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ABSTRACT

Wang, Yu. Ph.D., Purdue University, August 2017. Learning Based Image Analysis
With Application In Dietary Assessment and Evaluation. Major Professors: Edward
J. Delp and Fengqing Zhu.

Mobile devices will transform the healthcare industry by increasing accessibility

to quality care and wellness management. Accurate methods to assess food and

nutrient intake are essential. We have developed a dietary assessment system, known

as the mobile Food Record (mFR) to automatically estimate food type, nutrients and

energy from a food image captured by a mobile device. Color information is of great

importance in our mFR system and it serves as a key feature to identify foods. Thus,

a preprocessing step including color correction and image deblurring is necessary to

ensure that we can utilize the image for the further analysis. We present an image

quality enhancement technique combining saliency based image deblurring and color

correction using LMS color space.

The accurate estimate of nutrients is essentially dependent on the correctly la-

belled food items and sufficiently well-segmented regions. Since food recognition also

largely relies on the interest region detection or segmentation, image segmentation

plays a critical role in our mFR system. We propose a generic segmentation method

that combines normalized cut and superpixels. Experimental results suggest that the

proposed method using multiple simple features is effective for food segmentation.

To achieve high classification accuracy in food images is challenging due to large

number of food categories, lighting and pose variations, background noise and occlu-

sion. Deep learning with big data has shown its dominance in various object detection

tasks. In this thesis, we compare deep features with the handcrafted features in terms

of classification performance and we also introduce a weakly supervised segmentation



xviii

method based on class activation maps using only the label of the input image to deal

with sparsity of ground-truth masks or bounding boxes. Furthermore, a 3-stage food

localization and identification technique using end-to-end deep networks is proposed.

Finally, we integrate contextual information into our mFR system and introduce the

personalized learning model to further improve the food recognition accuracy. The

result indicates that our contextual models are promising and further investigation is

warranted.



1

1. INTRODUCTION

1.1 Problem Formulation and Research Goals

The objective of the work is to provide a user-friendly application to record daily

food intake and improve the accuracy of dietary assessment by learning from different

sources of data. Traditional dietary assessment mainly relies on the written and orally

reported methods. It generally requires a nutritionist to lead and complete a survey.

In the modern society, such methods are considered inefficient and not feasible for

everyday dietary monitoring [1].

The ubiquitous mobile devices have gradually changed the landscape of healthcare

industry and research. Recent reports suggest that in 2015 nearly 66 percent of

American adults are smartphone owners and almost 20% of Americans rely on a

smartphone to stay connected to the world [2]. More and more companies start to

develop tools to help to monitor people’s health conditions. Smartphone with its

inherent capability of photography, light-load computation, and accessibility to the

Internet becomes the most popular tool for younger generations to keep track of their

fitness. For example, Tuingle [3], is designed to help users to record what they have

eaten and estimate calories based on users’ input. However, there are not many user-

friendly and scientifically verified applications that automatically analyze food intake

from pictures. Some studies [4, 5] highlights the importance of using eating occasion

images to record and estimate dietary intake versus classical handwritten approaches.

The Technology Assisted Dietary Assessment (TADA) system aims to provide

valuable insights for fitness monitoring as well as mounting intervention programs

for chronic diseases, such as diabetes. The TADA system, which includes a web

interface, a mobile application, and a backend image analysis server, is designed to

automatically estimate food type, volume, nutrients, and energy from a food image
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captured by a mobile device. The analysis process starts with capturing a pair of

before and after images of food and beverages consumed using the TADA mobile

application (available both on iOS and Android). These images are asynchronously

uploaded to our backend server whenever the Internet connection is established. The

users are instructed to include a fiducial marker while taking images. The fiducial

marker serves as a reference to the known dimension and color space [6–8]. On the

backend server, a sequence of image processing techniques, such as color correction,

image segmentation, is used to identify food and estimate the food portion [9–11].

Finally, the energy and nutrients of a food image are estimated based on the USDA

Food and Nutrient Database for Dietary Studies (FNDDS) [12,13].

One of the outstanding designs in the TADA system is that the automatic analysis

is based on a single image. It means no other forms of user input are necessary. On

the contrary, the approach described in [14] requires the user to take multiple pictures

of a meal scene. In addition, we made our mobile application so intuitive and easy

to use that even 3-year old child can take a good food image [15]. However, the idea

of putting as little burden on the user as possible leaves us various challenges. The

following part of this section will discuss those challenges in greater details. First of

(a) (b)

Fig. 1.1.: Images of foods with different cooking style.

all, there is no regulation on how to prepare foods. Thus, even the same food or dish



3

varies from time to time and person to person. Besides, diverse cooking style and

personal preference make similar foods or dishes look entirely different. For example,

some people prefer the steak with mushroom and onion on it while some prefer it

plain (see Figure 1.1). Secondly, various lighting conditions and different camera

(a) (b)

Fig. 1.2.: Images of foods taken in different lighting conditions.

sensors make food images more complicated. People may take pictures of food in

restaurants, at home or even outdoor. Lighting conditions have a huge impact on the

food appearances (see Figure 1.2). Even if we assume lighting conditions are exactly

same, different cameras may reproduce colors that are off the true tone. Thirdly, even

(a) (b)

Fig. 1.3.: Two examples of blurry food images.
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though we have implemented an image quality checker on the mobile phone, users

may still take and send blurry images (see Figure 1.3). There are cases where the

user may be reluctant to retake the picture of his/her meal or the image on the small

mobile telephone screen appears to be good enough.

Last but not the least, noisy background and occlusion by utensils or other objects

(a) (b)

Fig. 1.4.: Images of foods which are held in an opaque container or partly occluded

by utensil.

impose more challenges on finding robust segmentation methods to obtain the objects

of interest. Food and drinks in opaque containers are much harder to analyze. Two

examples of distracting utensils and opaque containers are illustrated in Figure 1.4.

1.2 Overview of Image-Based Dietary Assessment

In recent years, image-based “nutrition” systems and services have become in-

creasingly popular, especially the ones making use of the mobile devices. To some

extent, these systems are capable of taking images of foods eaten at different eating

occasions and using the images as part of a food diary to assist users in recording their

diets. These systems include but not limit to FoodLog [16], EButton [17], Tuingle [3],

FoodCam [18], DietCam [14]. DietCam [14] uses images acquired from multiple views

to do the analysis. FoodLog [16] provides both a mobile application and cloud service
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that allows users to record daily dietary intake by acquiring images of food. A user

must first identify the names and quantities of food items and then the nutrient val-

ues are estimated, which places a large portion of the dietary assessment on the user

(or on a human analyst). EButton is a wearable device with limited image capturing

and processing capabilities. It is particularly designed for the visually impaired indi-

viduals to record their diets. Due to the ubiquity and accessibility of smartphones,

it might hardly be an option for the others. Tuingle [3] can recognize food items

automatically, but it only works for images with a single food item and requires users

to manually input portion size to complete the energy and nutrition assessment.

Besides the aforementioned systems, extensive research and studies have been

conducted in the area of food image analysis. In 2009, the Pittsburgh Fast-Food

Image Dataset (PFID) [19], containing 4545 still images and 606 stereo image pairs

was released. The data was collected by obtaining three instances of 101 foods from

11 popular fast food chains and capturing images and videos in both restaurant

conditions and a controlled laboratory setting. The authors [19] proposed two baseline

recognition methods based on the PFID, and they used a Support Vector Machine

(SVM) to classify color and Scale Invariant Feature Transforms (SIFT) features. As

the combination of SVM and simple features performed poorly on the PFID, the

paper mainly discussed why the baseline approach failed and promoted the dataset.

A multi-kernel learning (MKL) based food recognition system was later intro-

duced [18]. The system used a multiple kernel SVM to integrate a color histogram

feature, a Gabor feature and a bag of SIFT features. T. Joutou et al. [18] reported

the classification accuracy of 61.34% for 50 kinds of foods. They also tested the

prototype system on 166 food images acquired in real-world condition and obtained

37.55% accuracy.

S. Yang et al. [20] proposed a food recognition method which was specialized for

American fast food such as hamburger, pizza, and tacos. They defined eight basic

food materials such as bread, beef and cheese, and recognized them and their relative

position in a food image. Finally, they classified images into one of 61 categories using
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detected materials and their relations. They achieve the 28.2% classification rate on

PFID. Zong et al. [21] also proposed a food recognition system employing SIFT

detector and Local Binary Pattern (LBP). They achieved the better classification

rate than Yang’s method [20] on PFID.

In 2014, M.M. Anthimopoulos et al. [22] proposed another food recognition ap-

proach based on an optimized bag of features (BoF). A dedicated dataset consisting

of roughly 5000 food images of 11 categories was created. The system achieved 78%

classification accuracy using a hierarchical k-means approach and a linear SVM. How-

ever, images from the dataset were acquired under strictly controlled conditions. Thus

the reported result does not reflect the real-world performance of the system.

In fact, all of the works assumed that one food image contained only one food

item, and the food item should occupy a major part of the image. However, we

cannot make such assumption in the real world. Y. Matsuda et al. [23] described a

two-step method to analyze multi-food images. Object detectors like a deformable

part model (DPM) [24], a circle detector and the JSEG region segmentation [25] were

first used to obtain candidate regions. Then similar to [18], MKL was applied on

each candidate region to classify a fusion of various hand-engineered features, such as

SIFT, Color-SIFT and histogram of oriented gradient (HoG). The method was tested

on a dataset containing 9060 single-food or multi-food images of 100 food classes.

The authors reported 55.8% Top 10 classification rate for multi-food images. In 2014,

Y. Kawano et al. [26] extended their work on multi-food image analysis by integrat-

ing Fisher Vectors and testing on a larger scale dataset i.e. UEC-FOOD256 dataset.

They achieved the 74.4% classification rate for the top 5 category candidates. In the

same year, another large-scale food dataset was introduced. The authors denoted the

dataset including 101,000 images of 101 food classes as “Food-101” [27]. Concomi-

tantly, a Random Forests (RF) based approach was proposed to mine discriminative

visual components, and it achieved an average accuracy of 50.76% on the Food-101

dataset. Some researchers [28, 29] focused on foods from restaurants, and they ana-

lyzed multiple features and classifiers which were more effective in their applications.
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As of 2015, deep learning has already shown its dominance on various computer vi-

sion tasks [30–32]. CNNs also gradually penetrates in the field of food image analysis.

Some works [33–35] used either an end-to-end deep neural network or deep features

with variations of SVM to obtain better results. In [33], the authors trained a CNN

on the Food101 dataset [27] with 101 food categories and used domain adaption to

improve the classification performance. [34] reports achieving the top 1 classification

accuracy, 78.77% and 67.57% on the UEC-FOOD100/256 dataset.

Due to the complexity of food images (e.g. occlusion and cluttered background),

food segmentation remains an open research problem. Most of the food classification

work mentioned above only deal with single food images. Thus image segmentation

is not necessary. For example, [28] focused on restaurant foods and utilize GPS infor-

mation to get restaurant menus. With the correct restaurant information, they can

readily map the detected dish to the corresponding nutrient table. In [23], ten types of

food with containers were examined using a deformable part model and a circle detec-

tor to constrain the food region of interest. Bettadapura et al. [29] used a hierarchical

segmentation method in their implementation. Im2Calories [35] is an end-to-end sys-

tem that utilizes multiple deep networks. In Im2Calories, GoogLeNet [36] was used

for classification tasks and DeepLab [37] was used for the semantic segmentation.

Lacking a large and multi-purpose food image dataset is another problem haunt-

ing the dietary assessment community. Before Food-101 and UEC-FOOD256 being

broadly adopted, every research group was creating and using its own dataset. There-

fore, sometimes the reported results are hardly comparable from group to group. More

efforts are definitely needed for creating large-scale food image datasets for both clas-

sification and segmentation [27, 35, 38, 39]. To deal with the sparsity of data for a

particular food, J. Zheng et al. [40] proposed a superpixel-based Linear Distance

Coding (LDC) framework. Their approach demonstrated a promising result in both

accuracy and robustness on a challenging small food image dataset where only 12

training images are available per category [40].
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We define portion size estimation as the process of determining how much food

(in cm3 or grams) is present in the food image. Food volume estimation (or portion

size estimation) is a challenging problem, since the food preparation process and the

way food is consumed can cause large variation in food shape and appearance. Many

existing image-based work on food volume estimation require either modifying the

mobile device such as 3D range finding [41], acquiring multiple images [42, 43], or

video [44] which is not desirable for users trying to collect information about their

diets and can contribute to poor compliance with these methods.

1.3 Contributions of This Thesis

In this thesis, we extend our previous work by introducing deblurring and color

correction in the preprocessing and proposing a personalized learning model to im-

prove classification accuracy as a postprocessing step. Color information is of great

importance in our mFR system and it serves as an essential feature to identify foods.

Thus, a preprocessing step including color correction and image deblurring is nec-

essary to ensure that we can utilize the image for the further analysis. We present

an image quality enhancement technique combining saliency based image deblurring

and color correction using LMS color space. We also propose a generic segmentation

method that combines normalized cut and superpixels to replace the segmentation

refinement scheme.

To achieve high classification accuracy in food images is challenging due to a

large number of food categories, lighting and pose variations, background noise and

occlusion. Deep learning with big data has shown its dominance in various object

detection tasks. In this thesis, we compare deep features with the handcrafted fea-

tures regarding classification performance, and we also introduce a weakly supervised

segmentation method based on class activation maps using only the label of the input

image to deal with the sparsity of ground-truth masks or bounding boxes. Further-
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more, a 3-stage food localization and identification technique using end-to-end deep

networks is proposed.

The main contributions of this thesis are listed as follows:

• We propose a polynomial model based color correction method using LMS color

space. The proposed method requires the fiducial marker present in the scene

and then it computes a color correction matrix based on the detected 11 colors

and the pre-measured ground-truth colors. Based on the experimental results,

it demonstrates more accuracy compared to other color correction models using

CIELAB or sRGB space.

• We introduce a de-blurring scheme using a saliency map that runs up to 5 times

faster than its counterpart. Since our users are required to include a fiducial

marker when they take pictures, it is reasonable to make use of its appearance.

From the testing results, the fiducial marker almost always is detected as a

salient region. And since it possesses visually recognizable features like corners,

edges and contrast color patches, we use the corresponding salient region to

estimate blur kernel.

• We propose a segmentation method based on the normalized cut (Ncut) and

superpixels. The idea is to mine higher level features from superpixels and

reduce the size of the affinity matrix in Ncut. The method relies on color

and texture features for fast computation and efficient use of memory. We

also introduce an object based segmentation evaluation method, especially for

multi-food images. Our method achieves competitive results using the Berkeley

Segmentation Dataset and outperforms some of the most popular techniques in

a food image dataset.

• Successful methods for object segmentation rely on a large amount of labeled

data on the pixel level. However, such training data are not yet available for food

images and expensive to obtain. We describe a weakly supervised convolutional
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neural network (CNN) which only requires image level annotation. We propose a

graph-based segmentation method which uses the class activation maps trained

on food datasets as a top-down saliency model. We evaluate the proposed

method for both classification and segmentation tasks. We achieve competitive

classification and segmentation accuracy compared to the previously reported

results.

• We investigate end-to-end CNN structures and train a dedicated food localizer

using a region proposal based network. We adopt the deformable convolutional

layer to improve food localization accuracy. Furthermore, we propose a three-

stage food analysis pipeline. Finally, we attack the proposed system using

adversarial examples and use them to investigate overfitting in the domain of

food images.

• We propose to incorporate temporal context to improve food classification

accuracy. We use recursive Bayesian estimation to achieve active learning from

users’ feedback through our mobile applications. Three auxiliary datasets were

created to simulate users’ dietary records in one month. We also propose a

context based image analysis system that integrates food co-occurrence pattern

and temporal context into a personalized learning model. Experimental results

showed the classification accuracy was improved by 15.56% on average compared

to the automatic image analysis without contextual information.

1.4 Publications Resulting From This Work

Journal Paper

1. Yu Wang, Fengqing Zhu, Carol J. Boushey, and Edward J. Delp. “Food

image segmentation and classification using deep networks” IEEE Journal of

Biomedical and Health Informatics, to submit, June 2017.
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2. Yu Wang, Ye He, Fengqing Zhu, Carol J. Boushey, and Edward J. Delp. ”Con-

text based image analysis with applications in dietary assessment and evalua-

tion” Multimedia Tools and Applications, under review, Nov 2016.

3. Carol J. Boushey, Edward J. Delp, Ziad Ahmad,Yu Wang, Sparkle M. Roberts,

and Lynn M. Grattan. “Dietary assessment of domoic acid exposure: What can

be learned from traditional methods and new applications for a technology as-

sisted device.” Harmful Algae, vol.57 pp.51-55, 2016.

Conference Paper

1. Yu Wang, Fengqing Zhu, Carol J. Boushey, and Edward J. Delp. “Weakly

supervised food image segmentation using class activation maps”, Proceedings of

the IEEE International Conference on Image Processing, to appear, September,

2017

2. Yu Wang, Shaobo Fang, Chang Liu, Fengqing Zhu, Deborah A Kerr, Carol

J Boushey, and Edward J Delp. “Food image analysis: the big data problem

you can eat!” Proceedings of Asilomar Conference on Signals, Systems, and

Computers, November 2016.

3. Yu Wang, Chang Liu, F. Zhu, C. J. Boushey, and E. J. Delp, “Efficient su-

perpixel based segmentation for food image analysis, Proceedings of the IEEE

International Conference on Image Processing, September 2016.

4. Yu Wang, Ye He, Fengqing Zhu, Carol J. Boushey, and Edward J. Delp. “The

use of temporal information in food image analysis,” New Trends in Image

Analysis and Processing - ICIAP 2015 Workshops, Lecture Notes in Computer

Science, Vol. 9281, Springer International, pp. 317-325, September 2015.
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“Mobile image based color correction using deblurring,” Proceedings of the
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2. OVERVIEW OF THE TADA SYSTEM

2.1 System Architecture

Over the past nine years, we have been investigating the use of images and the

associated meta-data to assess dietary intake. We have developed the Technology

Assisted Dietary Assessment System (TADA) to acquire and process food images [4,

9, 10] that a user takes of their meal before and after eating occasions.

As illustrated in Figure 2.1, the TADA system consists of three main components:

the TADA mobile applications, the backend server which is charge of analyzing the

uploaded images and hosting the frontend web interface, and the dedicated database

that manages images and other types of data.

The TADA system allows users to log their eating occasions using mobile phones.

Image processing and computer vision analysis methods are then used to determine

the food type, volume, the energy (kilocalories) and nutrients of the food [10,11,45,46].

The TADA system has been used for more than 14 scientifically implemented user

studies, including environments in the wild, by more than 800 users who have taken

more than 60,000 food images. For example, the Connecting Health and Technol-

ogy study [47, 48] was a six-month randomised controlled trial (RCT) in 247 young

adults (18-30 years). The study aimed to evaluate the effectiveness of tailored dietary

feedback and weekly text messaging to improve dietary intake of fruit, vegetables and

junk food over six months among a population-based sample of men and women (aged

18 to 30 years) [47, 48].

