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Elastic Buckling Behavior of Beams

CE579 - Structural Stability and Design

ELASTIC BUCKLING OF BEAMS

• Going back to the original three second-order differential 

equations:
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ELASTIC BUCKLING OF BEAMS

• Consider the case of a beam subjected to uniaxial bending only:

 because most steel structures have beams in uniaxial bending

 Beams under biaxial bending do not undergo elastic buckling

• P=0; MTY=MBY=0

• The three equations simplify to:

• Equation (1) is an uncoupled differential equation describing in-plane 

bending behavior caused by MTX and MBX
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ELASTIC BUCKLING OF BEAMS

• Equations (2) and (3) are coupled equations in u and  – that 

describe the lateral bending and torsional behavior of the beam. In 

fact they define the lateral torsional buckling of the beam. 

• The beam must satisfy all three equations (1, 2, and 3). Hence, 

beam in-plane bending will occur UNTIL the lateral torsional 

buckling moment is reached, when it will take over. 

• Consider the case of uniform moment (Mo) causing compression in 

the top flange. This will mean that 

 -MBX = MTX =  Mo
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Uniform Moment Case

• For this case, the differential equations (2 and 3) will become:
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ELASTIC BUCKLING OF BEAMS
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ELASTIC BUCKLING OF BEAMS
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ELASTIC BUCKLING OF BEAMS

 

1 1 2 2

4 2

1 2

4 2

1 2

2 2

1 1 2 1 2 12

2 2

1 1 2 1 1 2

1 2

1 2 3 4

0

0

4 4
,

2 2

4 4
,

2 2

, ,

z

z

z z i z i z

Assume solution is of the form e

e

i

Let and i

Above are the four roots for

C e C e C e C e

collect





   



   

   

     


     


  



  



   

   

   
  

   
   

   

    



1 1 2 1 3 2 4 2cosh( ) sinh( ) sin( ) cos( )

ing real and imaginary terms

G z G z G z G z        



5

ELASTIC BUCKLING OF BEAMS

• Assume simply supported boundary conditions for the beam:
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ELASTIC BUCKLING OF BEAMS
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Uniform Moment Case

• The critical moment for the uniform moment case is given by 

the simple equations shown below. 

• The AISC code massages these equations into different 

forms, which just look different. Fundamentally the equations 

are the same. 

 The critical moment for a span with distance Lb between lateral 

- torsional braces. 

 Py is the column buckling load about the minor axis.

 P is the column buckling load about the torsional z- axis.
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Non-uniform moment

• The only case for which the differential equations can be 

solved analytically is the uniform moment. 

• For almost all other cases, we will have to resort to numerical 

methods to solve the differential equations. 

• Of course, you can also solve the uniform moment case 

using numerical methods 
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What numerical method to use

• What we have is a problem where the governing differential equations are 

known. 

 The solution and some of its derivatives are known at the boundary. 

 This is an ordinary differential equation and a boundary value 

problem. 

• We will solve it using the finite difference method.

 The FDM converts the differential equation into algebraic equations. 

 Develop an FDM mesh or grid (as it is more correctly called) in the 

structure. 

 Write the algebraic form of the d.e. at each point within the grid. 

 Write the algebraic form of the boundary conditions. 

 Solve all the algebraic equations simultaneously. 

Finite Difference Method
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Finite Difference Method
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• The central difference equations are better than the forward 
or backward difference because the error will be of the order 
of h-square rather than h. 

• Similar equations can be derived for higher order derivatives 
of the function f(x). 

• If the domain x is divided into several equal parts, each of 
length h.

• At each of the ‘nodes’ or ‘section points’ or ‘domain points’ 
the differential equations are still valid. 
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Finite Difference Method

• Central difference approximations for higher order 

derivatives:



Notation
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FDM - Beam on Elastic Foundation

• Consider an interesting problemn --> beam on elastic 

foundation 

• Convert the problem into a finite difference problem. 

Fixed end Pin support
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FDM - Beam on Elastic Foundation
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FDM - Beam on Elastic Foundation

• Lets consider the boundary conditions:
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FDM - Beam on Elastic Foundation
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FDM - Beam on Elastic Foundation

• Substituting the boundary conditions:

Let a = kl4/625EI
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FDM - Column Euler Buckling 
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Buckling problem: Find axial load 

P for which the nontrivial 

Solution exists. 
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FDM - Euler Column Buckling
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FDM - Column Euler Buckling

• Final Equations
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FDM - Euler Buckling Problem

• [A]{y}+[B]{y}={0}

 How to find P? Solve the eigenvalue problem.

• Standard Eigenvalue Problem

 [A]{y}={y}

 Where,  = eigenvalue and {y} = eigenvector

 Can be simplified to [A-I]{y}={0}

 Nontrivial solution for {y} exists if and only if

| A-I|=0

 One way to solve the problem is to obtain the characteristic 

polynomial from expanding | A-I|=0

 Solving the polynomial will give the value of 

 Substitute the value of  to get the eigenvector {y}

 This is not the best way to solve the problem, and will not work 

for more than 4or 5th order polynomial
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FDM - Euler Buckling Problem

• For solving Buckling Eigenvalue Problem

• [A]{y} + [B]{y}={0}

• [A+  B]{y}={0}

• Therefore, det |A+  B|=0 can be used to solve for 
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P

x

0 1 2 3 4 5 6



15

FDM Euler Buckling Problem

• Inverse Power Method: Numerical Technique to Find Least 

Dominant Eigenvalue and its Eigenvector 

 Based on an initial guess for eigenvector and iterations

• Algorithm

 1) Compute [E]=-[A]-1[B]

 2) Assume initial eigenvector guess {y}0

 3) Set iteration counter i=0

 4) Solve for new eigenvector {y}i+1=[E]{y}i

 5) Normalize new eigenvector {y}i+1={y}i+1/max(yj
i+1)

 6) Calculate eigenvalue = 1/max(yj
i+1)

 7) Evaluate convergence: i+1-i < tol

 8) If no convergence, then go to step 4

 9) If yes convergence, then = i+1 and {y}= {y}i+1

Inverse Iteration Method
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Different Boundary Conditions

Beams with Non-Uniform Loading 

• Let Mo
cr be the lateral-torsional buckling moment for the case 

of uniform moment. 

• If the applied moments are non-uniform (but varying linearly, 

i.e., there are no loads along the length)

 Numerically solve the differential equation using FDM and the 

Inverse Iteration process for eigenvalues

 Alternately, researchers have already done these numerical 

solution for a variety of linear moment diagrams

 The results from the numerical analyses were used to develop 

a simple equation that was calibrated to give reasonable 

results.  
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Beams with Non-uniform Loading

• Salvadori in the 1970s developed the equation below based 

on the regression analysis of numerical results with a simple 

equation

 Mcr = Cb Mo
cr

 Critical moment for non-uniform loading = Cb x critical moment 

for uniform moment. 

Beams with Non-uniform Loading
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Beams with Non-uniform Loading

Beams with Non-Uniform Loading

• In case that the moment diagram is not linear over the length 

of the beam, i.e., there are transverse loads producing a non-

linear moment diagram

 The value of Cb is a little more involved
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Beams with non-simple end conditions

• Mo
cr = (Py P ro

2)0.5

 PY with Kb

 P with Kt

Beam Inelastic Buckling Behavior

• Uniform moment case
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Beam Inelastic Buckling Behavior

• Non-uniform moment

Beam In-plane Behavior

• Section capacity Mp

• Section M- behavior
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Beam Design Provisions

CHAPTER F in AISC Specifications


