







#### **Uniform Moment Case**

For this case, the differential equations (2 and 3) will become:  $E I_{y} u'' + \phi M_{o} = 0$   $E I_{w} \phi''' - (G K_{T} + \bar{K}) \phi' + u' (M_{o}) = 0$ where:  $\bar{K} = Wagner's \text{ effect due to warping caused by torsion}$   $\bar{K} = \int_{A} \sigma a^{2} dA$   $But, \sigma = \frac{M_{o}}{I_{x}} y \implies \text{neglecting higher order terms}$   $\therefore \bar{K} = \int_{A} \frac{M_{o}}{I_{x}} y \left[ (x_{o} - x)^{2} + (y_{o} - y)^{2} \right] dA$   $\therefore \bar{K} = \frac{M_{o}}{I_{x}} \int_{A} y \left[ x_{o}^{2} + x^{2} - 2xx_{0} + y_{o}^{2} + y^{2} - 2yy_{0} \right] dA$   $\therefore \bar{K} = \frac{M_{o}}{I_{x}} \left[ x_{o}^{2} \int_{A} y dA + \int_{A} y \left[ x^{2} + y^{2} \right] dA - x_{0} \int 2xy dA + y_{o}^{2} \int y dA - 2y_{o} \int_{A} y^{2} dA \right]$ 



#### ELASTIC BUCKLING OF BEAMS

Equation (2) gives  $u'' = -\frac{M_o}{E I_y} \phi$ Substituting u'' from Equation (2) in (3) gives :  $E I_w \phi^{iv} - (G K_T + M_o \beta_x) \phi'' - \frac{M_o^2}{E I_y} \phi = 0$ For doubly symmetric section :  $\beta_x = 0$   $\therefore \phi^{iv} - \frac{G K_T}{E I_w} \phi'' - \frac{M_o^2}{E^2 I_y I_w} \phi = 0$   $Let, \lambda_1 = \frac{G K_T}{E I_w} \text{ and } \lambda_2 = \frac{M_o^2}{E^2 I_y I_w}$  $\therefore \phi^{iv} - \lambda_1 \phi'' - \lambda_2 \phi = 0 \implies \text{becomes the combined d.e. of LTB}$ 



### ELASTIC BUCKLING OF BEAMS

• Assume simply supported boundary conditions for the beam:  $\begin{aligned}
\therefore \phi(0) &= \phi''(0) = \phi(L) = \phi''(L) = 0 \\
Solution for \phi must satisfy all four b.c. \\
\begin{bmatrix}
1 & 0 & 0 & 1 \\
\alpha_1^2 & 0 & 0 & -\alpha_2^2 \\
\cosh(\alpha_1 L) & \sinh(\alpha_1 L) & \sin(\alpha_2 L) & \cos(\alpha_2 L) \\
\alpha_1^2 \cosh(\alpha_1 L) & \alpha_1^2 \sinh(\alpha_1 L) & -\alpha_2^2 \sin(\alpha_2 L) & -\alpha_2^2 \cos(\alpha_2 L)
\end{bmatrix} \times \begin{bmatrix}
G_1 \\
G_2 \\
G_3 \\
G_4
\end{bmatrix} = 0 \\
For buckling coefficient matrix must be \sin gular : \\
\therefore det er \min ant of matrix = 0 \\
\therefore (\alpha_1^2 + \alpha_2^2) \times \sinh(\alpha_1 L) \times \sin(\alpha_2 L) = 0 \\
Of these : \\
only & \sin^-(\alpha_2 L) = 0 \\
\therefore \alpha_2 L = n\pi
\end{aligned}$ 



### **Uniform Moment Case**

 The critical moment for the uniform moment case is given by the simple equations shown below.

$$M_{cr}^{o} = \sqrt{\frac{\pi^{2} E I_{y}}{L^{2}} \times \left(\frac{\pi^{2} E I_{w}}{L^{2}} + G K_{T}\right)}$$
$$M_{cr}^{o} = \sqrt{P_{v} \times P_{4} \times \overline{r}_{o}^{2}}$$

- The AISC code massages these equations into different forms, which just look different. Fundamentally the equations are the same.
  - The critical moment for a span with distance L<sub>b</sub> between lateral
     torsional braces.
  - P<sub>v</sub> is the column buckling load about the minor axis.
  - P<sub>b</sub> is the column buckling load about the torsional z- axis.







