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STABILITY DEFINITION

Change in geometry of a structure or structural component
under compression — resulting in loss of ability to resist loading
is defined as instability in the book.

Instability can lead to catastrophic failure - must be accounted
in design. Instability is a strength-related limit state.

Why did we define instability instead of stability? Seem strange!

Stability is not easy to define.

= Every structure is in equilibrium — static or dynamic. If it is not in
equilibrium, the body will be in motion or a mechanism.

= A mechanism cannot resist loads and is of no use to the civil
engineer.

= Stability qualifies the state of equilibrium of a structure. Whether it
is in stable or unstable equilibrium.

STABILITY DEFINITION

Structure is in stable equilibrium when small perturbations do
not cause large movements like a mechanism. Structure
vibrates about it equilibrium position.

Structure is in unstable equilibrium when small perturbations
produce large movements — and the structure never returns to
its original equilibrium position.

Structure is in neutral equilibrium when we cant decide whether
it is in stable or unstable equilibrium. Small perturbation cause
large movements — but the structure can be brought back to its
original equilibrium position with no work.

Thus, stability talks about the equilibrium state of the structure.

The definition of stability had nothing to do with a change in the
geometry of the structure under compression — seems strange!
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STABILITY DEFINITION
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BUCKLING Vs. STABILITY

Change in geometry of structure under compression — that
results in its ability to resist loads — called instability.

Not true — this is called buckling.

Buckling is a phenomenon that can occur for structures under
compressive loads.
= The structure deforms and is in stable equilibrium in state-1.

= As the load increases, the structure suddenly changes to
deformation state-2 at some critical load Py,.

= The structure buckles from state-1 to state-2, where state-2 is
orthogonal (has nothing to do, or independent) with state-1.
What has buckling to do with stability?
= The question is - Is the equilibrium in state-2 stable or unstable?
= Usually, state-2 after buckling is either neutral or unstable

equilibrium
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BUCKLING

P<Pcr lP:Pcr lP>Pcr
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BUCKLING Vs. STABILITY

= Thus, there are two topics we will be interested in this course
= Buckling — Sudden change in deformation from state-1 to state-2

= Stability of equilibrium — As the loads acting on the structure are
increased, when does the equilibrium state become unstable?

= The equilibrium state becomes unstable due to:
= Large deformations of the structure
= Inelasticity of the structural materials

= We will look at both of these topics for
= Columns
= Beams
= Beam-Columns
= Structural Frames
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Structure subjected to compressive forces can undergo:

1.

TYPES OF INSTABILITY

Buckling — bifurcation of equilibrium from deformation state-1 to

state-2.

= Bifurcation buckling occurs for columns, beams, and symmetric
frames under gravity loads only

Failure due to instability of equilibrium state-1 due to large

deformations or material inelasticity

= Elastic instability occurs for beam-columns, and frames subjected
to gravity and lateral loads.

= Inelastic instability can occur for all members and the frame.

We will study all of this in this course because we don’t want
our designed structure to buckle or fail by instability — both of
which are strength limit states.

TYPES OF INSTABILITY

BIFURCATION BUCKLING
= Member or structure subjected to loads. As the load is

increased, it reaches a critical value where:
= The deformation changes suddenly from state-1 to state-2.
= And, the equilibrium load-deformation path bifurcates.

» Critical buckling load when the load-deformation path bifurcates

= Primary load-deformation path before buckling
= Secondary load-deformation path post buckling
= Is the post-buckling path stable or unstable?
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SYMMETRIC BIFURCATION

= Post-buckling load-deform. paths are symmetric about load axis.
= If the load capacity increases after buckling then stable symmetric
bifurcation.
= If the load capacity decreases after buckling then unstable
symmetric bifurcation.

Load Load

P / cr
”,a”‘_——-_-__--—-‘--‘-_-

Defiection

Deflection

(b) UNSTABLE SYMMETRIC

SYMMETRIC
(aiBTABLE BIFURCATION

BIFURCATION

ASYMMETRIC BIFURCATION

= Post-buckling behavior that is asymmetric about load axis.

Load

Defiection
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INSTABILITY FAILURE

= There is no bifurcation of the load-deformation path. The
deformation stays in state-1 throughout

» The structure stiffness decreases as the loads are increased.
The change is stiffness is due to large deformations and / or
material inelasticity.

= The structure stiffness decreases to zero and becomes negative.

= The load capacity is reached when the stiffness becomes zero.

= Neutral equilibrium when stiffness becomes zero and unstable
equilibrium when stiffness is negative.

= Structural stability failure — when stiffness becomes negative.

INSTABILITY FAILURE

= FAILURE OF BEAM-COLUMNS

AP Ma K=0
J M \&‘

Ué
<
oy

No bifurcation.

Instability due to material
and geometric nonlinearity
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INSTABILITY FAILURE

= Snap-through buckling
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INSTABILITY FAILURE

= Shell Buckling failure — very sensitive to imperfections

Deflection
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Chapter 1. Introduction to Structural Stability

OUTLINE

= Definition of stability

= Types of instability

= Methods of stability analyses

= Examples — small deflection analyses
= Examples — large deflection analyses
= Examples — imperfect systems

= Design of steel structures

METHODS OF STABILITY ANALYSES

= Bifurcation approach — consists of writing the equation of
equilibrium and solving it to determine the onset of buckling.

= Energy approach — consists of writing the equation expressing
the complete potential energy of the system. Analyzing this total
potential energy to establish equilibrium and examine stability of
the equilibrium state.

= Dynamic approach — consists of writing the equation of dynamic
equilibrium of the system. Solving the equation to determine the
natural frequency () of the system. Instability corresponds to
the reduction of o to zero.
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STABILITY ANALYSES

Each method has its advantages and disadvantages. In fact,
you can use different methods to answer different questions

= The bifurcation approach is appropriate for determining the
critical buckling load for a (perfect) system subjected to loads.
= The deformations are usually assumed to be small.
= The system must not have any imperfections.

= [t cannot provide any information regarding the post-buckling load-
deformation path.

= The energy approach is the best when establishing the
equilibrium equation and examining its stability
= The deformations can be small or large.
= The system can have imperfections.

= It provides information regarding the post-buckling path if large
deformations are assumed

= The major limitation is that it requires the assumption of the
deformation state, and it should include all possible degrees of
freedom.

STABILITY ANALYSIS

= The dynamic method is very powerful, but we will not use it in this class
at all.
= Remember, it though when you take the course in dynamics or earthquake
engineering
= In this class, you will learn that the loads acting on a structure change its
stiffness. This is significant — you have not seen it before.

[ 7 4E1 2E|
N = R ﬁ M, :Taa M, :Tab

M,

= What happens when an axial load is acting on the beam.
= The stiffness will no longer remain 4EI/L and 2EI/L.
= Instead, it will decrease. The reduced stiffness will reduce the
natural frequency and period elongation.
= You will see these in your dynamics and earthquake engineering
class.

8/25/2014
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STABILITY ANALYSIS

= FOR ANY KIND OF BUCKLING OR STABILITY ANALYSIS -
NEED TO DRAW THE FREE BODY DIAGRAM OF THE DEFORMED
STRUCTURE.

= WRITE THE EQUATION OF STATIC EQUILIBRIUM IN THE
DEFORMED STATE

= WRITE THE ENERGY EQUATION IN THE DEFORMED STATE
TOO.

= THIS IS CENTRAL TO THE TOPIC OF STABILITY ANALYSIS

= NO STABILITY ANALYSIS CAN BE PERFORMED IF THE FREE
BODY DIAGRAM IS IN THE UNDEFORMED STATE

BIFURCATION ANALYSIS

= Always a small deflection analysis
= To determine P, buckling load
= Need to assume buckled shape (state 2) to calculate

Example 1 — Rigid bar supported by rotational spring

k . . )
(gz < P Rigid bar subjected to axial force P
s Rotationally restrained at end

> »!
< >

Step 1 - Assume a deformed shape that activates all possible d.o.f.

L P
-«

L coso —>'—
L (1-cos6)
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BIFURCATION ANALYSIS

L P

ko
] L sind

L coso —'—
L (1-cos6)

= r

Write the equation of static equilibrium in the deformed state

(+ SM,=0 -k0+PLsing=0
ko
~ Lsing
For small deformatims sind=6
o ko Kk
TTULe L
Thus, the structure will be in static equilibrium in the deformed state
when P = P, = k/L

When P<P,, the structure will not be in the deformed state. The
structure will buckle into the deformed state when P=P,

BIFURCATION ANALYSIS

Example 2 - Rigid bar supported by translational spring at end

=]

| L
I

Assume deformed state that activates all possible d.o.f.
Draw FBD in the deformed state

8/25/2014
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BIFURCATION ANALYSIS

Write equations of static equilibrium in deformed state

4,; —
L (1-cosb)

C}}:MO:O . ~(kLsin@)xL+PLsing=0

I:):kLzsiné?

Lsing
For small deformaticns sin@=40

kL’
Lo

ser

kL

® Thus, the structure will be in static equilibrium in the deformed state

when P = P, = k L. When P<Pcr, the structure will not be in the deformed
state. The structure will buckle into the deformed state when P=P,

BIFURCATION ANALYSIS

Example 3 — Three rigid bar system with two rotational springs
P k

AN
]

‘ L
I

Fee
T cex
o

Assume deformed state that activates all possible d.o.f.
Draw FBD in the deformed state

Assume small deformations. Therefore, sin0=0

13
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BIFURCATION ANALYSIS

Write equations of static equilibrium in deformed state

—_— - 9 (6, - 9)W
2(4;(:
(+ ZMB:O ~.k(26,-6,)-PLsing, =0 . k(26,-6,)-PLO, =0

GZMC:O ~.—k(26,-6)+PLsing,=0 . —k(20,-6,)+PL6,=0

BIFURCATION ANALYSIS

Equations of Static Equilibrium

k(26,-6,)-PLO,=0 _ {ZK—PL -k H@l}_{o}
—K(26,-6)+PL6, =0 -k 2k-PL|{6,] (0
Therefore either 6, and 0, are equal to zero or the determinant of the

coefficient matrix is equal to zero.

When 0, and 0, are not equal to zero — that is when buckling occurs —
the coefficient matrix determinant has to be equal to zero for equil.

Take a look at the matrix equation. It is of the form [A] {x}={0}. It can
also be rewritten as ([K]-A[ID{x}={0}

LSS
3 L| o1 0]/a]_Jo
ko2 0 1/||6,] |0
L L

8/25/2014
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BIFURCATION ANALYSIS

This is the classical eigenvalue problem. ([K]-A[1]){x}={0}.

We are searching for the eigenvalues (1) of the stiffness matrix [K].
These eigenvalues cause the stiffness matrix to become singular

= Singular stiffness matrix means that it has a zero value, which means that
the determinant of the matrix is equal to zero.

~k  2k-PL
- (2k—PL)2—k?=0
. (2k—PL+k)e(2k—PL-k)=0
- (3k—PL)e(k—PL)=0

3k k

S P, =—or—
L L

2k—-PL -k

= Smallest value of P, will govern. Therefore, P =k/L

BIFURCATION ANALYSIS

Each eigenvalue or critical buckling load (P,,) corresponds to a buckling shape
that can be determined as follows

P.=k/L. Therefore substitute in the equations to determine ¢, and 6,

K(26,—6,)-PL6,=0 —k(26,-6,)+PL6,=0
LetP=P, =K/ LetP=P, =K/

- k(26,-6,)—k6,=0 - —k(26,-6)) +k6, =0
k6, —k6, =0 k6, —k6, =0

.0,=0, -.0,=6,

All we could find is the relationship between 6, and 8,. Not their specific
values. Remember that this is a small deflection analysis. So, the values are
negligible. What we have found is the buckling shape — not its magnitude.

The buckling mode is such that 6,=6, > Symmetric buckling mode

k
e pmm S ————— - ==, —

8/25/2014
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BIFURCATION ANALYSIS

Second eigenvalue was P =3k/L. Therefore substitute in the equations to
determine 6, and 6,

k(26,-6,)-PL6,=0 —K(20,-6)+PL6, =0
LetP =P, =3¢/ LetP=P, =3/

- k(26,-6,)-3k6,=0 - —k(20,-6,)+3k6, =0
-.—k6, —k6, =0 - k6, +k8, =0
60,=-0, 0, =—0,

All we could find is the relationship between 0, and 0,. Not their specific
values. Remember that this is a small deflection analysis. So, the values are
negligible. What we have found is the buckling shape — not its magnitude.