The system process starts with the user acquiring eating occasion images with

our mobile applications. The images and related meta-data including date, time,

geolocation and device model are sent to the server (step 1). The automatic analysis

for a pair of before and after images is mainly composed of image segmentation, food
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Fig. 2.1.: The architecture of the TADA system.

identification, contextual refinement and weight estimation (step 2 and step 3). After

the analysis is done on the server, the structured result including food labels and

positions are sent back to the user for review. The user can confirm and/or modify

the results (step 4 and step 5). The feedback from the user is stored in the database as

a potential groundtruth and is used to refine the previous image analysis results. As

a part of our database system, the USDA Food and Nutrient Database for Dietary

Studies (FNDDS) is used to estimate the energy and nutrient information given a

food label and weight (step 3 and 6). The database contains the most common foods

in the US, their weights, nutrient values, and food densities. Finally, these results

are displayed on the TADA web interface for the user and the healthcare community

(step 7 and 8). The user can keep track of his/her dietary history and the nutrient

professionals can utilize the system for dietary recommendations and planning.



15

2.2 User, Food and Image Oriented Database

To manage and store a large amount of images and meta-data uploaded to the

server, we have designed a database system as shown in Figure 2.1. The database

system is powered by PostgreSQL and was structured around three key elements

namely images, foods and users.

I-TADA is an image database that contains information related to eating occasion

images. It is composed of the paths of the original images, the relationship of before

and after meal image pairs, the users who acquired the images, the studies that the

images belong to and the specifications of the images. E-TADA is a user informa-

tion dataset that stores the personal information and data of the user studies. We

associate each participant with a specifc ID, thus E-TADA contains the IDs, some

personal information (e.g. date of birth and weight/height) and the studies which the

participants enroll. T-FNDDS is an extension of the FNDDS with visual descriptions

generated by the image analysis method and barcode information associated with the

packaged food items. These three databases are interconnected to provide a platform

for researchers to discover dietary patterns of the users.

2.3 Web Interface

A TADA web interface is the front-end that gives researchers access to the images

and various metadata in the database and provides the ability to upload images and

retrieve data of interest collectively.

Web.py framework was used to render the website and connect the web content

to our database. However, the web.py structure as we previously implemented was

insecure, redundant and hard to maintain.

We replace the Python-based web service with PHP, which not only improves

the security of the website but also is more efficient to maintain as we implement

a modular design. Figure 2.2 to Figure 2.4 showcase some examples of the PHP-

powered web interface.
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Fig. 2.2.: Internal website for E-TADA and I-TADA.

2.4 Mobile Applications

High-speed multimedia processors and data network capability make mobile de-

vices ideal as a data collection tool for dietary assessment. This has led to an increas-

ing demand in developing applications on mobile devices to help track dietary intake.

Using the iPhone as an example, according to MobiHealthNews’ report Consumer

Health Apps for Apples iPhone, there were more than 9,000 health applications in

July 2011 with 1,263 of them being diet-related. None of the current commercial

mobile applications indicate that the standard food composition databases are used.

While these applications represent a step forward towards improving dietary habits,

it is not obvious how they can be used by healthcare professionals for dietary assess-

ment. In this section, we introduce the design and usability of the TADA mobile

application.
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Fig. 2.3.: List of images from a study.

2.4.1 iOS

As one of most popular mobile system in US, the iOS version of the TADA mobile

application was first developed in 2008. The application has been validated with many

user studies [5, 47–50] and it uses scientifically verified food dataset [12]. Figure 2.5

shows the iOS user interface of the TADA application.
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Fig. 2.4.: Before and after images and associated information.

2.4.2 Android

Since 2014, lots of efforts have been put into the development of the Android

counterpart, as the Android system has some advantages over iOS and we simply

cannot ignore the Android users when we are expanding our user studies. One of the
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Fig. 2.5.: Main views of the TADA iOS application.

advantages of the Android system is that it is more open for developers to distribute

their applications for a longer term. At the beginning, the design of the TADA

Android application essentially follows the iOS prototype with some modifications

due to the Android API. Most recently, we have developed a new version which

focuses more on the material design and higher APIs.

Figure 2.6 illustrates the three main views of the Android user interface: Record,

Review and More. In the Record view, there are two large buttons with vivid back-

ground figures indicating the before and after eating functionality.

Whenever a user wants to record his/her eating occasion, he/she can complete the

image acquisition process by taking a pair of images before and after he/she finishes

the meal. As the image recording is most frequently used and is the key functionality

of the TADA application, we design the Record view with two buttons occupying the

majority of the screen, so that the user can quickly identify and tap on the correct

buttons. The Record view is also the default view after the application first launches.

The user can easily navigate to other views by tapping on the tab bar at the bottom

of the screen.

To assist the user in taking better images, we implemented a customized camera

view instead of using the camera application in the Android system. Once the user
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Fig. 2.6.: Main views of the TADA Android application.

clicks on either “before eating” or “after eating” button, the customized camera will

be launched (see Figure 2.7). Two most obvious features of the designed camera view

are the angle displayed at the top left corner and the image capture guideline. The

orientation sensors are used for obtaining the tilting angle of the device, which is

useful for estimating the camera positioning and food volume. The guideline turns

green when the angle is within the preferred range, i.e. between 45 degree and 60

degree; otherwise, it is red. Whenever ready, the user can click the “Snap It” button

to take an image.

An alert notification stating the tips of taking a good image is set to pop up

before acquiring an image (Figure 2.7(a)). These tips can be turned off later in the

user settings resided in the More view.

The user need to confirm saving the image he/she has taken by pressing the

“Use” button in Figure 2.8. As Figure 2.8 shows, a set of onboard image quality

check including the fiducial marker detection and the blur detection is running. After

the quality check is done, the user has an option to save the image anyway if it does

not pass the check. If it does, the image is automatically saved on the device and the

user interface will return to the Record view.
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(a) Tips

(b) Pose Guidelines

Fig. 2.7.: Image acquistion guide in the TADA Android application.

For each eating occasion, we not only save the image files but also write the

metadata of each eating occasion into a specific file with a .rec extension, or the REC

file. The REC file stores the device ID, the user ID, and the timestamp of the eating

occasion. If the user permits the application to use the location services, the GPS

information of each image is written into a file with .gps extension, or the GPS file.

If the user wants to use the embedded barcode scanner, the barcode information will

be saved to the BAR file. In the current implementation, we used the Zxing barcode

scanner and its user interface is shown in Figure 2.9.
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Fig. 2.8.: Image quality checking in the Preview view.

Fig. 2.9.: Barcode scanner in the TADA Android application.

Once the after eating image is captured and saved, the pair of images along with

the REC file, GPS file and BAR file are uploaded to the server. The background

uploading process is handled by the Android system. If the Internet connection is

not established or somehow broken, the uploading process will be paused. Once the
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connection is re-established, the data are sent asynchronously. To comply with the

RESTful framework, all the data are sent in a certain format under HTTPS protocol.

The Review view shown in the middle of Figure 2.6 is mainly a list of eating

occasions that have been analyzed on the backend server. The “Refresh” button on

the top right of the screen is for retrieving any available results from the server. Each

entry in the list of eating occasions is composed of a thumbnail of the before eating

image and its timestamp in an easily readable format. To ensure that the list scrolls

smoothly back and forth, the application asynchronously loads thumbnail images

and maps each entry to the corresponding before eating image. The user can start

reviewing an eating occasion by clicking on any entry in the list. The corresponding

before eating image is then displayed in landscape with the food labels/pins reflecting

the analysis results received from the server (see Figure 2.10(1)). The user can add,

remove, change and confirm any label/pin. If some labels are overlapping, the user

can zoom in up to 3 times to have a better view. We use different colors to display the

labels and pins, but we reserve the green color for the confirmed labels. Figure 2.10(1)

shows all the confirmed pins and labels in this case. To change, remove or confirm a

label, the user can tap on the label and then confirm, delete a label by using the tool

bar in the bottom of the search food view as shown in Figure 2.10(3). The Suggested

Food section lists top 4 food suggestions. If the correct label is not in the suggestions,

the user can search in the Complete Food List or use the search bar at the top of the

view (see Figure 2.10(4)). By clicking on the search bar, an Android search dialog

will show up. In the search dialog, each result occupies two lines of text. The first

line is the food name while the second line of text is a more detailed description of

the food. For instance, as shown in Figure 2.10(4), two types of diet coke are listed

in the search result. Whenever there is a missing label, the user can add a label by

drawing a contour and associate a food with it (see Figure 2.10(2)(6)). After the user

confirms all the modifications, the user feedback is sent to the server and saved in the

database. Such feedback can be potentially treated as the groundtruth information,

which is extremely important for building a personalized learning model.
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Fig. 2.10.: Image labeling in the review process.

The More view is the home for both user settings and researcher settings as shown

in Figure 2.6 on the right. The user’s preferences of using the camera guideline, the

tips and the background color are saved in the system level configuration (Figure 2.11).

The “Researcher settings” is a password-protected space, in which the user ID, the

server IP and three meal reminders can be set by authorized personnel (Figure 2.12).

As the Android system gradually updates, the TADA application is also evolving

to bring out a better user experience. Figure 2.13 shows some features developed for

newer versions of the Android system. For example, Figure 2.13(a) demonstrates a

material design for the Record view and the user can navigate between different views

by swiping. Figure 2.13(b) showcases the new camera view developed with a newer

camera API. A much cleaner Preview view is demonstrated in Figure 2.13(c).
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Fig. 2.11.: The interface for user settings.

Fig. 2.12.: The interface for researcher settings.



26

2.5 User Studies

The TADA system has been tested, validated and used globally by researchers,

dietitians and nutritionists for various purposes. We have more than 14 user studies

involving more than 800 users who acquired more than 60,000 food images under

controlled and community-dwelling conditions [47–49, 51, 52]. Most of our studies

showed that not only did we reduce the burden of collecting daily dietary food records

on users but we also allowed health care professionals to have real-time access to the

records.

(a) (b) (c)

Fig. 2.13.: (a) Material design of the Record view. (b) Newer camera API. (c) Cleaner

Preview view with faster image processing.

In [51] we studied the ability of adolescents aged 11-18 years to identify foods

in images of their meals 10-14h postprandial and estimate portion size. We showed

that the automated processes performed better at estimating portion size than the

adolescents. The TADA system examined the consumption of razor clam [52] with

respect to domoic acid consumption which can be toxic for humans. A study described

in [49] recruited 135 volunteers (78 adolescents, 57 adults) to use the mFR for one

or two meals under controlled conditions in order to evaluate the set of skills among
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adolescents and adults to use mFR and to compare their preference regarding to mFR.

The results show that most of the users are able to easily use the mFR, while the

adults were more likely than adolescents to remember to capture images and include

all foods and beverages in their images, but they were less efficient than adolescents

to capture a satisfactory image. In the Connecting Health and Technology (CHAT)

study [47, 48], 247 young adults aged 18-30 years participated in a 6-month study in

a randomized controlled trial (RCT). The study aimed to evaluate the effectiveness

of tailored feedback through the mFR to make dietary habit changes [47,48]. Result

shows that tailored dietary feedback have an important effect on reducing sugar-

sweetened beverages and energy dense nutrient poor foods such as fast food, as well

as reducing body weight in those who were overweight.

2.6 Crowdsourcing System

In 2008, J. Howe [53] defined “crowdsourcing” as the act of making a task normally

performed by a designated agent and outsourcing it to a large group of people. It

was also referred to as the wisdom of the crowd [54] and J. Howe further discussed

that the wisdom resides in how the crowd is used.

The Internet provides an ideal platform to distribute tasks and collect “wisdom”

from the crowd. For example, the web-based crowdsourcing platforms, such as Ama-

zons Mechanical Turk (MTurk), Freelancer, have shown their potentials in many

applications [55].

One of the most intriguing examples by the successful crowdsourcing is an online

game called “Foldit” [56] where players can design proteins on their computers in

search of the lowest energy structure. The game has helped researchers to create an

18-fold-more-active enzyme [57].

In the field of dietary assessment, some researchers have tried to use the crowd-

sourcing techniques to directly estimate the energy intake from images [58,59]. Plate-

Mate [59] is an end-to-end crowdsourcing system which uses MTurk to provide esti-
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mates of food intake and composition. The authors claimed the PlateMate system

achieved similar accuracy as a trained dietitian based on their evaluations. In [58], a

crowd was asked to provide a “healthiness” score based on food pictures acquired by a

mobile application. The study also demonstrates that the untrained raters can be as

effective as trained experts. However, it usually takes several hours for those crowd-

sourcing based systems to produce results, which might not be feasible for real-life

applications.

As deep learning becomes popular, the demand for large-scale image datasets has

risen. Many popular datasets, such as the ImageNet [60], the Common Objects in

Context dataset(COCO) [61], were created with the help of crowdsourcing. Here,

we describe the crowdsourcing system we have developed to contribute to building a

large-scale food image dataset and providing more and richer groundtruth (structured

labels, segmentation masks).

Figure 2.14 shows the web interface for users to access our system. The user IDs

and temporary passwords are generated for the first-time user.

Fig. 2.14.: CTADA crowdsourcing web interface.

Our crowdsourcing system has two main tasks. First, in the classification task,

a user is presented with an image of a certain food category and the user needs to

provide a binary answer (true or false), which indicates whether the displayed image

and the label are associated.
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Second, in the segmentation task, a user is asked to draw foreground/background

strokes on an image and categorize the region of interest. As shown in Figure 2.15,

the user should drag a bounding box on the original image and draw the strokes

with the supplied tools. The bounding box and strokes are used for getting an initial

segmentation mask. In Figure 2.16, two lists of food are available. The first list

contains some coarser food groups like beverages and fruits. The second one serves

as a finer categorization of the first option.
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Fig. 2.15.: CTADA segmentation task.
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(a) (b)

Fig. 2.16.: (a) Main food categories. (b) Sub food categories.
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3. MOBILE IMAGE BASED COLOR CORRECTION

USING DEBLURRING

3.1 Color Correction

3.1.1 Related Work on Color Calibration

Dietary intake, the process of determining what someone eats during the course of

a day, provides valuable insights for mounting intervention programs for prevention

of many chronic diseases such as obesity and cancer. Accurate methods and tools to

assess food and nutrient intake are essential for epidemiological and clinical research

on the association between diet and health.

Color information is of great importance in our dietary assessment system as

shown in Figure 2.1 and it serves as a key feature to identify foods [10, 11]. Thus, a

consistent color descriptor of an object is critical. The colors of an object recorded by

a camera depend mainly on three factors: illumination conditions in the scene (which

are unknown in most cases), object intrinsic surface properties and various photomet-

ric parameters (e.g., exposure time, white balancing, gamma correction) [62]. A real

world example is that the rendered colors of the same scene can be quite different

even with the same camera from slightly different angles. Some approaches seek to

overcome these problems by estimating illumination invariance color descriptors from

training images, including the RGB histogram, color moments, and C-SIFT [63, 64].

In [63], a combined set of color descriptors with invariance properties surpass the

performance of intensity based descriptors by 8% on category recognition.

An alternative approach to characterize the imaging properties is based on the

spectral response/sensitivity of the camera. If the camera spectral sensitivity is

known, then it is possible to estimate a relationship between the spectral sensitivity
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of the camera and the CIE color matching functions [65–68]. This approach, how-

ever, is not practical for common application because the spectral sensitivity of the

camera should be measured by using specialized devices, such as monochromators, or

radiance meters.

Our goal is to achieve color constancy under all kinds of lighting conditions so

that the color of food can be used as a proper classification feature. When we look

at an image acquired by a mobile phone camera, each pixel can be represented as

a function fi, where i is the color index (e.g. R, G, B). fi is mainly dependent on

three factors: the illuminant spectral power distribution I(λ), the surface spectral

reflectance S(λ) and the sensor spectral sensitivities Vi(λ).

fi(x, y, S) =

∫

I(λ)S(λ)Vi(λ)dλ, i = R,G,B (3.1)

The color sensor response form a vector F(S) = (fR(S), fG(S), fB(S)), which is also

referred as the RGB tristimulus (R,G,B). Suppose that two images have been ac-

quired from the same scene under different lighting conditions and cameras. For any

pixel in the two images,

RGB1 = F1(S)

RGB2 = F2(S)
(3.2)

Furthermore,

RGB1 = F1(S) = F1(F
−1
2 (RGB2)) (3.3)

We would like to be able to express explicitly such transformation, T = F1 ∗ F
−1
2 (·),

between an unknown illuminant and a reference. Many chromatic adaptation tech-

niques have been proposed to address this problem [69–71]. Since this is an ill-posed

inverse problem most of the proposed solutions lacks uniqueness and stability. It has

been shown that the universal best and the universal worst technique do not exist [72]:

the method that performs best for a specific image depends on the image content.

There are generally two ways of achieving color correction. The first approach

changes the overall colors in an image and is often used for colors other than neutrals

to appear correct or pleasing. Methods for this type of correction are generally known
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as gray balance, neutral balance or white balance [73, 74]. Gray world is one of the

most well-known gray balance methods [75, 76]. It is based on the assumption that

given an image with sufficient amount of color variations, the average value of the R,

G, and B components of the image should average to a common gray value. Another

opponent technique is known as the white patch, which assumes that the maximum

response in an image is caused by a perfect reflectance [77]. To combine both gray

world and white patch approaches, Alessandro and Carlo Gatta proposed Automatic

Color Equalization (ACE) in [78]. Their method extends the Retinex model of color

equalization, merging Retinex with the Gray world and the White Patch equalization

methods. Recently, the use of visual information automatically extracted from the

images gas been investigated. Moreno et al. [79] obtained memory colors for three

different objects (grass, snow and sky) using psychophysical experiments. They then

used a supervised image segmentation method to detect memory color objects to color

correct the image using a weighted Von Kries method. S. Bianco and R. Schettini [80]

investigated color statistics extracted from faces in a scene to estimate illuminants.

However, their results are largely based on the performance of the face detector and

the knowledge of the corresponding skin color.

The second approach is usually referred to as color calibration uses the image of a

reference chart for each set of acquisition conditions. Wang et al. [81] used a Munsell

ColorChecker as the reference target. They then picked 13 color patches to train

the parameters for the correction model. Adrian Ilie and Greg Welchin proposed a

two-phase calibration technique in [82], where a 24-sample GretagMacbeth [83]Col-

orChecker was set up in each image acquired by different cameras. The two-phase

method consists of an iterative closed-loop hardware calibration and software refine-

ment, which is argued to ensure color constancy across multiple imaging devices.

