Type of Connection
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Number of Unknowns

1) jp\\}ight cable

One unknown. The reaction is a
force that acts in the direction
of the cable or link.

@

rocker

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

®)

smooth contacting surface

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

4

smooth pin-connected collar

One unknown. The reaction is a
force that acts perpendicular to
the surface at the point of contact.

®

smooth pin or hinge

Two unknowns. The reactions are
two force components.

(6)

fixed-connected collar

Two unknowns. The reactions
are a force and a moment.

™

fixed support

Three unknowns. The reactions are
the moment and the two force
components.
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The ability to reduce an actual structure to an idealized form, as shown
by these examples, can only be gained by experience. To provide practice
at doing this, the example problems and the problems for solution
throughout this book are presented in somewhat realistic form, and the
associated problem statements aid in explaining how the connections
and supports can be modeled by those listed in Table 2-1. In engineering
practice, if it becomes doubtful as to how to model a structure or transfer
the loads to the members, it is best to consider several idealized structures
and loadings and then design the actual structure so that it can resist the
loadings in all the idealized models.

The floor of a classroom is supported by the bar joists shown in Fig 2-15a.
Each joist is 15 ft long and they are spaced 2.5 ft on centers. The floor
itself is made from lightweight concrete that is 4 in. thick. Neglect the
weight of the joists and the corrugated metal deck, and determine the
load that acts along each joist.

Solution

The dead load on the floor is due to the weight of the concrete slab. From
Table 1-3 for 4 in. of lightweight concrete it is (4)(8 Ib/ft?) = 32 Ib/ft%.
From Table 14, the live load for a classroom is 40 Ib/ft. Thus the total
floor load is 32 1b/ft? + 40 1b/ft*> = 72 1b/ft?. For the floor system,
L, = 25ftand L, = 15 ft. Since L,/L > 2 the concrete slab is treated
as a one-way slab. The tributary area for each joist is shown in Fig. 2-15b.
Therefore the uniform load along its length is

w = 72 1b/ft3(2.5 ft) = 180 Ib/ft

This loading and the end reactions on each joist are shown in Fig. 2-15c.

180 Ib/ft

sy

1350 Ib
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The flat roof of the steel-frame building in Fig. 2-16a is intended to
support a total load of 2 kN/m? over its surface. If the span of beams
AD and BC is 5 m and the space between them (AB and DC) is 3 m,
determine the roof load within region ABCD that is transmitted to

beam BC.

Solution
In this case L; = Sm and L, = 3 m. Since L,/L; < 2, we have two-

way slab action. The tributary loading is shown in Fig. 2-16b, where the
shaded trapezoidal area O
peak intensity of this loading is (2 kN/m?)(1.5m) = 3 kN/m. As a

result, the distribution of load along BC is shown in Fig. 2-16b. This

process of tributary load transmission should also be calculated for the
164, and this additional

two square regions to the right of BC in Fig. 2-
load should then be placed on BC.

f loading is transmitted to member BC.The
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2-2  Principle of Superposition

The principle of superposition forms the basis for much of the theory of
structural analysis. It may be stated as follows: The total displacement or
internal loadings (stress) at a point in a structure subjected to several
external loadings can be determined by adding together the displacements
or internal loadings (stress) caused by each of the external loads acting
separately. For this statement to be valid it is necessary that a linear
relationship exist among the loads, stresses, and displacements.

Two requirements must be imposed for the principle of superposition

to apply:

1. The material must behave in a linear-elastic manner, so that Hooke’s
law is valid, and therefore the load will be proportional to displacement.

2. The geometry of the structure must not undergo significant change
when the loads are applied, i.e., small displacement theory applies.
Large displacements will significantly change the position and
orientation of the loads. An example would be a cantilevered thin
rod subjected to a force at its end.

Throughout this text, these two requirements will be satisfied. Here only
linear-elastic material behavior occurs; and the displacements produced
by the loads will not significantly change the directions of applied loadings
nor the dimensions used to compute the moments of forces.

The “shear walls” on the sides of this building are used to strengthen
the structure when it is subjected to large hurricane wind loadings
applied to the front or back of the building.
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2-3 Equations of Equilibrium

It may be recalled from statics that a structure or one of its members is
in equilibrium when it maintains a balance of force and moment. In
general this requires that the force and moment equations of equilibrium
be satisfied along three independent axes, namely,

SF,=0 3F,=0 3F=0 @)
SM,=0 SM,=0 =M,=0

The principal load-carrying portions of most structures, however, lie in a
single plane, and since the loads are also coplanar, the above requirements
for equilibrium reduce to

SF. =0
SF,=0 (2-2)
SMy =0

Here £ F, and X F, represent, respectively, the algebraic sums of the x
and y components of all the forces acting on the structure or one of its
members, and M, represents the algebraic sum of the moments of
these force components about an axis perpendicular to the x—y plane
(the z axis) and passing through point O.