The buckling mode is such that 6,=-0, - Antisymmetric buckling mode

Chapter 1. Introduction to Structural Stability

OUTLINE

Definition of stability

Types of instability

Methods of stability analyses

Bifurcation analysis examples — small deflection analyses

Energy method

= Examples — small deflection analyses
= Examples — large deflection analyses
= Examples — imperfect systems

Design of steel structures
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ENERGY METHOD

We will currently look at the use of the energy method for an
elastic system subjected to conservative forces.

Total potential energy of the system — IT — depends on the work
done by the external forces (W,.) and the strain energy stored in
the system (U).

Mm=U-W,.

For the system to be in equilibrium, its total potential energy I1
must be stationary. That is, the first derivative of IT must be
equal to zero.

Investigate higher order derivatives of the total potential energy
to examine the stability of the equilibrium state, i.e., whether the
equilibrium is stable or unstable

ENERGY METHD

The energy method is the best for establishing the equilibrium
eguation and examining its stability

= The deformations can be small or large.
= The system can have imperfections.

= It provides information regarding the post-buckling path if large
deformations are assumed

= The major limitation is that it requires the assumption of the
deformation state, and it should include all possible degrees of
freedom.

8/25/2014
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ENERGY METHOD

=  Example 1 — Rigid bar supported by rotational spring

= Assume small deflection theory

k(gz < P Rigid bar subjected to axial force P
7 L Rotationally restrained at end

I »
€ >

Step 1 - Assume a deformed shape that activates all possible d.o.f.

L coso e
L (1-cosb)

ENERGY METHOD — SMALL DEFLECTIONS

L P

ko = 1 L sino
e L cos6 —> ;—
L (1-cos6)
= Write the equation representing the total potential energy of system
[1=U-Ww,
u=1ke
2

W, =P L(1-cos8)
H:%k 6?—P L (1-cosh)

m=k9—P Lsing

de
Forequilibrimn;mzo
deo

Therefore, k@—-PLsind=0
For small deflectiors; k@ —-P LO =0

Therefore P, :%

8/25/2014
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ENERGY METHOD — SMALL DEFLECTIONS

= The energy method predicts that buckling will occur at the same load
P as the bifurcation analysis method.

= At P, the system will be in equilibrium in the deformed.
= Examine the stability by considering further derivatives of the total
potential energy

= This is a small deflection analysis. Hence 6 will be - zero.

= In this type of analysis, the further derivatives of IT examine the stability of
the initial state-1 (when 6 =0)

H:EKHZ—PL(l—cose) d2]] -

2 WhenP <P, 90 >0 ..Stableequilibrim
m:|(9—F’LSiI’19=|(6’—PL9 d211
do WhenP>P, - <0 .Unstableequilibrim
d I}ZK—PL dZH
do WhenP =P, - =0 . Notsure

ENERGY METHOD — SMALL DEFLECTIONS

= In state-1, stable when P<P_, unstable when P>P,,
= No idea about state during buckling.

= No idea about post-buckling equilibrium path or its stability.

Ap
Unstable

Indeterminate— —=

cr

Stable

19



ENERGY METHOD - LARGE DEFLECTIONS

Example 1 — Large deflection analysis (rigid bar with rotational spring)

[T=U-w,
u =%k 6? L P
W, =P L(1-cosé) ko - . |Lsine
H:Ekez—P L (1-cosh) P |
d 2 L cos6 Tlh—e
I\ 9_p Lsing e
do
Forequilibrium;mzo
do

Therefore, kO@—-PLsingd=0
Therefore, pP= k_@ for equilibrium

Lsing

The post—bucklingP — @ relationship is givenabove

ENERGY METHOD — LARGE DEFLECTIONS

Large deflection analysis
= See the post-buckling load-displacement path shown below
= The load carrying capacity increases after buckling at P,
= P.iswhere 6 >0

Rigid bar with rotational spring

1.2
P=—n- for equilibrium
Lsing

0.8 . P 0
i P, sing
& 06
=}
©
o
-

0.4

0.2

0 . . . . . . . .
-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

End rotation
=0=00_0

8/25/2014
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ENERGY METHOD - LARGE DEFLECTIONS

Large deflection analysis — Examine the stability of equilibrium using
higher order derivatives of I1

H:%k 0% P L(1-cosd)
m: k &P Lsing
do

a’1
d6°

But, P

=k —-P Lcosé

_ ko

Lsing

2
.'.g:k— k? Lcosé
do Lsing
d?T] 0
=k(l-——

do? ( tane)

Cd?I1 .
Ry >0 Always(i.e.,all valuesof 6)

. AlwaysSTABLE

2
But,gzo for =0
do

I1

ENERGY METHOD — LARGE DEFLECTIONS

At 0 =0, the second derivative of IT=0. Therefore, inconclusive.

Consider the Taylor series expansion of IT at 6=0

=TJ| L1 +idZH 92+1d3H 93+£d“1‘1 4 PR |t
6=0 2 3 7] O Tt -
dol,, 2de*|_, 3de*|,, 4do*| ntdo" |,
Determine the first non-zero term of I1,
=0
M=1ke?—pLE-cos0) 1, LR e 1y g sg
) 2 dIT| -0 4 do* |, 24
—H:kH—P Lsinég dé 1,5,
i CEV
W =k—-P Lcosd do? |,
d’I1 i T b sing-o0
a0 =P Lsing 40° s sin
d* 4
dal;[:PLcosé’ d l:[ =P Lcosd=PL=k
do’ |,

Since the first non-zero term is > 0, the state is stable at P=P, and 6=0

8/25/2014
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ENERGY METHOD - LARGE DEFLECTIONS

Load P/Pcr

Rigid bar with rotational spring

1.2 ¢

1 MM

STABLE STABLE
0.8
0.6 ]
STABLE

0.4 ]
0.2

0 T T T T T T T T

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
End rotation 6

ENERGY METHOD — IMPERFECT SYSTEMS

= Consider example 1 — but as a system with imperfections

= The initial imperfection given by the angle ¢, as shown below

K \o L P
Ca

L cos(6,)

A

= The free body diagram of the deformed system is shown below

L cosb —>
L (cos6,-cos6)

8/25/2014
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ENERGY METHOD - IMPERFECT SYSTEMS

M=u-w,

L coso e

U= % k (9 _ 90)2 L (cos0,-coso)

W, =P L(cosé, —cos0)
= %k (0—6,)* - P L(cosé, —cosé)

%:k (0-6,)-P Lsing

Forequilibriun; m=0

de
Therefore, k(@-6,)-PLsingd=0
_k(©-6,)
"~ Lsing
The equilibrium P — 4 relationship is givenabove

Therefore, P for equilibrimm

Load P/Pcr

ENERGY METHOD — IMPERFECT SYSTEMS

0.8

o
o

©
IS

0.2

P_k(a—ao) . P _0-6
sing

Lsing P

cr

P — 6 relationstips for different valuesof 6, shownbelow:

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

End rotation 0
=0=00=0 =O—00=0.05 =O0=00=0.1 ~O- 00=0.2 —— 60=0.3

8/25/2014
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ENERGY METHODS - IMPERFECT SYSTEMS

= As shown in the figure, deflection starts as soon as loads are
applied. There is no bifurcation of load-deformation path for
imperfect systems. The load-deformation path remains in the
same state through-out.

= The smaller the imperfection magnitude, the close the load-
deformation paths to the perfect system load —deformation path

= The magnitude of load, is influenced significantly by the
imperfection magnitude.

= All real systems have imperfections. They may be very small but
will be there

= The magnitude of imperfection is not easy to know or guess.
Hence if a perfect system analysis is done, the results will be
close for an imperfect system with small imperfections

ENERGY METHODS — IMPERFECT SYSTEMS

= Examine the stability of the imperfect system using higher order

derivatives of I1 1
M= Ek (0—6,)* - P L(cosé, —cos6)

dIl .
——=k(@-6,)-P Lsing
10 (0-6,)
d?[l
do?
. Equilibrium pathwill be stable
2
if d l;l>0
0
ie,if k—PLcosé>0
k
<
L cos@
if k(efeo) - k
Lsing L cosd
ie, -6, <tand

= Which is always true, hence always in STABLE EQUILIBRIUM

=k -P Lcos#

ie,if P

8/25/2014
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ENERGY METHOD — SMALL DEFLECTIONS

Example 2 - Rigid bar supported by translational spring at end

Assume deformed state that activates all possible d.o.f.
Draw FBD in the deformed state

ENERGY METHOD — SMALL DEFLECTIONS

Write the equation representing the total potential energy of system

[1=U _We P
L PR
U ZEk (L sinﬁ)z zlk ngz / ILsin()
2 2 g 47

W, = P L(1—cos6) ;M ________ i kLsing

M=k 12 0?-PLA-cosO) /

dH 2 L cos6 1

@:k LZH—P Lsing L‘(lfco‘sw
dIIl

Forequilibrim; —— =0
do

Therefore, kL>0-PLsingd=0
For small deflectiors; k L’0—P L& =0
Therefore P, =k L

8/25/2014
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ENERGY METHOD — SMALL DEFLECTIONS

= The energy method predicts that buckling will occur at the same
load P, as the bifurcation analysis method.

= At P, the system will be in equilibrium in the deformed.
Examine the stability by considering further derivatives of the
total potential energy
= This is a small deflection analysis. Hence 6 will be - zero.

= In this type of analysis, the further derivatives of IT examine the
stability of the initial state-1 (when 6 =0)

l_[:ik L > - P L(1-cos6)
2 421
m=kL2€—PLSin9 When, P <k L Y >0 ..STABLE
e 411
2 .
(:jalz_[:k L2—P L cosd When, P >k L 5 <0 . UNSTABLE
For small deflectios and 6 =0 When P = kL dz H =0 .. INDETERMINATE
le‘[ dgz
5 =kL’-PL
do

ENERGY METHOD — LARGE DEFLECTIONS

Write the equation representing the total potential energy of system

P
[I=U-w, L ¢
1 ILsin()
Uzgk(Lsine)2 ] :

W, =P L(1-cos0)

ﬂ:%k L2 sin*@—P L(1-cosh) L cosd
i
9T _ 4 12 singcoso— P Lsing e
do
dIIl

Forequilibrim; — =0
do

Therefore, k L? sinfcos@—P Lsind =0
Therefore, P=k Lcos@ for equilibrium
The post—bucklingP — @ relationstip is givenabove

8/25/2014
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ENERGY METHOD - LARGE DEFLECTIONS

Large deflection analysis
= See the post-buckling load-displacement path shown below
= The load carrying capacity decreases after buckling at P,
= P.iswhere 6 >0

Rigid bar with translational spring

1.2 —
P=k Lcos¢ forequilibrim
P =Ccosé
1 P
0.8
5]
o
=
& 06
=}
@
o
-
0.4
0.2
0 T T T T T T T T
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

End rotation 6

ENERGY METHOD — LARGE DEFLECTIONS

Large deflection analysis — Examine the stability of equilibrium using
higher order derivatives of I

H:%k L*sin®6—P L(1-cosh)

%:k L? sindcosd — P Lsing
2
ddelz_[ =k L? cos26—P L cosd
For equilibrim P =k L cos@
2
ddgl;[ =k L? cos26 —k L* cos* 0
2
ddgl;[ =k L? (cos’ #—sin?6)—k L? cos’ @
2
ddglz_[ =—k L?sin%@
d?[1
40 <0 ALWAYS. HENCEUNSTABLE

8/25/2014
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ENERGY METHOD - LARGE DEFLECTIONS

= At 0 =0, the second derivative of IT=0. Therefore, inconclusive.

= Consider the Taylor series expansion of IT at 6=0

a1

1d27]
0" 4p 2

3
+ > 92+1d il
o 2d0

, 1d°TI
3 do® Ta

4 do*

L +ldl_[ 6"
n!' dog"

0=0 - 6=0

=11

6=0 6=0

= Determine the first non-zero term of IT,

1 .

