
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Satyam Srivastava

Display Device Color Management and Visual Surveillance of Vehicles

Doctor of Philosophy

EDWARD J. DELP

DAVID S. EBERT

JAN P. ALLEBACH

MARY L. COMER

EDWARD J. DELP

M. R. Melloch 04-19-2011

Graduate School Form 20

(Revised 6/09)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University

Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this

thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with

the United States’ copyright law and that I have received written permission from the copyright

owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save

harmless Purdue University from any and all claims that may be asserted or that may arise from any

copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

Display Device Color Management and Visual Surveillance of Vehicles

Doctor of Philosophy

Satyam Srivastava

04-13-2011

DISPLAY DEVICE COLOR MANAGEMENT AND

VISUAL SURVEILLANCE OF VEHICLES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Satyam Srivastava

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2011

Purdue University

West Lafayette, Indiana

ii

Dedicated to all those who tried and failed...and tried again.

iii

ACKNOWLEDGMENTS

As this four year journey eases towards an end, I reminisce about the vivid mem-

ories of graduate school. The joys and frustrations paint multiple faces of those who

helped me enjoy, or survive, what life tossed up. It is only fitting then, that I start

my thesis by expressing gratitude to everyone of these.

It has been (and will always be) an honor to call myself a student of Professor

Edward J. Delp. I am grateful to him for agreeing to be my advisor and for the oppor-

tunity to work in the Video and Image Processing Laboratory (VIPER). I also thank

him for his consistent encouragement, guidance, and trust. His extensive knowledge

and insight has helped keep my work progressing and on-course.

I am grateful to my advisory committee members: Professor Jan P. Allebach,

Professor Mary L. Comer, and Professor David S. Ebert for their valuable suggestions,

questions, and support. A special note of thanks to Professor Allebach for his guidance

in my color related work and beyond. I would like to thank Purdue University,

the Graduate School, and the School of Electrical and Computer Engineering for

accepting me into the Doctoral program. I am thankful to Dr. Shikha Tripathi for

introducing me to academic research and signal processing during my undergraduate

years.

It has been a pleasure working with my wonderful colleagues: Dr. Nitin Khanna,

Dr. Golnaz Abdollahian, Dr. Ying Chen Lou, Deen King-Smith, Meilin Yang,

Fengqing Zhu, Kevin Lorenz, Ka Ki Ng, Marc Bosch, Aravind Mikkilineni, Albert

Parra, Chang Xu, Bin Zhao, and Thanh Ha. Special thanks are due to Thanh and

Ka Ki for their collaboration with my work, to Kevin for patiently solving all the

IT troubles, and to Aravind for always having a solution to the otherwise unsolvable

problems!

iv

I thank all my friends, decades-long and recent, for their affection and their be-

lief in me. They gave me the strength to weather the difficult times, which have

been aplenty. I am grateful to my family for their perpetual support of my career

aspirations and for their unconditional love, distances notwithstanding.

I would like to thank the Indiana 21st Century Research and Techology Fund

program, the United States Department of Homeland Security, and the United States

Naval Research Laboratory for funding the projects which resulted in this thesis.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . xi