From extensive studies the current TADA system has adopted the concept of using

a reference target [7,84]. Feedback from the participants in our studies indicated that

it would be easy to use a credit card-sized fiducial marker due to the convenient
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Fig. 3.1.: An example of the color fiducial marker used in the TADA System.

incorporation into their current lifestyles [5, 51]. Thus, we decided to use a compact

checkerboard pattern to for color calibration (see Figure 3.1). The color checkerboard

was designed to have the dimension of 7 × 6 cm2. The color patches were chosen to

cover the full color spectrum.

3.1.2 Proposed Method

In this section, we describe the selection of the color space we use for color correc-

tion and then compare our method to our previous work [7]. Color correction is done

on the backend server, which mainly consists of color extraction from the checker-

board and color mapping to the D65 reference and matching the acquired image to

the reference lighting condition [7]. In this chapter, we investigate polynomial models

using three different color spaces and compare them to our previous work.

3.1.3 Color Space Models

A color space is a mathematical model used to describe how colors can be inter-

preted as tuples, typically of three or four elements. sRGB color space is commonly
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used in mobile cameras and displays [62]. The transformation between sRGB color

space and linear RGB space is defined as follows:

CsRGB =







12.92Clinear, Clinear ≤ 0.0031308

1.055Clinear
1/γ − 0.055, Clinear > 0.0031308

where C represents R,G or B channel and γ is the gamma correction value. In our

previous work [7], the checkerboard image captured using a mobile telephone camera

under the D65 illumination was used as the reference. We implemented a different

approach for measuring the color patch. The checkerboard shown in Figure 3.1 is

placed inside a ”SpectraLight II” illumination booth and we use a spectral radiometer

to measure each color patch on the checkerboard. The output of spectral radiometer

is in XYZ color space. The conversion from linear RGB color space to CIEXYZ color

space is defined as [62],
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The inverse conversion from CIEXYZ to linear RGB color space is,
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Here, we propose to use LMS color space for color correction. LMS color space is

derived from the human visual system. Humans have three distinct types of color

receptors, which are referred to as long,medium and short cones [85]. Though the LMS

color space is not commonly used in color specification, it is often used for chromatic

adaptation. It has simple and positive color matching function for each channel.

It is computationally simpler compared to other nonlinear color spaces, such as the
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CIELAB color space. It is also proportional to the illuminant energy. The coordinates

in the XYZ system are related to LMS through the following transformation [86],
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(3.4)

Fig. 3.2.: Diagram of our proposed color correction method.

Figure 3.2 shows a diagram of our proposed color correction method. The un-

corrected image is first converted into LMS color space. Then, we implement and

optimize the polynomial transforms to find the correction matrix. For each color

patch, the tristimulus values in LMS color space can be represented as a vector

V : (Li,Mi, Si)
T (i = 1, 2, . . . , 11), we have 11 colors on the checkerboard including

black and white. Similarly, the reference checkerboard has 11 corresponding color

values, denoted as R : (RLi, RMi, RSi)
T (i = 1, 2, . . . , 11). We use the following

vector X : [L,M, S, LM,LS,MS, 1]T to estimate the color correction matrix. The

transformation model can be represented as,



















CLi = a11Li + a12Mi + a13Si + a14LMi + a15LSi + a16MSi + a17

CMi = a21Li + a22Mi + a23Si + a24LMi + a25LSi + a26MSi + a27

CSi = a31Li + a32Mi + a33Si + a34LMi + a35LSi + a36MSi + a37
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where CLi,CMi and CSi are the corrected tristimulus. The equation can also be

rewritten in matrix form as,
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(3.5)

where A is the color correction matrix and X is the polynomial combination. Thus,

we want to find a matrix A, which minimizes the overall error between the corrected

image and the reference across all 11 color patches. We further formulate this problem

as finding constrained least square solution. By using the notation above, we have

A = argmin
X

11
∑

i=1

‖AX −R‖2 (3.6)

Equation 3.6 can be solved using Levenberg-Marquardt methods [87]. Finally, we

correct the image in the LMS color space using A and convert it back to the sRGB

space for display.

3.1.4 Experimental Results

To evaluate the performance of the proposed color correction methods, we use Gre-

tagMacbeth Colorchecker [88] as the testing target. Both the TADA fiducial marker

and GretagMacbeth Colorchecker were placed inside a SpectraLight II illumination

booth. We acquired several images of the two checkerboards using four different il-

luminants, i.e. simulated daylight (CIE D65, 6500 K), horizon daylight (simulated

early morning sunrise or afternoon sunset, 2300 K), CIE A (incandescent home light-

ing, 2856 K), and commercial fluorescent (cool white, 4000 K). All the images were

acquired using iPhone 5 camera.
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The captured images with non-D65 illuminations were corrected using the method

described in Section 3.1.3. Here, we compared our proposed method with the similar

approach using the CIELAB and sRGB color spaces. Let (Ri, Gi, Bi)(i = 1, 2, . . . , 24)

denote the reference color of each patch in the GretagMacbeth Colorchecker and

(Rc
i , G

c
i , B

c
i )(i = 1, 2, . . . , 24) be the corrected values of corresponding patch under

various lighting conditions. The average Euclidean distance for all 24 pairs is defined

as:

∆ =
1

24

24
∑

i=1

∥

∥

∥
(Rc

i , G
c
i , B

c
i )

T − (Ri, Gi, Bi)
T
∥

∥

∥
(3.7)

Table 3.1 shows the mean error between the reference and corrected images for

different methods. The entry Total in the table is simply the summation of R, G

and B channel errors. The column of LMS demonstrates the error of the method we

proposed and the results from the similar technique using sRGB and CIELAB color

space verified our choice of choose LMS as the color correction space. Even though

our method does not produce consistently the smallest error for each channel, the

overall RGB error is approximately a 10% improvement compared with the correction

method using CIELAB color space. This implies that even though the CIELAB color

space is uniform with respect to the Human Visual System (HSV), it is not necessarily

the best choice when it comes to the linear color correction model, since the model

expects each channel to be correlated when combining the polynomial terms. In our

experiment, we used the fixed gamma value of 2.2 based on te iPhone 5’s camera

specification. By examining some of the most popular smart phones on the market,

we concluded that such gamma is plausible (see Table 3.2).

3.2 Single Image Deblurring

3.2.1 Blind Deconvolution Based Deblurring

In our previous work [7], an image quality measurement method as well as a non-

linear color correction model using the CIELAB color space was proposed. However,

an underlying problem persists that a user might still send a blurry image to our
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Table 3.1.: Errors (∆) between the reference image and the corrected images

Lighting Error LAB sRGB LMS

Red 7.98 7.44 7.76

Green 9.54 8.86 7.59

Blue 10.56 9.58 7.56
Incandescent

Total 28.08 25.88 22.91

Red 7.53 6.34 3.30

Green 3.84 3.98 3.85

Blue 11.85 11.55 9.37
Horizon Light

Total 23.22 21.87 16.52

Red 3.54 3.44 3.22

Green 4.18 4.15 4.31

Blue 3.88 3.65 2.89
Coolwhite

Total 11.60 11.24 10.52

Table 3.2.: Gamma correction values of popular smart phones

Mobile Phones iPhone 6 iPhone 5 iPhone 4s Galaxy S5 Galaxy S4

Gamma 2.23 2.22 2.1 2.25 2.16

image analysis system even our image quality “checker” suggests retaking the image.

There are cases where the user may be reluctant to retake the image of his/her meal

or the image on the small mobile telephone screen appears to be good enough. Often,

the checkerboard in a blurred image cannot be correctly detected and consequently

color correction will be skipped by our system. This imposes a critical problem for the

image analysis steps, i.e. food segmentation and identification. This then becomes

a Blind Deconvolution (BD) problem with the unknown blur represented as a Point

Spread Function (PSF).
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Blind deconvolution is the process of recovering a sharp version of a blurry image.

It is also well known to be ill-posed, small perturbations of the data produce large

deviations in the resulting solution [89]. Mathematically, the general model for a

linear degradation caused by blurring and additive noise is given by

y = h⊗ x+ n (3.8)

where x is a visually sharp image or original image, n is known noise and h is a

nonnegative blur kernel, whose support is small compared to the image size. When

the noise is ignorable, the objective of blind restoration is to estimate x and h. Often,

the model above is also represented in terms of a matrix formulation, that is,

~y = H~x (3.9)

where the vectors ~x and ~y represent the original image and the observed image re-

spectively by stacking the image matrix into a vector. H is a Block Toeplitz with

Toeplitz Blocks (BTTB) matrix.

Single-image motion deblurring have been extensively studied in the past few

years and achieved a few milestones [90–93]. The effective techniques that extended

naive maximum a posterior (MAP) inference were broadly adopted in many applica-

tions [94, 95].

Recent methods have characterized x using natural image statistics [96–99]. These

techniques exhibit some common principles. A. Levin et al. [100] argued the failure of

the MAP approach and suggested that the key component making blind deconvolution

possible is not the choice of the prior, but the estimator. In [101], D. Krishnan et al.

pointed out that there is a major drawback in many common forms of image priors

because the minimum of the resulting cost function does not correspond to the true

sharp solution. They proposed a new image regulation method using the ratio of the

l1 norm to the l2 norm on the high frequencies of an image. MAP-based methods can

be categorized in two groups: methods with explicit edge prediction [102] and the

ones with implicit regularization to noises [101, 103]. For example, Shan et al. [103]
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proposed to use a large regularization weight to suppress insignificant structures and

adopt a sparse image prior, which results in a crisp-edge image. This method is useful

to remove detrimental image structure, guiding kernel estimation in a good direction.

Krishnan et al. [101] used an L1/L2 regularization in the optimization step.

Based on Krishnan’s approach [101], we introduce an image deblurring scheme

using a saliency map. The idea behind using visual saliency is that we want to reduce

the processing time by analyzing a sub-image. The sub-image should contain enough

features to estimate the blur kernel. In our application, it is plausible to assume that

the blur in a image is uniform and only comes from slight camera movement, such as

camera shift or in-plane rotation. There are mainly two reasons for such assumption.

First, we have implemented an image quality check on the mobile telephone, which

should prevent users from taking blurry images or images without the fiducial marker

present. Second, in our image dataset, most of the food images are acquired in a

stationary environment with reasonably adequate lighting condition and the fiducial

marker is always detected as a salient region, if present. Since the checkerboard

region contains plenty of corner or edge features as well as a wide range of colors, the

estimated blur kernel is consistent to what is analyzed from the entire image. The

results show that our saliency based image deblurring is robust and fast.

Fig. 3.3.: TADA mobile quality measure system.



43

3.2.2 Proposed Method

In this section, we explain our proposed deblurring technique in detail. Figure 3.3

illustrates the workflow from mobile quality measure to image preprocessing on the

server. The user first takes a food image that contains the color fiducial marker under

an unknown illumination. Then, several image quality checks are initiated before

the user can send the food image to our backend server. The examination includes

checkerboard detection [6], blur detection and a coarse illumination condition check.

Due to the limited computational resources and the need for quick feedback on the

mobile device, simple processing approaches are used. If the image does not pass the

blur detection on the mobile phone, image deblurring will be triggered. Both image

deblurring and color correction are implemented on the backend server to complete the

preprocessing. We want to restore the blurry images to the maximum extent so that

they can be color corrected for further analysis. As shown in Equation 3.8, we observe

the resulting blurry image y and the goal is to recover the unknown sharp image x

as well as the blur kernel h. Based on the deblurring technique proposed in [101], we

introduce a faster and robust deblurring method using visual saliency. Our method

dramatically reduces the computational time without sacrificing restoration quality.

As shown in Figure 3.4, the proposed deblurring method consists of four steps. Given

an input blurry image, the saliency map of the image is first computed. A saliency

map is a multi-scale feature map which contains local spatial discontinuities in the

modalities of color, intensity and orientation. We adopted the idea of image signature

for faster saliency detection, which was first introduced by X. Hou etc. in [104]. If

we denote the grayscale blurry image as x, which is the mixture of foreground and

background, its image signature is defined as

ImageSignature = sign(DCT (x)) (3.10)
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Fig. 3.4.: Proposed image deblurring technique.

where DCT represents Discrete Cosine Transformation. Consider the reconstructed

image x̃ = IDCT [ImageSignature], the saliency map s is computed by smoothing

the squared reconstructed image x̃,

s = g ∗ (x̃ ◦ x̃)

where g is a Gaussian kernel, ∗ is convolution symbol and ◦ represents entry-wise

product operator. Then we use a Flood Fill technique [105] to eliminate the noisy

saliency regions, especially small blobs. If we consider a sub-image containing the

checkerboard, it possesses many of visually recognizable features, such as corners,

edges and contrast color patches, so it almost always is detected as a salient region.

However, it is likely that more than one region will be detected. Figure 3.5 shows

two examples of the initial saliency map. Our goal is to extract the area containing

the checkerboard and use that to estimate the blur kernel. This can be achieved by

analyzing the histogram of each salient region. For one salient region, the histogram

of each channel is split into 8 bins, which can be represented by an 8 dimensional

vector. The element with the largest value is discarded and 7 other elements are



45

Fig. 3.5.: Examples of saliency regions.

then normalized. By combining 3 channels, we get a 21 dimensional feature vector.

The cross-correlation between such feature vector and the reference checkerboard

histogram is computed to find the optimal match.

After we extract the checkerboard region, we use Krishnan’s approach [101] to

estimate the blur kernel. Krishnan’s method is described as follows:

1. Use derivative high-pass filters on the blurry image y, creating a high-frequency

image g

2. Blind multi-scale estimation of blur matrix h from g using a coarse-to-fine pyra-

mid of image resolutions. At each scale, update sharp high-frequency image g

and h using l1/l2 regularization. Use bilinear interpolation to up-sample the

current kernel to finer level as initialization.

3. Image recovery using non-blind algorithm [106].

3.2.3 Experimental Results

To evaluate our visual saliency based image deblurring technique, we manually

choose 25 blurry images from the TADA free-living study. The free-living study

contains a number of 315 meal images, which were acquired under natural eating

conditions by 11 participants. Two examples are shown in Figure 3.5. All food
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(a) Checkerboard can be detected. (b) Checkerboard cannot be detected.

Fig. 3.6.: Examples of deblurred images.

images acquired in this study were taken under natural eating conditions by our par-

ticipants. We also acquired another 25 images of plastic food using Samsung Galaxy

Nexus. When acquiring those images, we tried to simulate the real life situation by

deliberately moving the camera slightly to create blur effect. Now, we have a total of

50 images as testing data. The TADA checkerboard was included in all the images,

but none could be detected due to blurriness. After applying our method to the

testing images, 31 out of 50 were correctly detected to have the TADA checkerboard.

Therefore, color correction can be applied to them.

Figure 3.6 illustrates two deblurred images corresponding to the original ones

in Figure 3.5. The one on the left was detected to have the TADA checkerboard

after image deblurring, even though it seems visually unpleasant in Figure 3.6. The

image on the right failed to be detected with a checkerboard pattern due to the

heavy rotation and shift of the camera. A plastic food image example is shown in

Figure 3.7. The fiducial marker was correctly located in the deblurred image in this

case. In addition to the robust image restoration, our method achieved approximately

1
6
of computational time compared to Krishnan’s algorithm without using saliency

map. As for the two cases in Figure 3.6(from left to right), Krishnan’s algorithm

took 51.45s and 74.42s respectively and the proposed method consumed 8.13s and

11.51s including saliency detection as well as deblurring. All the experiments were
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conducted on OSX Yosemite with 2.6G quad core i7 CPU and 16G RAM. The images

were scaled to 800× 600 to speed up the process.

(a) The original image. (b) The deblurred image.

Fig. 3.7.: Example of blurry and deblurred plastic food images.
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4. EFFICIENT SUPERPIXEL BASED IMAGE

SEGMENTATION

4.1 Overview of Image Segmentation Methods

The accurate estimate of energy and nutrients consumed using food image analysis

is essentially dependent on the correctly labeled food item and a sufficiently well-

segmented region. Food labeling primarily relies on the correctness of interest region

detection, which makes food segmentation extremely crucial. Although the human

vision system can group pixels of an image into meaningful objects without knowing

what objects are present, effective object segmentation from an image is in general a

highly unconstrained problem [10].

Image segmentation is a process of partitioning an image into several disjoint and

coherent regions in terms of some desired features. Segmentation methods can be

classified into three major categories, i.e. region grouping methods [107,108], contour

to region methods [109–111], and graph-based methods [112,113].

Alpert et. al [108] proposed a bottom-up probabilistic framework using multiple

cue integration. It showed promising results when compared to other approaches. An

example of a contour to region method is the hierarchical segmentation introduced

in [110]. This has lead to several methods based the global probability of boundary

(gPb), Ultrametric Contour Map (UCM) [110], and then methods that transform a

contour into a hierarchy of regions while preserving contour quality [114]. Donoser et.

al [111] proposed to locally predict oriented gradient signals by analyzing mid-level

patches to reduce computational time of UCM. B. Catanzaro et. al [115] tried to

address the UCM computational issue using parallel computing with GPUs.

Graph-based approaches can be regarded as image perceptual grouping and orga-

nization methods based on the integration of multiple features along with the spatial
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information. The common theme for graph-based approaches is the construction of

a weighted graph where each vertex corresponds to a pixel or a region of the image.

The weight of each edge connecting two pixels or two regions represents the likelihood

that they belong to the same segment. A graph is partitioned into multiple compo-

nents that minimize some cost functions. There are mainly two types of graph-based

approaches: merging and splitting. The efficient graph based method, also known as

the local variation (LV) proposed by Pedro et al [112] is a merging method. It is

an efficient algorithm concerning computation complexity. Among splitting methods,

normalized cuts (Ncut) [113] is extensively used.

Due to the complexity of food images (e.g. occlusion and cluttered background),

food image segmentation is a difficult task. In [23], researchers experimented with

10 kinds of food with containers. Thus the formable part model (DPM) and a circle

detector were used to constrain the food region of interest. Bettadapura et. al [29]

used hierarchical segmentation in their implementation. A semantic segmentation

method based on a deep neural network was recently proposed in [35]. Such method

requires a huge amount of manually segmented food images.

Food image segmentation has been extensively addressed in our previous work

resulting in a joint segmentation/classification multiple-hypothesis technique [10]. We

also investigated the use of local variation and integrated it with food classifiers so that

we can iteratively use the classification results to refine the segmented regions [116].

For each segment, a set of color, texture and local region features are used for our

learning network, including the use of k-Nearest Neighbor (KNN), vocabulary tree

and Support Vector Machine (SVM) [117]. However, it is difficult to prove that the

refined segment using classification results will produce higher confidence score.

In the following sections, a simple yet effective segmentation method that in-

tegrates normalized cut and superpixels using multiple features is proposed. This

method is different than our previous work in that we do not use a feedback approach

and we construct a new graph model. The main contributions of this chapter are

summarized as follows: (1) we introduce an efficient way of constructing weighted
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graph based on superpixels in multiple feature spaces, (2) we proposed a new image

segmentation evaluation method which is specifically suitable for multi-food images

, (3) we evaluate the proposed method on both the publicly available Berkeley Seg-

mentation Database and our own food dataset. We are able to achieve competitive

results, especially for food segmentation.