=-kL’sin?0-PL(1- = 4
fl PRl o (1=cos0) =0 Qz%k L® cos26 + P Lcosé
E—Ek L*sin26-P Lsind=0 di‘l
de 2 I;[ =4k > +k > =-3k L°
d*I1 o

—~=k L* c0s20-P Lcosd =0 d*T1
de =<0
43I deo
90 =—2k L?sin26+P Lsin@=0| |- UNSTABLE at # =0 whenbucklingoccurs

= Since the first non-zero term is < 0, the state is unstable at P=P_, and 63

ENERGY METHOD — LARGE DEFLECTIONS

Rigid bar with translational spring
1.2

1 UNSTABLE
UNSTABLE

o
o

Load P/Pcr
o
(o)}

UNSTABLE

o
~

0.2

0 T T T T T
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

End rotation 6

8/25/2014
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ENERGY METHOD - IMPERFECTIONS

= Consider example 2 — but as a system with imperfections

= The initial imperfection given by the angle 6, as shown below
\o L _ P

} L cos(6,) i

= The free body diagram of the deformed system is shown below
P
|

¥ Lsing,

L cosd H

P
L (cos6,-cos0)

ENERGY METHOD - IMPERFECTIONS

M=U-w,

U :%k L2 (sin0—sind,)’

L cosO

W, =P L(cosg, —cosb) Rgs(ﬁs())
I :%k L*(sin@—sind,)> — P L(cos@, —cosh)

aIt _ k L*(siné —sind,) cosd—P Lsing

do
Forequilibrium;mzo
do

Therefore, k L?(sin@-sin@,) cos@—P Lsin@ =0

Therefore, P =k L cos@ (1—%) for equilibriun
sin

The equilibrium P — @ relationship is givenabove
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Load P/Pcr

ENERGY METHOD - IMPERFECTIONS

P -k Lcoso 1- "% L LAL
sing P, sing
Po =90 kL(sing+M%)_0 sing, =sin°0
10 do sin® @
o P, =kLcos’d

Envelope of peak

0.8

0.6

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

End rotation 6
-0=00=0 =O=60=0.05 =0 60=0.1 00=0.2 =°—00=0.3

ENERGY METHOD - IMPERFECTIONS

As shown in the figure, deflection starts as soon as loads are
applied. There is no bifurcation of load-deformation path for
imperfect systems. The load-deformation path remains in the
same state through-out.

The smaller the imperfection magnitude, the close the load-
deformation paths to the perfect system load —deformation path.

The magnitude of load, is influenced significantly by the
imperfection magnitude.

All real systems have imperfections. They may be very small but
will be there

The magnitude of imperfection is not easy to know or guess.
Hence if a perfect system analysis is done, the results will be
close for an imperfect system with small imperfections.

However, for an unstable system — the effects of imperfections
may be too large.
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ENERGY METHODS - IMPERFECT SYSTEMS

= Examine the stability of the imperfect system using higher order

derivatives of I1

H:%k L® (sin@-sind,)* — P L(cosd, —cosh)

%:k L* (sin@-sin@,) cosd — P Lsing
a2, o
90 =k L (cos26 +sing,sind) — P Lcosd
For equilibrim P =k L[l—SI_n—HOJ
sin@
) .
.'.d l;l:kLz(c032(>7+sin6’osin¢9)—k L 1—S|_n—‘90 cos® 6
do 0
2 [ : 2
d 1;[:kLz coszH—Sinz0+sineosin9—00529+w
de L sin@
2 [ f 2
o d l;[:kL2 —sin20+sin905in0+w
deo L sin@
Cd?T 7kLz7—sin3z9+sin6’0(sin20+cos2 0)
T de? L sing
d?[1 2_—sin39+sin00
. 2 =kL| ———
deo i sing

ENERGY METHOD — IMPERFECT SYSTEMS

2 in3 H i
d*IT _ | 2| =Sin"0+sind, P:kLcosa(l—SI_ng") and P, =kLcos’d
de? sing sing
a2 WhenP <P,
> >0whenP <P, . Stable siné,
de k L cosd (1—_—6:)<k L cos® @
N sin
<0whenP>P ~.Unstable i
d6? ™ ..‘1_sm6’0 <cos’ 0
sin
1% g sinzg
sin
2 f _qind
~.sing, >sin®*9  and d l;l:k L2 M >0
de sin@
WhenP > P
k L cosd (1—S|_n—0°)>k L cos’@
sin@
.-.1—5'_m9° >cos’ 6
21-5M6 1 sinzg
sin

~.sing, <sin®9  and

do? sing

A’ _ Lz[sin&0 —sin6

}o
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Chapter 2. — Second-Order Differential Equations

= This chapter focuses on deriving second-order differential
eguations governing the behavior of elastic members

n 2.1 — First order differential equations

s 2.2 — Second-order differential equations

2.1 First-Order Differential Equations

= Governing the behavior of structural members
= Elastic, Homogenous, and Isotropic
= Strains and deformations are really small — small deflection theory
= Equations of equilibrium in undeformed state

= Consider the behavior of a beam subjected to bending and axial

forces
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2.1 First-Order Differential Equations

= Assume tensile forces are positive and moments are positive
according to the right-hand rule

= Longitudinal stress due to bending

P M, M,
o=—+ y-——
AL 4
= This is true when the x-y axis system is ( P
a centroidal and principal axis system. '
_[y dA= _[x dA= jx ydA=0 ..Centroidalaxis
A A A
[da=A; [x*dA=1; [y*dA=1, -
A A A M, = Pe f
I, and I, are principalmomentof inertia ‘ /J\ S

Fig. 2.1. Cross section of a bjected to bending

2.1 First-Order Differential Equations

Th di train i g——P+MX M,
e corresponding strainis & =——+— I y-¢ 3
M
If P=M,=0, then ¢=—"
,=0, the El y
Plane-sections remain plane and perpendicular Sy

to centroidal axis before and after bending

The measure of bending is curvature ¢ which
denotes the change in the slope of the
centroidal axis between two point dz apart

& / 7
tang, =— f A

For small deformatims tang, = ¢,

& o
¢Y :y Fig. 2. |
Mx
Spy = £

X

~M,=El, ¢4 andsimilarlyM =E 1, ¢,
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2.1 First-Order Differential Equations

= Shear Stresses due to bending

7 );/' 4 o
(i (A Do
% . N AR
5 s E X 7\
g rtz——yjytds p s
N x 0 o 4 N
S
rt:——x_[xtds
i Iyo
’ ,\" "\ =
1/ P 7
\ R ¥ - R ¥

2.1 First-Order Differential Equations

= Differential equations of bending o ';/“'
= Assume principle of superposition \ ‘ /
= Treat forces and deformations in y-z and x-z T ; * \& ‘
plane seperately W) v |
= Both the end shears and g, act in a plane ]N oy b
parallel to the y-z plane through the shear {
center S o
M _
dz y — M, " al
am, —(=% D
el o oL =_oly
dZMX l L trrvvvevy
. oz -q, iy +a, v |
CdME L 4) : ’
o dZZ = qy Fig. 2.6. Forces in the y-z plane of a bar elemen
~E, ¢y” =-q,
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2.1 First-Order Differential Equations

Differential equations of bending

El, ¢ =0,

”

v
For small deflectiors

gy ="

SimilarlyE I, u" =g, ]

u — deflectionin positivex direction
v — deflectionin positivey direction

Fourth-order differential equations using first-
order force-deformation theory

Torsion behavior — Pure and Warping Torsion

= Torsion behavior — uncoupled from bending behavior

= Thin walled open cross-section subjected to torsional moment

= This moment will cause twisting and warping of the cross-section.
= The cross-section will undergo pure and warping torsion behavior.
= Pure torsion will produce only shear stresses in the section

= Warping torsion will produce both longitudinal and shear stresses

= The internal moment produced by the pure torsion response will be
equal to My, and the internal moment produced by the warping
torsion response will be equal to M,,.

= The external moment will be equilibriated by the produced internal
moments

= Mz=Mgy, + My
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Pure and Warping Torsion

Mz=Msy + My

Where,

s Mg, =G K¢ and My =-EI,¢"

= Mgy, = Pure or Saint Venant’s torsion moment
= K;=J=Torsional constant =

¢ is the angle of twist of the cross-section. It is a function of z.

Iy is the warping moment of inertia of the cross-section. This is
a new cross-sectional property you may not have seen before.

M,=GK;o'-El, 0" |........ (3), differential equation of torsion

Pure Torsion Differential Equation

= Lets look closely at pure or Saint Venant’s torsion. This occurs when
the warping of the cross-section is unrestrained or absent

ydz=rdg
99
.,y—rdz—r¢
Lt=Grg¢

"My, =[rrdA=G ¢’ [r* dA
A A
Mg, =G K, ¢’

wherg K; =J = [r? dA

A

= For a circular cross-section — warping is absent. For thin-walled open
cross-sections, warping will occur.

= The out of plane warping deformation w can be calculated using an
equation | will not show.
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Pure Torsion Stresses

The torsional shear stresses vary linearly about the center of the thin plate

Warping deformations

= The warping produced by pure torsion can be restrained by the:
(a) end conditions, or (b) variation in the applied torsional
moment (non-uniform moment)

= The restraint to out-of-plane warping deformations will produce
longitudinal stresses (c,,) , and their variation along the length
will produce warping shear stresses (t,,) .

Twisting prevented

Sy A
at this end t g /

AN A 2
T
o 7<=, |t
76 o) T,
I A i A " Centeroftop “1 _ ~ / M. S
s A flange after y ‘ A
A twisting <3 \,J A Z
=
g I'wisting prevented at this end Section A-A

Figure 8.5.2 Torsion of an I-shaped section.
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Warping Torsion Differential Equation

= Lets take a look at an approximate derivation of the warping
torsion differential equation.
= This is valid only for | and C shaped sections.

h
Uf:¢§ !

Ty
— =

whereu, = flangelateraldisplacement H i >
/ h

M, =momentinthe flange A !

V; = Shear forceinthe flange : it 0| N
El,uf =-M;  «eeeee borrowingd.e. of bending'igurc 8.5.3 Warping shear
= force on I-shaped section.
E|f l.l'f”——Vf orce 0 e
M, =V, h
My =-El;ufh
hZ

M, =-EIl, —¢"

w f 2
- MW =_E IW ¢m

wherel,, is warpingmoment of inertia— newsection property

Torsion Differential Equation Solution

= Torsion differential equation M;=Mg,+M,, = G K; ¢~ E I, ¢"

= This differential equation is for the case of concentrated torque
GK,¢'-EIl,¢"=M,

¢"’_%¢':_&
El, El,
. M,z
R = M, SJ¢=C, +C, cosh/lz+C:3smh}Lz+}L2 el
= Torsion differentiawequation for the case of distributed torque
dM,
m, =———=
z dz
GK;¢"-El,¢" =-m,
2
g CKe e M l¢=C, +C, 2+C,coshiz +C, sinhiz — -2
E I, El, 2G K,
¢iv _2’2 " _ mZ

= The coefficients C; .... C; can be obtained using end conditions
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Torsion Differential Equation Solution

Torsionally fixed end conditions are given by ¢=¢'=0

These imply that twisting and warping at the fixed end are fully
restrained. Therefore, equal to zero.

Torsionally pinned or simply-supported end conditions given by:
¢ — ¢” — O

These imply that at the pinned end twisting is fully restrained (¢=0) and
warping is unrestrained or free. Therefore, c,,=0 > ¢"=0

Torsionally free end conditions given by ¢=¢” = ¢”’= 0

These imply that at the free end, the section is free to warp and there
are no warping normal or shear stresses.

Results for various torsional loading conditions given in the AISC
Design Guide 9 — can be obtained from my private site

Warping Torsion Stresses

Restraint to warping produces longitudinal and shear stresses
oy =EW, ¢"
7y t=—E S, ¢"
wherg
W, = NormalizedUnitWarping— SectionProperty
S, =Warping StaticalMoment— SectionPr operty

The variation of these stresses over the section is defined by the
section property W, and S,,

The variation of these stresses along the length of the beam is defined
by the derivatives of ¢.

Note that a major difference between bending and torsional behavior is

= The stress variation along length for torsion is defined by derivatives of ¢,
which cannot be obtained using force equilibrium.