NOMENCLATURE . xii

ABSTRACT . xv

1 INTRODUCTION . 1

1.1 Color Management . 1

1.1.1 Problem Formulation . 5

1.2 Visual Surveillance . 12

1.3 Contributions of this Thesis . 15

1.4 Publications Resulting from this Work 17

2 COLOR MANAGEMENT OF DISPLAY DEVICES 19

2.1 Color Management Using Device Models 19

2.1.1 Measurements . 20

2.1.2 Models for prediction . 23

2.2 Color Management With 3D Look-Up Tables 48

2.2.1 Interpolation . 52

2.2.2 Sampling . 58

3 VISUAL SURVEILLANCE OF VEHICLES 64

3.1 Overview of the Proposed Surveillance System 64

3.2 Image and Video Analyses . 70

3.2.1 Vehicle Detection . 70

3.2.2 Vehicle Body-Type Determination 74

3.2.3 Tire Size Estimation . 77

vi

Page

3.2.4 Make Recognition . 82

3.2.5 Squat And Bounce Analysis 85

3.2.6 Trajectory Analysis for Anomaly Detection 87

3.2.7 Trajectory Estimation and Co-Ordinate Mapping 89

3.2.8 Velocity Analysis . 93

3.2.9 Shape Analysis . 95

3.2.10 Color Correction for Object Tracking 98

4 EXPERIMENTAL RESULTS . 105

4.1 Color Management . 105

4.1.1 Comparison of LUT With the Models 105

4.1.2 Evaluation of Optimal LUT 111

4.1.3 Comparison of Optimal LUT With ICC Profiles 113

4.2 Surveillance of Vehicles . 116

4.2.1 Vehicle detection . 116

4.2.2 Vehicle type determination 119

4.2.3 Tire size estimation . 121

4.2.4 Make recognition . 123

4.2.5 Squat and Bounce Analysis 124

4.2.6 Trajectory Analysis . 126

4.2.7 Velocity Analysis . 128

4.2.8 Shape Analysis . 130

4.2.9 Color Correction for Tracking 132

5 CONCLUSIONS AND FUTURE WORK 136

5.1 Conclusions . 136

5.2 Future Work . 138

5.3 Publications Resulting from this Work 139

LIST OF REFERENCES . 141

VITA . 151

vii

LIST OF TABLES

Table Page

2.1 Testing error stastics of the monitor models. 29

2.2 Testing error stastics of the NLX model. 29

2.3 Testing error stastics of the LX model. 33

2.4 Results of monitor white point correction. 43

2.5 Testing error statistics of the monitor characterization models. 44

2.6 Testing error stastics of the NLXWP model. 45

2.7 Testing error stastics of the LXWP model. 47

2.8 Average LUT errors with two interpolation techniques. 56

4.1 Testing error statistics of NLXWP, LXWP, and LUT. 108

4.2 Training error of LUT with optimal sampling. 109

4.3 Testing error statistics of optimal and non-optimal LUT. 112

4.4 Testing error stastics for LUT and profile based system. 115

4.5 Execution times comparison for object detection. 119

4.6 Static effect of loading on vehicle. 125

4.7 Euclidean distance between reference and color-corrected images. . . . 133

4.8 Bhattacharyya distance between reference and color-corrected images. . 134

viii

LIST OF FIGURES

Figure Page

1.1 Profile based color management. 3

1.2 Color profile support in web browsers. 3

1.3 Digital intermediate workflow. 5

1.4 Comparison of visual output of two monitors. 6

1.5 Color grading in ‘O Brother. . . ’ . 8

1.6 Color management using LUT. 9

1.7 Color management using profiles. 10

1.8 Situation in a typical surveillance control room. 13

2.1 Photo Research PR-705. 21

2.2 A screen shot of SpectraWin. 21

2.3 A block diagram of the NLX model. 24

2.4 A block diagram of the forward monitor model. 25

2.5 A block diagram of the inverse monitor model. 27

2.6 Gamma LUTs for the monitors. 28

2.7 Distribution of error outliers of the NLX model. 30

2.8 A framework for developing the LX model. 31

2.9 Distribution of error outliers of the LX model. 32

2.10 A block diagram of the NLXWP model. 36

2.11 A block diagram of the white-balancing process. 39

2.12 Gamut mapping by straight chroma clipping. 40

2.13 Gamut leaf in the LAB space at h*=330 degree. 42

2.14 Distribution of error outliers of the NLXWP model. 45

2.15 A block diagram of the LXWP model. 46

2.16 Distribution of error outliers of the LXWP model. 47

ix

Figure Page

2.17 Block diagram of LUTEVAL module. 49

2.18 Neighbors in 3D space. 53

2.19 Variation of lightness (L∗) with digital red input R. 60

2.20 RGB optimal sub-sampling problem. 61

3.1 A multi-sensor surveillance system. 66

3.2 A video surveillance system for vehicles. 67

3.3 Types of information extracted from video. 69

3.4 Spiral search for object detection. 73

3.5 An example template for vehicle type recognition. 75

3.6 Vehicle tires with different hubs. 77

3.7 A graphical illustration of the system’s view of a tire with shiny hub. . 78

3.8 The wheel-rubber edge model. 79

3.9 The second stage of tire size estimation. 80

3.10 A graphical illustration of the system’s view of a tire with dark hub. . . 81

3.11 Examples of object detection and tracking. 90

3.12 User specified co-ordinate transformation 92

3.13 A schematic diagram of an imaging unit. 100

3.14 A block diagram of the CCMX function. 102

3.15 Color card used for camera models. 103

4.1 Histogram of errors in LUT based prediction (against NLXWP). 106

4.2 Distribution of error outliers of the LUT-based implementation. 106

4.3 A block diagram for evaluating the three implementation models. . . . 107