Whenever these equations are applied, it is first necessary to draw a
free-body diagram of the structure or its members.If a member is selected,
it must be isolated from its supports and surroundings and its outlined
shape drawn. All the forces and couple moments must be shown that act
on the member. In this regard, the types of reactions at the supports can
be determined using Table 2-1. Also, recall that forces common to two
members act with equal magnitudes but opposite directions on the
respective free-body diagrams of the members.

If the internal loadings at a specified point in a member are to be
determined, the method of sections must be used. This requires that a
“cut” or section be made perpendicular to the axis of the member at the
point where the internal loading is to be determined. A free-body
diagram of either segment of the “cut” member is isolated and the
internal loads are then determined from the equations of equilibrium
applied to the segment. In general, the internal loadings acting at the cut
section of the member will consist of a normal force N, shear force V,
and bending moment M, as shown in Fig. 2-17.

We will cover the principles of statics that are used to determine the
external reactions on structures in Sec. 2-5. Internal loadings in structural
members will be discussed in Chapter 4.
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>
N N

v
internal loadings

Fig. 2-17

-4 Determinacy and Stability

BBefore starting the force analysis of a structure, it is necessary to establish
the determinacy and stability of the structure.

Determinacy. The equilibrium equations provide both the necessary
und sufficient conditions for equilibrium. When all the forces in a structure
can be determined strictly from these equations, the structure is referred
to as statically determinate. Structures having more unknown forces than
available equilibrium equations are called statically indeterminate. As a
peneral rule, a structure can be identified as being either statically
Jeterminate or statically indeterminate by drawing free-body diagrams
of all its members, or selective parts of its members, and then comparing
the total number of unknown reactive force and moment components
with the total number of available equilibrium equations.* For a coplanar
structure there are at most three equilibrium equations for each part, so
that if there is a total of n parts and r force and moment reaction
components, we have

r = 3n, statically determinate (2-3)

r > 3n, statically indeterminate

In particular, if a structure is statically indeterminate, the additional
cquations needed to solve for the unknown reactions are obtained by
rclating the applied loads and reactions to the displacement or slope at
different points on the structure. These equations, which are referred to
as compatibility equations, must be equal in number to the degree of
indeterminacy of the structure. Compatibility equations involve the
geometric and physical properties of the structure and will be discussed
further in Chapter 10.

We will now consider some examples to show how to classify the
determinacy of a structure. The first example considers beams; the second
cxample, pin-connected structures; and in the third we will discuss frame
structures. Classification of trusses will be considered in Chapter 3.

“Drawing the free-body diagrams is not strictly necessary, since a “mental count” of the num-
her of unknowns can also be made and compared with the number of equilibrium equations.
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Classify each of the beams shown in Fig. 2-18a through 2-18d as statically
determinate or statically indeterminate. If statically indeterminate, report
the number of degrees of indeterminacy. The beams are subjected to
external loadings that are assumed to be known and can act anywhere
on the beams,

Solution

Compound beams, i.e., those in Fig. 7-18¢ and 2-18d, which are
composed of pin-connected members must be disassembled. Note that
in these cases, the unknown reactive forces acting between each
member must be shown in equal but opposite pairs. The free-body
diagrams of each member are shown. Applying 7 = 3norr > 3n,the
resulting classifications are indicated.

Statically indeterminate to the second degree

Statically determinate

A= b

=10, n = 3,10 > 3(3) Statically indeterminaté to the first degree
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Classify each of the pin-connected structures shown in Fig. 2-19a
through 2-194 as statically determinate or statically indeterminate. If
statically indeterminate, report the number of degrees of indeterminacy.
The structures are subjected to arbitrary external loadings that are
assumed to be known and can act anywhere on the structures.

Solution
Classification of pin-connected structures is similar to that of beams.

The free-body diagrams of the members are shown. Applying r = 3n
or r > 3n, the resulting classifications are indicated.

r=7T,n=27>6
Statically indeterminate to the
first degree Ans. 3

—s
\
r=9n=39=09,
Statically determinate .

r=10,n = 2,10 > 6, /
Statically indeterminate to the
ot

fourth degree Ans.

r=9n=39=9,

Statically determinate Aas.
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The K-bracing on this frame provides
stability, that is lateral support from
wind and vertical support of the floor
girders. Notice the use of concrete
grout, which is applied to insulate the
steel to keep it from losing its strength
in the event of a fire.

