5-19. Two wrenches are used to tighten the pipe. If $P=$ 300 N is applied to each wrench, determine the maximum torsional shear stress developed within regions $A B$ and $B C$. The pipe has an outer diameter of 25 mm and inner diameter of 20 mm . Sketch the shear stress distribution for both cases.

Internal Loadings: The internal torque developed in segments $A B$ and $B C$ of the pipe can be determined by writing the moment equation of equilibrium about the x axis by referring to their respective free - body diagrams shown in Figs. a and b.
$\Sigma M_{x}=0 ; T_{A B}-300(0.25)=0$

$$
T_{A B}=75 \mathrm{~N} \cdot \mathrm{~m}
$$

And
$\Sigma M_{x}=0 ; T_{B C}-300(0.25)-300(0.25)=0 \quad T_{B C}=150 \mathrm{~N} \cdot \mathrm{~m}$

Allowable Shear Stress: The polar moment of inertia of the pipe is $J=\frac{\pi}{2}\left(0.0125^{4}-0.01^{4}\right)=22.642\left(10^{-9}\right) \mathrm{m}^{4}$.
$\left(\tau_{\max }\right)_{A B}=\frac{T_{A B} c}{J}=\frac{75(0.0125)}{22.642\left(10^{-9}\right)}=41.4 \mathrm{MPa}$
Ans.
$\left(\tau_{A B}\right)_{\rho=0.01 \mathrm{~m}}=\frac{T_{A B} \rho}{J}=\frac{75(0.01)}{22.642\left(10^{-9}\right)}=33.1 \mathrm{MPa}$
$\left(\tau_{\max }\right)_{B C}=\frac{T_{B C} c}{J}=\frac{150(0.0125)}{22.642\left(10^{-9}\right)}=82.8 \mathrm{MPa}$
Ans.
$\left(\tau_{B C}\right)_{\rho=0.01 \mathrm{~m}}=\frac{T_{B C} \rho}{J}=\frac{150(0.01)}{22.642\left(10^{-9}\right)}=66.2 \mathrm{MPa}$
The shear stress distribution along the radial line of segments $A B$ and $B C$ of the pipe is shown in Figs. c and d, respectively.

(C)
 is
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
*5-20. Two wrenches are used to tighten the pipe. If the pipe is made from a material having an allowable shear stress of $\tau_{\text {allow }}=85 \mathrm{MPa}$, determine the allowable maximum force \mathbf{P} that can be applied to each wrench. The pipe has an outer diameter of 25 mm and inner diameter of 20 mm .

Internal Loading: By observation, segment $B C$ of the pipe is critical since it is subjected to a greater internal torque than segment $A B$. Writing the moment equation of equilibrium about the x axis by referring to the free-body diagram shown in Fig. a, we have
$\Sigma M_{x}=0 ; T_{B C}-P(0.25)-P(0.25)=0 \quad T_{B C}=0.5 P$

Allowable Shear Stress: The polar moment of inertia of the pipe is $J=\frac{\pi}{2}\left(0.0125^{4}-0.01^{4}\right)=22.642\left(10^{-9}\right) \mathrm{m}^{4}$ $\tau_{\text {allow }}=\frac{T_{B C} c}{J} ; \quad 85\left(10^{6}\right)=\frac{0.5 P(0.0125)}{22.642\left(10^{-9}\right)}$

$$
P=307.93 \mathrm{~N}=308 \mathrm{~N}
$$

Ans.

5-22. The solid shaft is subjected to the distributed and concentrated torsional loadings shown. Determine the required diameter d of the shaft to the nearest mm if the allowable shear stress for the material is $\tau_{\text {allow }}=50 \mathrm{MPa}$.