4.4 Distribution of error outliers of NLXWP, LXWP, and LUT. 108

4.5 Convergence of optimization error for the three LUT. 110

4.6 Evaluation of optimal and non-optimal LUT. 111

4.7 Comparison of LUT and profile based systems. 113

4.8 An example of simultaneous vehicle detection and tracking. 117

4.9 Examples of vehicle detection. 118

x

Figure Page

4.10 Examples of object detection compared with GMM. 118

4.11 Vehicle type identification (still image). 120

4.12 Vehicle type identification (video). 121

4.13 Vehicle tire extraction (still image). 121

4.14 Vehicle tire extraction (video). 122

4.15 Extraction of tires with dark hubs. 123

4.16 Vehicle make recognition (video). 124

4.17 Visual impact of loading on vehicles. 126

4.18 Oscillation of loading and unloaded vehicle. 127

4.19 Images from the test videos and satellite maps. 128

4.20 Output of LUT-based co-ordinate transformation. 129

4.21 Anomaly detection using spatial velocity. 129

4.22 Anomaly detection using estimated velocity. 130

4.23 Results of trajectory shape analysis. 131

4.24 Result of shape analysis on a synthetic multi-turn trajectory. 131

4.25 Reduced false turn detection for curved roads. 132

4.26 Target region for color histogram computation. 134

4.27 Output images after color correction. 135

xi

ABBREVIATIONS

APE Average Prediction Error

CCMX Camara to Camera Model-based Transformation

CIE Commission Internationale de l’éclairage

CMS Color Management System

DI Digital Intermediate

FVC Front View Camera

GMM Gaussian Mixture Models

ICC International Color Consortium

IU Imaging Unit

LUT Look-Up Table

LX Linear Transformation

LXWP Linear Transformation with White Point correction

MABS Motion-Assisted Background Subtraction

MMR Make Model Recognition

NLX Non-linear Transformation

NLXWP Non-linear Transformation with White Point correction

PCS Profile Connection Space

ROI Region Of Interest

SAD Sum of Absolute Difference

SIFT Scale Invariant Feature Transform

SVC Side View Camera

xii

NOMENCLATURE

CTLLMO-1 Display unit owned by our industry partner and first (1)
device of type LMO studied in the project

CTLCSO-1 Display unit owned by our industry partner and first (1)
device of type CSO studied in the project

BLRLMO-2 Display unit owned by Purdue team (BLR) and second
(2) device of type LMO studied in the project

BLRCSO-2 Display unit owned by Purdue team (BLR) and second
(2) device of type CSO studied in the project

Reference device In color matching experiments, these refer to devices of
type LMO, denoted by subscript 1 or superscript 1

Viewing device In color matchingexperiments, these refer to devices of
type CSO, denoted by subscript 2 or superscript 2

Artist A generic term used to refer to photographers, cine-
matographers, colorists, and other individuals who par-
ticipate in the creation/processing of a digital video or
image

Field of view The part of an observation environment which is visible
to a camera’s imaging sensors

Background model In object detection, it is the state of the scene when no
objects of interest are known to be present

Image co-ordinates A 2D co-ordinate system in which object posi-
tions/dimensions are defined using row and column in-
dices of an image

Front grille A term used to describe the vehicle components including
the radiator grille, the carmaker logo, and headlights.
Also known as front end module

Ground co-ordinates A 2D or 3D co-ordinate system in which true object posi-
tions/dimensions are specified. Also referred to as world
co-ordinates

Operator A generic term used to describe personnel in a remote
surveillance control room. These may include observers,
analysts, liaisons, and police officers

Standoff range The approximate distance (from a subject) at which a
system can reliably operate

Perspective A generic term used to describe the effects of camera an-
gle and the mapping from 3D to 2D plane in the imaging
process

xiii

Shade An intuitive descriptor for the color of an object as seen
by a human. While the perception of color is complex,
the radiometric input to the human visual system de-
pends on the illumination and the object reflectance.
Shade is associated with the reflectance and is assumed
to be largely invariant to illumination.

Trajectory The 1/2/3D position of an object as a function of time
while the object is in the field of view. Typically obtained
by object tracking.

Traffic flow A qualitative descriptor for the smoothness or impeded-
ness of vehicle movement. Flow rate can be specified as
number of vehicles passing a chosen region in unit time
interval.

Channel Unlike a communication system setup, here channel does
not imply a medium of information transmission in the
typical sense. Instead the three colors (R, G, B) in a
tristimuls color model are referred to as channels. A tris-
timulus model of color representation is one in which dif-
ferent colors are generated by a weighted sum of three pri-
mary components -m = r ·R+g ·G+b·B, whereR,G,B
represent the components and r, g, b are the weighting
factors.