4.2 Normalized Cut on Superpixels

Graph-based image segmentation techniques generally represent the problem in

terms of a graph G = (V,E) where each node vi ∈ V corresponds to a pixel in

the image, and the edges in E connect certain pairs of neighboring pixels. A weight

is associated with each edge based on some property of the pixels that it connects,

such as their image intensities. Depending on the method, there may or may not

be an edge connecting each pair of vertices. A graph partitioning method attempts

to organize nodes into groups such that the intra-group similarity is high and the

inter-group similarity is low. A Cut which partitions the graph or subgraph into two

disjoint sets A and B = V −A is sometimes defined as a total weight of the removed

edges:

cut(A,B) =
∑

u∈A,v∈B

w(u, v)

The problem of finding the minimum cut has been extensively studied. However,

minimum cut introduces a bias towards small sets of isolated nodes. To address the

bias, Shi and Malik [113] proposed the normalized cut and developed approximation

methods for computing the NP-hard problem. Instead of looking at the value of total

edge weight connecting the two partitions, Ncut computes the cut cost as a fraction

of the total edge connections to all the nodes in the graph,

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )

where assoc(A, V ) =
∑

u∈A,t∈V w(u, t) is the total connection from nodes in A to all

nodes in the graph and similarly for assoc(B, V ). Some properties of using Ncut in
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the TADA system are studied in our previous work [10, 117–119]. We compare Ncut

with Local Variation method and active contour methods and choose Local Variation

over the others for it gives us competitive results and has fast running time.

General graph-based segmentation methods use low level features to measure simi-

larity between two sets of pixels. For example, Ncut uses pixel intensity and difference

of oriented Gaussian filter [113]. For an image of a complicated scene, using low level

features often result in noisy segments. Another drawback with Ncut is the increase

in computation associated with increased image size. “Superpixels” often are referred

as local groups of pixels which have similar characteristics [120]. Superpixel methods

have several useful properties such as they usually align well with object contours

if the objects are not too blurry or the background is not too cluttered. They also

enforce local smoothness because pixels belong to a superpixel are often from the

same object.

To address the above disadvantages using Ncut, intuitively we might want to

combine Ncut with superpixels. We can obtain higher level features from superpixels

and reduce the size of the affinity matrix in Ncut. We shall call this approach ‘SNcut.’

We will discuss below the challenges of doing this including superpixel denoising,

graph formation and food segmentation evaluation.

We use the simple linear iterative clustering (SLIC) method [121] to get an initial

superpixel segmentation in SNcut. SLIC is a fast and memory efficient method that

address local clusterings of pixels in 5D space consisting of L, a, b from the CIELAB

color space and x, y pixel coordinates. It has shown good performance for several

popular segmentation datasets [121].
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Table 4.1.: SLIC algorithm

Efficient superpixel segmentation

1. Initialize cluster centers by sampling pixels at regular grid steps S

2. Perturb cluster centers in a n× n neighborhood to

the lowest gradient position

3. repeat

4. for each cluster center do

5. Assign the best matching pixels from a 2S × 2S square neighborhood

around the cluster center according to the distance measure Ds

6. end for

7. Compute new cluster centers and residual error E

8. until E ≤ threshold

9. Enforce connectivity
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As described in [121], regular grid interval S is defined as
√

N/K, where N is

the number of pixels and K is the desired number of approximately equally-sized

superpixels. The distance measure Ds is defined as follows:

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (4.1)

dxy =
√

(xk − xi)2 + (yk − yi)2 (4.2)

Ds = dlab +
m

S
dxy (4.3)

where i, k index pixels and m is the customizable parameter.

When SLIC tries to preserve the shape or boundary of objects, there is a tradeoff

between the similarity measure in the LAB color space and spatial distance between

pixels, also regarded as proximity. This sometimes results in small segmented regions

scattering around the “true segment”. We propose to use a Gaussian filter with a

variance, σ, on the original image and use a median filter [122] with a fixed radius in

pixel, r, following SLIC to merge the noisy segments. We then construct a weighted

graph by using the proximity and similarity in color and texture features within the

superpixel neighborhood, which will be discussed in Section 4.3.

4.3 Color and Texture Cues

When constructing the weighted graph of superpixels we only allow adjacent su-

perpixels to be connected which ensures a local Markov relationship [123]. We use

average RGB pixel values and a customized local binary pattern (LBP) [124], dis-

cussed below, as the color and texture cues for the superpixels. The average RGB

pixel value is obtained for all the pixels in the corresponding superpixel. LBP is a

particular case of the Texture Spectrum model proposed in [125]. The customized

LBP feature vector is created in the following manner: (1) Examine each pixel that

has a 3 × 3 neighborhood in the superpixel with its 8 neighbors. If the center pixel

value in L channel is greater than its neighbor, the output is 1, otherwise 0. Following

a clockwise order, concatenate the binary results in an 8-dimensional vector, (3) By

using the resulting vector as a binary number, we can convert it to a decimal num-
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ber and then construct a histogram for each superpixel, (4) Finally, the histogram is

sampled into 9 bins and normalized.

To translate the color and texture features into edge weights in our graph model,

we first use χ2 test [126] in texture space and L2 distance in color space to obtain

similarity measures. The χ2 distance between two LBP vectors, g and h, associated

with two superpixels, Sg, Sh is defined as:

Dtexture = χ2(g, h) =
1

2

∑

i

(g(i)− h(i))2

g(i) + h(i)
(4.4)

L2 measure in the RGB space is denoted as Dcolor. We then map the similarity

measurement to a probability estimate:

Ptexture = e
−

Dtexture
σtexture , Pcolor = e

−
D2

color
σcolor (4.5)

Based on the experiments, we set σcolor to be 255 and σtexture = βDtexture,where β ∈

[8, 12]. Finally, the edge weight is obtained,

wg,h =I(Pcolor, Ptexture)max{Pcolor, Ptexture}+

(1− I(Pcolor, Ptexture))min{Pcolor, Ptexture}
(4.6)

where I(·) represents the indicator function:

I(Pcolor, Ptexture) =







1, Pcolor > ǫ1, Ptexture > ǫ2

0, otherwise
(4.7)

4.4 Object Based Segmentation Evaluation

Existing segmentation evaluation metrics include region differencing assessments

[127–129] which count the degree of overlapping between segmented regions, boundary

matching [130] and [131], Variation of Information (VoI) [132] and non-parametric

tests such as Cohen Kappa [133] and normalized Probabilistic Rand Index (PRI) [134].

Precision and recall [130, 131] are widely used in boundary-based segmentation

evaluations. However, some types of error, such as an under-segmented region that

overlaps with two ground-truth segments with only a few missing boundary pixels
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in between, cannot be detected by boundary-based evaluation. We believe for food

image segmentation a precise segment of each food is preferred over partially accurate

boundaries. We adopt the region-based precision and recall proposed in [127] and

adjust several criteria to focus on the objects of interest, or foods in our case.

Let S = {S1, S2, . . . , SM} be a set of segments in an image generated by a seg-

mentation method and G = {G1, G2, . . . , GN} a set of ground-truth segments of all

foreground objects in the same image, where Si (i = 1, . . . ,M) and Gj (j = 1, . . . N)

represent the individual segment respectively. M is the total number of segments

generated by the segmentation method and N is the total numbers of segments of

the ground-truth.

The precision P for segment Si and ground-truth Gj can be defined as P (Si, Gj) =

|Si∩Gj |

|Si|
, where |A| is the total number of pixels in A. Similarly, the recall R for Si

and Gj can be defined as R(Si, Gj) =
|Si∩Gj |

|Gj |
. The F-measure, F [135] can then be

estimated using precision and recall:

F (Si, Gj) =
1

α 1
P (Si,Gj)

+ (1− α) 1
R(Si,Gj)

. (4.8)

where α is the weight. We do not have a preference between precision and recall.

Hence we set α = 0.5.

Furthermore, we want to know which objects in the image are correctly segmented

and how accurate are those segments. It is likely that M 6= N , hence we want to

match each foreground segment Si to a Gj where Si and Gj represent the same

object in the image. In order to fairly match the segments, we introduce the overlap

score (O) [128], O(Si, Gj) =
|Si∩Gj |

|Si∪Gj |
. Unlike precision and recall, the overlap score

is low for both over-segmentation and under-segmentation, but only high when the

segmentation is precise and accurate. The evaluation is then done as follows:

1. The background ground-truth segment GB can be found as GB = 1−
N
⋃

j=1

Gj.

2. For each segment Si in S, P (Si, GB) and P (Si, Gj) with all the Gj in G are

estimated. If P (Si, GB) is higher than all the P (Si, Gj) for all Gj, we consider (Si)

as a background segment.
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3. For each remaining Si, O(Si, Gj) is estimated with all the Gj in G, and (Si, Gj)

is considered as a matched pair if it has the highest overlap score.

4. Let Ij = {Si: (Si, Gj) is a matched pair, i ∈ [1, . . . ,M ]} and l(Ij) be the number

of elements in Ij that matches Gj, the precision for this image can be estimated as:

P =
1

M

M
∑

j=1
l(Ij) 6=0

1

l(Ij)

∑

Si∈Ij

P (Si, Gj) (4.9)

The Recall and Overlap score can be estimated in a similar way.

The above conveys our ideas of “good food image segmentation”: (1) Compared to

the natural image segmentation criteria, we do not care much about the background

extraction because some simple filters are able to eliminate over-segmented back-

ground [116]. Classifiers are often more effective in differentiating background from

foods. (2) We favor a precise food segment and punish over-segmentation by averag-

ing all suitable matches because classifying many small segments are time-consuming

and often generates unreliable results.

4.5 Experimental Results

In this section, we evaluate the proposed image segmentation method on the

TADA food segmentation dataset (TSDS) and the Berkeley Segmentation Dataset

(BSDS) [136]. The TSDS contains 200 hand-segmented food images, which are col-

lected from a larger dataset including a total of 1453 images of 56 commonly eaten

food items acquired by 45 users in natural eating conditions. Each image contains 5

different food items and 3 utensil items on average. The BSDS consists of 500 natural

images of diverse scene categories. Each image is manually segmented by 5 human

subjects on average.
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(a) Original Image (b) SLIC superpixels with graph connections

Fig. 4.1.: SLIC superpixel with labeled graph connections. The red connections

indicate two similar superpixels, and the blue connections indicate two dissimilar

superpixels.

4.5.1 TADA Food Dataset

In the TSDS, we mainly compare the proposed segmentation method with local

variation [112] and hierarchical segmentation [110] for two reasons. First, based on

our previous work [10,116], local variation outperforms other methods including Ncut,

Mean Shift, active contours for the goal of food segmentation. Second, hierarchical

segmentation is a popular method for general image segmentation, and has recently

been adopted for food identification tasks [29]. For the proposed method discussed

in Section 4.3, we use σ = 0.9, r = 12, β = 10. ǫ1, ǫ2 ∈ [0.6, 0.8] and the number of

superpixels ranging from 120 to 200 for the following experiment.

Figure 4.1 demonstrates the formation of the weighted graph using SLIC superpix-

els. In Figure 4.1, all the adjacent superpixels are connected based on their similarity

in proximity, color and texture spaces. The red connections indicate that two su-

perpixels are more similar while the blue connections show dissimilarity. Figure 4.2

shows the efficacy of the customized LBP feature. Using a graph model based only

on color feature and proximity results in the image on the left. The image on the
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(a) Proximity and color feature (b) Proximity, color and texture feature

Fig. 4.2.: Proposed segmentation method with different features. Arrows points to

areas of segmentation difference.

right takes texture feature into account as well. The black arrows in Figure 4.2 point

at some of the segmentation variations. As shown in Figure 4.2(b), texture feature

helps to include food regions with higher color variance.

Figure 4.3 compares the results of SNcut to LV and hierarchical segmentation. We

see that both SNcut and the hierarchical image segmentation are better at preserving

the actual food contour than LV. However, hierarchical segmentation is often sensitive

to edges insides food items, resulting over-segmented regions, for example, the noodle

soup in Figure 4.3.

Figure 4.4 shows the PR curve and F-measure scores of SNcut, LV and hierar-

chical segmentation in different configurations. We evaluate all three methods using

the object based evaluation metric discussed in Section 4.4. As illustrated, SNcut

outperforms both LV and hierarchical segmentation. Because our evaluation method

averages precision and recall over the number of segments associated with a certain

food ground-truth, both precision and recall scores are low when the image is severely

under-segmented or over-segmented.
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(a) Original image (b) SLIC superpixels

(c) SNcut result at ODS (d) SNcut result at OIS

(e) LV result (f) Hierarchical result

Fig. 4.3.: Proposed segmentation method. From (a) to (f): Original image, ini-

tial SLIC superpixels, SNcut output by thresholding at Optimal Dataset Scale [114],

SNcut output by thresholding at Optimal Image Scale [114], output of LV and the

hierachical segmentation (More examples are included in the supplemental material).

4.5.2 Berkeley Dataset

We report 4 different segmentation metrics for the BSDS based on the region based

evaluation method proposed in [114]: the Optimal Dataset Scale (ODS) or best F-

measure on the dataset for a fixed scale, the Optimal Image Scale (OIS) or aggregate
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Fig. 4.4.: Precision and recall on the TSDS using the evaluation method discussed in

Section 4.4.

F-measure on the dataset for the best scale in each image, Variation of Information

(VoI) and Probabilistic Rand Index (PRI). VoI computes the amount of information in

ground-truth not contained in the segmentation result. PRI measures the likelihood

of a pair of pixels being grouped in two segmentations. Better segmentation usually

has higher PRI and lower VoI.

Some examples are shown in Figure 4.5. The scores are summarized in Table 4.2.

The results for methods other than SNcut are collected from [114]. We see that SNcut

improves the score from Ncut by a relatively large margin. However, SNcut does not

obviously separate itself from other methods when it compares to the hierarchical

segmentation or gPb-owt-UCM. gPb-owt-UCM trains on natural images to learn

significant object contours, so it is more resistant to over-segmentation inside the

object of interest when we set a proper threshold for the boundaries. Moreover, SNcut

depends on the initial superpixel map to extract the objects of interest, which results
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Fig. 4.5.: Proposed segmentation method. From top to bottom: Original

image, segmentations output by thresholding at ODS and OIS. We have included a

supplementary file which contains more examples of our segmentation method.

Table 4.2.: Region based segmentation evaluation on the BSDS.

Methods PRI VoI ODS OIS

Ncut 0.75 2.18 0.44 0.53

LV 0.77 2.15 0.51 0.58

Mean Shift 0.78 1.83 0.54 0.58

SNcut 0.78 2.11 0.55 0.59

gPb-owt-UCM 0.81 1.68 0.58 0.64

in loss of global information. Compared with the objects in the natural images, foods

usually have more homogeneous textures and more uniform colors. Thus, the way

superpixels enforce local smoothness works better for food images. More exmaples

are shown in Figure 4.6.

On average, SNcut takes less than 3 seconds to segment one 481 × 321 image in

BSDS. It is comparable to LV and 20 times faster than Ncut. For the full resolution

2048×1536 images in the TADA food dataset, SNcut takes 45 seconds to compute on
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Fig. 4.6.: From left to right: original image, SLIC superpixel, SNcut results at

ODS, SNcut results at OIS, local variation result, hierarchical segmentation.

average, which is 1.5 times faster than gPb-owt-ucm. All experiments were conducted

on a desktop with quad-core 3.7GHz CPU and 16GB RAM.

In this chapter, we present a segmentation method that combines Ncut and super-

pixel techniques. We also introduce an object based segmentation evaluation method,

especially for multi-food images. Experimental results suggest that the proposed

method using multiple simple features is effective for food segmentation. According

to our evaluation metric, SNcut outperforms some widely used segmentation methods

and it also produces competitive results for natural images based on other segmenta-

tion benchmarks. In the future, we would like to investigate supervised learning on

the weighted graph formation and explore a GPU implementation to further speed

up the segmentation process.
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5. WEAKLY SUPERVISED IMAGE SEGMENTATION

5.1 Overview of Weakly Supervised Image Segmentation Methods

In recent years the concept of deep learning [32] has been gaining widespread

attention. As convolutional neural network (CNN) [137] gradually becomes domi-

nant in many computer vision related areas, various recognition and classification

tasks have been improved from the previous state-of-art methods [137–139]. Existing

CNN models take advantage of labeled data which are used to learn which features

are effective in a task as opposed to manually designed features. However, for more

structured prediction, such as semantic segmentation, obtaining the pixel-level train-

ing data or even labeled bounding boxes is extremely time-consuming and expensive.

For example, fully the convolutional network [138] requires careful annotation of the

segmentation mask. Fast/Faster RCNN [139, 140] uses labeled data in the form of

bounding boxes. Such dependency on fully supervised training poses a major limita-

tion on scalability concerning the number of classes or tasks [141].

In the field of food image analysis, there is no publicly available segmentation

ground-truth image dataset. The bounding box information provided in the UEC-

FOOD256 dataset [39] is far from sufficient. Im2Calorie [35] uses several CNN models

to analyze food intake, but the authors have not yet released their Food-201 dataset.

Therefore, we would like to explore weakly supervised learning where only image-level

labels indicating the presence or absence of objects are required.

Semantic image segmentation, i.e. assigning a semantic class label to each pixel of

an image, is an important topic in computer vision. Many works require full super-

vision or pixel-level annotation to achieve this goal. In [142], the authors proposed

a discriminative segmentation method. Multiple features including shape, texture,

color and edge were incorporated in a conditional random field (CRF) model to deal



64

with the ambiguities rooted from local prediction. The groundtruth labeling was re-

quired by the CRF model at training time. Compared to [142], C. Farabet et al. [143]

used dense features extracted from a multiscale CNN to represent a pixel in the in-

put image. Each pixel was then labeled based on the maximum likelihood given its

feature vector. B. Hariharan et al. [144] described a simultaneous detection and seg-

mentation (SDS) method which was essentially based on the Fast RCNN framework.

The segmentation masks were obtained by refining the region proposals of interest.

Even though fully supervised segmentation approaches have demonstrated promis-

ing performance, collecting fully annotated training data poses a significant bottle-

neck to scale up the segmentation models. Thus weakly supervised segmentation

methods were proposed to reduce the annotation effort. Previous work [145, 146]

on weakly supervised learning showed that the output from a classification network

can not only predict labels but also estimate object locations. In [147], a new loss

function was proposed that uses location, classes and boundary priors to improve

a segmentation system. N. Pourian et al. [148] used a spectral clustering approach

that groups coarsely segmented image parts into communities. A community-driven

graph is then constructed that captures spatial and feature relationships between

communities while a label graph captures correlations between image labels. Finally,

mapping the image level labels to appropriate communities is formulated as a convex

optimization problem. In [146], the Class Activation Map (CAM) coupled with global

average pooling (GAP) layers was introduced. This work showed that CNNs trained

for the classification purpose also learned to localize visual objects without additional

bounding box annotations.