= The stress variation along length for bending is defined by derivatives of v,
which can be obtained using force equilibrium (M, V diagrams).
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(c) Shear Stress Due to Warping

Torsional Stresses

d/2

» Location of Shear Certler
u=Gte'
{b) Shear Strass Due to Pure Torsion

Torsional Stresses

(c) Shear Stress Due to Warping {d) Normal Stress Dus to Warping {c) Shear Stress Due to Warping

Figure 4.2.

{d) Normal Stress Dus o Warping

Figure 4.3.
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Torsional Section Properties for | and C Shapes

Vire [ :
We r
~ el
" W-, M-, §-, and HP-Shapes ) C- and MC-Shapes
W - Wi L Vl‘w.
Torsional Propertes [ Torsional Properties
{ Cu L] Woo Sm 4 = a Woa Wz S Suz
Shape. nt in® in. i int shpe | it in® in. nt in? nt | e
wzixa 6oy | s ] 438 B3 MCigsse | 281 1070 | 914 | 244 906 | na | 184
8 am 8830 T8 a0 ™0 519 203 o8e 3.5 35 253 188 168
n a0z 7410 7 425 2 ass | 145 | sw | a0 [ 25 | o1 | w2 | 18
L] 245 6760 5 23 599 aar 123 882 424 2o 104 174 135
62 18 5960 98 420 832
MOS0 | 298 | S8 | 20 | 14 7as | 49 122 | em |12 | w0 | 306
wa1x7 177 3190 a3 24 88 209 643 w0 | 157 | a3 | 7ws | 16 Bz | 27 948 | 460 | 131 | 140 | 288
50 114 257 764 1 29 172 550 as | 114 [ #3 |8 [ 153 | st | ms 786 | ago | 138 | 1o | za
s °. 2110 a2 28 240 145 a7 as| o84 | s | 34 | ws | 8s | w7 6w | 33 |14 | us | 218
wisan ”r 75,700 333 58,0 483 " e MC12x50 24 an 181 145 655 129 103 14 118 133 284
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20 | 104 57,400 a8 564 382 116 208 w | 170 | a: | e | w3 | 705 | w00 783 | am | 125 | 103 | @9
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92 452 7,900 66 523 267 7 221
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Summary of first order differential equations

_EIXV”:MX ......... (1)

El,u"=M, e (2)

GK ¢ —El,¢"=M,  eee (3)
NOTES:

(1) Three uncoupled differential equations

(2) Elastic material — first order force-deformation theory

(3) Small deflections only

(4) Assumes — no influence of one force on other deformations

(5) Equations of equilibrium in the undeformed state.

Chapter 2. — Second-Order Differential Equations

= This chapter focuses on deriving second-order differential
eguations governing the behavior of elastic members

= 2.1 — First order differential equations

m 2.2 — Second-order differential equations
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2.2 Second-Order Differential Equations

= Governing the behavior of structural members
= Elastic, Homogenous, and Isotropic
= Strains and deformations are really small — small deflection theory
= Equations of equilibrium in deformed state

= The deformations and internal forces are no longer independent.
They must be combined to consider effects.

= Consider the behavior of a member subjected to combined axial
forces and bending moments at the ends. No torsional forces
are applied explicitly — because that is very rare for CE

structures.

Member model and loading conditions

Y

.
L

o
/ [ g

—

y

N T
"

Fig. 2.30. End forces on a prismatic bar

| U G, 2

Member is initially straight and prismatic.
It has a thin-walled open cross-section

Member ends are pinned and prevented
from translation.

The forces are applied only at the
member ends

These consist only of axial and bending
moment forces P, M1y, M1y, Mgy, Mgy

Assume elastic behavior with small
deflections

Right-hand rule for positive moments and
reactions and P assumed positive.
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Member displacements (cross-sectional)

Consider the middle line of thin-

walled cross-section et e
Qlx,y)
x and y are principal coordinates il
through centroid C ol = i
Q is any point on the middle line. @
It has coordinates (X, y). p—t J
Q" & S —

Shear center S coordinates are
(Xov yO)

Shear center S displacements | 7
are u, v, and ¢ |
(b)

Member displacements (cross-sectional)
Displacements of Q are:
Ug=u+agsina ’*T‘—”C
Vo=V-—a ¢ cosa '
where a is the distance from" r;,lsuo.yo]
But, sin o = (y,-y) / a o
cos o = (Xg-X) / a -~ % -
Therefore, displacements of ( 0 N ;%j
Ug=Uu+¢(Yoy) L N~
Vo=V = ¢ (X=X /«/ o 5
Displacements of centroid C . /}5{/_/ .
U= U+ ¢ (Yo) o | - . ]
Ve = V- ¢ (%) L. wor

(b)

Fig. 2.31. Displacement of a point q in a cross section
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Internal forces — second-order effects

Consider the free body diagrams of
the member in the deformed state.

Look at the deformed state in the x-z
and y-z planes in this Figure.

The internal resisting moment at a
distance z from the lower end are:

M, =-Mgx+R,z+P v,

My =-Mgy +R,Z-Pu,

The end reactions R, and R, are:
Ry = (Mry + Mgy) / L

Ry = (Mrx + Mgy) / L

(@) (b)

Fig. 2.32. Forces in the x-z and the y-z plane

Internal forces — second-order effects

Therefore,

z
M, =-Mgy +I(MTX +Mgy )+ P(V—¢ Xo)

z
M, =-Mgy +E(MTY +MBY)_ P(U+¢ YO)
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Internal forces in the deformed state

= Inthe deformed state, the cross-section is such that the principal
coordinate systems are changed from x-y-z to the &—n—{ system

Fig. 2.33. Definition of the £-5 coordinate
system

46



Internal forces in the deformed state

The internal forces M, and My, must be transformed to these new &-n—

L axes b \J‘ P

Since the angle ¢ is small M<\¢ :

M. =M, + ¢ M, o

M, =M, — ¢ M, M| \m,cos g
M, =—Mgy +E(MTX + Mgy )+P(v—¢ %) Lea—\ M, sin $
My=—MBY+E(MTY+MBY)—P(U+¢YU) v Y

M, =—Mg, +E(MTX +MBX)+PV—¢(P X, + Mgy —E(MTY +MBY)]

z z
M, =-Mgy +I(MTY +MBY)+PU+¢[_P Yo + Mgy _I(MTX +MBX))
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Twisting component of internal forces

Twisting moments M, are produced by the internal and external
forces

There are four components contributing to the total M,
(1) Contribution from M, and M, — M,

(2) Contribution from axial force P — M,

(3) Contribution from normal stress ¢ — M;

(4) Contribution from end reactions R, and R, — M,

The total twisting moment |V|¢= Ma + |\/|§2+ |\/|§3+ |\/|§4

Twisting component — 1 of 4

\?

,,,—”'! My\av/dz)
My <=
7 av
az v
X: V-
(@) (b)

Twisting moment due to M, & M,

M, = M, sin (du/dz) + M,sin (dv/dz)

Therefore, due to small angles, M, = M, du/dz + M, dv/dz
My, = Mou + M, v’
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Twisting component — 2 of 4

/D
\ 2
\l 1 l |
1
e e,
£ / Pldu/dz) 7 PO Pldv/dz)
u \%
X < V=
(c) (d)

=

Fig. 2.35. Twisting due to components of M, M,, and P

= The axial load P acts along the original vertical direction

= In the deformed state of the member, the longitudinal axis ¢ is not
vertical. Hence P will have components producing shears.

= These components will act at the centroid where P acts and will have
values as shown above — assuming small angles

Twisting component — 2 of 4

= These shears will act at the centroid C, which is eccentric with
respect to the shear center S. Therefore, they will produce
secondary twisting.
s"‘j
|

Yo

|

s ~
+
e %
”

liig. 2.36. Twisting due to the com-
ponents of P

P(dus, I
(du/dz) ¢

av/dz)

= Mg, =P (y, du/dz — X, dv/dz)

= Therefore, M, =P (yo U'—X,V)
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Twisting component — 3 of 4

The end reactions (shears) R, and R, act at the shear center S
at the ends. But, along the member ends, the shear center will
move by u, v, and ¢.

Hence, these reactions will also have a twisting effect produced
by their eccentricity with respect to the shear center S.

M§4+RYU+RXV:0 f?y
Therefore,

M= — (Myy + Mgy) VIL — (Mry + Mgy) U/L

A S(z=0)

—

S(2)

N T

My (a)

Fig. 2.38. Twisting due to the end
shears

Twisting component — 4 of 4

Eal

Wagner's effect or contribution i
— complicated.

Two cross-sections that are d¢
apart will warp with respect to
each other.

The stress element o dA will
become inclined by angle (a ,
dg/d<) with respect to dZ axis. <

Twist produced by each stress G
element about S is equal to

dM,; =-a(c dA{a d¢J

dg \
. __d¢ 2
Mgy = —dgiaadA ;

Fig. 2.37. Twisting due to the differential warping
of two adjacent cross sections

Q\
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Twisting component — 4 of 4

+

Let,ja a’dA=K
A

)  dg
M=Kz
_dg

M =—K=2
¢3 dz

----- for small angles

Twisting component — 4 of 4

+

Let,J'cr a’dA=K
A

_dg
M, =—K—
¢3 ac
_dg

M, =-K2?
¢3 dz
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Total Twisting Component

= My =M+ Mg+ Mg+ Mgy
My, = Mou + M, v’
Mg=P (Yo U' =X V)
M= = (Mry + Mgy) VIL = (My + Mgy) U/l
Mg=-K¢’
= Therefore,

ngjMX u'+Myv+ P (Yo U= XqV) = (Myy + Mgy) VIL — (Mry + Mgy) UIL-K

Whi yA yA
Mé :_lﬁer +I(MTX +Mpgy )+PV_¢[P Xo + Mgy _I(MTY +MBY))

Z z
M, =-Mgy +I(MTY +MBY)+PU+¢(_PyO+MBX _I(MTX +MBX)]

Total Twisting Component

= M =M+ Mg+ Mg+ M,
My, = Mou + M, v’ Mg =P (Yo U =XyV) Mg;=-K¢’
M= = (Mgy + Mgy) VIL = (My + Mgy) U/l

= Therefore,
SM =M UM VP (Y, U =X V)= (Myy +MBY)%—(MTX +MBX)%—K¢’
AM, = (M, +P y) U+ (M, —P %) V'~ (My, +MBY)%—(MTX +MBX)%—K¢’
But, M, =—M,, +E(MBX M)+ PV—¢ %)
and, M, =My, +E(MBY +M,)-PU+¢Y,)
"M, = (Mg, —E(MBX M) 4Py U+ (=M, —E(MBY +M,) =P x) V'

V% u - ,
_(MTV+MBV)I_(MTX +MBX)I_K¢
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Internal moments about the £—n—{ axes

Thus, now we have the internal moments about the &-n—¢ axes for the
deformed member cross-section.

z z
M, =-Mg, +I(MTX +MBX)+PV—¢(P X, + Mg, —I(MTY +Myg, )j

z z
M, =-Mg, +I(MTY+MBY )—Pu+¢[—P Yo + Mgy _I(MTX"‘MBX)J

z , Z '
M, =(-Mg _E(MBX + M)+ P yp)u'+ (Mg _E(MBY +Myy ) =P X))V

" u - ,
_(MTY+MBY)E_(MTX+MBX)E_K¢ -1

Internal Moment — Deformation Relations

The internal moments M, M,, and M will still produce flexural bending
about the centroidal principal axis and twisting about the shear center.

The flexural bending about the principal axes will produce
linearly varying longitudinal stresses.

The torsional moment will produce longitudinal and shear
stresses due to warping and pure torsion.

The differential equations relating moments to deformations are
still valid. Therefore,

M,=G Ky ¢ —E|, ¢”
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Internal Moment — Deformation Relations

Therefore,
" Z Z
M, =-E I, V' =-Mgy +E(MTX +MBX)+PV—¢(P X0+MBY_I(MTY+MBY)j
" Z Z
M,=El u"=-Mg +E(MTY+MB)/)_PU+¢(_P Yo+ Mgy _E(Mr)('/'MBX)J

’ " Z r
M, =GK; ¢'-El,¢ =(-Mpgy _E(MBX +Mp)+Py)u'+

z ’ \Y u c Al
(=Mgy _I(MBY +Mpy ) =P x) Vv =(Myy +MBV)I_(MTX +MBX)E_K ¢

=3

N

w

Second-Order Differential Equations

You end up with three coupled differential equations that relate
the applied forces and moments to the deformations u, v, and ¢.