Linear RGB A simple form of interpreting an image in which value of
each pixel is proportional to photonic energy (incident at
the time of image acquisition). A digital image in linear
RGB will be described by a 2-dimensional array of pixels
and eaxh pixel is described using a triplet of real numbers
(R,G,B)lin. Depending on the context, these values may
be absoute or normalized to a number between 0.0 and
1.0. Note that this form of image data may sometimes
be referred to as gamma uncorrected to emphasize that
the device (camera/display) characteristics have not been
utilized in encoding the image.

Non-linear RGB Also known as gamma corrected RGB, this is the com-
mon image coding format wherein pixel values are power
law corrected and stored as quantized integers (8/16 bit
depending on the image coding standard). Such an im-
age will be described by a 2-dimensional array of pixels
each consisting of a triplet of integers (R,G,B)nonl or
(R,G,B)nlin. Poynton [1] provides a detailed treatment
of the topic of gamma correction.

White point The term white point is used in many contexts but pri-
marily refers to the color produced (measured in XYZ,
xy, LAB, or any other device independent space) when
a white input (say RGBnonl = (255, 255, 255) in an 8-
bit per channel coding) is provided to a display device.
It also refers to some standard illuminants like the D65
white point [2] which resembles the color of daylight.

xiv

Gamut In the simplest sense, gamut indicates the range of col-
ors that a device can reproduce. Typically, no device
can generate all possible colors visible to human eyes
and gamut represents a subspace of the complete color
space that the device can achieve. Gamut matching is the
process of transforming the inputs to a display/printing
device such that the colors, which would otherwise fall
outside the device’s gamut, stay within the gamut.

CIE 1931 XYZ The CIE 1931 XYZ space [3] is device independent and
commonly used as an intermediate space in device to de-
vice transformations. Note that the linear RGB space
and the CIE XYZ space are related by a linear transfor-
mation:








X

Y

Z







=








M3×3















R

G

B







;

Where M is a non-singular 3×3 matrix.

Sample point When a look-up table is used to approximate a function
with a domain D, the table is constructed by evaluating
the function at a subset of D. The points in this subset
are called sample points or knot points.

Regular LUT An nD LUT will be called regular if each dimension is
divided into equal parts in order to construct the set of
sample points. For example, a 9× 9× 9 LUT is a regular
3D table while a 4× 5 LUT is not a regular 2D table.

Symmetric LUT A regular LUT will be called symmetric if sample points
are collected at the same locations along each dimension.
An example of a symmetric LUT is one with the sam-
ple points in the Cartesian product {0, 10, 20, 30, 40} ×
{0, 10, 20, 30, 40} × {0, 10, 20, 30, 40}. If this condition
is not satisfied, the regular LUT will be called non-
symmetric. It should be noted that the classes symmetric
and non-symmetric are partitions of the set of all regular
LUTs.

xv

ABSTRACT

Srivastava, Satyam Ph.D., Purdue University, May 2011. Display Device Color Man-
agement and Visual Surveillance of Vehicles. Major Professor: Edward J. Delp.

Digital imaging has seen an enormous growth in the last decade. Today users

have numerous choices in creating, accessing, and viewing digital image/video con-

tent. Color management is important to ensure consistent visual experience across

imaging systems. This is typically achieved using color profiles. In this thesis we

identify the limitations of profile-based color management systems and propose an

alternative system based on display device models and look-up tables (LUT). We

identify techniques to design LUTs which are optimal in terms of color reproduction

accuracy under resource constraints. We show that a LUT-based color management

system is more accurate and memory-efficient than a comparable ICC profile-based

system.

Visual surveillance is often used for security and law enforcement applications. In

most cases the video data is either passively recorded for forensic applications or is

remotely monitored by human operators. We propose the use of image and video

analysis techniques to assist the operators. This would reduce human errors due to

fatigue, boredom, and excess information. We describe a video surveillance system

to observe vehicular traffic from a standoff range and detect anomalous behavior

by analyzing the motion trajectories. We also extract physical information (such as

make, tire size, and body type) which can help determine the “normal” behavior.

The operator can also use this information to uniquely identify/describe individual

vehicles. We describe low complexity techniques to perform the above analyses and

show their effectiveness on real traffic videos.

