CE 371 - Section 02

Homework No. 6 - Solutions

8-3

Determine the equations of the elastic curve for the beam using the x_{1} and x_{2} coordinates. Specify the slope at A and the maximum deflection. EI is constant

Sol:

For $\mathrm{M}_{1}(\mathrm{x})=\mathrm{Px}_{1}$
EI d ${ }^{2} v_{1} / d_{x_{1}}{ }^{2}=P x_{1}$
EI $\mathrm{dv}_{1} / \mathrm{dx}_{1}=\mathrm{Px}_{1}{ }^{2} / 2+\mathrm{C}_{1}$
$\mathrm{EIv}_{1}=\mathrm{Px}_{1}{ }^{2} / 6+\mathrm{C}_{1} \mathrm{x}_{1}+\mathrm{C}_{2}$

For $\mathrm{M}_{2}(\mathrm{x})=\mathrm{Pa}$
$\mathrm{EId}^{2} \mathrm{v}_{2} / \mathrm{dx}_{2}{ }^{2}=\mathrm{Pa}$
$\operatorname{EIdv}_{2} / \mathrm{dx}_{2}=\mathrm{Pax}_{2}+\mathrm{C}_{3}$
$\mathrm{EIv}_{2}=\mathrm{Pax}_{2}{ }^{2} / 2+\mathrm{C}_{3} \mathrm{x}_{2}+\mathrm{C}_{4}$

Boundary Conditions

$\mathrm{v}_{1}=0$ at $\mathrm{x}=0$
From eq. (2)
$\mathrm{C}_{2}=0$
Due to symmetry:
$\mathrm{dv}_{2} / \mathrm{dx}_{2}=0$ at $\mathrm{x}_{2}=\mathrm{L} / 2$
From eq.(3)
$0=\mathrm{PaL} / 2+\mathrm{C}_{3}$
$\mathrm{C}_{3}=-\mathrm{PaL} / 2$

Continuity conditions:
$\mathrm{v}_{1}=\mathrm{v}_{2}$ at $\mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{a}$
$\mathrm{Pa}^{3} / 6+\mathrm{C}_{1} \mathrm{a}=\mathrm{Pa}^{3} / 2-\mathrm{Pa}^{2} \mathrm{~L} / 2+\mathrm{C}_{4}$
$\mathrm{C}_{1} \mathrm{a}-\mathrm{C}_{4}=\mathrm{Pa}^{3} / 3-\mathrm{Pa}^{2} \mathrm{~L} / 2$
$\mathrm{dv}_{1} / \mathrm{dx}_{1}=\mathrm{dv}_{2} / \mathrm{dx}_{2}$ at $\mathrm{x}_{1}=\mathrm{x}_{2}=\mathrm{a}$
$\mathrm{Pa}^{2} / 2+\mathrm{C}_{1}=\mathrm{Pa}^{2}-\mathrm{PaL} / 2$
$\mathrm{C}_{1}=\mathrm{Pa}^{2} / 2-\mathrm{PaL} / 2$

Subtitute C_{1} into eq. (5)
$\mathrm{C}_{4}=\mathrm{Pa}^{3} / 6$
$\mathrm{dv}_{1} / \mathrm{dx}_{1}=\mathrm{P}\left(\mathrm{x}_{1}{ }^{2}+\mathrm{a}^{2}-\mathrm{aL}\right) / 2 E I$
$\theta_{\mathrm{A}}=\mathrm{dv}_{1} /\left.\mathrm{dx}_{1}\right|_{\mathrm{xl}=0} \quad=\mathrm{Pa}(\mathrm{a}-\mathrm{L}) / 2 \mathrm{EI}$
$\mathrm{v}_{1}=\mathrm{Px}_{1}\left\{\left(\mathrm{x}_{1}^{2}+3 \mathrm{a}(\mathrm{a}-\mathrm{L})\right\} / 6 \mathrm{EI}\right.$
$v_{2}=\operatorname{Pa}\left\{\left(3 x(x-L)+a^{2}\right\} / 6 E I\right.$
$\mathrm{v}_{\text {max }}=\left.\mathrm{v}_{2}\right|_{\mathrm{x}=\mathrm{L} / 2} \quad=\operatorname{Pa}\left(4 \mathrm{a}^{2}-3 \mathrm{~L}^{2}\right) / 24 \mathrm{EI}$
Ans (Points 3)

Ans (Points 3)

Ans (Points 3)
Ans (Point 1)

8-4

Determine the equations of the elastic curve for the beam using the x_{1} and x_{2} coordinates. Specify beam's maximum deflection. EI is constant

Prob, 8-4
Sol:

Slope and Elastic Curve

$E \operatorname{EId}^{2} \mathrm{v} / \mathrm{dx}^{2}=\mathrm{M}(\mathrm{x})$
For $\mathrm{M}\left(\mathrm{x}_{1}\right)=-\mathrm{Px}_{1} / 2$,
$\operatorname{EId}^{2} v_{1} / \mathrm{dx}^{2}{ }_{1}=-\mathrm{Px}_{1} / 2$
$E \operatorname{Idv} v_{1} / \mathrm{dx}_{1}=-\mathrm{Px}_{1}{ }^{2} / 4+\mathrm{C}_{1}$
$\mathrm{EIv}_{1}=-\mathrm{Px}_{1}{ }^{3} / 12+\mathrm{C}_{1} \mathrm{x}_{1}+\mathrm{C}_{2}$