In this chapter, we describe a graph based segmentation method for food images

that uses a weakly supervised saliency model as prior knowledge. The contribution

of this work is two-fold. First, we improve the CAM as a top-down saliency model by

introducing a new pooling technique. Second, we incorporate the CAM trained on

food datasets in the Biased Normalized Cut (Biased Ncut) segmentation method [149].
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Fig. 5.1.: Network architecture for weakly supervised learning.

The proposed method shows promising results using various testing datasets and we

believe it can also be used as an initial step before manual ground-truthing.

5.2 Network Architecture for Weakly Supervised Learning

Our model uses the fully supervised network of [150], known as VGG-16, that

consists of 13 convolutional layers and 3 fully connected layers. To adapt the VGG-

16 architecture to weakly supervised learning, we introduce several modifications.

First, we add a 1024-channel convolutional layer and remove the first fully connected

layer in the VGG-16 network. Second, we replace the max pooling layer before the

fully connected layers with our proposed Global Max-Average Pooling (GMAP) layer.

Figure 5.1 illustrates the proposed network architecture. We design the GMAP layer

as a cascade combination of a Global Max Pooling (GMP) layer and a Global Average

Pooling (GAP) layer. Furthermore, we extend the capability of GMAP by allowing

adaptive pooling kernels. Similar to the ROI pooling layer [140], the size of pooling

kernel varies based on the desired output, so that the output can be connected with

a fully connected layer regardless of the size of the input images to the network.

Global Max-Average Pooling. As discussed in [146], the GAP layer outputs the

spatial average of the feature map at the last convolutional layer. For example, if there

are 1024 feature maps at the last convolutional layer, the GAP will generate a 1024
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dimensional vector. We adopt the Class Activation Map [146], which is essentially a

weighted sum of the feature maps of the last convolutional layer.

GMP and GAP have been successfully used in previous studies [147]. However,

they both have their disadvantages. GMP tends to underestimate the regions of ob-

jects as the max pooling technique encourages the response from the single location of

the highest activation. And GAP is more prone to overestimate object sizes, because

it takes all the activations into account. To overcome these disadvantages in the con-

text of semantic segmentation, we propose a new pooling technique, namely GMAP.

The cascade structure of max and average pooling can be viewed as a generalized

pooling layer of GAP and GMP,

F =

⌊(W−α)/β⌋
∑

j=0

⌊(W−α)/β⌋
∑

i=0

max(fα(
⌈α

2

⌉

+ jβ,
⌈α

2

⌉

+ iβ))/N (5.1)

where W ×W is the dimension of a feature map, fα is the window function of size

α, β represents the stride of the max pooling kernel and N = ⌊(W − α)/β⌋2. From

Equation 5.1, we can see that F becomes GAP if we let α = β = 1 and it becomes

GMP if we let α = W . At this point, the proposed network as shown in Figure 5.1

takes 224 × 224 RGB images as input and generates a 1 × 1 × 1024 vector after the

GMAP layer and finally outputs a 1 × 1 × N vector of confidence scores. N is the

total number of classes.

Adaptive Kernel and multi-label classification. The Region of Interest (ROI)

pooling was first introduced in [140], which is essentially a simplified version of Spatial

Pyramid Pooling (SPP) layer [151]. The goal of the ROI pooling layer or SPP layer is

to adapt the various size of ROIs in the region proposal based networks. To complete

the design of GMAP layer, we adopt the idea of the adaptive kernel. In other words,

α in Equation 5.1 can be a function of W . Besides, the proposed network can also

be extended to multi-label classification using multi-scale sliding window training as

introduced in [145]. As shown in Section 5.4, we assume that one image only contains

a single category of object.
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5.3 Graph Based Segmentation

With the class activation map (CAM), the challenge is to use the prior knowl-

edge for segmentation. It seems intuitive to incorporate salient stimuli [152] or fine-

grained region proposals [153] into a graph model for the segmentation task. In [152]

both bottom-up salient stimuli and object-level shape prior were integrated into min

cut/max flow optimization. Such energy minimization is initialized with saliency

map which is computed through context analysis based on multi-scale superpixels.

Object-level shape prior is then extracted combining saliency with object boundary

information. In [153], Cheng et al. implemented an iterative GrabCut [154] method

which replaces user inputs with thresholded saliency maps.

Here, we incorporate the sampled CAM as a top-down constraint in Biased Nor-

malized Cut (Biased Ncut) [149]. Compared to a saliency map [152] as shown in

Figure 5.2, the weakly trained CAM is better at localizing the object of interest.

Given a region of interest in the image, i.e. the CAM in our case, we would like to

segment the image so that the segment is biased towards the specified region. The

image is modeled as a weighted undirected graph G = (V,E). The weight, w, on

any edge, E, is a similarity measure between the end nodes of the edge. A region is

modeled as a subset T ∈ V , of the vertices of the image. We are interested in the

cut (S, S̄), which not only minimizes the normalized cut value, Ncut(S), but achieves

sufficient correlation with the region specified by T , where

Ncut(S)
def
=

cut(S, S̄)

vol(S)
+
cut(S, S̄)

vol(S̄)
(5.2)

S̄
def
= V \S (5.3)

cut(S, S̄)
def
=

∑

i∈S,j∈S̄

w(i, j) (5.4)

vol(S)
def
=

∑

i∈S,j∈V

w(i, j) (5.5)

Belief Propagation. From Figure 5.2(b), we can see that the CAM peaks at where

the network believes to show the most prominent feature of a specific class in the
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Fig. 5.2.: From left to right: the original image, its class activation map and saliency

map [152].
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image. However, it may not identify a part of the object as prominent even though

the part of the object shares similar color and texture as its surroundings. To deal

with this issue, we propose to use a multi-scale superpixel method to distribute the

confidence that the network puts on certain regions in the image to their surroundings

with similar color and texture.

Given an image, let [S1, ..., Sp, ...SP ] be the superpixel mask at different scales,

where P indicates the number of scales we use and let B be the initial CAM. For any

pixel (x̂, ŷ) of a certain superpixel in Sp, we define its belief as follows,

Bp(x̂, ŷ) =

∑

(x,y)∈Sp
(B)

||Sp||
(5.6)

where ||Sp|| represents the total number of pixels in the superpixel. So, if the su-

perpixel is larger or the resolution of the superpixel mask is coarser, the belief is

diffused more. We compensate the diffusal by introducing finer superpixel masks.

Local variation [112] is used as the primary superpixel method, because it is fast and

relatively good at preserving edges. Finally, the new CAM is obtained by normalizing

the original CAM and the propagated belief across all the superpixel scales,

B′(x, y) =
B +

∑

p(Bp(x, y))

Z
(5.7)

where Z is a normalization term that makes sure B′(x, y) ∈ [0, 1].

Gassian Mixture Model and Sampling. We use a Gaussian Mixture Model in

the new CAM to generate a trimap [155]. A trimap normally partitions an image into

three regions: a definite foreground, a definite background and an unknown region.

Then the foreground is uniformly sampled with a fixed step, P , and these sampled

points are used as seeds, sT , in the Biased Normalized Cut [149]. Given the graph

G = (V,E), the Laplacian of G, LG and the normalized Laplacian, LG are defined as

follows,

LG = DG − AG (5.8)

LG = D
− 1

2

G LGD
− 1

2

G (5.9)
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where DG and AG are the adjacency matrix and diagonal degree matrix of G. Finally,

the optimal cut, x∗, is obtained by combining the eigenvectors of LG in the following

way,

x∗ ∝
K
∑

i=2

uTi DGsTui
λi − γ

(5.10)

where λi represents the ith smallest eigenvalue, ui is the corresponding eigenvector

and γ is a correlation parameter [149].

5.4 Experimental Results

In this section, we describe our classification and segmentation experiments where

we use several datasets to validate the proposed method, and we assume that one

image only contains a single category of object.

Classification. To validate the proposed pooling method, we trained various models

using Caltech-256 [156], UECFOOD-256 [39] and Food-101 [27]. Caltech-256 [156]

contains 30607 images of 256 object categories. UECFOOD-256 [39] consists of more

than 31,000 images from 256 food categories, most of which are popular foods in

Japan and other Asian countries. Food-101 [27] contains 101 food categories, each

of which has 1000 images. Each dataset is randomly split in the 70/10/20 fashion

for train/validation/test sets. We used a pretrained VGG-16 network to initialize the

first 13 layers in our model and all the experiments were done in the Tensorflow [157].

Table 5.1 compares the Top 1 classification accuracy of different pooling methods

in the proposed network. Training the model with GAP was performed with stochastic

gradient descent with learning rate of 0.01 and momentum of 0.9 while learning rate of

0.002 and momentum of 0.9 were used for the other pooling methods. GMAP−α−β

represents GMAP with a α × α max pooling kernel and stride of β. As shown

in the table, the network with GMAP − 4 − 2 shows slightly better results across

the three datasets. Figure 5.3 illustrates the visual differences of the CAMs when

different pooling methods are used. Recently Yanai et al. reported 67.57% on the
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Table 5.1.: Comparison of different pooling methods.

Accuracy (%) Caltech-256 UECFOOD-256 Food-101

GMP 81.05 63.97 72.75

GAP 81.09 64.01 72.78

GMAP-2-2 81.20 64.80 73.81

GMAP-3-3 81.05 64.01 73.55

GMAP-4-2 81.53 64.89 74.02
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Fig. 5.3.: Class activation maps using different pooling methods.

UECFOOD-256 using a modified AlexNet [34] and the best result, 78.11%, on the

Food-101 is achieved using GoogleNet by Ao et al. [33]. Compared to their work,

our model demonstrates comparable accuracy despite using a much simpler network

architecture.

Furthermore, we picked the images of 31 food categories from Food-101 [27] that

are common in UECFOOD-256 and we named it the Food-31 dataset. We wanted to

test the proposed model with GMAP − 4 − 2 trained on UECFOOD-256 [39] using

the Food-31 dataset, since the images from these two datasets were initially collected

from different sources and thus they should occupy slightly different domains in the

feature space. As shown in Figure 5.4, the images of the same category look quite

different in the different datasets. We achieved 85.8% accuracy over the 31,000 images

in the Food-31 dataset without any fine-tuning.

Segmentation. To evaluate the segmentation accuracy on the food images, we use

a free-living study [158] from the TADA system. It consists of 1453 images of 56

commonly eaten food taken by 45 participants within a week and we have manually

ground-truthed over 900 food segments with labels. To our knowledge, there is no

publicly available segmentation ground-truth for dataset food images and we would
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Fig. 5.4.: Examples from different datasets.

like to release our data for the academic use soon. Nine out of the 56 food categories in

the free-living study have the same counterparts in the Food-101 [27] (see Figure 5.5)

and there are 317 ground-truth in total.

Based on our experiment, we choose P = 40, K = 16 and γ = 1e−4 as discussed in

Section 5.3. Figure 5.6 shows an example image from the free-living dataset. Seeds in

Figure 5.6(c) are sampled from a trimap generated from Figure 5.6(b). Figure 5.6(d)

represents the combination of the reshaped eigenvectors as discussed in Section 5.3.

The final segmentation masks are obtained by binarizing the biased normalized

cut. We use a region based metric [128] to evaluate the segmentation masks. Fig-

ure 5.7 shows the precision and recall [159] when various thresholds are used. Com-

pared to our previous work, i.e. SNcut [160], the biased normalized cut based on

the belief-propagated CAM demonstrates superior performance. More examples are

shown in Figure 5.8.
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Fig. 5.5.: TADA groundtruth statistics of 9 selected food categories which are common

in the Food-101 dataset.

In this chapter, we described a weakly supervised CNN model with a new pooling

technique and incorporate a class activation map for graph based segmentation. Our

experiments shows promising results for both classification and segmentation tasks.

In the future, we would like to test our model using a larger dataset and investigate

multi-food segmentation.
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(a) (b)

(c) (d)

Fig. 5.6.: (a) Original image. (b) The belief-propagated class activation map. (c)

Seeds, sT as discussed in Section 5.3. (d) The biased normalized cut.
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Fig. 5.7.: Precision and recall of the segmentation results. Blue: Biased Ncut with

the CAM prior. Red: SNcut
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Fig. 5.8.: Example segmentation masks.
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6. LARGE SCALE FOOD IMAGE ANALYSIS USING

DEEP NETWORKS

In the past two decades, we have witnessed the power of deep learning trickling

down to many aspects of the modern society: from social media to cyber security,

from music/movie recommendation service to AI assistants. However in the 90s,

most researchers counted deep learning technique out due to the lack of efficient

optimization methods and computational power. Hand-engineered features were the

unstoppable force in the field of computer vision. This chapter is organized as follows:

first, we review popular deep networks for both classification and detection; we then

propose a three-stage food recognition pipeline which consists of a food/non-food

localizer, a food classifier and a food segmenter; next, we investigate adversarial

examples in the domain of food images; finally, experimental results are presented

and discussed.

6.1 Overview of Classification Networks

AlexNet In 2012, AlexNet [137] rekindled the interest of deep neural networks by

winning the ImageNet Large Scale Visual Recognition Competition (ILSVRC) [161].

Then it became one of the most reputed network structure. AlexNet evolved from

LeNet [162] to a larger neural network with 5 convolutional layers and 3 fully con-

nected layers. It was designed to learn complex features and object structures. A.

Krizhevsky et. al. [137] proposed to use Rectified Linear Units (ReLU) as the non-

linear activition function,

f(x) = max(0, x) (6.1)

It has been demonstrated that using activation functions with non-saurating non-

linearities results in much faster training time. AlexNet also ultilizes the dropout
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technique to reduce overfitting. Tested on the subset of ImageNet with more than

1000 images in each of 1000 categories [161], it achieved top 5 error rate of 15.3%

with 6 days of training. Figure 6.1 illustrates a collection of randomly selected images

from ImageNet.

Fig. 6.1.: Random images from the ImageNet [161].

VGGNet The network structures [150] developed by Visual Geometry Group (VGG)

at Oxford University were the first to use the regulated 3 × 3 convolutional kernels

in each convolutional layers. Compared to the first convolutional layer of AlexNet
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(11×11 with stride 4), K. Simonyan and A. Zisserman [150] stacked up to 19 convolu-

tional layers of very small receptive fields and got the second place in the classification

task of ILSVRC 2014. The authors argued that a stack of smaller kernels has similar

effect as a larger kernel.

(a)

(b)

Fig. 6.2.: (a) Early implementations of the Inception module. (b) Inception module

with 1× 1 bottleneck.

Inception Module and GoogLeNet As we stated above VGGNet [150] ranked

second in the classification task of ILSVRC 2014, GoogLeNet [36] was the winner

with a top 5 error rate of 6.7%. GoogLeNet [36] is a 22-layer network structure

that breaks the general approach of simply stacking convolutional and pooling layers.
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Table 6.1.: The structure of the VGG-16 and VGG-19 networks

Network Structure

VGG-16 VGG-19

input (224× 224 RGB)

conv3-64

conv3-64

conv3-64

conv3-64

maxpool

conv3-128

conv3-128

conv3-128

conv3-128

maxpool

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

conv3-256

maxpool

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

maxpool

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

conv3-512

maxpool

FC-4096

FC-4096

FC-1000 + softmax



82

The authors introduced an optimal local sparse structure called Inception Module

(Figure 6.2) in GoogLeNet. The goal was to reduce the number of weights in the

readily available dense structure while achieving comparable performance.

Fig. 6.3.: The structure of Inception-3 [163].

The Inception module, inspired by the idea of Network in Network [164], effectively

increases the width of the network by considering features of a layer at different scales.

It also considers cross-channel correlations by using 1× 1 convolution while reducing

feature dimensions as shown in Figure 6.2(b).Thus, despite being deeper, GoogLeNet

is 9 times smaller than AlexNet and 3 times smaller than VGGNet in terms of the

number of parameters.

As a follow-up to the first generation of GoogLeNet [36], C. Szegedy et al. [165]

discussed the discretionary design principles of more advanced Inception modules, for

example, avoiding representational bottlenecks and balancing the width and depth of

the network.

As a result, the Inception-v3 network as illustrated in Figure 6.3 was proposed. It

consist of 42 layers and uses spatial factorization and auxiliary classifiers to achieve

a promsing margin over the previously reported result [165].

Residual Networks From LeNet [162] to GoogLeNet [36], we have witnessed the

growth of network models regarding their size and capacity. Although it seems that

the most straightforward way of improving the performance of deep neural networks
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is to increase the width or the depth, the best model only contains less than 25

layers [36]. Researchers strive to resolve issues inherited from larger networks, such

as overfitting, vanishing gradient and computational limitation.

In late 2015, K. He et al. [166] proposed a new CNN architecture called Residual

Network (ResNet) with jawdroppingly 152 layers. Aside from the new record of the

number of layers, ResNet achieved an incredible error rate of 3.6% in ILSVRC 2015.

To overcome the obstacle of vanishing/exploding gradients, the authors introduced

a residual learning framework. The idea of residual learning is based on a hypothesis

that if multiple nonlinear layers can asymptotically approximate a function H(x),

they can also asymptotically approximate the residual function, H(x)− x.

Fig. 6.4.: Residual learning block.
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As shown in Figure 6.4, F (x)+x = H(x) and x is the shortcut connection, which

allows the gradient to pass backwards directly. By stacking these layers, the gradient

could theoretically skip over all the intermediate layers and reach the bottom without

being diminished.

DenseNet DenseNet [167] is one of the worth-noting works on making CNNs

deeper. Compared to the shortcut in ResNet, DenseNet takes the insights of the

skip connection to the extreme. For each layer, the feature-maps of all preceding lay-

ers are used as inputs, and its own feature-maps are used as inputs to all subsequent

layers. Hence, the lth layer has l inputs, consisting of the feature-maps of all preced-

ing convolutional blocks. Its own feature-maps are passed on to all L− l subsequent

layers. This generates L(L+1)
2

connections in an L-layer network. Figure 6.5 illustrates

a dense block with 5 convolutional layers.

Fig. 6.5.: A 5-layer dense block with a growth rate of 4.