Therefore,
n Z Z

ElLLv +PV—¢[P X + Mgy —L(MTY+MBY))=MBX—L(MTX+MBX)
" z z

E Iy u +Pu_¢(_P Yo+ MBX _L(Mr)(_/_MBXj:_MBY +I(MT)’+MBY )
m va ’ [ z

El, ¢"—(GK; +K)g'+U’" (-Myg, _E(MBX +My)+Py,)

, z v u
-V (MBY +I(MBY +MTY)+P XO)_I(MTY +MBY)_I(MTX +MBX):O

These differential equations can be used to investigate the elastic
behavior and buckling of beams, columns, beam-columns and
also complete frames — that will form a major part of this course.
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Chapter 3. Structural Columns

3.1 Elastic Buckling of Columns
3.2 Elastic Buckling of Column Systems — Frames
3.3 Inelastic Buckling of Columns

3.4 Column Design Provisions (U.S. and Abroad)

3.1 Elastic Buckling of Columns

Start out with the second-order differential equations derived in
Chapter 2. Substitute P=P and My = Mgy = My = Mgy =0

Therefore, the second-order differential equations simplify to:

1 [ELV+PV—¢(Px)=0
2 [ElL,u"+Pu—g¢g(-Py,)=0
3 |[El,¢"=(GK; +K)g' +u" (Py,) -V (Px)=0

This is all great, but before we proceed any further we need to
deal with Wagner’s effect — which is a little complicated.
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Wagner’s effect for columns

K¢'=[oa® gdA
A
where
M
PRy M X Ew, g
AL I
M§:P(V_¢Xo)
M, =-Pu+g¢y,)
K¢,:J‘{_Z+ P(vfl¢xo) y_fP(UJIrqﬁ yU)X+EWn ¢"}¢'a2 A
A X y

A |

X y

K¢,:{_P+ P(v=¢gx)y -P (uqu WX, e 4 o]

Neglecting higher order terms; K ¢’ :—%gb'j a’ dA
A

Wagner's effect for columns

But, a® = (X, —X)* +(¥, - y)?
j a dA=j (%, —X)2+(y, —y)? dA
A A

s adA= [y X +y —2% =2y, y]dA
A

[ @ dA= (¢ +y) A+l 1,

A
Finally,

i A P ’
K¢ :—K[(x§+y§)A+IX+IyJ¢

K r_ P 2 2 Ix+|y ’
K¢ =- (Xo+yo)+T ¢

I+
Letroz—{(xg+y§)+ XA y}

AR =-P 4

A
I a’ dA:[xg+ngJ'dA+J'x2dA+J‘y2dA72xo_[x dAnyovfydA
A A A A A A
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Second-order differential equations for columns

= Simplify to:

1

2

ElLV'+Pv—g(Px)=0
El,u"+Pu+¢(Py,)=0

3

El,¢"+(PTy-GK,)¢'+Uu' (Py,)-V (Px,)=0

= Where

—2 2 2
b =X tYyt

l+1,

Column buckling — doubly symmetric section

= For a doubly symmetric section, the shear center is located at the
centroid x,= Yy, = 0. Therefore, the three equations become uncoupled

1IEI,V'+Pv=0
, [El,u"+Pu=0
s[EL 4"+ (P -GK;)¢'=0

= Take two derivatives of the first two equations and one more derivative

of the third equation.
1

2

3

Let, F?=——

P
El

EILVV+PV' =0
El,u"+Pu"=0
El,¢"+(PT7-GK;)¢"=0

F’=—— F’=

P
u ¢
EI, El

P -GK,

w
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Column buckling — doubly symmetric section

1V +F V=0
2 UV +F2u"=0
. ¢iv + F¢2¢”:0

All three equations are similar and of the fourth order. The
solution will be of the form C; sin Aiz+ C,cos iz+ C;z+C,

Need four boundary conditions to evaluate the constant C,..C,

For the simply supported case, the boundary conditions are:

u=u=0; v=v"=0; ¢= ¢"=0

Lets solve one differential equation — the solution will be valid for

all three.

Column buckling — doubly symmetric section

V' +FZV" =0

Solution is
v=C,sinF,z+C,cosF,z+C,z+C,
~V"=-C, F’sinF,z—C, F’cosF,z
Boundary conditions :

v(0) =v"(0) =v(L) =v"(L)=0

c,+C,=0 . v(0)=0
c,=0 . Vv'(0)=0
C;sinFL+C,cosFL+C,L+C, - v(L)=0
-C, F?sinF,L-C, F’cosFL .- V'(L)=0
0 1 0o 1](c,] (o
0 1 0 oljc,| Jo
sinF L cosF,L L 1{|c,[ 10
-F?sinFL -F’cosFL 0 0]|(C,) (0

The [coefficient matrix| =0

- F/sinF,L=0
~.sinF,L=0
~RL=nrx

~F, = =7

n-z
#P="0m

El

Smallest value of n=1:

El,
AL T
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Column buckling — doubly symmetric section

Similarly,
sinF,L=0
~FL=nx
_ | P _n=z
" \EI, L
n? 72
‘R= L2 E”
7 El,
Smallest value of n=1: P =—7—
L
7 El,
P==17
T El,
Summary P, = ¥
7r2EIW 1
P¢:|: Lz +G KT:|2
r
0

Similarly,
sin F¢L =0
F¢L =Nz

p_ [PE-GK _nx
LF = T o
El, L

n? z* 1
.'.P¢:( EIl, +G KT]

LZ

Smallest value of n=1:

fo

2

fo

n? 7 1
P¢:[ |_2 E|W+G KT]

2

Column buckling — doubly symmetric section

= Thus, for a doubly symmetric cross-section, there are three distinct
buckling loads P,, P, and P,.

= The corresponding buckling modes are:

v = C, sin(zz/L), u =C, sin(#z/L), and ¢ = C; sin(zz/L).

= These are, flexural buckling about the x and y axes and torsional

buckling about the z axis.

= As you can see, the three buckling modes are uncoupled. You must

compute all three buckling load values.

= The smallest of three buckling loads will govern the buckling of the

column.
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Column buckling — boundary conditions
Consider the case of fix-fix boundary conditions:

V' +FZV'=0

Solution is _ :
v=C,sinF,z+C,cosF,z+C,z+C, The |coefficient matrix| =0
V' =C, F,cosF,z—-C, F,sinF,z+C, ~F LsinFL-2cosFL+2=0

Boundary conditions:
v(0) =v'(0) =v(L) =Vv'(L) =0

~.2sin RL F,Lcos FVL+25in RL =0
2 2 2

.C,+C, =0 ~v(©)=0 ||.-BL_,_
C,F,+C,=0 V(=0 || 2 -
T
CsinF,L+C,008F,L+C,L+C, ~v(L)=0 | -F ="
C,F,cosF,L-C, F,sinF,L+C, ---Vv/(L)=0 an? g2
P =T EL
0 1 0 1i(c 0]| |Smallest value of n=1:
F 0 1 0}jc,|_Jo > 5
sinF,L cosF L L 1|lc, of| ~|p=Z EIXZZ” EIZX
F, cosFL -FsinfL 1 o0flc,] [0 (05L) (KL)

Column Boundary Conditions

= The critical buckling loads for columns with different boundary
conditions can be expressed as:

2
P=" Elxz 1
(K, L)
7 El
Y 7 2
(K, L)
B ;z2E|W+ 1l
¢ (KZ L)Z T FDZ

= Where, K, Ky, and K, are functions of the boundary conditions:
= K=1 for simply supported boundary conditions
= K=0.5 for fix-fix boundary conditions

= K=0.7 for fix-simple boundary conditions
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Column buckling — example.

Consider a wide flange column W27 x 84. The boundary conditions are:
v=v"=u=u'=¢g=¢'=0 at z=0, and v=v"=u=u"=¢=¢"=0 at z=L

For flexural buckling about the x-axis — simply supported — K,=1.0
For flexural buckling about the y-axis — fixed at both ends — K, = 0.5

For torsional buckling about the z-axis — pin-fix at two ends - K,=0.7

_2’El, 2"EAr} 2’EA

i (K LY (K, L) ( LJZ
» ; K -

I,

X

o _ZEl _rEAL’_ ;IZEA(ry]Z
y 2 2 2 ?

(Ky L) (Ky L) [KVLJ X

r

X

2 2
P=|Z E'g GK, | Lo ZEh gk r2
(K, L)

Column buckling — example.

P _7EA 1 _ 7'E 5823066
BT A (L T (L
Y [Kx L] Y o, [Kx Lj [L]
I r, r,
P _72’EA (r,/r)? _ 7 E(r, /1) _791.02
R

7% = z Z
Ao,
[Ky L] v O'Y[Ky LJ [L]
rX rX rX
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Column buckling — example.

18 Flexural buckling

Flexural buckling
about y-axis

about x-axis

Yield load Py
. Cannot be exceede

0.8 ’/

0.6 1 Torsional buckling al
z-axis governs!
—

Torsional buckling

about z-axis
0.4

Critical buckling load / yield load (P/Py)

02 i Flexural buckling about
i y-axis governs

0 10 20 30 40 50 60 70 80 90 100
L-r, (Slenderness Ratio)

— Px - flexural buckling Py - flexural buckling = Pz - torsional buckling

Column buckling — example.

When L is such that L/r, < 31; torsional buckling will govern

r, = 10.69 in. Therefore, L/r, = 31 - L=338 in.=28 ft.

Typical column length =10 — 15 ft. Therefore, typical L/r,= 11.2 — 16.8
Therefore elastic torsional buckling will govern.

But, the predicted load is much greater than Py. Therefore, inelastic
buckling will govern.

Summary — Typically must calculate all three buckling load values to
determine which one governs. However, for common steel buildings
made using wide flange sections — the minor (y-axis) flexural buckling
usually governs.

In this problem, the torsional buckling governed because the end
conditions for minor axis flexural buckling were fixed. This is very
rarely achieved in common building construction.
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Column Buckling — Singly Symmetric Columns

= Well, what if the column has only one axis of symmetry. Like the x-
axis or the y-axis or so.

= As shown in this figure, the y — axis
«— R is the axis of symmetry.
\ = The shear center S will be located

on this axis.

y = Therefore x,= 0.

= The differential equations will
simplify to:

LIELV'+Pv=0
2 [EI,u"+Pu+¢(Py,)=0
3 |El,¢"+(PT?-GK,)¢'+u (Py,) =0

Column Buckling — Singly Symmetric Columns

= The first equation for flexural buckling about the x-axis (axis of
non-symmetry) becomes uncoupled.

ELv fvpvz? """ @ = Equations (2) and (3) are still
FELVIAPVI=0 coupled in terms of u and .
VYRRV =

where, F.2 = P 2 |[El,u"+Pu+g(Py,)=0

El

X s [ENl,¢"+(PT7-GK;)¢' +u (Py,) =0
~v=C;sinF,z+C,cosF,z+C,z+C, . . .
Boundary conditions = These equatlons will be satisfied by
SinF.L=0 the solutions of the form

_rPE, = U=C, sin (7z/L) and ¢=C; sin (7z/L)

KLY
Buckling mod v=C,sinF,z
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Column Buckling — Singly Symmetric Columns

Elyu"+Pu+¢(PyO):0 ......... )
El,¢"+ (PP -G K;)g' +u (P y,) =0:--rneen ©)

LEL UM +PU 44" (Py,)=0
El, ¢"+(PR-GK;)¢" +u" (Py,) =0

. Tl . L
Let, u=CzsmT; ¢=Css'"T

Therefore, substituting these in equations 2 and 3
4 2 2
T . Tl T . Tl VA . Tl
Ely(l_j CZSInL—PCZ(Lj Sln—Pyo[L) C3S|nT:0

2
n . 72
-P yo(Lj Czsm—L =0

Column Buckling — Singly Symmetric Columns

2
{E |y[9 —P:ICZ—P Yy Cy=0

2
and{E |W(9 ~(PT7-GK,) }cg—P y,C,=0

2 —2
r.0

7 El 2
Let,P, = *oand P =|ZE gk, |2
y L2 [ L T

~[P-P]C,~Py,C,=0
[P,-P ]’C,~Py,C,=0

. P -P P Y, Cl_
{—yP Yo (P,—P) rHC} =10

P-P Py,
Py, (R-PT
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Column Buckling — Singly Symmetric Columns

- (P, =P)(P,—P) ?-P?y?=0

~[PPR,~P(R,+P,)+P* |7 =P’ y; =0

2
Pz(l—%g)— P(P,+P,)+P,P, =0
: Lp=—y )

2
(P, +P) i\/(Py +P,)? 4P P, 1- Yo

2
rO

S P= 5
2 (1_#;) Thus, there are two roots for P
A '
5 Smaller value will govern
Y
|, R 4P pa-Yo)
(P, +P)x |(R,+P)|1- g yre\—=3
y T y T (P, +P,)’ .'.P=P=(Py+P¢2) 1-ho : Pr;J
b 201-%) (R, +F,)
T yz Iy
2(1-23)
I’O

Column Buckling — Singly Symmetric Columns

= The critical buckling load will the lowest of P, and the two roots
shown on the previous slide.