The internal torque for segment $B C$ is constant $T_{B C}=1200 \mathrm{~N} \cdot \mathrm{~m}$, Fig. a. However, the internal torque for segment $A B$ varies with x, Fig. b.

$$
T_{A B}-2000 x+1200=0 \quad T_{A B}=(2000 x-1200) \mathrm{N} \cdot \mathrm{~m}
$$

For segment $A B$, the maximum internal torque occurs at fixed support A where $x=1.5 \mathrm{~m}$. Thus,

$$
\left(T_{A B}\right)_{\max }=2000(1.5)-1200=1800 \mathrm{~N} \cdot \mathrm{~m}
$$

Since $\left(T_{A B}\right)_{\max }>T_{B C}$, the critical cross-section is at A. The polar moment of inertia of the rod is $J=\frac{\pi}{2}\left(\frac{d}{2}\right)^{4}=\frac{\pi d^{4}}{32}$. Thus,

$$
\tau_{\text {allow }}=\frac{T c}{J} ; \quad 50\left(10^{6}\right)=\frac{1800(d / 2)}{\pi d^{4} / 32}
$$

$$
d=0.05681 \mathrm{~m}=56.81 \mathrm{~mm}=57 \mathrm{~mm}
$$

Ans.
 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6-3. The engine crane is used to support the engine, which has a weight of 1200 lb . Draw the shear and moment diagrams of the boom $A B C$ when it is in the horizontal position shown.

$$
\begin{aligned}
& C+\Sigma M_{A}=0 ; \quad \frac{4}{5} F_{A}(3)-1200(8)=0 ; \quad F_{A}=4000 \mathrm{lb} \\
& +\uparrow \Sigma F_{y}=0 ; \quad-A_{y}+\frac{4}{5}(4000)-1200=0 ; \quad A_{y}=2000 \mathrm{lb} \\
& +\Sigma F_{x}=0 ; \quad A_{x}-\frac{3}{5}(4000)=0 ; \quad A_{x}=2400 \mathrm{lb}
\end{aligned}
$$

*6-4. Draw the shear and moment diagrams for the cantilever beam.

The free-body diagram of the beam's right segment sectioned through an arbitrary point shown in Fig. a will be used to write the shear and moment equations of the beam.
$+\uparrow \Sigma F_{y}=0 ; \quad V-2(2-x)=0 \quad V=\{4-2 x\} \mathrm{kN}$,
$C+\Sigma M=0 ;-M-2(2-x)\left[\frac{1}{2}(2-x)\right]-6=0 \quad M=\left\{-x^{2}+4 x-10\right\} \mathrm{kN} \cdot \mathrm{m},(2)$
The shear and moment diagrams shown in Figs. b and c are plotted using Eqs. (1) and (2), respectively. The value of the shear and moment at $x=0$ is evaluated using Eqs. (1) and (2).

$$
\begin{aligned}
& \left.V\right|_{x=0}=4-2(0)=4 \mathrm{kN} \\
& \left.M\right|_{x=0}=[-0+4(0)-10]=-10 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

(a)

(C)
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6-18. Draw the shear and moment diagrams for the beam, and determine the shear and moment throughout the beam as functions of x.

Support Reactions: As shown on FBD.

Shear and Moment Function:

For $0 \leq x<6 \mathrm{ft}$:

$$
\begin{array}{cc}
+\uparrow \Sigma F_{y}=0 ; & 30.0-2 x-V=0 \\
V=\{30.0-2 x\} \text { kip } \\
C+\Sigma M_{N A}=0 ; & M+216+2 x\left(\frac{x}{2}\right)-30.0 x=0 \\
M=\left\{-x^{2}+30.0 x-216\right\} \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

For $6 \mathrm{ft}<x \leq 10 \mathrm{ft}$:

$$
\begin{array}{r}
+\uparrow \Sigma F_{y}=0 ; \quad V-8=0 \quad V=8.00 \mathrm{kip} \\
\varsigma+\Sigma M_{N A}=0 ; \quad-M-8(10-x)-40=0 \\
M=\{8.00 x-120\} \mathrm{kip} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

Ans.

Ans.

6-19. Draw the shear and moment diagrams for the beam.

6-30. Draw the shear and moment diagrams for the compound beam.

Support Reactions:

From the FBD of segment $A B$

$$
\begin{array}{ccc}
\zeta+\Sigma M_{B}=0 ; & 450(4)-A_{y}(6)=0 & A_{y}=300.0 \mathrm{lb} \\
+\uparrow \Sigma F_{y}=0 ; & B_{y}-450+300.0=0 & B_{y}=150.0 \mathrm{lb} \\
\text { + } \Sigma F_{x}=0 ; & B_{x}=0 &
\end{array}
$$