6.2 Overview of Object Localization Networks

From RCNN To Faster RCNN Compared to image classification, object detec-

tion usually requires more complex and structured methods to solve. RCNN [168] was

arguably the first work that used deep features extracted from a CNN and showed

superior detection performance on the PASCAL VOC dataset [169] as compared to

methods using HOG-like or SIFT-like features. In RCNN [168], selective search [170]

is used to generate roughly 1000-2000 region proposals per given image. Then the
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proposals are resized to a fixed resolution 227 × 227. Depending on the application,

the resizing can be done by down-sampling, cropping, padding or interpolation. Next,

the proposals are fed into a CNN. At the bottom of the CNN, usually after the last

fully connected layer, the feature of a proposal is extracted. Based on the intersec-

tion of the proposal and the groundtruth, some proposals and corresponding features

are filtered out. Finally, the remaining features and corresponding class labels are

used to train an SVM. It is almost obvious that the computation in RCNN is not

optimized as every proposal has to go through the whole CNN. Besides, the global

context in the input image is ignored, because the SVM classifier is only trained on

the proposed image patches. Furthermore, it is relatively hard to train three separate

parts in the network. As a successor of R-CNN [168], Fast R-CNN [140] was proposed

to deal with the cons of R-CNN. At the training time, a Fast R-CNN network takes

an entire image and a set of object proposals as input. The network first processes

the whole image with several convolutional and max pooling layers to produce fea-

ture maps. Then, for each object proposal, a region of interest (RoI) pooling layer

extracts a fixed-length feature vector from the feature map. Each feature vector is

used to optimize a multi-task loss function. The multi-task loss function combining

the losses from two sibling output layers, i.e. the softmax layer to predict labels and

the bounding box regression layer to refine the proposals, is defined as follows,

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v) (6.2)

where p is the output vector from the softmax layer, u is the groundtruth label, tu

is the vector indicating the bounding box regression offsets and v is the groundtruth

bounding box. In [140], the log loss was used for Lcls and the smooth L1 loss for

Lloc. Both R-CNN [168] and Fast R-CNN [140] rely on the generic region proposal

method, such as selective search [170]. In general, generic region proposal methods

are only implemented on CPU, which becomes a bottleneck if we want to achieve

faster object detection in real time. S. Ren et al. [139] proposed a Region Proposal

Network (RPN) to replace the generic region proposal methods and they combined

RPN with Fast R-CNN structure to form the Faster RCNN network. RPN is a fully
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convolutional network for effectively proposing RoIs. At training time, Faster RCNN

uses a similar multi-task loss function as Fast RCNN and RPN generates translation-

invariant anchors at multiple scales to assist bounding box regression. Since 2015,

Faster RCNN has become especially impactful and has led to numerous follow-up

works [171–174].

SSD Single Shot MultiBox Detector [171] (SSD) differs from Faster RCNN in that

it is a single feed-forward network without a secondary RPN. It maps the bounding

boxes in the output space to a set of boxes at other feature levels and generates

default boxes over different aspect ratios. The authors proposed a matching strategy

to correspond default boxes to a groudtruth at different levels. The multi-task loss

function is slightly different from the ones used in Fast/Faster RCNN as the class loss

function is replaced by a softmax over multi-class confidence vector. As SSD does

not resample features for each bounding box, it results in faster detection speed. SSD

also achieved competitive accuracy on the PASCAL, COCO and ILSVRC datasets.

Figure 6.6 shows an example of the SSD network.

Fig. 6.6.: Single shot detector [171].

YOLO Similar to SSD, You Only Look Once (YOLO) [173] is another network

with a single branch. As shown in Figure 6.7, the input image is divided into regions

of the same size. Then a set of bounding boxes and objectness scores are predicted

for each region. To produce the final result, these bounding boxes are weighted by

the predicted probabilities. The authors envisioned YOLO to be a real-time detector
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with reasonable accuracy and good scalability, as a simplified version can achieve up

to 155 FPS with GPUs. More recently, J. Redmon et al. proposed an updated version

or YOLO-v2 [175] that can detect over 9000 different object categories. The authors

focused on resolving the shortcomings of the original YOLO, such as frequent local-

ization errors and low recall value. Some of the improvements include adopting the

batch normalization technique and using a higher resolution classifier during training.

Fig. 6.7.: YOLO divides an input image into a grid of cells and predicts bounding

boxes with corresponding confidence scores [173].

6.3 Techniques To Improve Training Efficiency

Batch Normalization Batch Normalization (BN) [176] is one of the most impor-

tant works in the last five years of deep learning research. It has helped the current

network structures to achieve faster learning and higher overall accuracy.

Stochastic gradient descent (SGD) has proved to be effective to train deep net-

works and its goal is to minimize a loss function while adjusting a hyperparameter

θ,
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θ = argminθ
1

m

m
∑

i=1

l(xi, ti, θ) (6.3)

where xi and ti are the input data and the corresponding target value. m is the size

of the mini batch.

However, the change of the distributions from layers to layers poses a problem as

the weights in layers are consistently adapted to the new distribution. Such change

in the distributions is often referred to as Internal Covariate Shift. During back

propagation, the internal covariate shift can cause the learned weights to compensate

the outliers instead of producing required outputs. This results in a longer time of

convergence. The basic idea of BN is to regularize input features of a certain layer to

have the mean of zero and the variance of one. However, simply whitening the data

might change the representation of the layer. To address this, the authors introduced

a parameter transformation algorithm or Batch Normalizing Transform,

µB ←
1

m

m
∑

i=1

xi (6.4)

σ2
B ←

1

m

m
∑

i=1

(xi − µB)
2 (6.5)

x̂i ←
xi − µB

sqrt(σ2
B + ǫ)

(6.6)

yi ← γx̂i + β ≡ BN (6.7)

Modern deep networks, such as Inception-v3, ResNet, have all incorporated the BN

layers.

Deformable Convolutional Layer A new form of convolution and pooling, i.e.

deformable convolution and deformable RoI pooling were recently introduced in [177].

The idea of the deformable convolutional networks (DCN) is rooted from one of the

weaknesses of general deep networks. Without specific supervision, the deep networks

usually do not generate well with the rotated and scaled data. DCN offers an ability

to adapt to various geometric transformation.
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Figure 6.8 shows the structure of the deformable convolution layer (DCL). For a

traditional convolution kernel K, the output at each position is computed as follows,

y(p̂) =
∑

pi∈O

K(pi)x(p̂+ pi) (6.8)

where p̂ represents the center position of the convolution kernel, pi is any position

surrounding the center with an offset of 1 and O is the offset space.

In DCL, the authors added an learnable offset ∆pi, such that,

y(p̂) =
∑

pi∈O

K(pi)x(p̂+ pi +∆pi) (6.9)

By adding ∆pi, the convolution kernel is able to learn image context from irregular

positions.

Fig. 6.8.: 3× 3 deformable convolution [177].

6.4 Proposed Method

Related Work The deep learning based food image analysis has gained a huge

popularity over the past few years. In 2014, Bossard et al. [27] introduced the arguably
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first large-scale food image dataset, or “Food-101” and reported the top 1 classification

accuracy of 56.40% using AlexNet. Another widely used food image dataset, known

as “UEC-FOOD100/256”, was created by K. Yanai et al. [39]. In 2015, the same

group of researchers used a slightly modified AlexNet to mine deep features and used

a one-vs-rest linear SVM to achieve the top 1 classification accuracy of 78.77% and

67.57% respectively on the UEC-FOOD100/256 dataset [34]. The authors compared

the features extracted from the original and finetuned network to the handcrafted

features and claimed the finetuned features outperformed the others. Later in 2015,

S. Ao et al. [33] applied similar idea of using finetuned features to the Food-101

dataset and compared the deep features extracted from AlexNet and GoogLeNet.

They reported the top 1 and 5 classification acurracy of 78.11% and 93.51% using

GoogLeNet.

M. Bolanos et al. [178] proposed a two-step food image analysis method which is

composed of a food localization step using food activation maps and a classification

step using GoogLeNet. They achieved 95.64% food-vs-nonfood localization accuracy

with a 0.5 Intersection over Union (IoU) thresholding and 79.20% top 1 accuracy on

the Food-101 dataset.

Even though a number of deep networks were studied in the domain of food

images, an end-to-end food analysis pipeline is still lacking. Based on our previous

study, image segmentation plays a significant role in dietary analysis [10,116]. In this

section, we describe a three-stage food analysis pipeline as shown in Figure 6.9. The

proposed method involves three stages: 1) a food-specialized localizer, 2)a fine-grained

food classifier pretrained on the ImageNet categories and 3) a food segmentation

method, for example, the weakly supervised technique discussed in chapter .

6.4.1 Food Localization

Different from our previous work [10,116], where the automatic analysis starts with

a generic segmentation method, followed by extracting features from each segment,



91

Fig. 6.9.: Three-stage food image analysis diagram.

and finally food labels are predicted based on a majority vote, the proposed method

starts with a dedicated food localizer.

In [178], the authors adopted the class activation map [146] and retrained it using

the food and non-food images. Here, we propose to use the Faster RCNN as a

baseline localizer and we change the mid-level convolutional layers to the deformable

convolutional layers [177]. As mentioned in Section 6.2, the Faster RCNN has two

branches: the Feature Extraction Network (FEN) and the Region Proposal Network

(RPN). The softmax layer of the FEN is modified so that it can perform binary

classification. We evaluate the VGGNet, ResNet-50 and ResNet-101 as our candidate

FENs. All the FENs are pretrained on the Pattern Analysis Statistical Modelling

and Computational Learning (PASCAL) Visual Object Classes Challenge (VOC)

2012 dataset and finetuned using the UEC-FOOD256 dataset.

6.4.2 Food Classification

After obtaining the fine-grained proposals generated by the food localizer, the

next step is to classify each proposal to one of the 101 food categories. We evaluate

GoogLeNet, ResNet-101 and Inception-v3 as our primary classifiers. All the networks

are pretrained on ImageNet and then finetuned using the Food-101 dataset, as transfer

learning has been proven to be particularly effective for the general object recognition
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tasks. We modify the softmax layer to have 102 outputs, i.e. 101 food classes plus

an additional “background” category.

6.4.3 Adversarial Examples

Adversarial examples are inputs to machine learning models that an attacker has

intentionally designed to cause the model to make a mistake. They have become

notorious as they are imperceptibly different from the original images but are readily

confusing to the classifier. Here, we want to investigate the adversarial examples in

the food image domain using the following techniques.

Fast Gradient Sign Method In 2015, I. Goodfellow et al. [179] proposed the

Fast Gradient Sign Method (FGSM) for generating adversarial examples using the

derivative of the loss function of the CNN with respect to the input feature vector.

Given an input image, FGSM perturbs each feature in the direction of the gradient by

ǫ, where ǫ is a parameter that determines the magnitude of the perturbation. For a

network with loss J(Θ, x, y), where Θ represents the CNN parameters, x is the CNN

input, and y is the label of x, the adversarial example is created as

x∗ = x+ ǫsign(∇xJ(Θ, x, y))

Jacobian-based Saliency Map Attack Jacobian-based Saliency Map Attack

(JSMA) [180] is an iterative method that creates adversarial examples by target-

ing on another specific class of object. For an input x and a neural network N , the

output for class j is denoted Nj(x). To achieve an output of target class t, Nt(X)

must be increased while the probabilities Nj(X) of all other classes j 6= t decrease,

until t = argmaxj Nj(X). This is accomplished by exploiting the adversarial saliency

map, which is defined as

S(X, t)[i] =
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∂Xi
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∑
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for an input feature i. Starting with a normal sample x, we locate the pair of features

{i, j} that maximize S(X, t)[i] + S(X, t)[j], and perturb each feature by a constant

offset ǫ. This process is repeated iteratively until the target misclassification is ac-

complished.

6.5 Experimental Results

6.5.1 Food Datasets For Localization and Classification

Food-101 As we mentioned before, Food-101 [27] is arguably the first dedicated

food image dataset of the large volume. It contains 101,000 images of 101 foods that

are commonly consumed around the world.

UPMC Food-101 UPMC Food-101 [38] can be considered a “twin dataset” of

Food-101, as they share the same 101 categories and similar volume. In the UPMC

Food-101 dataset, each food class has roughly 800-900 images, which are collected

from Google Images searches using the food name plus “recipe”. However, many

images from this dataset are well sorted and some are not necessarily acquired from

an eating occasion.

UEC-FOOD256 UEC-FOOD256 [39] is an extension of UEC-FOOD100. It con-

tains images of 256 different foods. Each food class has 150 samples on average.

UEC-FOOD256 also provides bounding box information.

TADA groundtruth The groundtruth dataset is created from a free-living study [158]

we have conducted, in which 45 participants acquired 1453 images of 56 commonly

eaten food within a week. As for now, the TADA groundtruth dataset contains over

900 food segments with labels.
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Table 6.2.: RPN parameters used in finetuning

Parameters Value

Anchor scales 8,16,32

RPN positive overlap rate 0.7

RPN batch size 256

6.5.2 Food Localization

Two datasets were used for training the food localizer: the PASCAL VOC 2012

and the UEC-FOOD256 dataset. The PASCAL VOC 2012 dataset contains 11530

images of 20 common objects and it has 27450 region annotations in the form of

bounding boxes. We split the dataset in an 80%/20% fashion and trained the Faster

RCNNs with different FENs (VGG-19, ResNet-50 and ResNet-101) on it. At the

point, all the networks have a softmax layer with 20 outputs.

We finetuned the pretrained networks using UEC-FOOD256. Based on the bound-

ing box data provided in UEC-FOOD256, we first converted it to the PASCAL an-

notation format. All the food items are simply relabeled as “food”, because we

are only interested in the food-vs-nonfood classification in the food localizer. Com-

mon data augmentation techniques, such as random crop, color jittering and hor-

izontal flipping, were applied and we used a random 70%/20%/10% split for the

training/validation/testing sets. A stochastic gradient descent (SGD) optimizer with

momentum of 0.9 and learning rate of 0.001 was used. Some important parameters

related to the RPN are summarized in Table 6.2.

Figure 6.10 demonstrates some examples of the detected food items in UEC-

FOOD256. Finally, we modified the mid-level convolutional layers to adapt DCL.

We used a thresholded Intersection over Union (IoU) score to evalute the localization

accuracy. If a predicted food region has an IoU > 0.6 with a matching groundtruth
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Fig. 6.10.: Examples of the localized food items in the UEC-FOOD256 dataset.

Table 6.3.: Food localization accuracy using different models

Model Without DCL With DCL

VGG-19 88.57% 90.05%

ResNet-50 93.44% 94.52%

ResNet-101 94.61% 95.49%

bounding box, we consider the food item is correctly detected. The localization

accuracy is defined as # of detected food items
Total # of food items

.

Table 6.3 shows the localization accuracy with and without applying DCLs. As

we can see, the networks with DCLs consistently produce better rates. We attribute

the slight performance boost to the fact that DCL has helped to detect food items

with rotation changes and with various scales. The best result of 90.49% is achieved

with ResNet-101 as the FEN.

More examples from the TADA groundtruth dataset are shown in Figure 6.11.

Fig. 6.11.: Examples of the localized food items in the TADA groundtruth dataset.
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Table 6.4.: Top 1 and 5 food classification accuracy using different models

Model Top 1 Top 5

GoogLeNet 76.70% 94.22%

ResNet-101 82.61% 96.11%

Inception-v3 83.27% 96.35%

6.5.3 Food Classification

As aforementioned, the proposed classification network features a 102-way softmax

layer to accommodate the 101 food classes and one “background” class. We used the

Food-101 dataset and all the non-food classes in the Caltech256 dataset [156] to

finetune the pretrained networks. For each class including the “background”, we

applied a random 70%/20%/10% split for the training/validation/testing sets. An

SGD optimizer with the momentum of 0.93 and a step learning rate starting from

0.01 was used.

We report the testing accuracy in Table 6.4. As ResNet-101 and Inception-v3

both have a larger capacity than GoogLeNet, they demonstrate better generalization

on the testing set. Figure 6.12 shows how the validation accuracy of Inception-v3

improves over epochs. In this example, the learning rate was downgraded by 0.1 at

the 25th epochs. Based on our implementation, we found that Inception-v3 converged

faster and produced a better result than ResNet-101.

When we tested the finetuned Inception-v3 on the UPMC Food-101 dataset, we

got 70.12% top 1 accuracy. As the UPMC Food-101 contains many non-food images,

we do not consider it as a benchmark dataset.

6.5.4 Adversarial Examples

To evaluate the adversarial examples in the domain of food images, we used the

network structure we introduced in Chapter 6.4. We tested the model trained on
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Fig. 6.12.: Validation accuracy of Inception-v3 during training.

the Food-101 dataset using untargeted attacks with FGSM and targeted attacks with

JSMA.

Figure 6.13 shows an adversarial example generated by FGSM. The original image

was correctly predicted as “ramen” while the tampered image was labeled as “pizza”

with very high confidence, even though there is no difference between the two to our

bare eyes.

Fig. 6.13.: An adversarial example generated by FGSM. The original and tampered

images are classified with high confidence to different food categories.

In Table 6.5, we report the error rates and the average confidence scores using

different FGSM attacks. While the attacks with ǫ ranged from 0.001 to 0.1 all produce
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Table 6.5.: Error rates and confidence scores after FGSM attacks with various ǫ

ǫ Error rate (%) Average Confidence (%)

0.001 85.5 89.3

0.005 86.8 86.0

0.01 89.2 82.7

Table 6.6.: Error rates and confidence scores of three example food classes after a

JSMA attack

Food class Error rate (%) Average Confidence (%)

ramen 90.1 88.9

steak 91.8 89.7

sushi 87.4 92.2

high error rates with high confidence scores, we can see that the confidence declines

when the attack is stronger.

To evaluate the targeted attack with JSMA, we used the testing set of three food

classes in the Food-101 dataset. Table 6.6 summarizes the results. With JSMA, we

were able to generate an image that gets misclassified to a specific food class. In

this case, we created “ramen” images that were mislabeled as “steak” and “steak” as

“sushi” and so on.

In the future, we would like to investigate these adversarial examples using the

localization networks and also use them to help the networks to overcome overfitting

issues.
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7. THE USE OF CONTEXTUAL INFORMATION IN

FOOD ANALYSIS

7.1 Related Work on Using Contextual Information

“Context” refers to any prior knowledge that is not derived from the image pixel

values [181]. The use of contextual information has gained attention in psychology

and computer vision with respect to its effects on visual search, localization and

recognition [181–183]. Integrating contextual information with visual information

in an object categorization framework is a challenging task [184]. Semantic object

context was used in post-processing to reduce visual ambiguity in [183]. Classification

techniques, such as boosting [185] and Logistic Regression [186], conditional random

field [183] have been developed to use contextual information in order to maximize

the classification performance.

We consider the contextual dietary information as the non-pixel data that yields

additional information about a user’s diet. Examples of contextual information in

dietary assessment include the time, date, and location (GPS coordinates) of a meal

occasion, the dietary patterns or combinations.

Our previous work on food classification has shown that there are several issues

that need to be addressed [10]. These include the inability to differentiate visually

similar food items, e.g. diet coke vs. regular coke, nonfat milk vs. 2% milk, solely

based on their appearance in the image. Another issue is the selection of training

data for different classes. Increasing the number of food training classes could cause a

drastic increase in the food classification error. Using contextual dietary information

the classifier can assign different weights to the food classes that are more relevant to

what are commonly eaten by the individual at similar times, dates or locations. For

example, we can learn that an individual is more likely to have scrambled eggs in the
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morning rather than in the evening from the temporal data. GPS information is able

to indicate where a person has the meal, whether at home, at work or in a restaurant.