1

1. INTRODUCTION

Digital image and video systems have become hugely popular with both professional

and casual users. There has been a tremendous growth in the tools available to

the users for creating and editing, storing/sharing/accessing, and viewing the digital

content. Cellphone cameras, personal media centers, and other portable devices are

now ubiquitous. Concurrent to the advances in the area of imaging devices, there

has been significant interest in developing novel applications for the information-rich

digital content. For example, the availability of web access, media-capable handheld

devices, and advanced video coding techniques have brought video conferences from

meeting rooms to cellphones.

In this dissertation, we study two topics that appear in the modern image and

video processing systems – color management of devices and video surveillance. While

the importance of color management has increased significantly because of the growth

in imaging devices, visual surveillance has become a major application of image anal-

ysis techniques in recent years. Both topics have considerable practical value – color

management in cinema and photography while surveillance in security, law enforce-

ment, and traffic management.

1.1 Color Management

The quantity of visual data continues to grow as more users, both amateur and

professional, create pictures using a wide range of capture devices. In particular,

digital images and video have become immensely popular. Similarly, with the ease

of delivery, storage and display, viewers have enormous choice of how to view the

content - from the two inch screen of a mobile phone to a fifty inch high definition

LCD television compatible with the ITU Rec. 709 (HDTV) specification [4] to a

2

movie theatre screen with Digital Cinema (DCI) Reference Projector properties [5].

Unfortunately, as a natural consequence, it is unlikely that a visual data viewed using

these devices would appear the same. More specifically, a digital image or video when

applied as input to such displays will not produce the same visual stimulus (measured

in some objective or subjective units). For a professional video creator, however, the

output visual stimulus is the most important result. In some applications, it might

be acceptable to change the digital representation of the data in order to achieve the

desired visual properties on a given display device. In this document, the term feature

is used to refer to any visual data and the terms digital image and digital video are

used to describe its digital representation.

Color management is the general collection of various techniques developed with

a goal of achieving visual match across display/printing devices. It has become as

important part of digital imaging systems. Personal computers and workstations

provide support for color management at multiple levels including operating system

and application levels [6]. The International Color Consortium (ICC) recommends

exchange of device (capture, print and display) characteristics as color profiles [7]. A

collection of profiles could then be used for adequate rendering of images by the display

devices. Koren [8] provides a detailed tutorial on color management and illustrates

a general color management system based on device profiles. This is reproduced in

Figure 1.1.

Several image coding formats (such as PNG [9] and EPS [10]) have the capability

for embedding color profiles as an optional feature. Even some web browsers (like

Safari and Firefox 3.0) allow use of color profiles [11] for enhanced color viewing of

downloaded images with stored profile information. Figure 1.2 shows an example of

an image rendering, with (Firefox 3) and without (Firefox 2) the use of embedded

color profile information. However, color management for digital videos is not so

mature [12] and presents additional challenges.

A good reproduction of color and general visual appearance is very important

for the cinema (and television) industry. After a feature is recorded on a film or a

3

Fig. 1.1. A simplified illustration of a color-managed workflow (Cour-
tesy: Norman Koren [8]).

Fig. 1.2. An example of color profile support in web browsers (Cour-
tesy: Deb Richardson [11]).

digital media1, it is enhanced by artists to give a more suitable “look”. But such

enhancements are performed in post-production facilities rather than actual movie

1This is called the production stage of a film.

4

theatre environments. In other words, it is not possible to observe the effects of a

technique on the actual movie experience, in real time. Instead, modern facilities

rely on faithful reproduction of visual data on personal viewing devices in a process

known as Digital Intermediate (DI). In a DI workflow, it is assumed that the artists’

personal displays can mimic a movie theatre experience and hence, all the enhance-

ment techniques can be applied in the digital domain while observing the effects in

real time. A brief description of the conventional (Telecine) workflow and the mod-

ern DI workflow is provided in [13]. Figure 1.3 shows a high level picture of the DI

workflow. An important feature of this approach is that a physical film (marked as

digital intermediate in the figure) needs to be generated after all the post-production

activities are completed (on the digital or digitized video data). Hence, there is no

need for multiple film prints during the process to observe the effect of various artistic

techniques.

Digital Cinema Initiative, LLC (DCI) is a joint venture of several major studios

with an aim of establishing an open architecture for digital production and delivery

of motion pictures. A post-production process similar to the DI workflow is also ap-

plicable to features compatible with the DCI specification. In fact, for the discussions

in this document, we assume that the color information is losslessly transferred from

the digital representation (on which the artistic effects are applied) to the film which

is distributed for screening.