CHAPTER 2 Analysis of Statically Determinate Structures

In general, then, a structure will be geometrically unstable—that is, it
will move slightly or collapse—if there are fewer reactive forces than
equations of equilibrium; or if there are enough reactions, instability will
occur if the lines of action of the reactive forces intersect at a commion
point or are parallel to one another. If the structure consists of several
members or components, local instability of one or several of these
members can generally be determined by inspection. If the members
form a collapsible mechanism, the structure will be unstable. We will now
formulize these statements for a coplanar structure having n members
or components with  unknown reactions. Since three equilibrium equations
are available for each member or component, we have

unstable

unstable if member reactions are
concurrent or parallel or some of the
components form a collapsible mechanism

r<3n

r=3n (2-4)

it does not matter if it is statically

If the structure is unstable,
pes of structures must

determinate or indeterminate. In all cases such ty
be avoided in practice.

The following examples ill
be classified as stable or unstable.
be discussed in Chapter 3.

ustrate how structures or their members can
Structures in the form of a truss will

ough 2-24e as stable

Classify each of the structures in Fig. 2-24a thr
trary external loads

or unstable. The structures are subjected to arbi
that are assumed to be known.

Solution
The structures are classified as indicated.

B

Fig. 2-24

oncurrent and non-

The member is stable since the reactions are nonc
Ans.

parallel. It is also statically determinate.
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The compound beam is stable. It is also indeterminate to the second
degree. Ans.

The beam is unstable since the three reactions are all parallel. Ans.

The structure is unstable since r = 7, n = 3, so that, by Eq. 2-4,
r < 3n,7 < 9. Also, this can be seen by inspection, since AB can move
horizontally without restraint. Ans.
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PROCELD

The following procedure provides a method for determining the
joint reactions for structures composed of pin-connected members.

Free-Body Piagroms

« Disassemble the structure and draw a free-body diagram of each
member. Also, it may be convenient to supplement a member
free-body diagram with a free-body diagram of the entire
structure. Some or all of the support reactions can then be
determined using this diagram.

¢ Recall that reactive forces common to two members act with
equal magnitudes but opposite directions on the respective free-
body diagrams of the members.

« All two-force members should be identified. These members,

regardless of their shape, have no external loads on them, and

L therefore their free-body diagrams are represented with equal
: but opposite collinear forces acting on their ends.

« In many cases it is possible to tell by inspection the proper
arrowhead sense of direction of an unknown force or couple
moment; however, if this seems difficult, the directional sense can

be assumed.

Equaiions of Fguifibrivm

« Count the total number of unknowns to make sure that an
equivalent number of equilibrium equations can be written for
solution. Except for two-force members, recall that in general
three equilibrium equations can be written for each member.

s Many times, the solution for the unknowns will be straightforward
if the moment equation 2Mp = 0 is applied about a point (0)
that lies at the intersection of the lines of action of as many
unknown forces as possible.

< When applying the force equations SF, = 0and =F, = 0, orient
the x and y axes along lines that will provide the simplest
reduction of the forces into their x and y components.

« If the solution of the equilibrium equations yields a negative
magnitude for an unknown force or couple moment, it indicates
that its arrowhead sense of direction is opposite 10 that which was

assumed on the free-body diagram.
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Determine the reactions on the beam shown in Fig. 2-27a.

60 k

60 sin 60° k
& 60 cos 60° k

! Mq;

B,

(®

Free-Body Diagram. As shown in Fig, 2-27b, the 60-k force is resolved
into x and y components. Furthermore, the 7-ft dimension line is not need-
ed since a couple moment is a free vector and can therefore act anywhere
on the beam for the purpose of computing the external reactions.

Fauations of Equilibrium.  Applying Eqs. 2-2 in a sequence, using

previously calculated results, we have

LSF =0 A, —60cos60°=0 A, =300k Ans.

(+=M, =0; —60sin60°(10) + 60 cos 60°(1) + B,(14) —50 =0 B, =385k Ans.
+13F,=0; —60sin60°+ 385+ A,=0 A,=134k Ans.

Determine the reactions on the beam in Fig. 2-28a. 15kN/m

Solution

Free-Body Diagram. As shown in Fig. 2-28b, the trapezoidal distributed 1
loading is segmented into a triangular and uniform load. The areas under :

the triangle and rectangle represent the resultant forces. These forces act 6]

through the centroid of their corresponding areas.
1(10kN)(12m) = 60 kN
(5 kN/m)(12m) =

Eguations of Fguilibrium [}IOEN‘/,; -J__ _60kN
BSF =0, A, =0 Ans, Afﬁ‘g i}
n -0 a0 — &0 — _ oo A
15F, =0, A,—60-60=0 A, =120kN Ans. M4
——0om
(+SM,=0; —60(4) — 60(6) + My =0 M, =600kN-m Ans. (v)

Fig, 2-28
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Determine the reactions on the beam in Fig. 2-29a. Assume A is a
pin and the support at B is a roller (smooth surface).