Assuming that people consume different foods at home/work compared to any meal

served in a restaurant, GPS data can be treated as a priori in the classification process.

Thus, the contextual information can reduce the number of classes that the classifier

has to select from and hence can learn the dietary habits of the participant.

There has been work in using contextual information in food image analysis.

Matsuda et al. [187] proposed to use a manifold ranking method to improve food

classification rate using food co-occurrence statistics. Beijbom et al [28] made use

of geographic location as context and focused on identifying foods in restaurants.

In previous work [184] we incorporated two types of contextual knowledge, food co-

occurrence patterns and an individual’s food consumption frequency for a week.

In this chapter, we extend our earlier work on food image classification [10] and on

the use of contextual information [11, 45]. We show that both our segmentation-to-

classification pipeline with handcrafted features and a region proposal based method

with deep features benefit from the contextual data.

7.2 Image Segmentation and Food Identification

In this section, we overview how we refine the segments generated by local vari-

ation [188]. Local variation is a graph based segmentation method, in which two

regions are segmented if the difference between the two regions is large relative to

the internal difference within at least one of the two regions. The degree to which

the difference between regions must be larger than minimum internal difference is

controlled by a threshold β [188]. β roughly controls the size of the regions in the

resulting segmentation. Smaller values of β yield smaller regions and favor over-

segmentation. We use β = 150 in the segmentation experiment. Since the image

segmentation method is limited by a particular choice of input parameters, some

food items may be under-segmented, while others may be over-segmented. We seek
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Fig. 7.1.: Segmentation refinement.

to overcome the segmentation problem by using classification feedback to refine the

segmentation results. In our approach, the image segments are classified to a particu-

lar food label using the features extracted from that segment. The K most probable

candidate classes along with their classification confidence scores are used to refine

initial segmentation results. Figure 7.1 shows our segmentation refinement approach.

To detect under-segmentation, we first scan all the segments produced by the use

of local variation in the image to filter out small segments. We define “small segments”

as segments that contain less than 1/50 pixels of the original image. Each remain-

ing segment is re-segmented and classified again. If the food classification confidence

score is improved by re-segmentation, we accept the new segmentation; otherwise the

original segmentation is kept as final segmentation. After under-segmentation exami-

nation, we update the label of the segments to {s0, s1, ..., sQ−1} and the corresponding

food category label as {(c0,0, c0,1, ..., c0,K−1), ..., (cQ−1,0, cQ−1,1, ..., cQ−1,K−1)}.
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(a) (b) (c) (d)

Fig. 7.2.: Examples of food image segmentation and segmentation refinement. (a)

original food images, (b) initial segmentation results using the local variation segmen-

tation, (c) segmentation refinement using food classification confidence score, and (d)

final image segmentation results after fast rejection.

After under-segmentation examination, for each adjacent pair of segments, if a

food category label in one segment equals to a label in the other segment, and the

sum of the confidence score is greater than the highest individual score, we combine

these two segments with their updated K category labels corresponding to the K

largest confidence scores in the descending order. This process of over-segmentation

examination is done iteratively until the overall confidence score of a segment cannot

be improved. After under-segmentation and over-segmentation are examined, we may

still have redundant segments, such as in the background area. We use a fast rejection

step to remove these redundant segments [10]. We filter out the segments with low

confidence scores from the classifier. Illustration of the complete image segmentation

refinement process is shown in Figure 7.2.

Features are used for describing the characteristics of objects. An essential step in

solving the food classification problem is to select suitable features to distinguish one

food from another. Some foods may have very distinctive color or very distinctive

patterns, but for most food items it is the combination of these aspects that make

them distinctive. Previously, we have investigated various features for food classifica-

tion [10,11]. Here, we overview three types of features, color, texture and local region

descriptors, among which we regard color and texture as the global features. Based



103

on the evaluation of these feature descriptors and their combinations, we select the

optimal strategy for our food image analysis system.

It should be noted that in this section we describe a set of features used in our

contextual experiments. Other approaches such as deep networks [35,189] could also

be used to investigate the use of contextual information.

Color features have been extensively studied in image retrieval [190]. Some foods

may exist in a wide variety of colors, but many have a distinctive color. Color infor-

mation is sensitive to environmental conditions, such as changes in light source and

shadows. We investigated two color descriptors, namely, Dominant Color Descriptor

(DCD) and Scalable Color Descriptor (SCD) [190]. DCD is a vector of D represen-

tative colors from the CIE-Luv color space using the generalized Lloyd algorithm for

color clustering [191, 192] and their corresponding percentages. SCD is determined

by quantizing the colors in the HSV color space uniformly into 256 bins, which in-

cludes 16 levels in H, 4 levels in S, and 4 levels in V as suggested by the MPEG-7

standard [190].

Texture, similar to color, is a very descriptive low-level feature. In general, texture

describes the arrangement of basic elements of a material on a surface [193,194]. We

selected two texture descriptors for food classification: Entropy-Based Categorization

and Fractal Dimension Estimation (EFD) and Gabor-Based Image Decomposition

and Fractal Dimension Estimation (GFD) [10]. EFD can be seen as an attempt to

characterize the variation of roughness of homogeneous parts of the texture in terms

of complexity [10]. GFD is based on fractal dimension estimation [10].

Local region features are described for points of interest and/or local regions. The

idea is to find points in the object which can be reliably found in other samples of the

same object regardless of variations between images. An invariant local region feature

describes such points of interest in the same way in different images with illumination,

scale and viewpoint changes. Many local region features have been proposed to repre-

sent the characteristics of points of interest [195–198]. We investigated the following

two local region features for food classification: Scale Invariant Feature Transforms
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Table 7.1.: List of features investigated and their types and dimensions.

Feature Feature Type Dimension

DCD Color Feature 20

SCD Color Feature 256

EFD Texture Feature 120

GFD Texture Feature 120

SIFT Local Region Feature 128

MDSIFT Local Region Feature 384

(SIFT) [195] and Multi-scale Dense SIFT (MDSIFT) [10]. Table 7.1 summarizes the

features used in our experiments.

Once the food items are segmented from an eating occasion image and the features

are extracted, we classify the color and texture features using K-Nearest Neighbors

(KNN) [199] and the local features using the Vocabulary Tree (VT) classifier [11].

7.3 Region Proposal Based Approach with Deep Features

Since the interest in Convolutional Neural Networks (CNN) was rekindled by

AlexNet [137] in 2012, the number of applications using deep networks has grown

exponentially. CNNs have dominated many aspects of object classification and de-

tection [32]. Besides, recent research indicates that the generic descriptors extracted

from the convolutional neural networks are very effective [189]. The success of CNNs

is largely attributed to big data and carefully designed models. In terms of food

image analysis, some researchers [200] focused on improving the network structure by

considering the food structure in the image, or “vertical food layer”. However, they

did not utilize any contextual information to improve classification for foods that do

not have an obvious structure in their appearances.
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In the section, we describe a region proposal based method to identify multiple

food items in an image. In contrast to the segmentation-to-classification pipeline we

discussed in Section 7.2, deep features are extracted from redundant proposed regions

instead of segments. Then, support vector machine (SVM) [189] is used to classify

each region as either a specific food item or background. Similar to RCNN [168], we

adopted selective search [170] as the generic region proposal method. We finetuned

VGG-16 [150] on Food-101 dataset [27] and used the output from the first fully

connected layer as the deep features.

Before we forward propagate the region proposals through the network, we first

run a fast rejection to eliminate tiny regions and regions with large aspect ratios. The

fast rejection is based on the assumption that the food items in a food image usually

occupies the majority of the scene.

We used the PyTorch [201] implementation of the VGG-16 [150] to obtain the

4096-dimensional features from each region proposal that was not rejected. In order

to convert a region proposal to the dimension compatible with the deep network, we

proposed a random 10-crop technique. Since VGG-16 requires the input image of

224× 224, for any region proposal, we first resize it so that the shorter dimension of

the region is 224. Then we randomly select 10 224 × 224 cropped regions from the

resized proposal. Features are computed by propagating a mean-subtracted 224×224

RGB image through the network.

Finally, we used an SVM to classify food items and the background. For regions

that are classified as a certain food class with greater than 75% confidence, we apply

non-maximum suppression to select the best proposal. We combine the majority

vote from the 10-crop technique with the confidence score from SVM to finalize our

prediction. As improving deep features or region proposal methods is not the focus of

this chapter, we only show the experimental result using our own dataset in Section 7.5

as a comparison to the method we discussed in Section 7.2. More importantly, we

show that the contextual information can be integrated as easily in the region proposal

based approach as in the previously discussed segmentation-to-classification pipeline.
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7.4 Context Refinement

Contextual information has gained more attention in image analysis and computer

vision in the past few years [182, 183, 202–206]. Context such as semantic, spatial

images and poses has been proved to be effective for natural images. Examples of

contextual information in the dietary applications include the date, time and location

of the eating occasion, who the subject is eating with, and personal eating habits. In

this section, we overview our previous approaches for integrating contextual informa-

tion which the participant supplies to the system either explicitly or implicitly [45]

and propose a new approach for combining temporal eating information and food co-

occurrence into a personalized learning model. Note that the contextual information

we investigate are independent of the classifier and can be used with other types of

machine learning techniques (e.g SVM and deep networks [35, 189]).

7.4.1 Temporal Dietary Information

We explore temporal information of food images to generate the preference of

different food classes based on time of an eating occasion. People usually eat different

types of foods with regard to the time of a day, such as breakfast vs. dinner. We

incorporate this contextual dietary information to assign a weight to different food

classes.

We divide eating time into three time intervals: 12am - 11am, 11am - 4pm,

and 4pm - 12am (midnight). For example, from our “free-living” dietary assessment

study [45] the food consumption frequency of these three time intervals are shown

in Figure 7.3, Figure 7.4, and Figure 7.5, respectively. We can see unique food

consumption patterns for different time intervals. For example, from 12am to 11am,

“Bagel”, “English Muffin” and “Pancake” are more likely to be consumed than other

foods such as “Chicken Wrap,” “Frozen Meal Meatloaf” and “Ham Sandwich.” From

11am to 4pm, people tend to eat more “Ham Sandwich” and “Potato Chips” than

earlier in the day. When it comes to 4pm to 12am, there is a significant increase
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Fig. 7.3.: Examples of food consumption preference between 12am (midnight) and

11am.

Fig. 7.4.: Examples of food consumption preference between 11am and 4pm.

in the consumption of “Garlic Bread” and “Lasagna.” Given a participant’s food

consumption frequency over time, we assign different weights to different food classes

according to the eating occasion time.

7.4.2 Food Co-Occurrence Patterns

A food co-occurrence pattern describes the likelihood of food combinations. It is

the joint probability of food items existing together in a single eating occasion [45].

Semantic context can provide valuable information for improving classification. In
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Fig. 7.5.: Examples of food consumption preference between 4pm and 12am (mid-

night).

this section, we describe the use of the co-occurrence of food items in order to reach

a labeling agreement for all the segmented regions in an image. The goal is to detect

potential misclassifications and refine the classification results that were obtained by

using only visual features.

After image segmentation and food classification, an eating occasion image I is

segmented into multiple regions s0, ..., sq, ..., sQ−1. A segment sq is assigned K food

labels. A classification confidence score φ(cq,k) measuring the probability that any

food label matches the segment sq based on the distance of the visual features between

the segmented region and the training data. We now want to adjust the food labels to

achieve maximal global contextual agreement with respect to the food co-occurrence

pattern given the constraints of the segments’ visual features. For example, in most

cases “fries” has a higher contextual agreement with “ketchup” than with “pepper.”

Graphical models provide a simple way to visualize the structure of a probabilistic

model. Since the number of food segments in an eating occasion is relatively small,

we construct a weighted complete digraph between all segments [207]. In our graph,

each node in the weighted complete digraph represents a segment and its associated

food labels from the food classification results. Therefore, the graph contains Q nodes
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and each contains K food labels. Obviously, one node has Q− 1 outgoing edges and

Q− 1 incoming edges.

The food co-occurrence probability of food label cj,k given food label ci,k′ , denoted

as P (cj,k|ci,k′) is defined as follows,

P (cj,k|ci,k′) = max{P (cj,k|ci,1), ..., P (cj,k|ci,K−1)} (7.1)

where k and k′ independently indeces K. Then the influence of segment i on the kth

food label of segment j, v(cj,k|si), is calculated as:

v(cj,k|si) = φ(ci,k′)P (cj,k|ci,k′) (7.2)

where φ(ci,k′) is the classification confidence score of food label ck′ in the ith segment.

Finally, the weight of the edge from node i to node j, vij, is defined as an influence

vector indicating how much influence the food labels in segment i have on all the food

labels in segment j. An influence vector of K-dimension is computed from the food

occurrence pattern as follows,

vij = [v(cj,0|si), ..., v(cj,k|si), ..., v(cj,K−1)|si)] (7.3)

To estimate the co-occurrence probability, we first construct a food co-occurrence

matrix MFCO that contains the food co-occurrence counts among food labels in the

training set of the database [45]. Figure 7.6 shows an example of a food co-occurrence

matrix. The entry (i, j) in a food co-occurrence matrix is the number of times that

food λj is in an eating occasion image when food λi is in the image [45].

Figure 7.6 illustrates the structure and content of a food co-occurrence matrix. As

we can see, some food items have a high probability of existing together in the same

image, e.g. “Wheaties” with “Milk,” “Garlic Bread” with “Lasagna;” while some

food items rarely appear together in the same image, e.g. “Carrots” with “Celery.”

Note that the co-occurrence matrix is trained on training data, where we have perfect

segmentation and food labels from our dietary studies. The matrix is only updated

when we receive a participant’s confirmation from the review process of the TADA

system where the participant can confirm, change or add food labels [45].
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Fig. 7.6.: An example of food co-occurrence patterns.

So far we have found the influence vector from si to sj. Following the same

approach, we find the influence vectors from all other segments to sj. The next step

is to find the total influence on sj from all other nodes in the graph. We propose to

use the maximal influence vector wj:

wj = [max({vij(0), i 6= j}), ...,max({vij(K − 1), i 6= j})]

where {vij(k), i 6= j} is the set containing the kth element of each of the influence

vectors that point to node j. We choose the largest influence given to each food label
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of node j as the final influence vector wj. We finally update the food classification

confidence score of each food label of node j as follows:

φ′(cj,k) = φ(cj,k)(wj(k) + ǫ) (7.4)

where ǫ > 0 and wj(k) is the k
th element of wj. The term ǫ is used to avoid setting

φ′(cj,k) to zero when wj(k) = 0. The max influence of one segment on another is

constrained by the max confidence score of the food label. For each adjacent pair

of segments, we only accept the new segmentation if a food category label in one

segment equals to a label in the other segment, and the sum of the confidence score

is greater than the highest individual score.

After the confidence scores for segment i is updated to {φ′(ci,0), ..., φ
′(ci,K−1)}, we

update the order of food labels accordingly, with the Top 1 food label being the one

associated with the largest updated confidence score, and the TopM food label being

the one associated with the M th largest updated confidence score.

7.4.3 Personalized Learning Model

The goal of a personalized learning model is to improve food classification by

using dietary preferences. For example, if it learns that a person prefers diet coke

and he/she never drinks regular coke from his/her dietary history, the personalized

learning model will adjust the prediction of different Coke products if a classifier

initially assigns similar confidence scores to those classes.

Figure 7.7 illustrates a list of food consumption frequency patterns for various par-

ticipants in our free-living study. For example in Figure 7.7, most of the participants

shown here drink milk quite frequently but participant 36 rarely drinks milk. We can

also tell that the favorite fruit of participant 3 is “Grapes;” the favorite drink for par-

ticipant 35 is “Orange Juice;” and the favorite food for participant 36 is “Lasagna.”

The figure shows the differences in individual eating habits using food consumption
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Fig. 7.7.: An example of food consumption frequency for various participants. Hori-

zontal axis shows the IDs of participants and vertical axis represents various food

items.

frequency for this subset of foods. The food consumption frequency of food item λi

for a participant Sj is:

F (Sj, λi) =
γi(Sj, λi)

∑

k γk(Sj, λi)
for k = 1, ..., K (7.5)

where γi is the food consumption counts of a participant and K is the number of food

classes.
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The personalized learning model takes into account both temporal dietary infor-

mation and food co-occurrence patterns. Figure 7.8 shows how we propose to do

context-based classification refinement. Given a set of labeled segments,

{(c0,0, ..., c0,K−1), ..., (cq,0, ..., cq,K−1)}

with associated confidence scores

{(φ(c0,0), ..., φ(c0,K−1)), ..., (φ(cq,0), ..., φ(cq,K−1))}

, the food co-occurrence pattern generates an updated confidence scores for each

segment in the image,

{(φ′(c0,0), ..., φ
′(c0,K−1)), ..., (φ

′(cq,0), ..., φ
′(cq,K−1))}

.

In the temporal information block of Figure 7.8, we use recursive Bayesian esti-

mation to incrementally learn a participant’s dietary pattern [45,208,209]. We model

whether a participant, Sj eats a particular food, λi in time internal, V , as a Bernoulli

trial,

W =







1, X

0, 1−X
.

where W = 1, X represents Sj eats λi in V with a possibility, X, and X is assumed

to follow a Gaussian-like distribution with the support from 0 to 1. As discussed in

Section 7.4-A, we used three time intervals 12am - 11am, 11am - 4pm, and 4pm -

12am (midnight).

We would like to estimate the probability, Pλi
, that a participant, Sj, will eat

a particular food, λi on the next day given the history [45]. Let pλi
(xn) be the

probability density function (PDF) representing Sj eats λi, in the time interval V on

the nth day, and zn be the observation whether Sj eats λi in V on the nth day [45].
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Fig. 7.8.: The use of contextual dietary information in food classification refinement.

The following equations describe the posteriori update step in the recursive Bayesian

network,

pλi
(xn|z1:n, V ) =

pλi
(zn|xn, V )pλi

(xn|z1:n−1, V )

pλi
(zn|z1:n−1, V )

=
likelihood× prior

normalization term
. (7.6)

Initially, pλi
(x1|V ) is assumed to have a Gaussian-like distribution centered at 0.5

with unit variance. If the participant eats λi in V on the nth day, pλi
(zn|xn, V )

becomes the Gaussian-like distribution centered at 1 with unit variance, otherwise the

distribution centers at 0. pλi
(xn|z1:n, V ) is used to predict pλi

(xn+1|z1:n, V ) and the
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PDF is computed by multiplying the likelihood and prior followed by normalization

between 0 and 1. On the n+ 1th day, the optimal estimate of Pλi
(V ) is computed as

Pλi
(V ) = argmax

x
pλi

(xn|z1:n, V ).