= If the flexural torsional buckling load govern, then the buckling
mode will be C, sin (#z/L) x C; sin (#z/L)

= This buckling mode will include both flexural and torsional
deformations — hence flexural-torsional buckling mode.

8/25/2014

65



Column Buckling — Asymmetric Section

= No axes of symmetry: Therefore, shear center S (x,, Y,) is such that
neither x, not y, are zero.

ELV+PV=g(PX)=0 .. ®
ELU+PU+4(PYy)=0 i, (2
El,¢"+(PT7-GK)g'+Uu (Py,)-V (Px)=0 ..(3

= For simply supported boundary conditions: (u, u”, v, v’, ¢, $=0), the
solutions to the differential equations can be assumed to be:
= U= C;sin (7z/L)
= v=C,sin(az/L)
= ¢=C;sin (nz/L)

= These solutions will satisfy the boundary conditions noted above

Column Buckling — Asymmetric Section

= Substitute the solutions into the d.e. and assume that it satisfied too:

e F (e ol onfom( ) -
[E () fosl ) fenl o
3 o it i A e ot e 9

|
O

<
—_——

2
{EJ El +P 0 —P %, Clsin(ﬂ—zj
L L
2 2 0
0 {ﬁ] EIl,+P Py, czsin(ij =Jo
L L 0
2
Vi _ T 7z
—Px, Py, 7(?) El,+(PR2—GK;) fCBCOS(TJ

8/25/2014

66



Column Buckling — Asymmetric Section

—P, +P 0 —P X, i )
0 P, +P Py, Czsin(ﬂ—j ={0
-p P (-B, + P12 - 0
%o Yo ¢ '% o J| (nzj
—C,cos| —
L
where,

2 2 2
V4 V3 z° E | 1
P, =|—| EI P, =|—| EI P, = Y +G K, | =
X [Lj x y (Lj y ¢ [ Lz T]EZ

Either C;, C,, C5 = 0 (no buckling), or the determinant of the coefficient
matrix =0 at buckling.

Therefore, determinant of the coefficient matrix is:

(P—PX)(P—PV)(P—P¢)—P2(P—PX){Z—fJ—PZ(P—Py){X_OzJ:o

I I

o) 0o

Column Buckling — Asymmetric Section

(P—PX)(P—PY)(P—F;,)—PZ(P—PX)(Z{]—PZ(P—PY)[X_‘;J:o

I

(o]

r

o]

This is the equation for predicting buckling of a column with an
asymmetric section.

The equation is cubic in P. Hence, it can be solved to obtain three
roots P4, P, P

crlr ' cr2r ' ocr3-

The smallest of the three roots will govern the buckling of the column.
The critical buckling load will always be smaller than P,, P,, and P,

The buckling mode will always include all three deformations u, v, and
¢. Hence, it will be a flexural-torsional buckling mode.

For boundary conditions other than simply-supported, the
corresponding P,, P,, and P, can be modified to include end condition
effects Ky, K,, and K,

8/25/2014

67



8/25/2014

* Column Buckling - Inelastic

A long topic
i Effects of geometric imperfection
ELV'+Pv=0 Leads to bifurcation buckling of
ELu"+ Pu=0 perfect doubly-symmetric columns

ASSNN 3

M -Pv+v,)=0
L EIV'+P(v+v,)=0
V' FN(v+v,)=0

v, 0sin% Vo v S V”+Fv2v :_szvn
M, ) , -
SV'+ Fiv=—F (9, sinf)
Solution=v, +v,
v, =Asin(F,z)+ Bcos(F,z)
L p v, =Csin’Z + Dcos™=
L L

68



Effects of Geometric Imperfection

Solve for C and D first

L
V' + Flv =—F25 sin—
o V0, S

2|
{zj |:CsinE +DcosE:1+ F‘,Z[C’sinE +DCOSE:|+ F?5, sin’= =0
L L L L L L
2 2
~sinZ —C[E) +F)C+F5, |+ cosZ {Ej D+F'D|=0
L L L| \L
2 2

.:4{%)+Ekwfﬁz=ozmd {%jD+Eﬂ)=o

Solutionbecomes

v=Asin(F,z)+ Bcos(F,z) +

and D=0

2
v o
2

Geometric Imperfection

Solve for A and B

Boundaryconditionsv(0) =v(L) =0

v(0)=B=0
v(L)=AsinF,L=0
LA=0

.. Solutionbecomes

F*5

v "o

L
(F)-r
L

sin—

E
.. Total Deflection

P

-
PE

P . Tz . Tz
=v+v, =—2EL-8 sin—+ 6, sin—
L L

i

P, -4 1 -4
= +110, sin—=——=5-0, sin—
P -2 Lo_r

Py . Tz E E

.z
:Ap5os1nf

Ar = amplification factor
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Geometric Imperfection

A, = % = amplificationfactor
P
M =P(v+v,)

;AL:AHP@SM%Q

ie, M = A, x(momentdue toinitialcrooked

12

Increases exponentially
7 Limit A for design
8 / Limit P/Pg for design

This will give A = 8.13
S Have to live with it.

0 0.2 0.4 0.6 0.8 1

Value used in the code is 0.877

Residual Stress Effects

65 RESIOUAL STRESS
[ pros
7 |l e suy 1200k avesige
mgsouies A ‘[ 3 MPa
' ) 1
4 ~ Pl
3 Y =~ ‘
o '
!
p '
& (s
Figure 6.5.1  Typical residual stress pattern on rolled shapes
-

say 20 ksi (140 MPa)
say 12 ksi (84 MPa)

7N W‘dﬁw
)7 U (140 MPa) "':‘; T’“‘I"

Welded H

(140 MPa) Welded box

compression

Figure 6.5.3 Typical residual stress distribution in welded shapes.
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Residual Stress Effects

Figure 6,5.2  Influence of residual stress on average stress strain curve
. a

History of column inelastic buckling

Euler developed column elastic buckling equations (buried in the
million other things he did).

= Take alook at: http://en.wikipedia.org/wiki/EuleR
= An amazing mathematician

In the 1750s, | could not find the exact year.

The elastica problem of column buckling indicates elastic
buckling occurs with no increase in load.
= dP/dv=0
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For a bar fixed at the base and free at the axially loaded upper end, the
load P must be slightly greater than the Euler buckling load in order to
cause the large deflection depicted in Figure 2-25. Note that the moving
origin of coordinates is located at the loaded free end of the bar.

g
B} e —

FREE-BODY TRIANGLE
DIAGRAM

L

Figure 2-25 Axially Loaded Bar with One End Fixed and One End Free



The deflections of the bar are obtained from the differential triangle
in Figure 2-25, i.e.,

dy = sin B ds = - sin 6 do (2.200)
\/2 k\foose—cosa

so the transverse deflection of the loaded free end of the bar is

4 4
y,= 1 J‘ sin 6 d6 (2.201)
2% \/sinz @ _ sin® O
2 2
which, upon substitution of relations derived earlier, can be written as
n'2
, 2
Vo= | sinode=22 (2.202)
0

For a given k, p is determined from Equation (2.197) (or vice versa).
Then, y, is determined from Equation (2.202). Similarly, x, is

n2
x,:%jo \/1-p%sin% do-L=2Ep-L (2209

in which E(p) is the complete elliptic integral of the second kind and is
also a tabulated function. Thus, the load and the coordinates of its de-



igure 2-26 Deformed Bar Figure 2-27 Deformed Bar under
(After Timoshenko and Gere [2-6)) Various Axial Loads
reproduced by permission (After Nemeth [2-7])
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p 2-28 Load versus Tip Deflection Behavior for Many Loads
(After Nemeth [2-7])
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Load versus Tip Deflection Behavior Near the First Buckling Load
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History of Column Inelastic Buckling

= Engesser extended the elastic column buckling theory in 1889.
= He assumed that inelastic [ i"
buckling occurs with no & ’-'

increase in load, and the : ?EA‘
¥o [ |||| | | Tor

relation between stress

and strain is defined by

Q
tangent modulus E, ' A 8
(0} (b) ©

Fig. 4.21. Engesser's concept of inelastic column buckling

s Engesser’s tangent modulus theory is easy to apply. It
compares reasonably with experimental results.

s Pr=nEl/ (KL)?

History of Column Inelastic Buckling

= In 1895, Jasinsky pointed out the problem with Engesser’s
theory.

= If dP/dv=0, then the 2"d order moment (Pv) will produce
incremental strains that will vary linearly and have a zero value at
the centroid (neutral axis).

= The linear strain variation will have compressive and tensile
values. The tangent modulus for the incremental compressive
strain is equal to E, and that for the tensile strain is E.

=€ curve
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History of Column Inelastic Buckling

= In 1898, Engesser corrected his original theory by accounting
for the different tangent modulus of the tensile increment.

= This is known as the reduced modulus or double modulus

= The assumptions are the same as before. That is, there is no
increase in load as buckling occurs.

= The corrected theory is shown in the following slide

History of Column Inelastic Buckling

The buckling load Py produces critical dﬂ (%
stress og=P /A i c \
During buckling, a small curvature d¢- \EJKL/
is introduced \ '
- e
The strain distribution is shown. >
) *‘i !/m .
The loaded side has dg, and do| | ||
The unloaded side has dg;, and do, _ g |dq
de, =(y-y +y) d¢ e
de,=(y=y+y)d¢ /V l 1
cdo, =E,(5—y +y)df @ | ! 3
sdo,=E(y-y+y)d¢ _‘_y“J J
d

Fig. 4.22. The reduced modulus conce)
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History of Column Inelastic Buckling

cdg=—v"

do, =—E,(y-y,+y)V"
do,=—E(y-y+y)V"

But, the assumptionis dP =0

» yn
w Vdo, da~"[do, d4=0

yn —(d-y)
% _ J7_",V) _
w JE(y=3+y)d4- y g,(y—yl +y)dA=0
Y= —(a-y
- ES—ES,=0

¥
where S, =7f(y—)7+y1) dA

y=n

yn
and S,= J'{y—y1+y) dA

—~(d-y)

dA

“ e | .
-t
i
I(EREE
“ 1 ]%
"*J"i"‘ J

History of Column Inelastic Buckling

= S, and S, are the statical moments of the areas to the left and

right of the neutral axis.

= Note that the neutral axis does not coincide with the centroid any

more.

= The location of the neutral axis is calculated using the equation

derived ES, -ES, =0

M =Py

¥ yn
w M= [doy,(y-F+y)dA- " |do,(7-y +y) dA

Y=y —(d-y)
. M=Pv=—"(EL +E,L)
¥ = 2
where I, = [(y—y+y,)* d4

YN

Y=y
and I= | (5—y+y)*d4

—(d-y)
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History of Column Inelastic Buckling

M=Pv=—V"(ELL+E 1)
S Pv+(EL+EL)V'=0

n P
- y=
ElL +E ]I,
ST+ Ffv =0
P P
where Fl=———=——
EIL+EI, EI
— I I
and E = EI—1 +E,2
~ 7T2E]x E is the reduced or double modulus
R (KL)2 P is the reduced modulus buckling load

History of Column Inelastic Buckling

= For 50 years, engineers were faced with the dilemma that the
reduced modulus theory is correct, but the experimental data
was closer to the tangent modulus theory. How to resolve?