From the FBD of segment $B C$

$$
\begin{array}{cc}
C+\Sigma M_{C}=0 ; & 225(1)+150.0(3)-M_{C}=0 \\
& M_{C}=675.0 \mathrm{lb} \cdot \mathrm{ft} \\
+\uparrow \Sigma F_{y}=0 ; & C_{y}-150.0-225=0 \quad C_{y}=375.0 \mathrm{lb} \\
+\Sigma F_{x}=0 ; & C_{x}=0
\end{array}
$$

Shear and Moment Diagram: The maximum positive moment occurs when $V=0$.

$$
\begin{gathered}
+\uparrow \Sigma F_{y}=0 ; \quad 150.0-12.5 x^{2}=0 \quad x=3.464 \mathrm{ft} \\
\varsigma+\Sigma M_{N A}=0 ; \quad 150(3.464)-12.5\left(3.464^{2}\right)\left(\frac{3.464}{3}\right)-M_{\max }=0 \\
M_{\max }=346.4 \mathrm{lb} \cdot \mathrm{ft}
\end{gathered}
$$

 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6-42. Draw the shear and moment diagrams for the compound beam.

Support Reactions:

From the FBD of segment $A B$

$$
\begin{array}{lll}
C+\Sigma M_{A}=0 ; & B_{y}(2)-10.0(1)=0 & B_{y}=5.00 \mathrm{kN} \\
+\uparrow \Sigma F_{y}=0 ; & A_{y}-10.0+5.00=0 & A_{y}=5.00 \mathrm{kN}
\end{array}
$$

From the FBD of segment $B D$

$$
\begin{array}{cc}
C+\Sigma M_{C}=0 ; & 5.00(1)+10.0(0)-D_{y}(1)=0 \\
+\uparrow \Sigma F_{y}=0 ; & C_{y}=5.00 \mathrm{kN} \\
& C_{y}=20.0 \mathrm{kN} \\
\xrightarrow{+} \Sigma F_{x}=0 ; & B_{x}=0
\end{array}
$$

From the FBD of segment $A B$

$$
\xrightarrow{\rightarrow} \Sigma F_{x}=0 ; \quad A_{x}=0
$$

Shear and Moment Diagram:

6-43. Draw the shear and moment diagrams for the beam. The two segments are joined together at B.

 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
*6-60. The beam is constructed from four boards as shown. If it is subjected to a moment of $M_{z}=16 \mathrm{kip} \cdot \mathrm{ft}$, determine the stress at points A and B. Sketch a three-dimensional view of the stress distribution.

$$
\begin{aligned}
\bar{y} & =\frac{2[5(10)(1)]+10.5(16)(1)+16(10)(1)}{2(10)(1)+16(1)+10(1)} \\
& =9.3043 \mathrm{in} .
\end{aligned}
$$

$I=2\left[\frac{1}{12}(1)\left(10^{3}\right)+1(10)(9.3043-5)^{2}\right]+\frac{1}{12}(16)\left(1^{3}\right)+16(1)(10.5-9.3043)^{2}$

$+\frac{1}{12}(1)\left(10^{3}\right)+1(10)(16-9.3043)^{2}=1093.07 \mathrm{in}^{4}$
$\sigma_{A}=\frac{M c}{I}=\frac{16(12)(21-9.3043)}{1093.07}=2.05 \mathrm{ksi}$
Ans.
$\sigma_{B}=\frac{M y}{I}=\frac{16(12)(9.3043)}{1093.07}=1.63 \mathrm{ksi}$

-6-61. The beam is constructed from four boards as shown. If it is subjected to a moment of $M_{z}=16 \mathrm{kip} \cdot \mathrm{ft}$, determine the resultant force the stress produces on the top board C.
$\bar{y}=\frac{2[5(10)(1)]+10.5(16)(1)+16(10)(1)}{2(10)(1)+16(1)+10(1)}=9.3043 \mathrm{in}$.
$I=2\left[\frac{1}{12}(1)\left(10^{3}\right)+(10)(9.3043-5)^{2}\right]+\frac{1}{12}(16)\left(1^{3}\right)+16(1)(10.5-9.3043)^{2}$

$+\frac{1}{12}(1)\left(10^{3}\right)+1(10)(16-9.3043)^{2}=1093.07 \mathrm{in}^{4}$
$\sigma_{A}=\frac{M c}{I}=\frac{16(12)(21-9.3043)}{1093.07}=2.0544 \mathrm{ksi}$

$\sigma_{D}=\frac{M y}{I}=\frac{16(12)(11-9.3043)}{1093.07}=0.2978 \mathrm{ksi}$
$\left(F_{R}\right)_{C}=\frac{1}{2}(2.0544+0.2978)(10)(1)=11.8 \mathrm{kip}$
Ans. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
*6-68. The rod is supported by smooth journal bearings at A and B that only exert vertical reactions on the shaft. Determine its smallest diameter d if the allowable bending stress is $\sigma_{\text {allow }}=180 \mathrm{MPa}$.