### Finite Difference Method

$$\begin{aligned} f(x-h) &= f(x) - hf'(x) + \frac{h^2}{2!} f''(x) - \frac{h^3}{3!} f'''(x) + \frac{h^4}{4!} f^{iv}(x) + \dots \\ &\therefore f'(x) = \frac{f(x) - f(x-h)}{h} + \frac{h}{2!} f''(x) - \frac{h^2}{3!} f'''(x) + \frac{h^3}{4!} f^{iv}(x) + \dots \\ &\therefore f'(x) = \frac{f(x) - f(x-h)}{h} + O(h) \implies Backwarddifference equation \\ f(x+h) &= f(x) + hf'(x) + \frac{h^2}{2!} f''(x) + \frac{h^3}{3!} f'''(x) + \frac{h^4}{4!} f^{iv}(x) + \dots \\ f(x-h) &= f(x) - hf'(x) + \frac{h^2}{2!} f''(x) - \frac{h^3}{3!} f'''(x) + \frac{h^4}{4!} f^{iv}(x) + \dots \\ &\therefore f'(x) &= \frac{f(x+h) - f(x-h)}{2h} + \frac{2h^2}{3!} f'''(x) + \dots \\ &\therefore f'(x) &= \frac{f(x+h) - f(x-h)}{2h} + O(h^2) \implies Central difference equation \end{aligned}$$







#### FDM - Beam on Elastic Foundation





## FDM - Beam on Elastic Foundation

| $y(L) = 0 \qquad \implies \qquad y_6 = 0$ $M(L) = 0$      | (2)  |
|-----------------------------------------------------------|------|
| $\therefore EI y''(L) = 0 \implies y_6'' = 0$             |      |
| $\therefore y_6'' = \frac{1}{h^2} (y_5 - 2y_6 + y_7) = 0$ |      |
| $\therefore y_7 = -y_5$                                   | (3+) |
| $\theta(0) = 0 \qquad \Rightarrow  y'(0) = 0$             | (4)  |
| $\therefore y_1' = \frac{1}{2h} (y_2 - y_0) = 0$          |      |
| $\therefore y_2 = y_0$                                    | (4+) |

| FDM - Beam on Elastic Foundation                                                                                   |
|--------------------------------------------------------------------------------------------------------------------|
|                                                                                                                    |
| <ul> <li>Substituting the boundary conditions:</li> </ul>                                                          |
| At $i = 2$ : $(7y_2 - 4y_3 + y_4) + \frac{kL^4}{625 EI}y_2 = \frac{wL^4}{625 EI}$                                  |
| At $i = 3$ : $(-4y_2 + 6y_3 - 4y_4 + y_5) + \frac{kL^4}{625 EI}y_3 = \frac{wL^4}{625 EI}$                          |
| At $i = 4$ : $(y_2 - 4y_3 + 6y_4 - 4y_5) + \frac{kL^4}{625 EI}y_4 = \frac{wL^4}{625 EI}$                           |
| At $i = 5$ : $(y_3 - 4y_1 + 5y_5) + \frac{kL^4}{625 EI}y_5 = \frac{wL^4}{625 EI}$                                  |
| Let a = $kl^4/625EI$                                                                                               |
| $7 + a - 4 - 1 - 0   y_2   1$                                                                                      |
| $-4$ $6+a$ $-4$ $1$ $y_3$ $1$ $wL^4$                                                                               |
| 1 -4 6+a -4 $y_4 = 1 \overline{625 EI}$                                                                            |
| $\begin{bmatrix} 0 & 1 & -4 & 5+a \end{bmatrix} \begin{bmatrix} y_5 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$ |