For all the foods in the training dataset, we have a set of probabilities,

{P n+1
λ0

(V ), . . . , P n+1
λK−1

(V )}

where N is the total number of food categories. We further define the context-based

confidence scores (CCS) to be:

Ψn+1(V ) =
[

ψn+1
λ0

(V ), . . . , ψn+1
λK−1

(V )
]T

=
[

ωP n+1
λ0

(V ), . . . , ωP n+1
λK−1

(V )
]T

. (7.7)

where ω controls the trust weight we assigned to the context-based decisions. For each

image segment, the CCS associated with the Top M food labels, (ψi,0, ..., ψi,M−1), can

be obtained from Ψn+1(V ). The final confidence scores are calculated using a strategy

of majority vote,

(φ′′(ci,0), ..., φ
′′(ci,M−1)) = (φ′(ci,0), ..., φ

′(ci,M−1))

+ (ψi,1(V ), ..., ψi,M−1(V ))

= (φ′(ci,0), ..., φ
′(ci,M−1))

+ (ωPi,1(V ), ..., ωPi,M−1(V )) (7.8)

ω, also in Equation 7.7, is set to be 1/h of the maximum automatic analysis based

confidence score. In our experiments, we observed best results when h was set to 4-5.

The food labels are updated again according to the new confidence scores to generate

the final food labels {(c′′0,0, ..., c
′′
1,M−1), ..., (c

′′
q,0, ..., c

′′
q,M−1)}.

7.5 Experimental Results

7.5.1 Experiment Setup and Datasets

We evaluate our system using a free-living dietary study where we provided some

foods to the participants and were flexible relative to their preferences regarding how
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Fig. 7.9.: An example of food consumption frequency by a participant with the inte-

grated time information integrated. The colors indicated different eating time inter-

vals.

and when foods were eaten [45]. In addition, we encouraged the participants to

select their own favorite foods if not provided [158]. They used the TADA mobile

application to record their eating occasions and all the images were uploaded to our

back-end server and then analyzed using the techniques we described in the previous

sections.

This study consists of 45 participants. Each participant was asked to acquire

eating occasion images at each eating occasion for a 7-day period. In total 1,453

eating occasion images were collected in the study and 42 commonly eaten food items

were analyzed. Moreover, the dataset contains rich contextual information, such as

participant feedback, temporal data, GPS location and nutrient information.

We used the free-living dataset as it is for evaluating features and classification.

To evaluate the personalized learning model on a day-to-day basis, we selected par-

ticipants in the free-living study with similar food consumption patterns to construct

three datasets. We measure the similarity using the Euclidean distance between each

food consumption pattern and used K-means for clustering. For example, one of the

datasets contains 119 food images from participant 14, 17, 20 and 32. As illustrated

in Figure 7.7, participant 14, 17, 20 and 32 all show relatively high consumption
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frequency of milk, mixed salad and lasagna. Each dataset features a different food

consumption pattern and contains approximately 120 images. We labeled them as

Dataset 1, 2 and 3 corresponding to User 1, 2 and 3. Milk, lasagna, mixed salad

and garlic bread are the most frequently consumed foods in Dataset 1, while Dataset

2 does not have any frequently consumed foods except milk. Dataset 3 represents a

significant dietary pattern change within a month. The first three weeks in Dataset

3 have similar food consumption style as Dataset 1. However, the eating pattern of

the last week was selected to be noticeably different.

In addition, we use a subset of the 1453 images for evaluating the performance of

the region proposal method with deep features. Due to the limitation of the bounding

box groundtruth we have in the free-living dataset, the subset consists of 60 images

of 24 food classes and we denote it as Dataset 4. On average, each image contains 4

instances of the 24 food classes. The bounding box groundtruth of the 24 food classes

from the rest of the free-living dataset are used for training.

7.5.2 Feature and Classification

As we discussed in Section II, we classify food items based on the automatic

segmentation result and the features extracted from each segment. The food iden-

tification accuracy is defined as: accuracy = TP/(TP + FP/M + FN) where TP

indicates True Positives (correctly detected food segments); FP indicates False Posi-

tives (incorrectly detected food segments or misidentified foods); FN indicates False

Negatives (food not detected). Finally, M refers to the identification accuracy order.

If one food classification label is generated for each image segment, then M = 1.

In our implementation, after image segmentation and food classification, each image

segment is assigned 4 food categories (or classes) with the 4 largest class labeling

confidence scores (M = 4).

The classification accuracy of a single feature is discussed in [11]. From the results,

we see that color features achieve better classification accuracy compared to texture



118

Table 7.2.: Food classification accuracy from feature combination.

Features Top 1 Accuracy Top 4 Accuracy

DCD + MDSIFT 60.9% 83.27%

DCD + MDSIFT + SCD 62.9% 85.1%

DCD + MDSIFT + SCD 64.5% 84.2%

+ SIFT

DCD + MDSIFT + SCD 63.5% 83.4%

+ SIFT + EFD

DCD + MDSIFT + SCD 62.9% 82.8%

+ SIFT + EFD + GFD

features. DCD outperformed all other features. This suggests that in general we can

represent the color content of food items using only a few colors, which is consistent

with color representation of general objects [210]. As to local features, the MDSIFT

feature achieves better food classification results than the SIFT feature.

We combine the confidence scores of food labels that belong to the same food class

and choose M food classes with Top M confidence scores. Each feature is assigned a

weight from 0 to 1 based on our training experiment and the final confidence score

is obtained by a weighted sum model. The food classification accuracy of Top 1 and

Top 4 most probable food classes is shown in Table 7.2.

Table 7.2 summaries the food classification results after combining multiple fea-

tures. Based on the performance of feature combinations and complexity consid-

eration, we choose three features, namely, DCD, MDSIFT and SCD, in our food

classification system. The Top 1 and Top 4 food classification accuracy for each food

item using the combination of these three features is shown in Figure 7.10. When

tested on Intel Xeon X5550 CPU, it usually takes 30-70s for one image to complete

segmentation and classification depending on the number of food items in the image.
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Fig. 7.10.: Top 1 and Top 4 food classification accuracy for each food item with three

features fused together, DCD, MDSIFT and SCD. The top of the orange bar: Top 1

classification accuracy; the top of the blue bar: Top 4 classification accuracy.

We fully understand that automatic identification of food items in an image is

not an easy problem and we will not be able to recognize every type of food. The

way of packaging or the way the food is served will present problems for automatic

recognition. Also, some food items are inherently difficult to identify due to their

visual similarity in the feature space. In some cases, even if a food is undetected or

not correctly identified, it may not make much difference with respect to the energy

or nutrients consumed. For example, if we fail to detect water in an eating occasion

image, it will have little impact on the estimate of the energy or nutrients consumed

in the meal due to the low energy content of water. Similarly, if our system identifies a

“brownie” as “chocolate cake,” there is no significant difference in energy or nutrients

consumed.

7.5.3 Region Proposal Based Approach with Deep Features

To evaluate the performance of the region proposal based method, we selected

24 food classes with relatively sufficient bounding box groundtruth as mentioned in

Section 7.5.1. We start with 20 bounding boxes on average for each class and we
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augment the training set by applying minor shifting to the original groundtruth. We

end up getting more than 100 bounding boxes for each class. We validate the SVM

model using a 5-fold cross-validation. For each bounding box groundtruth, we first

resize it so that the shorter dimension of the region is 224 while keeping the aspect

ratio. Then the deep features are extracted from the 224×224 center-cropped region.

In our experiment, we chose the SVM model with the Radial Basis Function kernel

where C = 1000 and γ = 0.001. Dataset 4 was used to evaluate the proposed method.

For each detected region, we consider it correct if it has more than 80% overlap with

the groundtruth. We report 52.4% detection and classification accuracy.

During training time, we validate the SVM model using a 5-fold cross-validation.

For each bounding box groundtruth, we first resize it so that the shorter dimension of

the region is 224 while keeping the aspect ratio. Then the deep features are extracted

from the 224×224 center-cropped region. In our experiment, we chose the SVMmodel

with the Radial Basis Function kernel where C = 1000 and γ = 0.001. Figure 7.11

demonstrates the precision and recall [159] of the classification accuracy using the

5-fold cross-validation. To summarize, we achieve approximately 84% Top 1 accuracy

for both precision and recall.

At test time, Dataset 4 was used to evaluate the proposed method. For each

detected region, we consider it correct if it has more than 80% overlap with the

groundtruth. We report 52.4% detection and classification accuracy.

7.5.4 Contextual Refinement

We conducted two experiments to validate the personalized learning model. First,

we tested on the same 1453 eating images used in the feature and classification ex-

periment by assuming the food assumption frequency and co-occurrence pattern are

known. If the food co-occurrence pattern is given, the Top 1 and Top 4 food identifi-

cation accuracy increased to 65.3% and 85.9% compared to 62.9% and 85.1% without

contextual information. The accuracy is further improved to 71.4% and 88.3% with
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Fig. 7.11.: Precision and recall of each food class using 5-fold cross-validation.

both food assumption frequency and co-occurrence pattern. The food identification

accuracy for each food item is shown in Figure 7.12. Comparing food classification

accuracy obtained after contextual refinement (Figure 7.12) and before contextual re-

finement (Figure 7.10), we can see that most of the food items in our dataset achieve a

better classification accuracy. Similarly, we tested the region proposal based method

on Dataset 4. We achieved 57.5% detection and classification accuracy with con-

textual information by assuming the food assumption frequency and co-occurrence

pattern are given compared to 52.4% without contextual information.

Next, we would like to examine how the personalized learning model behaves day

by day over a month. As we mentioned in Section 7.5.1, we have created three datasets

from the free-living study, each of which features a different food consumption pattern.

In the following experiment, we use the method discussed in Section 7.2 as it shows

better result than the region proposal based method in the previous evaluation.

Figure 7.13(a) shows how the recursive Bayesian network updates the prediction

probabilities for three example food items in Dataset 1 from 12 am to 11am. On Day

1, every food has the same prediction. In the end, the prediction of milk, orange juice
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Fig. 7.12.: Food identification accuracy for each food item after integrating contextual

dietary information.

and muffin converges to 0.51, 0.19 and 0.06 respectively. Figure 7.13(b) compares the

prediction of milk among all three datasets from 11am to 4pm. It is clear that User

1 consumes milk during lunch time more frequently than other Users.
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Fig. 7.13.: (a) Food occurrence prediction of three food items, (b) Prediction of milk

among three datasets
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Note we use the food label with the highest confidence score (top 1) from the

classifier. As we show below the classification accuracy from the highest confidence

score is in the range of 50-65%. In the TADA system we report the top 4 food labels

and have a classification accuracy of 80-85% [11].

Figure 7.14 demonstrates the food classification accuracy improvement. The blue

lines in Figure 7.14(a), 7.14(c) and 7.14(e) indicate the average daily food classification

accuracy with temporal context, Θcontext, while the red lines indicate the one without,

Θauto. The accuracy improvement is illustrated in Figure 7.14(b) and it is defined as,

improvement = (Θcontext −Θauto)/Θauto.

As shown in Figure 7.14(b), the accuracy improvement drops from Day 10 to Day

20 as the baseline (classification accuracy without context) increases from 47% to 57%.

This implies that the proposed method is more effective when the automatic image

analysis does not work well. The 80% accuracy rate achieved with temporal context on

Day 25 in Figure 7.14(a) demonstrates the effectiveness of the proposed method when

the automatic image analysis result is poor (36%). In Dataset 2, the classification

accuracy without context is always above 55% (see the red line in Figure 7.14(c)). The

drop in the first few days shown in Figure 7.14(d) implies the undergoing learning

process. Nevertheless, Figure 7.14(b) and Figure 7.14(d) both illustrate an ascent

trend of accuracy improvement.

We selected images of the last 7 days to have a noticeably different food con-

sumption pattern compared to the first 23 days in Dataset 3. We would like to verify

the behavior of our training model under the circumstance where a participant may

change their eating style. We witnessed a huge drop in Figure 7.14(f) followed by the

re-learning state. The accuracy improvement is the minimum on Day 24 after the

first week, because the context-based prediction puts more confidence in the specific

food, which Dataset 3 no longer contains after the user 3 changes eating habit. For

example, milk is not consumed on Day 24. Due to the dietary change in Dataset 3,

the increasing trend of classification accuracy is not as obvious. Table 7.3 compares
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the average daily classification accuracy with and without contextual information for

each user. The average daily accuracy improvement is calculated as:

1

N

N
∑

i=1

Θ
(i)
context −Θ

(i)
auto

Θ
(i)
auto

(7.9)

Due to our dataset selection, the classification accuracy using automatic image analy-

sis alone in Dataset 2 is significantly higher than other datasets. The lower accuracy

in Dataset 1 and Dataset 3 reflects the variation in the subset of the total 1453

testing images. Thus, the accuracy improvement for Dataset 2 is expected to be

lower (10.94%). The fact that Dataset 2 has less frequently consumed foods also

contributed to the lower accuracy improvement. When a person has a more consis-

tent eating pattern, such as User 1, the classification accuracy gain using temporal

contextual information is higher (18.69%). On average, the proposed method of uti-

lizing temporal context shows 15.56% improvement. In the end, three datasets obtain

roughly 65% accuracy with contextual information, which slightly lower than 71.4%

we reported in the first experiment. This is because the classifier gradually learns the

personalized eating patterns throughout 30 days, therefore the accuracy improvement

in the earlier days is expected to be relatively lower than the one of the later days.

Table 7.3.: Food classification with contextual information

statistics user ID with context without context

user1 62.90 53.23

user2 69.81 62.90

average daily

classification

accuracy(%) user3 62.12 53.28

user1 18.69

user2 10.94

average daily

accuracy

improvement(%) user3 17.05
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8. SUMMARY AND FUTURE WORK

8.1 Conclusions

In this thesis, we described the TADA system with the focus on some new compo-

nents including the Android mobile application, the new implementation of the TADA

web inference and the CTADA crowdsourcing tool. We introduced a color correction

method with saliency based deblurring. We described a graph based image segmen-

tation method using superpixels. We investigated the use of deep features and deep

networks to improve food recognition. We also proposed an end-to-end food analysis

pipeline. To deal with the sparsity of the segmentation groundtruth, we proposed

a weakly supervised segmentation method using class activation maps. The weakly

supervised technique only requires the label of the input image. Finally, we integrated

contextual information into the TADA system and introduced the personalized learn-

ing model to further improve the food recognition accuracy. The result indicates that

our contextual models are promising and further investigation is warranted.

The main contributions of this work are as follows:

• We created the TADA Android application to assist our user studies. Several

user-friendly features were implemented, such as automatic update, background

image uploading and crash report. A legacy version with newer Android API

was developed to improve the user experience and prepare for the Android

system update in the future.

• We improved the TADA web interface with a modular and secure design. The

current implementation is much easier for maintenance and cloning to different

servers.
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• We implemented a crowdsourcing tool in an effort to build a large-scale food

image dataset with richer groundtruth information.

• We proposed a polynomial color correction model in the LMS color space.

A fiducial marker was previously designed as a color and distance reference.

We computed a color correction matrix based on the 11 detected colors in

the unknown environment and the same colors measured in the D65 lighting

condition.

• We again made use of the fiducial marker present in the scene and introduced

a de-blurring method based on a saliency map. The deconvolution kernel was

estimated using the area that contains the fiducial marker.

• We proposed a graph based segmentation method which combines the normal-

ized cut with a superpixel technique. We used superpixels to extract higher

level features and reduce the number of nodes and connections in the con-

structed graph. There is a trade-off between using more complex features and

processing speed. In the current implementation, we used color and texture

features. Our method achieved competitive results on both food and non-food

datasets.

• We described a weakly supervised segmentation technique which only requires

image level annotation. We introduced a new type of pooling layer and coupled

it with a modified VGG-16 network to improve class activation maps. We

evaluated the proposed network for both classification and segmentation tasks

and achieved competitive performance.

• We proposed a 3-stage food analysis pipeline powered by deep networks. We

designed a food-vs-nonfood localizer based Faster RCNN and we adopted the

deformable convolution to improve the localization accuracy. We evaluate sev-

eral modern classification networks and achieve the top1 and 5 single-model

accuracy of 83.27%/96.35%.
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• We investigated adversarial examples in the domain of food images.

• We described a few scenarios where any traditional classifiers struggles. We

proposed to use contextual information as the postprocessing step to further re-

fine the food recognition results. We also integrated food co-occurrence pattern

and temporal context into a personalized learning model.

8.2 Future Work

Potential topics for the future work include:

• Although our mFR system has been tested by many users studies, improvement

is definitely welcome at both the frontend and backend. We should consider

some UI modifications on both the iOS and Android applications as the design

code at the system level has been changing rapidly. It will be great if we can

collect more feedback from the review process on the mobile phone without

putting too much burden on the user. On the backend server, we implemented

a queuing mechanism for the automatic image analysis. However, as more users

start to use our TADA system, stacking the incoming images in a single queue

is no longer an option. We should investigate the scalability of the food image

analysis by introducing queuing management and allocating tasks to multiple

cloud resources.

• In the current context-based model, we predict a user’s diet mainly based on

the food consumption frequency in the breakfast, lunch and dinner. And we

consider the user’s eating pattern from the first day when he/she is registered

in our system. However, a more sophisticated model is possible such that it has

both short-term and long-term memory of the user’s dietary history, as some-

times a person may change his/her daily food consumption based on his/her

location or even emotion. With more user feedback and groundtruth data, we
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should expand the food co-occurrence model and the personalized model to

accommodate more food categories.

• To compute the edge weights in SNcut, we combined the confidence scores

from different color and texture features by thresholding in a certain interval.

Similarly in the context-based learning model, we used a weighted sum of confi-

dence scores from the automatic predictions and the inference from our context

models. In the future, we would like to incorporate a probabilistic model that

adapts to the optimal weights.

Fig. 8.1.: The potential system architecture powered by deep learning.

• To select effective contextual data is also an interesting problem. Apart from

the context information we are currently using, i.e. date, time, and geolocation,

there are more to explore, for example contextual location that describes not

only the GPS coordinates of the location but location type, i.e. a restaurant

versus the users’ home or more subtlely whom the user is eating with. For

example, if the user is eating at home, then our personalized eating model can
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be deployed with more confidence. All the information help us to constrain the

classifier decisions.

• To take advantage of big data and deep learning, we should first have a large-

scale food image dataset with sufficient groundtruth. Thus, we will continue

our work on crowdsourcing.

• Incorporating user feedback into the image analysis system is a challenging

problem, especially when the quality of the user feedback is unknown. If we

assume the user feedback is always correct, which means the user provides

accurate food labels and bounding boxes, how can we make the data trainable?

Figure 8.1 shows a potential system to fully utilize the traditional machine

learning, deep learning and the user feedback. When the data of a certain food

class is insufficient, we can explore the possibility of using one-shot learning or

simply training a one-vs-all SVM. When enough data is collected for a class,

maybe it is feasible to retrain the end-to-end classification network.
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