500 1b/ft

Fig. 2-29

Solution

- Free-Body Diagram. As shown in Fig. 2-29b, the support (“roller”)
at B exerts a normal force on the beam at its point of contact. The
line of action of this force is defined by the 3-4-5 triangle.

3500 Ib

41t

Equations of Equilibrium. Resolving Np into x and y components
and summing moments about A yields a direct solution for Np. Why?
Using this result, we can then obtain A, and A,.

(+SM, =0, —3500(3.5) + (2)Na(4) + (3)Ns(10) =0  Ans.
Np = 1331.51b = 1.33k
LSF =0, A, -%13315) =0 A, =107k  Ans.

+13F,=0; A, —3500 +$(13315) =0 A, =270k Ans.
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4

The compound beam in Fig. 2-30a is fixed at A. Determine the
reactions at A, B, and C. Assume that the connection at B is a pin
and C is a roller.

400 Ib /it
6000 Ib-ft

Fig, 2-30

Solution
Free-Body Diagrams. The free-body diagram of each segment is
shown in Fig. 2-30b. Why is this problem statically determinate?

8060 Ib

_______________ ,
l B, B, - 6000 1b - ft

e I
C

15 ft ?
Cy

A

B,

Equations of Equilibrium. There are six unknowns. Applying the six
equations of equilibrium, using previously calculated results, we have

Segment BC:

(t2Mc = 0; —6000 + B,(15) =0 B, = 400 1b Ans.
+12ZF, = 0; —400 + C, =0 C, = 4001b Ans.
XSF =0, B,=0 Ans.

Segment AB:
(+HEM, = 0; M, ~ 8000(10) + 400(20) = 0
My =T720k-ft
+12F, ; A, —8000+400=0 A,=760k
LSE =0, A4,-0=0 A, =0
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The side girder shown in the photo supports the boat and deck. An
idealized model of this girder is shown in Fig. 2-31a, where it can be
assumed A is a roller and B is a pin. Using a local code the anticipated
deck loading transmitted to the girder is 6 kN/m. Wind exerts a
resultant horizorital force of 4 kN as shown, and the mass of the boat
that is supported by the girder is 23 Mg. The boat’s mass center is
at G. Determine the reactions at the supports.

6 (3.80) = 22.8kN

Fig. 2-31

Solution
Free-Body Diagram. Here we will consider the boat and girder as a
single system, Fig. 2-31b. As shown, the distributed loading has been

replaced by its resultant.

Equations of Equilibrium. Applying Egs. 2-2 in sequence, using
previously calculated results, we have

HsF =0, 4-B,=0

B, = 4kN Ans.
(+IMp=0; 228(190) — A,(2) + 225.6(540) — 4(0.30) =0
A, = 6302kN = 630 kN Ans.
+1SE, = 0; 6302 — B, ~228 —2256=10
B, = 382kN Ans.

Note: If the girder alone had been considered for this analysis then the
normal forces at the shoes C and D would have to first be calculated
using a free-body diagram of the boat. (These forces exist if the cable
pulls the boat snug against them.) Equal but opposite normal forces along
with the cable force at E would then act on the girder when its free-body
diagram is considered. The same results would have been obtained;
however, by considering the boat-girder system, these normal forces and
the cable force become internal and do not have to be considered.
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Determine the horizontal and vertical components of reaction at the
pins A, B, and C of the two-member frame shown in Fig. 2-324.

Solution

Free-Body Diagrams. The free-body diagram of each member is
shown in Fig. 2-32b.

Eguations of Eqguilibrivm.  Applying the six equations of equilibrium
in the following sequence allows a direct solution for each of the six
unknowns.

Member BC:
(tEM- = 0; —By(2) +6(1) =0 B, = 3 kN Ans.

Member AB:
(FEM,=0; —8(2) —3(2) + B,(1.5)=0 B,=147kN Aas.

E3F, =0, A, +¥8) -147=0 A, = 98TKN Ans.
+13F,=0; A,—%8)—-3=0 A, =940kN Ans.
Member BC:

ASE =0, 147-C,=0 C, = 147kN Ans.

+12F, =0, 3-6+C,=0 C, =3kN Ans.