| FD                                              | M - Euler                                | Column Buckl                                                        | ing |
|-------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|-----|
| Finite difference me                            | ethod                                    |                                                                     |     |
| $y_i^{i\nu} + \frac{P}{EI} y_i'' = 0$           |                                          |                                                                     |     |
| At stations $i = 2, 3, 4$                       | 4                                        |                                                                     |     |
| $\frac{1}{h^4} (y_{i-2} - 4y_{i-1} + 6y_{i-1})$ | $(i - 4y_{i+1} + y_{i+2}) + \frac{1}{2}$ | $\frac{P}{EI} \bullet \frac{1}{h^2} (y_{i-1} - 2y_i + y_{i+1}) = 0$ |     |
| Boundary condition                              | ıs                                       |                                                                     |     |
|                                                 | $y_1 = 0$                                | (1)                                                                 |     |
|                                                 | $y_5 = 0$                                | (2)                                                                 |     |
| $y'_1 = 0$                                      |                                          |                                                                     |     |
| $\therefore \frac{1}{2h} (y_2 - y_0) = 0$       |                                          |                                                                     |     |
|                                                 | $\therefore y_0 = y_2$                   | (3)                                                                 |     |
| $M_{5} = 0$                                     |                                          |                                                                     |     |
| $\therefore EI \bullet y_5'' = 0$               |                                          |                                                                     |     |
| $\therefore (y_6 - 2y_5 + y_4) = 0$             | )                                        |                                                                     |     |
|                                                 | $\therefore y_6 = -y_4$                  | (4)                                                                 |     |

# FDM - Column Euler Buckling

#### Final Equations

$$\frac{1}{h^4} (7y_2 - 4y_3 + y_4) + \frac{P}{EI} \bullet \frac{1}{h^2} (-2y_2 + y_3) = 0$$
  
$$\frac{1}{h^4} (-4y_2 + 6y_3 - 4y_4) + \frac{P}{EI} \bullet \frac{1}{h^2} (y_2 - 2y_3 + y_4) = 0$$
  
$$\frac{1}{h^4} (y_2 - 4y_3 + 5y_4) + \frac{P}{EI} \bullet \frac{1}{h^2} (y_3 - 2y_4) = 0$$

$$\begin{bmatrix} 7 & -4 & 1 \\ -4 & 6 & -4 \\ 1 & -4 & 5 \end{bmatrix} \begin{bmatrix} y_2 \\ y_3 \\ y_4 \end{bmatrix} + \frac{PL^2}{16EI} \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$