It is obvious, however, that this process greatly depends on the digital (or digi-

tized) video data displayed on the artists’ viewing devices to appear the same as the

actual film screened in a movie theatre. This gives us an idea for approaching the

broader problem of achieving visual similarity across viewing platforms. We assume

that there is a universal reference display and develop methods for matching given

display devices to this universal display. With reference to the DI process, such a

display would be the movie theatre projection system. Therefore, if all the display

units in a DI-based workflow chain can be matched with the reference display, we

5

Fig. 1.3. A digital intermediate based workflow (Courtesy: Digital Praxis, UK [13]).

can expect that the feature as viewed by the artists on their personal display devices

would be very similar to the movie theatre experience.

1.1.1 Problem Formulation

The overall objective can be defined as one of achieving visual similarity when a

digital video content is viewed on any display device. While the problem itself seems

arbitrarily complex, the assumption about availability of a universal reference makes

it tractable. The task for any viewing device is to match the characteristics of the

reference (or target) device as closely as possible.

The above problem of visual matching of a display device to a universal reference

was realized using two monitors from our industry partner. belonging to different

product generations by treating one display as reference (or target) and the other as

viewing device. Figure 1.4 shows a photograph of the two monitors displaying a test

image in a dark room, captured by a Sony DSC T5 camera. The image is a moni-

tor/printer test image taken from [14] and includes skintones, natural scenes as well

6

as the Gretag Macbeth reference colors [15]. It can be seen that the reference device

(right) produces warmer colors while the viewing device (left) has a richer green. It is

required that a processed image displayed on the viewing monitor (based on hardware

panels of type CSOx) should appear the same as the unprocessed image displayed on

the reference monitor (based on LMOx panels). The meaning of processed and same

will be rigorously defined in the following sections.

Fig. 1.4. A test image displayed on two monitors in a dark room (Test
image - courtesy: Colour Science AG, Switzerland [14]).

We can further quantify the elements of the problem by formulating it in approx-

imate mathematical terms. Let us model a display device as a transformation from

the set of all digital images ℑ to the set of all 2D visual stimuli2 ℜ. Let us denote

the reference device as A : ℑ → ℜ and the viewing device as B : ℑ → ℜ. Then

for any i ∈ ℑ, it is most likely that A(i) 6= B(i). Our goal is to develop another

transformation G : ℑ → ℑ such that B(G(i)) ≈ A(i), where ≈ indicates visual

similarity.

This can be related with the DI workflow problem by assuming that A is the

cinema projector and B is an artist’s display. The transformation G results in a new

display device B̃ = BoG. Now, if the matching is accurately performed, watching a

feature on B̃ will be visually the same as watching it on A, which is the movie theatre

projection system.

2A 2D visual stimulus is precisely an image.

7

However, this would be the entry point for tackling the original problem of visual

matching of different display devices. If B is any display device - computer monitor,

television, digital picture frame or a cellphone on which a user can view the visual

data, then a similar approach would ensure that the visual output is as close to the

movie theatre experience as allowed by the device’s technology. Note that in case of

still images B can even be a print media and the problem of matching hardcopy and

softcopy has also been actively researched [16–18].

An important observation at this point is that the term similarity is very ambigu-

ous. We use the established definitions of color reproduction intents to formulate a

more objective measure of alikeness of two displays (or equivalently, of an image as

seen on two displays). This also requires a definite notion of whose opinion about an

image matters the most. While it is easy to argue that such a person would be the

viewer, the weakness of this argument becomes apparent as soon as we include the

various media by which visual content is delivered to the viewers. When a motion

picture is screened before three hundred viewers, whose opinion should matter and

how should that be incorporated? Similarly, viewers watching a feature on a handheld

device or even television have limited control over the appearance of the scenes (by

adjusting brightness, contrast and perhaps color saturation).

This ambiguity is avoided by stating that a good benchmark for the appearance

of a scene would be the intent of its creator or artist. It must be noted that motion

picture and television production houses specifically employ artists and technicians

(including colorists) who help create a more suitable appearance to the visual content.

Even individuals sometimes express their dissatisfaction [11] with color rendering of

their images in web browsers which ignore the photographer’s intent. Typically, these

artists have greater insight into the theme of a scene as related to the storyline and,

hence, are in a better position to judge the visual appeal. Although some viewers

may not appreciate the effect and ask why the grass is not green3 [19] but it is the

3‘Oh Brother, Where Art Thou?’ was one of the earliest full feature films to make extensive use of
digital color correction.

