1. 1-2

A building wall consists of 12-in. clay- brick and 2×4 unplastered woodstuds on both sides. If the wall is 8 ft high, determine the load in pounds per foot length of wall that it exerts on the floor.

Prob. 1-2

Using the data in Table 1-3,
Minimum Design Dead Load for 12- in clay brick $\quad=115 \mathrm{psf}$
Therefore, for 8 ft high wall
Dead Load for 12-in clay brick
$=115 \mathrm{psf} \times 8 \mathrm{ft} \quad=920 \mathrm{psf}$

- 4 Points

Minimum Design Dead Load for
2 x 4 unplastered Woodstuds
For both sides,
For 8 ft high wall
Therefore, Total Design Dead load
$=4 \mathrm{psf}($ From Table 1-3)
$=2(4) \mathrm{psf} \quad=8 \mathrm{psf}$
$=8 \mathrm{ft}(8 \mathrm{psf}) \quad=64 \mathrm{psf}$

- 4 Points
$=920 \mathrm{psf}+64 \mathrm{psf}$
$=984 \mathrm{lb} / \mathrm{ft}$ Ans

2. 1-8

The second floor of a light manufacturing building is constructed from a 5 - in. thick stone concrete slab with an added 4 - in. cinder concrete fill as shown. If the suspended ceiling of the first floor consists of metal lath and gypsum plaster, determine the dead load for design in pounds per square foot of floor area.

Prob. 1-8

Sol:

Using the data in Table 1-3,
Minimum Design Load for stone concrete, per inch

$$
\begin{aligned}
& =12 \mathrm{psf} \\
& =12 \times 5 \quad=60 \mathrm{psf}
\end{aligned}
$$

Minimum Design Dead Load for
cinder concrete fill, per inch
$=9 \mathrm{psf}$
For 4-in. cinder fill, Design Dead Load $=9 \times 4=36 \mathrm{psf}$

Minimum Design Dead Load for suspended metal
lath and gypsum
$=10 \mathrm{psf}$

Total Design Dead Load
$=60 \mathrm{psf}+36 \mathrm{psf}+10 \mathrm{psf}$
$=106 \mathrm{lb} / \mathrm{ft}^{2}$ Ans

3. $\mathbf{2 - 1 8}$

Determine the reactions on the beam. The support at B can be assumed as a roller.

Prob. 2-18

Sol:

Resolving into x and y components and summing moments about A ,

$$
\begin{array}{lll}
\left(\begin{array}{l}
\text { M }
\end{array}=0 ;\right. & 5(5)+15(7.5)(3 / 5)-25\left(\mathrm{~B}_{\mathrm{y}}\right)=0 & --3 \text { Points } \\
& \mathbf{B}_{\mathbf{y}}=\mathbf{3 . 7 0} \mathbf{k} \quad \text { Ans } & -1 \text { Point } \\
\xrightarrow{+} \Sigma \mathrm{F}_{\mathrm{X}}=0 ; & \mathrm{A}_{\mathrm{X}}-(4 / 5)(7.5)=0 & -2 \text { Points } \\
& \mathbf{A}_{\mathbf{x}}=\mathbf{6 . 0 0} \mathbf{k} \quad \text { Ans } & -1 \text { Point } \\
+\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0 ; & \mathrm{A}_{\mathrm{y}}+\mathrm{B}_{\mathrm{y}}-5-(3 / 5)(7.5)=0 & -2 \text { Points } \\
& \mathbf{A}_{\mathbf{y}}=\mathbf{5 . 8 0} \mathbf{k} \quad \text { Ans } & -1 \text { Point }
\end{array}
$$

4. 2-23

Determine the vertical reactions at the supports A and B. Assume A is a roller and B is a pin.

Prob. 2-23

Sol:

Resultant Forces:

1) $50 \times 20 \quad=1000 \mathrm{lb}$ acts 10 ft from right.

- 1 Point

2) $(1 / 2)(30)(20)=300 \mathrm{lb}$ acts 6.67 ft from right.

- 1 Point
$\left\{\begin{array}{l} \\ +\Sigma M_{B}=0 ;\end{array}\right.$
$300(6.67)+1000(10)+200(23)+200(28)-\mathrm{A}_{\mathrm{y}}(20)=0$

$$
A_{y}=1110.05 \mathrm{lb}=1.11 \mathrm{k}
$$

$$
\begin{aligned}
& +\Sigma \mathrm{F}_{\mathrm{X}}=0 \\
& +\uparrow \Sigma \mathrm{F}_{\mathrm{y}}=0
\end{aligned}
$$

Ans

- 1 Point
$B_{x}=0$
Ans
- 2 Points
$200+200+1000+300-1110.05-\mathrm{B}_{\mathrm{y}}=0$
- 2 Points
$B_{y}=589.95 \mathrm{lb}=590 \mathrm{lb} \quad$ Ans

