CE 371.01 - Structural Analysis I

Homework \#7
24. Using the moment-area theorems, determine the slope at point B and the deflection at point C. E and I are constant over the length of the member. Assume that the support at A is a roller and the support at B is a pin.

Sol:

By symmetry of loading, $\mathrm{A}_{\mathrm{Y}}=\mathrm{B}_{\mathrm{Y}}=10 \mathrm{k}$
From the M/EI diagram,

$$
\mathrm{A}_{1}=\mathrm{A}_{2}=\mathrm{A}_{3}=\mathrm{A}_{4}=-250 / \mathrm{EI}
$$

$\theta_{\mathrm{B}}: \quad \theta_{\mathrm{B}}\left(20^{\prime}\right)=\mathrm{t}_{\mathrm{A} / \mathrm{B}}=\mathrm{A}_{2}(10 / 3)+\mathrm{A}_{3}[10+2(10) / 3]$

$$
\begin{aligned}
\theta_{\mathrm{B}} & =\left[-250\left(10^{\prime}\right) / \mathrm{EI}^{*} 3-250\left(10^{\prime}+20^{\prime} / 3\right) / \mathrm{EI}\right] / 20^{\prime} \\
& =250 / \mathrm{EI} \quad \mathbb{\Omega}>
\end{aligned}
$$

$\mathrm{t}_{\mathrm{A} / \mathrm{B}}: \quad=\theta_{\mathrm{B}}\left(20^{\prime}\right)=250(20) / \mathrm{EI}=5000 / \mathrm{EI} \uparrow$
$\mathrm{t}_{\mathrm{C} / \mathrm{B}}: \quad \mathrm{t}_{\mathrm{C} / \mathrm{B}} \downarrow=\theta_{\mathrm{B}} * 2(10) / 3=250(20) / 3 * \mathrm{EI}=1667 / \mathrm{EI} \downarrow$

$$
\begin{aligned}
& \Delta^{\prime}(\operatorname{tanB} \longrightarrow \mathrm{pt} \mathrm{C}): \quad=1 / 2\left(\mathrm{t}_{\mathrm{A} / \mathrm{B}}\right)=2500 / \mathrm{EI} \uparrow \\
& \Delta_{\mathrm{C}}=\Delta^{\prime} \uparrow-\mathrm{t}_{\mathrm{C} / \mathrm{B}} \downarrow=2500 / \mathrm{EI}-1667 / \mathrm{EI}=833 / \mathrm{EI} \uparrow
\end{aligned}
$$

Summary:

$$
\begin{aligned}
& \theta_{\mathrm{B}}=250 / \mathrm{EI} \mathbb{\mathbb { }}> \\
& \Delta_{\mathrm{C}}=833 / \mathrm{EI} \uparrow
\end{aligned}
$$

Ans (Points 5)
Ans (Points 5)
25. Using the moment-area theorems, determine the slope just to the left and just to the right of the hinge at B. Also determine the deflection at D. Assume the beam is fixed at A and that C is a roller. E and I are constant over the length of the structure.

Sol:

Cut @ hinge: BCD

$$
\mathbb{N} \Sigma \mathrm{M}_{\mathrm{B}}=0=5 \mathrm{kN} \cdot \mathrm{~m}-\mathrm{C}_{\mathrm{Y}}(5 \mathrm{~m})
$$

$$
\mathrm{C}_{\mathrm{Y}}=1 \mathrm{kN} \uparrow
$$

Full Structure:

$$
\begin{aligned}
& +\Sigma \mathrm{F}_{\mathrm{Y}}=0=-\mathrm{A}_{\mathrm{Y}}+1 \\
& \mathrm{~A}_{\mathrm{Y}}=1 \mathrm{kN} \downarrow \\
& \text { (1) } \Sigma \mathrm{M}_{\mathrm{A}}=0=-\mathrm{M}_{\mathrm{A}}-5 \mathrm{kN} \cdot \mathrm{~m}+1 \mathrm{kN}(10 \mathrm{~m}) \\
& \mathrm{M}_{\mathrm{A}}=5 \mathrm{kN} \cdot \mathrm{~m} \mathbb{A}
\end{aligned}
$$