Allowable Bending Stress: The maximum moment is $M_{\max }=11.34 \mathrm{kN} \cdot \mathrm{m}$ as indicated on the moment diagram. Applying the flexure formula

$$
\begin{aligned}
\sigma_{\max }=\sigma_{\text {allow }} & =\frac{M_{\max } c}{I} \\
180\left(10^{6}\right) & =\frac{11.34\left(10^{3}\right)\left(\frac{d}{2}\right)}{\frac{\pi}{4}\left(\frac{d}{2}\right)^{4}}
\end{aligned}
$$

$$
d=0.08626 \mathrm{~m}=86.3 \mathrm{~mm}
$$

-6-69. Two designs for a beam are to be considered. Determine which one will support a moment of $M=$ $150 \mathrm{kN} \cdot \mathrm{m}$ with the least amount of bending stress. What is that stress?

Section Property:

For section (a)

$$
I=\frac{1}{12}(0.2)\left(0.33^{3}\right)-\frac{1}{12}(0.17)(0.3)^{3}=0.21645\left(10^{-3}\right) \mathrm{m}^{4}
$$

For section (b)

$$
I=\frac{1}{12}(0.2)\left(0.36^{3}\right)-\frac{1}{12}(0.185)\left(0.3^{3}\right)=0.36135\left(10^{-3}\right) \mathrm{m}^{4}
$$

Maximum Bending Stress: Applying the flexure formula $\sigma_{\max }=\frac{M c}{I}$
For section (a)

$$
\sigma_{\max }=\frac{150\left(10^{3}\right)(0.165)}{0.21645\left(10^{-3}\right)}=114.3 \mathrm{MPa}
$$

For section (b)

$$
\sigma_{\max }=\frac{150\left(10^{3}\right)(0.18)}{0.36135\left(10^{-3}\right)}=74.72 \mathrm{MPa}=74.7 \mathrm{MPa}
$$

Ans. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6-82. The reaction of the ballast on the railway tie can be assumed uniformly distributed over its length as shown. If the wood has an allowable bending stress of $\sigma_{\text {allow }}=$ 1.5 ksi , determine the required minimum thickness t of the rectangular cross sectional area of the tie to the nearest $\frac{1}{8} \mathrm{in}$.

Support Reactions: Referring to the free-body diagram of the tie shown in Fig. a, we have

$$
\begin{aligned}
+\uparrow \Sigma F_{y}=0 ; & w(8)-2(15)=0 \\
& w=3.75 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

Maximum Moment: The shear and moment diagrams are shown in Figs. b and c. As indicated on the moment diagram, the maximum moment is $\left|M_{\max }\right|=7.5 \mathrm{kip} \cdot \mathrm{ft}$.

Absolute Maximum Bending Stress:

$$
\sigma_{\max }=\frac{M c}{I} ; \quad 1.5=\frac{7.5(12)\left(\frac{t}{2}\right)}{\frac{1}{12}(12) t^{3}}
$$

$$
t=5.48 \mathrm{in}
$$

Use

$$
t=5 \frac{1}{2} \mathrm{in}
$$

(b)

(a)

Ans.

(c) exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
*6-132. The top plate is made of 2014-T6 aluminum and is used to reinforce a Kevlar 49 plastic beam. Determine the maximum stress in the aluminum and in the Kevlar if the beam is subjected to a moment of $M=900 \mathrm{lb} \cdot \mathrm{ft}$.

