CE 371- Structural Analysis I

Homework \#2: Solutions

5. 2-28

Determine the reactions at the smooth support A and pin support B . the connection at C is fixed.

Sol:

$$
\begin{array}{ll}
\checkmark+\Sigma \mathrm{M}_{\mathrm{B}}=0: & -1500(5)+\mathrm{F}_{\mathrm{A}}\left(\cos 60^{\circ}\right)(10)-\mathrm{F}_{\mathrm{A}}\left(\sin 60^{\circ}\right)(5)=0 \\
& \mathrm{~F}_{\mathrm{A}}=11,196.15 \mathrm{lb}=\mathbf{1 1 . 2} \mathbf{k} \quad \text { Ans } \\
\rightarrow+\Sigma \mathrm{F}_{\mathrm{X}}=0 ; & \begin{array}{l}
\mathrm{B}_{\mathrm{X}}-11,196.15\left(\sin 60^{\circ}\right)=0 \\
\\
\mathbf{B}_{\mathrm{X}}=\mathbf{9 . 7 0 k}
\end{array} \\
& \begin{array}{l}
\text { Ans } \\
\uparrow+\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{Y}}=0 ;
\end{array} \\
\begin{array}{l}
-\mathrm{B}_{\mathrm{Y}}-1500+11,196.15\left(\cos 60^{\circ}\right)=0 \\
\\
\mathbf{B}_{\mathrm{Y}}=\mathbf{4 . 1 0} \mathbf{k} \quad \text { Ans }
\end{array}
\end{array}
$$

(4 Points)

6. 2-29

The bulkhead $A D$ is subjected to both water and soil- backfill pressures. Assuming $A D$ is "pinned" to the ground at A, determine the horizontal and vertical reactions there and also the required tension in the ground anchor $B C$ necessary for equilibrium. The bulkhead has a mass of 800 kg .

Prob. 2-29

Sol:

$$
800(9.81)=7.848 \mathrm{KN}
$$

$$
\mathrm{F}=311.375 \mathrm{KN}=\mathbf{3 1 1} \mathbf{K N}
$$

Ans (4 Points)

Ans (4 Points)
Ans (3 Points)

Ans (3 Points)

$$
\begin{aligned}
& \xi+\Sigma M_{A}=0: \\
& A_{\mathrm{X}}=460 \mathrm{KN} \\
& \uparrow+\Sigma \mathrm{F}_{\mathrm{Y}}=0 ; \\
& \mathrm{A}_{\mathrm{Y}}-7.848=0 \\
& A_{Y}=7.85 K N
\end{aligned}
$$

7. 2-34

Determine the reactions at A, B, and E. Assume A and B are roller supported.

Prob. 2-34

Sol:

Member CD:

$$
\begin{aligned}
\triangle V_{C}+\Sigma M_{C}=0: & 2400(4)-D_{Y}(6)=0 \\
& D_{Y}=1600 \mathrm{lb} \\
\uparrow+\Sigma F_{Y}=0 ; & C_{Y}-2400+1600=0 \\
& C_{Y}=800 \mathrm{lb}
\end{aligned}
$$

Member ABC:
$\xi+\Sigma \mathrm{M}_{\mathrm{B}}=0$:
$-A_{Y}(8)+2000(4)-800(4)=0$
$A_{Y}=6001 \mathrm{~b}$
Ans
(2 Points)
$\uparrow+\Sigma F_{Y}=0 ;$
$B_{Y}+600-2000-800=0$
$B_{Y}=2200 \mathrm{lb}$
Ans
(2 Points)
$\xrightarrow{+} \boldsymbol{\Sigma}_{\mathrm{X}}=0$;
$C_{X}=0$
Member CD:
$\xrightarrow{+\boldsymbol{\Sigma}} \mathrm{F}_{\mathrm{X}}=0$;
$\mathrm{D}_{\mathrm{X}}=0$

Member DE:

$\xrightarrow[\longrightarrow]{+\boldsymbol{\Sigma}} \mathrm{F}_{\mathrm{X}}=0 ;$
$\uparrow+\boldsymbol{\Sigma} \mathrm{F}_{\mathrm{Y}}=0 ;$
$\mathbf{E}_{\mathrm{X}}=\mathbf{0}$
$E_{Y}-8000-1600=0$
$\mathrm{E}_{\mathrm{Y}}=9600 \mathrm{lb}$
$\xi+\Sigma M_{E}=0 ;$
$-\mathrm{M}_{\mathrm{E}}+8000(5)+1600(10)=0$
$\mathbf{M}_{\mathrm{E}}=56000 \mathrm{lb} . \mathrm{ft}$

Ans

Ans

Ans
(1 Point)
(2 Points)
(3 Points)

8. 2-38

Determine the reactions at the supports A, C, and D, B is pinned.

Prob. 2-38

Sol:

(a)

(b)

From FBD (b):

$$
\begin{array}{ll}
乌+\Sigma \mathrm{M}_{\mathrm{B}}=0 ; & \mathrm{C}_{\mathrm{Y}}(11)-15(5)=0 \\
& \mathbf{C}_{\mathbf{Y}}=\mathbf{6 . 8 2 k}
\end{array}
$$

Ans (2 Points)

$$
\xrightarrow{+\Sigma} \mathrm{F}_{\mathrm{X}}=0
$$

$$
B_{X}=0
$$

(1 Point)

From FBD (a)

$$
\begin{aligned}
& \xi^{+\Sigma \mathrm{M}_{\mathrm{A}}=0 ;} \\
& \mathrm{D}_{\mathrm{X}}(8)-8.182(10)-20(5)=0 \\
& \mathrm{D}_{\mathrm{X}}=22.7 \mathrm{k} \\
& \text { Ans (2 Points) } \\
& \hat{+} \boldsymbol{\Sigma} \mathrm{F}_{\mathrm{Y}}=0 \text {; } \\
& \mathrm{A}_{\mathrm{Y}}-20-8.182=0 \\
& A_{Y}=28.2 \mathrm{k} \\
& \text { Ans (2 Points) } \\
& \stackrel{+\boldsymbol{\Sigma}}{\boldsymbol{F}} \mathrm{F}=0 ; \\
& \mathrm{A}_{\mathrm{X}}-22.73=0 \\
& A_{X}=22.73=22.7 k
\end{aligned}
$$