| Inverse Iteration                                                                                                                                                                                                                                                                                                                      | on Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2v<br>Zsample: Inverse Power Method to Compute the Least<br>Dominant Eigenvelve and Eigenvector<br>Define matrices A, S                                                                                                                                                                                                                | $\begin{array}{c} 1 & \text{transform } \mathcal{J}_{4} & & \\ 1 & = -L_{4} & \\ V & = -VV & \\ VV & = VV & \\ VV & = \begin{pmatrix} 0 & 1765 \\ 0 & 3042 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 $ |
| $\lambda := \begin{bmatrix} 7 & -4 & 1 \\ -4 & -4 & 5 \end{bmatrix}$ $B := \begin{bmatrix} -2 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -2 \end{bmatrix}  R := \{-1\} \cdot \lambda^{-1}  B  E = \begin{bmatrix} 0.2727 & 0.1818 & 0.0909 \\ -0.0455 & 0.6364 & 0.1187 \\ -0.0909 & 0.2727 & 0.6364 \end{bmatrix}$ Initial Quess of Eigenvector | $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 1 & 1 = 1 & 1 \\ 1 & 1 = 1 & 1 \\ V & i = V_{0} \\ V & i = V_{0} \\ V & i = V_{0} \\ V & i = \frac{1}{2} \\ V & i = \frac{1}{2} \\ L_{1} & i = \frac{1 & 0}{\max(VV)} \\ L_{2} & i = \frac{1}{2} \\ L_{2} & i = \frac{1}{2} \\ L_{2} & i = \frac{1}{2} \\ V & i = V_{0} \\ V &$                                        |
| $V := VN$ $VV := E \cdot V$ $VV = \begin{bmatrix} 0.1759\\ 0.2218\\ 0.4477 \end{bmatrix}$ $VN := \frac{VV}{max(VV)}$ $VN = \begin{bmatrix} 0.4069\\ 0.9176 \end{bmatrix}$ $IL := \frac{1.0}{100}$ $IL = 1.0034$ $LL = L = -0.404$                                                                                                      | $LL := \frac{1.1}{\text{max}(W)}$ $LL = 1.1104$ $(I_1 \cdot \text{max}(V))$ $(I_2 \cdot \text{max}(V))$ $(I_1 - L = 4.8997 \text{ m}^{-4}$<br>Convergence<br>Elgenvalue, $L_1 = 1.1104$ Richervolter m $[0.4184]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c} \max(VV) \\ \textbf{ID}_{V} = \min(V) \\ \textbf{I}_{L} = -\textbf{I}_{L} \\ V = -\textbf{N} \\ VV = -\textbf{N} \\ VV = -\textbf{N} \\ VV = \begin{bmatrix} 0.2762 \\ 0.3096 \\ 0.8196 \\ 0.8196 \end{bmatrix} \\ VN := \frac{VV}{\max(VV)} \\ VN = \begin{bmatrix} 0.4115 \\ 1 \\ 0.9007 \end{bmatrix}$            | $P = \operatorname{Liney}\left(\frac{\log 2}{L^{k}}\right) = \frac{17766}{L^{k}} \frac{E2}{\sqrt{2}} \frac{\sqrt{2} \operatorname{cms}^{t}}{\sqrt{2}} \left[0, \operatorname{Bare}^{t}\right]$ $P^{k} \operatorname{gare}_{k} \operatorname{Meaning}_{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| i.i. $:= \frac{1, 0}{\max(VV)}$ i.i. $= 1.0991$ j.i. $-1. = 0.0167$                                                                                                                                                                                                                                                                    | Buckled Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$= 1$$

$$= 0$$

$$\begin{bmatrix} -\frac{4}{h^{4}} - \frac{\lambda_{1}}{h^{2}} & \frac{6}{h^{4}} + \frac{2\lambda_{1}}{h^{2}} - \lambda_{2} & -\frac{4}{h^{4}} - \frac{\lambda_{1}}{h^{2}} & \frac{1}{h^{4}} - \frac{\lambda_{1}}{h^{2}} \\ \frac{1}{h^{4}} & -\frac{4}{h^{4}} - \frac{\lambda_{1}}{h^{2}} & \frac{6}{h^{4}} + \frac{2\lambda_{1}}{h^{2}} - \lambda_{2} & -\frac{4}{h^{4}} - \frac{\lambda_{1}}{h^{2}} \\ 0 & \frac{1}{h^{4}} & -\frac{4}{h^{4}} - \frac{\lambda_{1}}{h^{2}} & \frac{2}{h^{4}} + \frac{2\lambda_{1}}{h^{2}} - \lambda_{2} \end{bmatrix} \begin{bmatrix} \psi_{2} \\ \psi_{3} \\ \psi_{4} \\ \psi_{3} \end{bmatrix}$$
  
Multiplying all equations by  $h^{4}$ 

$$\begin{bmatrix} 7 + 2\lambda_{1}h^{2} - \lambda_{2}h^{4} & -4 - \lambda_{1}h^{2} & 1 \\ 1 & -4 - \lambda_{1}h^{2} & 6 + 2\lambda_{1}h^{2} - \lambda_{2}h^{4} & -4 - \lambda_{1}h^{2} \\ 1 & -4 - \lambda_{1}h^{2} & 6 + 2\lambda_{1}h^{2} - \lambda_{2}h^{4} & -4 - \lambda_{1}h^{2} \\ 0 & 1 & -4 - \lambda_{1}h^{2} & 7 + 2\lambda_{1}h^{2} - \lambda_{2}h^{4} \end{bmatrix} \begin{bmatrix} \psi_{3} \\ \psi_{3} \\ \psi_{3} \\ \psi_{3} \\ \psi_{3} \\ \psi_{3} \\ \psi_{3} \end{bmatrix}$$
Solve using inverse iteration:
$$\lambda_{1} = \frac{G_{KT}}{E I_{W}} \qquad \lambda_{2} = \frac{M_{0}^{2}}{E^{2} I_{y} I_{W}}$$