= Shanley eventually resolved this dilemma in 1947. He
conducted very careful experiments on small aluminum
columns.
= He found that lateral deflection started very near the theoretical
tangent modulus load and the load capacity increased with
increasing lateral deflections.

= The column axial load capacity never reached the calculated
reduced or double modulus load.

= Shanley developed a column model to explain the observed
phenomenon
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History of Column Inelastic Buckling

P
'
Rigid bar
L %
2
eformable cell—-—"/
L
2 d
6,
\\—-Rigid bor (b)

o o

Fig. 4.23. Shanley’s colurnn model

History of Column Inelastic Buckling

v=5F and 6,=L(e,+e) (4.129)
By combining these two equations we can eliminate ¢,, and thus
Uy = 3%(9. + &) (4.130)
The external moment at the midheight of the column is
M, = Py, = %(e: +e) (4.131)
The forces in the two flanges due to buckling are
p=584 44 p= E%g“ (4.132)
The internal moment is then
M= %‘i + %3’ =2 (e, + Ee) (4.133)
With M, = M, we get an expression for the axial load P, or
p—gi(Bat b L) (4.134)
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History of Column Inelastic Buckling

In case the cell is elastic E, = E, = E, and so

Py =AEd (4.135)
L
Fer the tangent modulus concept E, = E, = E,, and so
, = 27 (4.136)

When we consider the elastic unloading of the “tension” flange, then
E, = E, and E, = E, and thus

_id Eie, + Ese
P=4 (—81 - *) @.137)

Upon substitution of e, from Eq. (4.130) and P, from Eq. (4.136) and using
the abbreviation
= % (4.138)
we find that
_ Le, {1
P—P,-[I +4_a'=70(?_ 1)] (4.139)

History of Column Inelastic Buckling

P=ﬂ[

1
T d2v) + T+ 0IT — ,)] (4.143)

Pp= .P,.(l + }—1{) (4.146)

£ 151

P =1333 Rat/h=0o
mymﬁp

>E b

Fig, 4.24, Post-buckling behavior in the inelastic range
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Column Inelastic Buckling

Three different theories
= Tangent modulus

= Reduced modulus

= Shanley model

Tangent modulus theory
assumes

= Perfectly straight column
= Ends are pinned

= Small deformations

= No strain reversal during
buckling

dP/dv=0

Slope is zero at buckling
AP=0 with increasing 4v

v
Elastic buckling analysis

Py

Tangent modulus theory

Assumes that the column buckles at the tangent modulus load such
that there is an increase in AP (axial force) and AM (moment).
= The axial strain increases everywhere and there is no strain reversal.

\\\\3

Strain and stress state just before buckling

Strain and stress state just after buckling

Ayl e [ er

'Yy | Aer Y vy | Aor=EqAgg

|

Curvature = ¢ = slope of strain diagram
= Ag;

h
h . .
As, =@ —+y wherey = distance from centroia

Ao, = §+y)0ET
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Tangent modulus theory

M, =[ceydA
A

o=0;+A40;
o=0,+@(y+h/2)eE,

M, =[(o;,+¢(y+h/2)E ) ydA

= Deriving the equation of equilibrium

"M, =0.[ydA+E,[$y*dA+(¢h/2)E. )|y d4
A A A

M =0+E.¢1 +0
M, =—E, V"

= Solution is P;= 72El, /L2

= The equation M,- P;v=0 becomes -E;l,v" - P;v=0

Example - Aluminum columns

strain curve

e=2 10 ooz(aj
E

Oy
ce 1 0002 .,
So— = no
o E oy,
1+ 70'0'02 nEc""!
ﬁ _ O4,
" do E
0002 (o j“
1+ g 7
. @ _ 02 O
" do E
o @ = £ a1 ET
% 0002 [o J
ey
Oy, Oy

= Consider an aluminum column with Ramberg-Osgood stress-

E| 10100(ksi
G0, 40.15ksi
n| 18.55
€ o Er Er

0.000E+00 O|differences _|equation

1.980E-04] 2 10100.0] 10100.0
3.960E-04| 4 10100.0] 10100.0
5.941E-04 6 10100.0] 10100.0
7.921E-04 8 10100.0] 10100.0
9.901E-04 10 10100.0] 10100.0;
1.188E-03] 12 10100.0] 10100.0;
1.386E-03] 14 10100.0] 10100.0;
1.584E-03] 16 10100.0] 10100.0;
1.782E-03] 18 10100.0] 10099.9
1.980E-03] 20 10099.8| 10099.5
2.178E-03 22 10098.8| 10097.6
2.376E-03 24 10094.2] 10088.7,
2.575E-03 26 10075.1 10054.2
2.775E-03 28 10005.7] 9934.0!
2.979E-03 30 9779.8| 9563.7]
3.198E-03 32 9142.0] 8602.6!
3.458E-03 34 7697.4] 6713.6
3.829E-03 36 5394.2 4251.9]
4.483E-03] 38 3056.9] 2218.6
5.826E-03 40 1488.8| 1037.0,
8.771E-03] 42 679.2 468.1
1.529E-02] 44 306.9] 212.4]
2.949E-02 46 140.8_| 98.5
5.967E-02 48 66.3 46.9
1.221E-01 50 32.1] 23.0
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Tangent Modulus Buckling

Ramberg-Osgood Stress-Strair i i
60 Stress-tangent modulus relationshij
12000
50 -
10000 4
40
8000 +
30 4 6000 1
20 | 4000 1
2000
10 A
0 T T T T
0 } } } } 0 10 20 30 40 50
0.000 0.010 0.020 0.030 0.040 0.050 Stress (ksi,
Strain (in./in.) — ET differences — ET equation

Tangent Modulus Buckling

o (KL/r)er

0

2 223.2521046 Column Inelastic Buckling Curve

4 157.8630771

6 128.8946627 60 2E1

8 111.6260523 P =—=
10 99.84137641] 50 4 L

12 91.1422898 \

14 84.3813604] N\ P o=
16 78.93150275) T =0r=
18 74.41710153 40 \ A

20 70.59690679 ~———

22 67.3048795 30 |
24 64.4113691 \ ~(KL/7), =

26 61.77857434 AN

28 50.17430952 20 |
30 56.09208286

32 51.5097656) \

34 44.14566415| 10 4
36 34.1419685|
38 24.00464013)

40 15.9961201 0 T T T T

42 10.48827475

24 6.002516144 0 30 60 90 120 150
46 4.596633406| KL/r

48 3.105440361]

50 2.129145204
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Residual Stress Effects

= Consider a rectangular section x |
d

b

with a simple residual stress
distribution

= Assume that the steel material

. . . y
has elastic-plastic stress-strain Ore
c—¢ curve.

= Assume simply supported end On
conditions 030 0l 56 b

= Assume triangular distribution

for residual stresses +0.50,

Residual Stress Effects

= One major constrain on residual
stresses is that they must be such

that J-O'rdA=0

-~

20 bl2 20
" ]} -0.50, + byx dxdx+ | +0.50, - by
0

-b/2

2do, (5 2do,
=050 dbj2+0.50 dbj2+ -2 (b—]—;‘y[b—]
’ y b \8) b |8

de X dx

=0

= Residual stresses are produced by
uneven cooling but no load is

present .
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Residual Stress Effects

b
= Response will be such that - « ‘ ‘
elastic behavior when d
0<0.50,
*EI 7’El
x:ﬁzx and Pv: 2}' y
' L ab | ob

Yieldingoccurswhen ¥ 7

~0.50, ie,P=0.5P Y %
0c=0.50, ie, P=0.5P, 7 /
Inelasticbucklingwilloccurafier o> 0.50, y

1 20/
(g,, —L?abj: o,(1-2a) - i

Residual Stress Effects

Totalaxial force correspondingto the yieldedsec tion
ay(b—2ab)d+(ay+o-+l_2a)]abdx 2
=o,(1-2a)pd+0,(2-2a)abd

= o,bd-2abdo, +20,0bd—2a’bdo,
=o,bd(1-2a*) = P,(1-24°)

- Af inelasticbucklingwere to occurat thisload
P, =P,(1-24")

1, P,
a=_|-{1-—
2\ P,
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saboutx — axis

3
P Ty
L Py =P x| 2121 P, =P,

2 3
n°E d
P =P = 2ab) —
cr Tx Lz ( a ) 12 ‘ ‘ ab O!b ‘
2 [ e
™ = ﬂ—LIfIX 2a X ’,4 é
1 P,
[)T\'_Px><2>< —|1-=
2 P,
P =P, x2x ll_PH WP, =Py,
’ 2 P,
2
',P’:‘:PX><2>< ll_PTx Let,lez ﬂ_zE[VX]
P, Y 2 P, YA o, \K L,
If inelasticbucklingoccursabouty — axis
*E s d
Pcr :PTV :?(zab) E
°El 3
PTy = 2 k4 (2(1) ‘ ‘ ob ; ‘
g [ P
1, P 7/ //
SPy =P x|2 |- 1-—
™ YX{ 2 g,} 7 ﬁj
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Residual Stress Effects

P/Py Ax A Column Inelastic Buckling

0.200 2.236 2.236

0.250 2.000 2.000

0300 1826 1826 1.200

0.350 1.690 1.690 2z

0.400 1581 1581 § 1.000 1

0.450 1.491 1.491 g

0.500 1414 1.414 £ 0.800 A

0.550 1.313 1.246 E

0.600 1.221 1.092 5 0.600

0.650 1.135 0.949 -

0.700 1.052 0.815 8 0.400 {

0.750 0.971 0.687 g

0.800 0.889 0.562 E

0.850 0.803 0.440 £ 02001 1

0.900 0.705 0.315

0.950 0.577 0.182 0.000 T T T

0.995 0.317 0.032 0.0 0.5 10 L3 2.0
Lambda

1.200

1.000

0.800

0.600

0.400

0.200

0.000

Fig. 4.34. Tangent moduls buckling carves for strong and weak axis
rackling of wide-flange cobamns
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Tangent modulus buckling - Numerical

Discretize the cross-section into fibers

R 1 | Think about the discretization. Do you need the flange
[<] To be discretized along the length and width?
[] Aty
Yiib

For each fiber, save the area of fiber (Ag), the
distances from the centroid yg, and Xg,,
I @nd Iy g, the fiber number in the matrix.