8

demand of the film’s theme that the grass not be green and the artists create such

an effect. Figure 1.5 compares two shots from a film where the image on the left is

highly color graded to give the foliage a yellowish look.

Continuing with our model of the DI process, let us define another transformation

Υ : ℑ → ℑ representing all the artistic effects applied to the feature during the post-

production activities. Then, if i was the representation of the feature immediately

after recording, Υ(i) is the representation after post-production and is used in the

actual distributions. Therefore, the visual output in the movie theatres would be

A(Υ(i)) and must be exactly how the artists wanted it to be. Since B̃ = BoG ≈ A,

therefore, B̃(Υ(i)) ≈ A(Υ(i)).

Fig. 1.5. An early example of digital color grading in films - O Brother,
Where Art Thou? (Courtesy: Touchstone Pictures, USA [20])

Typically, however, all artists do not use the same displays and images and films

are not shipped with the artists’ monitors! This leads to an invalidation of the

above assumption about a universal reference and exposes two more aspects of the

problem. Unlike the simplified problem stated above in which both viewing stations

are available for comparison, in most situations there is only one device on which a

content is viewed. So, there must be some way to quatify the content creator’s intent

about the visual appearance or in the context of a universal reference, a way to specify

the reference display. Finally, there must be a way to communicate this information

to the viewing devices which would adjust itself to best replicate the same appearance.

9

ICC profiles provide one such mechanism of sharing display characteristics but have

been reported to underperform in some applications [21–23] and are evolving.

In this thesis we propose a new approach to color management which is both

accurate and hardware-friendly. Our solution is based on the assumption that a

reference display device exists, and all other display devices can be matched to this

reference. This consists of two steps. In the first step, we develop a method for

perceptually matching a given display with a known reference display. Perceptual

similarity [24, 25] is said to be achieved when two colors match in the CIE LAB

space after accounting for chromatic adaptation of the human visual system [26] and

ensuring a common white point. We select perceptual matching because it is more

suitable for reproduction of motion content on systems with high dynamic ranges, and

under different viewing conditions [25]. This first step may be completed offline. In

the second step, this method is realized as a faster and simpler operation, by using a

look-up table. This is illustrated in Fig. 1.6. We will show that this method provides

better color reproduction because we develop a specific solution to match two display

devices unlike matching a display to an unknown device using its profile (as shown

in Figure 1.7)..

Fig. 1.6. A block diagram of our proposed LUT-based color management system.

It should be noted that the advantages of generating a direct device-to-device

transformation, as we described above, have been recognized by color scientists. The

ICC [25] defines a type of profile which contains the information about the transfor-

10

Fig. 1.7. A block diagram of typical profile-based color management systems.

mation between two known devices. Such profiles are known as device-link profiles.

While a color management system utilizing device-link profiles promises better color

accuracy and lower computational complexity, these profiles have been largely used in

printing systems, but for a different reason. In high quality print systems, the trans-

formation from one device’s CMYK color space to another device’s CMYK space may

suffer loss of information when an intermediate space, the profile connection space,

or the PCS (for example the CIE LAB space), has only three data channels. In such

cases, device-link profiles can be used to bypass the PCS, and can also be used to

preserve the neutral colors [27, 28] by preventing CMY components from leaking-in

when only the K component may be needed.

These profiles can be created using the colorimetric data measured directly from

the two devices. However, many profiling tools can generate a device-link profile

indirectly, using two ICC device profiles [28–30]. Balonen-Rosen and Thornton [31]

describe a method which allows a user to interactively modify the existing informa-

tion in color profiles (including device-link profiles) to improve the quality of color

management. This local color correction technique is useful when an image rendered

on a destination device contains multiple color regions that are unacceptably different

from the image rendered on a source device.

Our LUT-based approach is different from a system that uses device-link profiles

in the following ways. The ICC specification does not allow a device-to-device trans-

11

formation (contained in a device-link profile) to be represented by only a look-up

table. The four acceptable algorithmic models for such transformations shown in

Figure 5, on page xii of the ICC standard [25] consist of one or more “processing

elements,” including a multi-dimensional LUT. The two configurations which utilize

a multi-dimensional LUT also include at least two other processing elements. Thus,

a hypothetical ICC-compatible CMS that processes only device-link profiles will be

more complex than our proposed CMS.