$$\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} 7 + 2\lambda_{1}h^{2} & -4 - \lambda_{1}h^{2} & 1 & 0 \\ -4 - \lambda_{1}h^{2} & 6 + 2\lambda_{1}h^{2} & -4 - \lambda_{1}h^{2} & 1 \\ 1 & -4 - \lambda_{1}h^{2} & 6 + 2\lambda_{1}h^{2} & -4 - \lambda_{1}h^{2} \end{bmatrix}$$

$$\lambda_{1} = \frac{GK_{T}}{EI_{W}} = \frac{11200 \times 0.443}{29000 \times 21200} = \frac{7.542 \times 10^{-5}}{24000 \times 21200}$$

$$\lambda_{2} = \frac{M_{0}^{2}}{E^{2} I_{W} I_{W}}$$

$$A_{1} = \frac{1}{5} = \frac{424}{5} = 84.8 \text{ in}$$

$$B \cdot 055932 = -4.52766 = 1 = 0$$

$$-4.52766 = 7.055932 = -4.52766 = 1$$

$$1 = -4.52766 = 7.055932 = -4.52766$$

$$0 = 1 = -4.52766 = 8.055932$$

$$U_{aving} \text{ Mathab eigenvalue command}$$

$$W^{2} \lambda_{2} = \begin{pmatrix} 0.8107 + 10.8107 \\ E^{2} I_{W} I_{W} \end{pmatrix}$$

$$M_{0}^{2} = 0.8107 \times E^{2} \times 10^{-5}$$

$$M_{0}^{2} = 0.8107 \times E^{2} \times 10^{-5}$$

## **Different Boundary Conditions**

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                       | -                                               |                                                 |       | K,    | K <sub>13</sub> |
|----------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------|-------|-----------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                       | z = 0                                           | z = L                                           |       |       |                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                       | $u=u^{\prime\prime}=\phi=\phi^{\prime\prime}=0$ | $u=u^{\prime\prime}=\phi=\phi^{\prime\prime}=0$ | 1.000 | 1.000 | 1.00            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                       | $u=u^{\prime\prime}=\phi=\phi^{\prime\prime}=0$ | $u=u^{\prime\prime}=\phi=\phi^{\prime}=0$       | 0.904 | 0.693 | 0.904           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                       | $u=u''=\phi=\phi''=0$                           | $u=u'=\phi=\phi''=0$                            | 0.626 | 1.000 | 0.904           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                       | $u=u''=\phi=\phi''=0$                           | $u=u'=\phi'=0$                                  | 0.693 | 0.693 | 1.000           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                       | $u=u''=\phi=\phi'=0$                            | $u=u^{\prime\prime}=\phi=\phi^{\prime}=0$       | 0.883 | 0.492 | 0.883           |
| $= u' = \phi = \phi' = 0$ $u = u' = \phi = \phi' = 0$ 0.492 0.492 1.00     | $u = u' = \phi = \phi'' = 0$                    | $u=u'=\phi=\phi'=0$                             | 0.431 | 0.693 | 0.87            |
|                                                                            | $u=u'=\phi=\phi'=0$                             | $u=u'=\phi=\phi'=0$                             | 0.492 | 0.492 | 1.000           |
| $u = u' = \phi = \phi'' = 0$ $u = u' = \phi = \phi'' = 0$ 0.434 1.000 0.83 | $u=u'=\phi=\phi''=0$                            | $u=u'=\phi=\phi''=0$                            | 0.434 | 1.000 | 0.883           |
| $= u' = \phi = \phi'' = 0$ $u = u'' = \phi = \phi' = 0$ 0.606 0.492 0.89   | $u=u'=\phi=\phi''=0$                            | $u=u^{\prime\prime}=\phi=\phi^{\prime}=0$       | 0.606 | 0.492 | 0.87            |



