Section Properties:

$$
\begin{gathered}
n=\frac{E_{a l}}{E_{k}}=\frac{10.6\left(10^{3}\right)}{19.0\left(10^{3}\right)}=0.55789 \\
b_{k}=n b_{a l}=0.55789(12)=6.6947 \mathrm{in} . \\
\bar{y}=\frac{\sum \bar{y} A}{\sum A}=\frac{0.25(13)(0.5)+2[(3.25)(5.5)(0.5)]+5.75(6.6947)(0.5)}{13(0.5)+2(5.5)(0.5)+6.6947(0.5)} \\
=2.5247 \mathrm{in} . \\
I_{N A}=\frac{1}{12}(13)\left(0.5^{3}\right)+13(0.5)(2.5247-0.25)^{2} \\
\quad+\frac{1}{12}(1)\left(5.5^{3}\right)+1(5.5)(3.25-2.5247)^{2} \\
\quad+\frac{1}{12}(6.6947)\left(0.5^{3}\right)+6.6947(0.5)(5.75-2.5247)^{2}
\end{gathered}
$$

$$
=85.4170 \mathrm{in}^{4}
$$

Maximum Bending Stress: Applying the flexure formula

$$
\begin{aligned}
& \left(\sigma_{\max }\right)_{a l}=n \frac{M c}{I}=0.55789\left[\frac{900(12)(6-2.5247)}{85.4170}\right]=245 \mathrm{psi} \\
& \left(\sigma_{\max }\right)_{k}=\frac{M c}{I}=\frac{900(12)(6-2.5247)}{85.4168}=439 \mathrm{psi}
\end{aligned}
$$

Ans.

Ans. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

6-134. The member has a brass core bonded to a steel casing. If a couple moment of $8 \mathrm{kN} \cdot \mathrm{m}$ is applied at its end, determine the maximum bending stress in the member.
$E_{\mathrm{br}}=100 \mathrm{GPa}, E_{\mathrm{st}}=200 \mathrm{GPa}$.
$n=\frac{E_{b r}}{E_{s t}}=\frac{100}{200}=0.5$
$I=\frac{1}{12}(0.14)(0.14)^{3}-\frac{1}{12}(0.05)(0.1)^{3}=27.84667\left(10^{-6}\right) \mathrm{m}^{4}$
Maximum stress in steel:

$$
\left(\sigma_{s t}\right)_{\max }=\frac{M c_{1}}{I}=\frac{8\left(10^{3}\right)(0.07)}{27.84667\left(10^{-6}\right)}=20.1 \mathrm{MPa} \quad(\max)
$$

Ans.

Maximum stress in brass:

$$
\left(\sigma_{b r}\right)_{\max }=\frac{n M c_{2}}{I}=\frac{0.5(8)\left(10^{3}\right)(0.05)}{27.84667\left(10^{-6}\right)}=7.18 \mathrm{MPa}
$$

6-135. The steel channel is used to reinforce the wood beam. Determine the maximum stress in the steel and in the wood if the beam is subjected to a moment of $M=850 \mathrm{lb} \cdot \mathrm{ft} . E_{\mathrm{st}}=29\left(10^{3}\right) \mathrm{ksi}, E_{\mathrm{w}}=1600 \mathrm{ksi}$.

$$
\begin{aligned}
\bar{y} & =\frac{(0.5)(16)(0.25)+2(3.5)(0.5)(2.25)+(0.8276)(3.5)(2.25)}{0.5(16)+2(3.5)(0.5)+(0.8276)(3.5)}=1.1386 \mathrm{in} \\
I & =\frac{1}{12}(16)\left(0.5^{3}\right)+(16)(0.5)\left(0.8886^{2}\right)+2\left(\frac{1}{12}\right)(0.5)\left(3.5^{3}\right)+2(0.5)(3.5)\left(1.1114^{2}\right)
\end{aligned}
$$

Maximum stress in steel:

$$
+\frac{1}{12}(0.8276)\left(3.5^{3}\right)+(0.8276)(3.5)\left(1.1114^{2}\right)=20.914 \mathrm{in}^{4}
$$

$$
\left(\sigma_{\mathrm{st}}\right)=\frac{M c}{I}=\frac{850(12)(4-1.1386)}{20.914}=1395 \mathrm{psi}=1.40 \mathrm{ksi}
$$

Ans.