$\mathrm{A}_{1}=5^{2} / 2 * \mathrm{EI}=12.5 / \mathrm{EI}$
$\mathrm{A}_{2}=12.5 / \mathrm{EI}$
$\mathrm{A}_{3}=25 / \mathrm{EI}$
$\theta_{\mathrm{BL}}: \quad \theta_{\mathrm{BL}}=\theta_{\mathrm{B} / \mathrm{A}} \hat{\boldsymbol{\omega}}=\mathrm{A}_{1}=12.5 / \mathrm{EI}<\hat{\mathbb{J}}$
$\theta_{\mathrm{C}}: \quad \theta_{\mathrm{C}}=\left(\Delta_{\mathrm{B}}+\mathrm{t}_{\mathrm{B} / \mathrm{C}}\right) / 5 \mathrm{~m}=\left[\mathrm{A}_{1}(2 * 5 / 3)+\mathrm{A}_{2}(2 * 5 / 3)\right] / 5 \mathrm{~m}$

$$
\begin{aligned}
& \theta_{\mathrm{C}}=12.5(2) /(3 * \mathrm{EI})+12.5(2) /(3 * \mathrm{EI})=16.67 \mathrm{EI} \curvearrowright \\
\theta_{\mathrm{BR}}: & \theta_{\mathrm{BR}}=\theta_{\mathrm{C}} \mathbb{A}>-\theta_{\mathrm{B} / \mathrm{C}} \neq>=16.67 / \mathrm{EI}-\mathrm{A} 2=16.67 / \mathrm{EI}-12.5 / \mathrm{EI}=4.17 / \mathrm{EI} \curvearrowright> \\
\Delta_{\mathrm{D}}: & \Delta_{\mathrm{D}}=\theta_{\mathrm{C}} \downarrow(5 \mathrm{~m})+\mathrm{t}_{\mathrm{D} / \mathrm{C}} \downarrow=16.67(5 \mathrm{~m}) / \mathrm{EI}+\mathrm{A}_{3}(5 \mathrm{~m}) / 2 \\
& \Delta_{\mathrm{D}}=16.67(5) /(\mathrm{EI})+25(5) /(2 * \mathrm{EI})=145.85 / \mathrm{EI} \downarrow
\end{aligned}
$$

Summary

$$
\begin{aligned}
& \theta_{\mathrm{L}}=12.5 / \mathrm{EI}<\mathbb{\vartheta} \\
& \theta_{\mathrm{BR}}=4.17 / \mathrm{EI} \mathbb{\wedge}> \\
& \Delta_{\mathrm{D}}=145.85 / \mathrm{EI} \downarrow
\end{aligned}
$$

Ans (Points 4)
Ans (Points 4)
Ans (Points 2)
26. Use the moment-area theorems and determine the value of a so that the slope at A is equal to zero. $E I$ is constant.

Sol:

Moment Area Theorems:

$$
\begin{aligned}
& \theta_{\mathrm{A}}=\left(\theta_{\mathrm{A} / \mathrm{C}}\right)_{1}=1 / 2(\mathrm{PL} / 4 \mathrm{EI})(\mathrm{L} / 2)=\mathrm{PL}^{2} / 16 \mathrm{EI} \\
& \left(\mathrm{t}_{\mathrm{B} / \mathrm{A}}\right)_{2}=1 / 2(-\mathrm{Pa} / \mathrm{EI})(\mathrm{L})(2 \mathrm{~L} / 3)=\mathrm{Pa}^{2} / 3 \mathrm{EI} \\
& \left(\theta_{\mathrm{A}}\right)_{2}=\mid\left(\mathrm{t}_{\mathrm{B} / \mathrm{A}}\right)_{2} / 2=\left(-\mathrm{PaL}{ }^{2} / 3 \mathrm{EI}\right) / \mathrm{L}=\mathrm{PaL} / 3 \mathrm{EI}
\end{aligned}
$$

Require, $\quad \theta_{\mathrm{A}}=0=\left(\theta_{\mathrm{A}}\right)_{1}-\left(\theta_{\mathrm{A}}\right)_{2}$

$$
0=\mathrm{PL}^{2} / 16 \mathrm{EI}-\mathrm{PaL} / 3 \mathrm{EI}
$$

$$
\mathrm{a}=3 \mathrm{~L} / 16
$$

Ans (Points 10)
27. Using the moment-area theorems, determine the horizontal and vertical components of displacement at C. Let $E=29,000$ ksi and $I=80$ in 4 for each member.