For $\mathrm{M}\left(\mathrm{x}_{2}\right)=-\mathrm{Px}_{2}$,
$\mathrm{EId}^{2} \mathrm{v}_{2} / \mathrm{dx}_{2}{ }^{2}=-\mathrm{Px}_{2}$
$\operatorname{EIdv}_{2} / \mathrm{dx}_{2}=-\mathrm{Px}_{2}{ }^{2} / 2+\mathrm{C}_{3}$
$\mathrm{EIv}_{2}=-\mathrm{Px}_{2}{ }^{3} / 6=\mathrm{C}_{3} \mathrm{x}_{2}+\mathrm{C}_{4}$

Boundary Conditions:

$\mathrm{v}_{1}=0$ at $\mathrm{x}_{1}=0$

From eq.(2), $\quad \mathrm{C}_{2}=0$
$\mathrm{v}_{1}=0$ at $\mathrm{x}_{1}=\mathrm{L}$
From eq. (2)
$0=-\mathrm{PL}^{3} / 12+\mathrm{C}_{1} \mathrm{~L} \quad \mathrm{C}_{1}=\mathrm{PL}^{2} / 12$
$\mathrm{v}_{2}=0$ at $\mathrm{x}_{2}=\mathrm{L} / 2$

From eq. (4),
$0=-\mathrm{PL}^{3} / 48+\mathrm{LC}_{3} / 2+\mathrm{C}_{4}$

Continuity Conditions:

At $\mathrm{x}_{1}=\mathrm{L}$ and $\mathrm{x}_{2}=\mathrm{L} / 2, \mathrm{dv}_{1} / \mathrm{dx}_{1}=-\mathrm{dv}_{2} / \mathrm{dx}_{2}$
From eqs (1) and (3),
$-\mathrm{PL}^{2} / 4+\mathrm{PL}^{2} / 12=-\left(\mathrm{PL}^{2} / 8+\mathrm{C}_{3}\right)$
$\mathrm{C}_{3}=7 \mathrm{PL}^{2} / 24$
From eq. (5)
$\mathrm{C}_{4}=-\mathrm{PL}^{3} / 8$

The Slope:

Substitute the value of C_{1} into eq. (1)

$$
\begin{aligned}
& \mathrm{dv}_{1} / \mathrm{dx}_{1}=\mathrm{P}\left(\mathrm{~L}^{2}-3 \mathrm{x}_{1}^{2}\right) / 12 \mathrm{EI} \\
& \mathrm{dv}_{1} / \mathrm{dx}_{1}=0=\mathrm{P}\left(\mathrm{~L}^{2}-3 \mathrm{x}_{1}{ }^{2}\right) / 12 \mathrm{EI} \\
& \mathrm{x}_{1}=\mathrm{L} / \sqrt{ } 3
\end{aligned}
$$

The Elastic Curve:

Substitute the values of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} into eqs (2) and (4), respectively,
$\mathrm{v}_{1}=\mathrm{Px}_{1}\left(-\mathrm{x}_{1}{ }^{2}+\mathrm{L}^{2}\right) / 12 \mathrm{EI}$
$\mathrm{v}_{\mathrm{D}}=\left.\mathrm{v}_{1}\right|_{\mathrm{x} 1=\mathrm{L} / \sqrt{3}}=\mathrm{P}(\mathrm{L} / \sqrt{ } 3)\left(-\mathrm{L}^{2} / 3+\mathrm{L}^{2}\right) / 12 \mathrm{EI}=0.0321 \mathrm{PL}^{3} / \mathrm{EI}$
$\mathrm{v}_{2}=\mathrm{P}\left(-4 \mathrm{x}_{2}{ }^{3}+7 \mathrm{~L}^{2} \mathrm{x}_{2}-3 \mathrm{~L}^{3}\right) / 24 \mathrm{EI}$
$\mathrm{v}_{\mathrm{c}}=\left.\mathrm{V}_{2}\right|_{\mathrm{x}_{2}=0}=-\mathrm{PL}^{3} / 8 \mathrm{EI}$
Hence,
$\mathrm{v}_{\text {max }}=\mathrm{v}_{\mathrm{c}}=\mathrm{PL}^{3} / 8 \mathrm{EI}$

Ans (Points 4)

Ans (Points 4)

Ans (Points 2)

8-12

Use the moment- area theorems to determine the slope and deflection at C. EI is constant

Sol:

