1 0 01 ω

then we can use Ref.#1 and then we can have

δx1 0 01( ) .=

δx2 0 01( ) .= −

δ ωu t t( ) . sin= 01

On the other hand if for the nonlinear problem we have

x1 0 1 01( ) .= −

x2 0 99( ) .= −

u t t( ) . sin= − −1 01 ω

We would use Ref. #2 with

δx1 0 01( ) .= −

δx2 0 01( ) .=

δ ωu t t( ) . sin= − 01



C. Output Equations

Often nonlinear differential equations are associated with nonlinear output equations. This may

come about in modeling the sensors aboard an aircraft. The sensors are often nonlinear functions of the

state vector and control vector. Output equations can be expressed as follows.

y h x u= ( , )  where  is y  a px1 vector

This can also be linearized about reference solution xR and uR as follows.
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The underlined terms are equal by definition of y on the reference and can be cancelled out on both sides of
the equation. That leaves the linear small perturbation output equations in terms of small perturbation
variables.
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The total output equation in linear form is then given by the following.
y t y y tR( ) ( )≈ + δ

D. Stability
One of many possible definitions of dynamic stability for nonlinear systems is given in terms of the

eigenvalues of the Jacobian matrix,  A
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If all the eigenvalues of A have negative real parts we say that the reference solution, ( , )x uR R ,
is stable.

If at least one of the eigenvalue of A has a positive real part we say that the reference solution,
( , )x uR R , is unstable.

If at least one eigenvalues of A has a zero real part, and if all the other eigenvalues have negative
real parts, we can draw no conclusion about the stability of the reference solution, ( , )x uR R .

E. Concluding Comments

We have seen how the solution to nonlinear differential equations can be found by decomposing

the problem into two simpler parts. The reference part is simpler because it is often a nonlinear algebraic

problem. The second small perturbation part is simpler because it often involves solving linear differential

equations with constant coefficients. The total approximate solution to the original nonlinear differential

equation was shown to be the sum of the two simpler parts.