Sol:

$$
\not \ddagger^{\Sigma \mathrm{F}_{\mathrm{X}}=0 ;} \quad \mathrm{AX}-0.2(8)=0
$$

$$
\mathrm{A}_{\mathrm{X}}=1.6 \mathrm{k} \rightarrow
$$

$$
\omega \Sigma \mathrm{M}_{\mathrm{A}}=0 ; \quad-1.6(4)+\mathrm{M}_{\mathrm{A}}=0
$$

$$
\mathrm{M}_{\mathrm{A}}=6.4 \mathrm{k} . \mathrm{ft} \mathbb{V}
$$

$$
\mathrm{A}_{1}=64 / \mathrm{EI} \mathrm{kft}^{2}
$$

$$
\mathrm{A}_{2}=6.4(8) / 3 \mathrm{EI}=17.07 / \mathrm{EI}
$$

$\theta_{\mathrm{B}}=\mathrm{A}_{1}=64 / \mathrm{EI}<\boldsymbol{\wedge}$
$\Delta \mathrm{B}_{\mathrm{Y}}=\Delta \mathrm{C}_{\mathrm{Y}}=\mathrm{A}_{1}\left(5^{\prime}\right)=64(5) / \mathrm{EI}=320 / \mathrm{EI} \downarrow$

$$
\begin{aligned}
& \theta_{\mathrm{C} / \mathrm{B}}=\mathrm{A}_{2}=17.07 / \mathrm{EI} \curvearrowleft \\
& \mathrm{t}_{\mathrm{C} / \mathrm{B}}=\mathrm{A}_{2}(3 / 4)(8)=17.07(3)(2) / \mathrm{EI}=102.42 / \mathrm{EI} \\
& \theta_{\mathrm{B}}(8)=64(8) / \mathrm{EI}=512 / \mathrm{EI} \leftarrow \\
& \Delta \mathrm{C}_{\mathrm{X}}=(102.42+512) / \mathrm{EI}=614.42 / \mathrm{EI} \leftarrow \\
& \mathrm{EI}=29000 \mathrm{ksi}\left(80 \mathrm{in}^{4}\right)=2.32 \times 10^{6}{\mathrm{k} . \mathrm{in}^{2}} \\
& \Delta \mathrm{C}_{\mathrm{Y}}=320(1728) / 2.32 \times 10^{6} \mathrm{in}=0.24^{\prime \prime} \downarrow \\
& \Delta \mathrm{C}_{\mathrm{X}}=614.42(1728) / 2.32 \times 10^{6}=0.46^{\prime \prime} \leftarrow
\end{aligned}
$$

Summary:
$\Delta \mathrm{C}_{\mathrm{Y}}=0.24^{\prime} \downarrow$
$\Delta \mathrm{C}_{\mathrm{X}}=0.46 " \leftarrow$

Ans (Points 5)
Ans (Points 5)
28. Using the moment-area theorems, determine the slope at A and the deflection of B. The moment of inertia for each member is indicated in the figure, and $E=29,000 \mathrm{ksi}$. Assume A is a roller support and D is a pin support.

Sol:

M/EI

$$
+\Sigma \mathrm{F}_{Y} ; \quad \mathrm{A}_{Y}+\mathrm{D}_{Y}-5(8)
$$

By Symmetry:

$$
\mathrm{A}_{\mathrm{Y}}=\mathrm{D}_{\mathrm{Y}}=5(4)=20 \mathrm{k} \uparrow
$$

M/EI @centre-line: $\quad 5 * 8^{2} / 8 * E I=40 / E I ~ k f t$

$$
\mathrm{A} 1=\mathrm{A} 2=40(4)(2) / 3 * \mathrm{EI}=106.7 / \mathrm{EI}
$$

$\theta_{\mathrm{B}}=\mathrm{A}_{1}=106.7 / \mathrm{EI} \mathbb{A}$
$\theta_{\mathrm{C}}=106.7 / \mathrm{EI}_{\mathrm{BC}}{ }^{\mathbb{C}}>=\theta_{\mathrm{D}}$
$\Delta_{\mathrm{C}}=\theta_{\mathrm{D}}(12)=\Delta_{\mathrm{B}}=106.7(12) / \mathrm{EI}_{\mathrm{BC}}=1280 \mathrm{kft}^{3} / \mathrm{EI}_{\mathrm{BC}} \mathrm{kin}^{2}$
$\Delta_{\mathrm{B}}=1280(1728) /(29000 * 900)=0.085 " \longleftarrow$
$\theta_{\mathrm{A}}=\Delta_{\mathrm{B}} / 12^{\prime}=0.085^{\prime \prime} / 12\left(12^{\prime \prime}\right)=0.59 \times 10^{-3} \mathrm{rad} \AA>$
Summary:
$\Delta_{\mathrm{B}}=0.085^{\prime \prime} \longleftarrow$
$\theta_{\mathrm{A}}=0.59 \times 10^{-3} \mathrm{rad}<\mathbb{A}_{\text {or }} 33.7 \times 10^{-3}$ (degrees)

Ans (Points 5)
Ans (Points 5)