$\theta_{\mathrm{A}}=\left|\mathrm{t}_{\mathrm{B} / \mathrm{A}}\right| / 30$
$t_{B / A}=1 / 2(-225 / E I)(30)(10)=-33750 / E I$
$\theta_{\mathrm{A}}=1125 / \mathrm{EI}$
$\theta_{\mathrm{C} / \mathrm{A}}=1 / 2(-225 / \mathrm{EI})(30)+1 / 2(-225 / \mathrm{EI})(15)=-5062.5 / \mathrm{EI}=5062.5 / \mathrm{EI}$
$\theta_{\mathrm{C}}=\theta_{\mathrm{C} / \mathrm{A}}+\theta_{\mathrm{A}}$
$\theta_{\mathrm{C}}=5062.5 / \mathrm{EI}-1125 / \mathrm{EI}=3937.5 / \mathrm{EI}$
Ans (Points 5)

$$
\begin{aligned}
& \Delta_{\mathrm{C}}=\left|\mathrm{t}_{\mathrm{C} / \mathrm{A}}\right|-45 / 30\left|\mathrm{t}_{\mathrm{B} / \mathrm{A}}\right| \\
& \mathrm{t}_{\mathrm{C} / \mathrm{A}}=1 / 2(-225 / \mathrm{EI})(30(25)+1 / 2(-225 / \mathrm{EI})(15)(10)=-101250 / \mathrm{EI} \\
& \Delta_{\mathrm{C}}=101250 / \mathrm{EI}-45 / 30(33750 / \mathrm{EI})=50625 / \mathrm{EI}
\end{aligned}
$$

Ans (Points 5)

8-20

Use the moment- area theorems and determine the deflection at C and the slope of the beam at A, B and C . EI is constant.

Sol:

M/EI

$\begin{array}{lll}\mathrm{t}_{\mathrm{B} / \mathrm{A}}=1 / 2(-8 / \mathrm{EI})(6)(2)=-48 / \mathrm{EI} \\ \mathrm{t}_{\mathrm{C} / \mathrm{A}}=1 / 2(-8 / \mathrm{EI})(6)(3+2)+(-8 / \mathrm{EI})(3)(1.5)=-156 / \mathrm{EI} & \\ \Delta_{\mathrm{C}}=\left|\mathrm{t}_{\mathrm{C} / \mathrm{A}}\right|-9 / 6\left|\mathrm{t}_{\mathrm{B} / \mathrm{A}}\right|=156 / \mathrm{EI}-9(48) / 6 \mathrm{EI}=84 / \mathrm{EI} & & \\ \theta_{\mathrm{A}}=\left|\mathrm{t}_{\mathrm{B} / \mathrm{A}}\right| / 6=8 / \mathrm{EI} & \text { Ans } & \text { (Points 3) } \\ \theta_{\mathrm{B} / \mathrm{A}}=1 / 2(-8 / \mathrm{EI})(6)=-24 / \mathrm{EI}=24 / \mathrm{EI} & \text { Ans } & \text { (Points 3) } \\ \theta_{\mathrm{B}}=\theta_{\mathrm{B} / \mathrm{A}}+\theta_{\mathrm{A}} & & \\ \theta_{\mathrm{B}}=24 / \mathrm{EI}-8 / \mathrm{EI}=16 / \mathrm{EI} & & \\ \theta_{\mathrm{C} / \mathrm{A}}=1 / 2(-8 / \mathrm{EI})(6)+(-8 / \mathrm{EI})(3)=-48 / \mathrm{EI}=48 / \mathrm{EI} & \text { Ans } & \text { (Points 2) } \\ \theta_{\mathrm{C}}=\theta_{\mathrm{C} / \mathrm{A}}+\theta_{\mathrm{A}} & & \\ \theta_{\mathrm{C}}=48 / \mathrm{EI}-8 / \mathrm{EI}=40 / \mathrm{EI} & & \\ \end{array}$

8-24

Use the moment- area theorems and determine the slope at B and the displacement at C . The member is an A-36 steel structure Tee for which $\mathrm{I}=76.8 \mathrm{in}^{4}$.

Sol:

Moment Area Theorems:

Due to symmetry, the slope at midspan C is zero. Hence the slope at B is

$$
\begin{aligned}
\theta_{\mathrm{B}}=\left|\theta_{\mathrm{B} / \mathrm{C}}\right| & =1 / 2(7.50 / \mathrm{EI})(3)+2 / 3(6.75 / \mathrm{EI})(3) \\
& =24.75 \mathrm{kip} . \mathrm{ft}^{2} / \mathrm{EI} \\
& =24.75(144) /\left\{29\left(10^{3}\right)(76.8)\right\} \\
& =0.00160 \mathrm{rad}
\end{aligned}
$$

The displacement at C is

$$
\begin{aligned}
\Delta_{\mathrm{C}}=\left|\mathrm{t}_{\mathrm{A} / \mathrm{C}}\right| & =1 / 2(7.50 / \mathrm{EI})(3)(2 / 3)(3)+2 / 3(6.75 / \mathrm{EI})(3)(5 / 8)(3) \\
& =47.8125 \mathrm{kip} . \mathrm{ft}^{3} / \mathrm{EI} \\
& =47.8125(1728) /\left\{29\left(10^{3}\right)(76.8)\right\} \\
& =0.0371 \mathrm{in} \downarrow
\end{aligned}
$$

Ans (Points 5)