Maximum stress in wood:

$$
\begin{aligned}
\left(\sigma_{\mathrm{w}}\right) & =n\left(\sigma_{\mathrm{st}}\right)_{\max } \\
& =0.05517(1395)=77.0 \mathrm{psi}
\end{aligned}
$$

Ans. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
-6-137. If the beam is subjected to an internal moment of $M=45 \mathrm{kN} \cdot \mathrm{m}$, determine the maximum bending stress developed in the A-36 steel section A and the 2014-T6 aluminum alloy section B.

Here, $n=\frac{E_{a l}}{E_{s t}}=\frac{73.1\left(10^{9}\right)}{200\left(10^{9}\right)}=0.3655$. Thus, $b_{s t}=n b_{a l}=0.3655(0.015)=0.0054825 \mathrm{~m}$. The location of the transformed section is

$$
\begin{aligned}
\bar{y} & =\frac{\Sigma \bar{y} A}{\sum A}=\frac{0.075(0.15)(0.0054825)+0.2\left[\pi\left(0.05^{2}\right)\right]}{0.15(0.0054825)+\pi\left(0.05^{2}\right)} \\
& =0.1882 \mathrm{~m}
\end{aligned}
$$

The moment of inertia of the transformed section about the neutral axis is

$$
\begin{aligned}
I=\Sigma \bar{I}+A d^{2}= & \frac{1}{12}(0.0054825)\left(0.15^{3}\right)+0.0054825(0.15)(0.1882-0.075)^{2} \\
& +\frac{1}{4} \pi\left(0.05^{4}\right)+\pi\left(0.05^{2}\right)(0.2-0.1882)^{2} \\
= & 18.08\left(10^{-6}\right) \mathrm{m}^{4}
\end{aligned}
$$

Maximum Bending Stress: For the steel,

$$
\left(\sigma_{\max }\right)_{s t}=\frac{M c_{s t}}{I}=\frac{45\left(10^{3}\right)(0.06185)}{18.08\left(10^{-6}\right)}=154 \mathrm{MPa}
$$

Ans.

For the aluminum alloy,

$$
\left(\sigma_{\max }\right)_{a l}=n \frac{M c_{a l}}{I}=0.3655\left[\frac{45\left(10^{3}\right)(0.1882)}{18.08\left(10^{-6}\right)}\right]=171 \mathrm{MPa}
$$

Ans.
-6-141. The reinforced concrete beam is used to support the loading shown. Determine the absolute maximum normal stress in each of the A-36 steel reinforcing rods and the absolute maximum compressive stress in the concrete. Assume the concrete has a high strength in compression and yet neglect its strength in supporting tension.

$$
\begin{aligned}
& M_{\max }=(10 \mathrm{kip})(4 \mathrm{ft})=40 \mathrm{kip} \cdot \mathrm{ft} \\
& A_{s t}=3(\pi)(0.5)^{2}=2.3562 \mathrm{in}^{2} \\
& E_{s t}=29.0\left(10^{3}\right) \mathrm{ksi} \\
& E_{\text {con }}=4.20\left(10^{3}\right) \mathrm{ksi} \\
& A^{\prime}=n A_{s t}=\frac{29.0\left(10^{3}\right)}{4.20\left(10^{3}\right)}(2.3562)=16.2690 \mathrm{in}^{2} \\
& \Sigma \bar{y} A=0 ; \quad 8\left(h^{\prime}\right)\left(\frac{h^{\prime}}{2}\right)-16.2690\left(13-h^{\prime}\right)=0 \\
& h^{\prime 2}+4.06724 h-52.8741=0
\end{aligned}
$$

Solving for the positive root:

$$
h^{\prime}=5.517 \mathrm{in} .
$$

$$
\begin{aligned}
I & =\left[\frac{1}{12}(8)(5.517)^{3}+8(5.517)(5.517 / 2)^{2}\right]+16.2690(13-5.517)^{2} \\
& =1358.781 \mathrm{in}^{4}
\end{aligned}
$$

$$
\left(\sigma_{c o n}\right)_{\max }=\frac{M y}{I}=\frac{40(12)(5.517)}{1358.781}=1.95 \mathrm{ksi}
$$

Ans.

$$
\left(\sigma_{s t}\right)_{\max }=n\left(\frac{M y}{I}\right)=\left(\frac{29.0\left(10^{3}\right)}{4.20\left(10^{3}\right)}\right)\left(\frac{40(12)(13-5.517)}{1358.781}\right)=18.3 \mathrm{ksi}
$$

Ans.