Centroidal axis

3 Giscretize residual stress distributioB

pORnnn

ST IO 4 Calculate residual stress (o;.q)
unnnnnnnnnnn each fiber

Check that sum(o; g, Agp)for
Section = zero

Tangent Modulus Buckling - Numerical

14 Calculate the critical (KL)y and (KL)y for the o
Calculate effective residual (KL)x.er = 7sart [(El)r,/P]
strain (&) for each fiber (KL)y. = 7 sqrt [(El)7/P]
&=0lE T

(

Assume centroidal strain
o

(ENry = SUM(ExgipXiin® Asio+ ly.in})

Calculate the tangent (El)yx and (El);y for the o

) 13 (ENrx = SUM(Erig{Yiin? Afio+lx-fio})

T

Calculate average stress = o= P/A

12

11

8 Calculate total strain for each fiber T
‘g‘lol:‘ﬁ'gr
Calculate Axial Force = P
Sum (GipAgip)
9 Assume a material stress-strain Calculate stress in each fiber o,
curve for each fiber

10
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Tangent modulus buckling - numerical

Section Dimension

b 12
d 4
o, 50
No. of fibers 20
A 48
Ix 64
Iy 576.00

fiber no.| As Xib Yib Orfip Er-fib I Tyap
1 2.4 -5.7 0 -22.5 -7.759E-04 3.2 78.05
2 2.4 -5.1 0 -17.5 -6.034E-04 3.2 62.50
3 2.4 -4.5 0 -12.5 -4.310E-04 3.2 48.67
4 2.4 -3.9 0 -7.5 -2.586E-04 3.2 36.58
5 2.4 -3.3 0 -2.5 -8.621E-05 3.2 26.21
6 2.4 -2.7 0 2.5 8.621E-05 3.2 17.57
7 2.4 -2.1 0 7.5 2.586E-04 3.2 10.66
8 2.4 -1.5 0 12.5 4.310E-04 3.2 5.47
9 2.4 -0.9 0 17.5 6.034E-04 3.2 2.02
10 2.4 -0.3 0 22.5 7.759E-04 3.2 0.29
11 2.4 0.3 0 22.5 7.759E-04 3.2 0.29
12 2.4 0.9 0 17.5 6.034E-04 3.2 2.02
13 2.4 1.5 0 12.5 4.310E-04 3.2 5.47
14 2.4 2.1 0 7.5 2.586E-04 3.2 10.66
15 2.4 2.7 0 2.5 8.621E-05 3.2 17.57
16 2.4 3.3 0 -2.5 -8.621E-05 3.2 26.21
17 2.4 3.9 0 -7.5 -2.586E-04 3.2 36.58
18 2.4 4.5 0 -12.5 -4.310E-04 3.2 48.67
19 2.4 5.1 0 -17.5 -6.034E-04 3.2 62.50
20 2.4 5.7 0 -22.5 -7.759E-04 3.2 78.05

Tangent Modulus Buckling - numerical

Strain Increment

[ae Fiber no. |ewt Sfib Esip Elresn Elnysi Py

-0.0003] 1 -1.076E-03] -31.2| 29000] 92800| 2.26E+06] -74.
2 -9.034E-04] -26.2| 29000] 92800| 1.81E+06] -62.
3 -7.310E-04] -21.2| 29000] 92800| 1.41E+06] -50.
4 -5.586E-04] -16.2| 29000| 92800| 1.06E+06] -38.
5 -3.862E-04] -11.2| 29000 92800| 7.60E+05 -26.
6 -2.138E-04 -6.2| 29000, 92800| 5.09E+05 -14.88
7 -4.138E-05| -1.2| 29000, 92800[ 3.09E+05| -2.88
8 1.310E-04| 3.8| 29000, 92800| 1.59E+05| 9.12
9 3.034E-04] 8.8| 29000 92800| 5.85E+04 21.12
10 4.759E-04 13.8] 29000/ 92800 8.35E+03] 33.12]
11 4.759E-04 13.8] 29000/ 92800 8.35E+03] 33.12]
12 3.034E-04 8.8| 29000| 92800| 5.85E+04 21.12
13 1.310E-04 3.8| 29000 92800 1.59E+05] 9.12
14 -4.138E-05] -1.2| 29000 92800 3.09E+05] -2.88
15 -2.138E-04 -6.2| 29000 92800 5.09E+05| -14.88
16 -3.862E-04 -11.2| 29000| 92800| 7.60E+05| -26.88
17 -5.586E-04 -16.2| 29000| 92800| 1.06E+06| -38.88
18 -7.310E-04 -21.2| 29000| 92800| 1.41E+06| -50.88
19 -9.034E-04 -26.2| 29000| 92800| 1.81E+06| -62.88
20 -1.076E-03] -31.2| 29000] 92800] 2.26E+06| -74.88
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Tangent Modulus Buckling - Numerical

Ag Ely, Ely, KL or KLy or/oy (KL/r), (KL/r),
—0.000. -417.6) 185600 1670400 209.4395102| 628.3185307| 0.174| 181.3799364) 181.3799364
—0.0004 -556.8 185600 1670400 181.3799364| 544.1398093| 0.232| 157.0796327 157.0796327
-0.0005 -696 1856000 16704000, 162.231147| 486.6934411] 0.29| 140.4962946 140.4962946
-0.0006 -835.2] 1856000 16704000| 148.0960979 444.2882938 0.348| 128.254983] 128.254983
-0.0007 -974.4 1856000 16704000] 137.1103442 411.3310325 0.406| 118.7410412 118.7410412
-0.0008 -1113.6| 1856000 16704000 128.254983] 384.764949 0.464| 111.0720735 111.0720735
-0.0009 -1252.8] 1856000 16704000] 120.919957§ 362.7598728 0.522| 104.7197551] 104.7197551
-0.001 -1384.8 1670400 12177216 109.11051] 294.5983771 0.577| 94.49247352 85.04322617
-0.0011] -1510.08| 1670400 12177216 104.4864889 282.1135199 0.6292| 90.48795371] 81.43915834
-0.0012f -1624.32 1484800 8552448| 94.98347542 227.960341 0.6768| 82.25810265 65.80648212
-0.0013] -1734.72] 1299200 5729472| 85.97519823| 180.5479163 0.7228| 74.45670576 52.11969403
-0.0014 -1832.16 1299200 5729472| 83.65775001] 175.681275 0.7634| 72.44973673 50.71481571)
-0.0015 -1924.8| 1113600 3608064| 75.56517263| 136.0173107 0.802| 65.44135914) 39.26481548
-0.0016 -2008.32 1113600 3608064| 73.97722346 133.1590022 0.8368| 64.06615482 38.43969289
-0.0017 -2083.2] 928000, 2088000| 66.30684706 99.46027059 0.868 57.423414 28.711707
-0.0018 -2152.8] 928000, 2088000| 65.22619108 97.83928663] 0.897| 56.48753847 28.24376924
-0.0019 -2209.92 742400 1069056| 57.58118233 69.0974188 0.9208| 49.86676668 19.94670667
-0.002 -2263.2] 556800 451008| 49.27629185 44.34866267 0.943| 42.67452055 12.80235616
-0.0021 -2304.96 556800 451008| 48.8278711| 43.94508399 0.9604| 42.28617679 12.68585304
-0.0022 -2340.48 371200 133632| 39.56410897 23.73846538 0.9752| 34.26352344 6.852704688
-0.0023 -2368.32 371200 133632| 39.33088015 23.59852809 0.9868| 34.06154136 6.812308273
-0.0024 -2386.08 185600 16704| 27.70743725 8.312231176 0.9942| 23.99534453 2.399534453
-0.00249 -2398.608 185600 16704 27.63498414] 8.290495243 0.99942| 23.9325983| 2.39325983
Tangent Modulus Buckling - Numerical
Inelastic Column Buckling

1.2

1
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1.2

Column Inelastic Buckling

O T T T 00
0.0 0.5 1.0 1.5 2.0
Num-x —&— Num-y Analytical-x
= = = -Elastic AISC-Design Analytical-y

1.2

linear residual
Stress
residual stress
. Euler
08 - curve
F (2) Weak axis -
ol parabolic
F, residual stress
07| 2 J
L
Wb
A
A
( Al oy
06 | SSRC parabolic L5 4
strength curve ‘\
Eq.6.7.1 1
A
.
\
05 'Y <
Figure 6.7.1 g L _]‘ !
Column strength curves for o 03 10 vz
l{-shapcd‘scclio'ns having Slendemess function, ,
compressive residual stress at
flange tips. (Adapted from A= KL [Fy
Ref. 6.20, p. 39) T NFE

09

(1) Weak axis~ linear

-

- (4) Swong axis—

parabolic residual
stress

_(3) Strong axis— _|
ol
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Figure 6.7.2
Comparison of AISC

equations for F, for columns

with data from physical tests.
(Test data from Hall [6.24])

F' _ AISC Farmula (E3-2) or (E3-3)
=

F,

! I L i 1 1

04 06 08 1.0 12 14 16

A= Slenderness parumeter

18 20 22 24

ELASTIC BUCKLING OF BEAMS

= Going back to the original three second-order differential

equations:
.7

il
/ L

" z z

ElV +PV7¢(PX0+MBV7E(MTY+MBY)j:MBX7I(MTX+MBX)
" z z

Elu +Pu—¢[—P Yo + Mgy _[(MTX'/'MB)JJ:—MM+I(M-7Y+MBY),
" Va U ’ Z

El, ¢"—(GK; +K) ¢ +U" (M 7I(MBX+MTX)+Py0)

' z \' u
V' (Mg +I(MBY +My)+P XO)_I(MTV-'—MBV)_I(MTX +Mgy)=0

N\

Mg,

/ \\\Ms.

/
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ELASTIC BUCKLING OF BEAMS

= Consider the case of a beam subjected to uniaxial bending only:
= because most steel structures have beams in uniaxial bending
= Beams under biaxial bending do not undergo elastic buckling

= The three equations simplify to:

-

, z
ELl, V' =Mg _E(MTX+MBX)

N

n Z
El,u"—¢ My, ZI(MTX + Mgy )(=0)

w

n / ’ ’ Z u
El,¢"-(GK;+K)¢' +u (_MBX _I(MBX +MTX)j_L(MTX +Mg)=0

= Equation (1) is an uncoupled differential equation describing in-
plane bending behavior caused by My and Mgy

ELASTIC BUCKLING OF BEAMS

= Equations (2) and (3) are coupled equations in u and ¢ — that
describe the lateral bending and torsional behavior of the beam.
In fact they define the lateral torsional buckling of the beam.

= The beam must satisfy all three equations (1, 2, and 3). Hence,
beam in-plane bending will occur UNTIL the lateral torsional
buckling moment is reached, when it will take over.

= Consider the case of uniform moment (M,) causing compression
in the top flange. This will mean that

= -Mgx =M= M,

B
2
»\/
N
. AR
/\j
>
£

/" N\ /T TN\

<

&\
ey .
!

yi

-

/JI/‘/
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ELASTIC BUCKLING OF BEAMS

El,u"+¢M, =0

El,4"-(GK;+K)¢'+u' (M,)=0

where :

K =Wagner's effect due to warping caused by torsion
K = jO' a’ dA

But,o = M,

y = neglecting higher order terms

X

Moy [06, =207+ (v, - y) ] A
[

A
Il

X

Y| X2+ X2 —2xx, +y§+y2—2yyo]dA

Z

K=
K=

:
|O[X§£)‘/dA(+I Xt +y? JdA- XWwo{/wA/zyojyszw

= For this case, the differential equations (2 and 3) will become:

i ELASTIC BUCKLING OF BEAMS

Uy[x2 + szdA—ZyOIx
A

J.y[x2+y2:|dA
~K=M ‘\I——Zy0

SK=M
|

X

0
X

jy[xz + yz]dA
~K=M,8, = where, ﬁxz“l——Zy0

X

B, is anew sectional property

The beam buckling differential equations become:
(2 El,u"+¢M =0

@) El,¢"-GK+M,B)¢'+u'(M,)=0
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ELASTIC BUCKLING OF BEAMS

Equation (2) gives u"=— M,
EI,
Substituting u” from Equation (2) in (3) gives:

2
El,¢"-(GK, +MO,BX)¢”—:\EA—‘I’¢:O
y

For doubly symmetric section: g, =0
M.’

v GK;
- IV_ "_ :0
/ EI, / E’ |y|W¢
GK M,?
Let, 4, = T and = 0
& El, & E* 1L,

¢ =2 ¢"-A,$=0 = becomes the combined d.e.of LTB

+

ELASTIC BUCKLING OF BEAMS

Assume solution is of the form ¢ =¢*
(A=A A -4, )e =0
A=A AP =2, =0
L meEar, (a4

2 ’ 2
: . o
e [l ii

sLet, A=+, , and ziaq,

Above are the four roots for A

L Pp=Ce™ +C,e ™ +Ce +C,e

.. collecting real and imaginary terms

- ¢ =G, cosh(e,2) +G, sinh(e,2) + G; sin(a,z) + G, cos(«,2)
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ELASTIC BUCKLING OF BEAMS

+

= Assume simply supported boundary conditions for the beam:

- $(0)=¢"(0) =4(L) =¢"(L) =0
Solution for ¢ must satisfy all four b.c.
1 0 0 1 G
af 0 0 -a? N G
cosh(e, L) sinh(e, L) sin(a, L) cos(a,L) G,
alcosh(egl) a?sinh(el) —a?sin(e,l) —alcos(a,Ll)| |G
For buckling coefficient matrix must be sin gular :
..deter minant of matrix=0
~.(@f +af )xsinh(a,L) xsinf)(a,L) =0
Of these:
only sinfl(e,L)=0

=

N

4

sl =nx

ELASTIC BUCKLING OF BEAMS

=

7'El, (7E ],
MO = LZ LZ

+GKT]
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