The metric of similarity can now be defined using accepted classifications of ren-

dering intents. Hunt [24] introduced six categories of color reproduction - spectral,

exact, colorometric, equivalent, corresponding and preferred. The first five attempt

to quantify accurate reproduction of an original color in colorimetric terms while

the sixth allows reproduction to be independently evaluated. Similar definitions are

provided by ICC which specifies four rendering intents [25] - perceptual, saturation,

media-relative colorimetric and ICC-absolute colorimetric. Fairchild [32] arranges the

categories in a rough hierarchical order to define five levels of color reproduction -

color, pleasing color, colorimetric, color appearance and color preference. It is stated

that each level implies satisfaction of the previous level too.

Secondly, our approach allows greater flexibility in the construction (and usage)

of the LUT. As we describe later in this thesis, we generate a LUT by selecting a

LUT size and interpolation method, and an optimal non-uniform set of sample points.

The ICC standard only allows interpolation on a uniformly sampled data set. Our

method allows trade-offs between accuracy, complexity, and required memory.

Thus, our end-to-end design can be more accurate and require fewer resources

than a profile-based approach. Since our proposed CMS requires only table look-

ups and interpolations, it is suitable for hardware and embedded implementations.

For example, one could design a display device with an embedded color management

capability because of the simplicity of our proposed system.

The measures of similarity used in this project are defined as follows:

12

• Colorimetric matching requires chromaticities and relative luminance (or

equivalently, all of CIE XYZ values) of the color displayed on the viewing device

to match that of color displayed on the reference device. Such a matching

is susceptible to changes in the ambient lighting and discounts human eye’s

adaptability to viewing conditions. This metric is useful when the two devices

to be matched are intended to be seen in identical lighting conditions. For

example, when two displays are viewed side-by-side, it might be necessary to

match them in a colorimetric sense.

• Perceptual matching is said to be achieved when two colors match in the

CIE LAB space after accounting for chromatic adaptation of the human visual

system [26] and ensuring a common white point. We select perceptual matching

because it is more suitable for reproduction of motion content on systems with

high dynamic ranges, and under different viewing conditions [25]. This intent

is particularly useful when the devices to be matched have differing gamuts,

maximum luminances, and contrasts.

1.2 Visual Surveillance

The advances in analytics systems, availability of inexpensive sensors, and the

growing need for preventive technology have made surveillance a powerful tool for the

law enforcement and security personnel. In particular, video surveillance is ubiquitous

in office buildings, roads and intersections, and public transport systems. While

image analysis techniques are used to incorporate some level of automation into such

systems, most video surveillance systems simply record the video data in a passive

fashion. This video data could either be monitored by a human supervisor, or be

retrieved later when needed.

While human-operated surveillance systems have the advantage of utilizing the

expertise and judgement of a human being, such systems have significant issues related

to human error. The problems associated with these surveillance systems have been

13

Fig. 1.8. A typical surveillance control room has too many video feeds
for the human operator(s) to monitor. Image courtesy: Springer [36].

researched and well-documented [33, 34]. Two issues for which image analysis could

provide solutions are loss of efficiency due to fatigue and monotony, and lack of

attention due to distraction from less important information. The task of monitoring

surveillance footage is monotonous primarily because for most of the time, there is no

“significant” activity occurring. Similarly, an operator trying to study every subject in

a video sequence may be unnecessarily fatigued. Once the task is extended to multiple

video feeds, there is simply too much information for the operator (Figure 1.8). It

is widely accepted that the ability to monitor video feeds drops significantly beyond

3− 4 feeds [35]. Thus, a trespass may go undetected while the operator is randomly

scanning a parking lot or an empty hallway.

Traditionally, research in computer vision has been aimed at developing methods

and systems that mimic human vision [37]. However, even with the state-of-the-art

techniques, a completely autonomous surveillance system that can work in any de-

ployment scenario has not been claimed [36,38]. Dee and Velastin [38] also illustrate

14

situations where vision based methods can exceed human performance. Therefore, an

“intelligent” surveillance system would not replace human operators but would func-

tion in a complementary manner to maximize the overall effectiveness of the system.

In this thesis, we look at the problem of visual surveillance of vehicles for the pur-

pose of detecting anomalies. The goal is to perform the analyses without obstructing

the traffic flow, and to involve a human operator for making only the highest level

decisions (for example, stopping a suspicious vehicle for further inspection).

Due to the increase in volume of vehicles on the road, traffic monitoring has

become both important and difficult. A sound traffic monitoring system together

with an adequate response process would not only make the roads safer but can

also potentially disrupt criminal and/or terrorist activities. Again, most technology

solutions for vehicular monitoring involve significant human supervision or are passive

tools for forensic application. During the last ten years, several efforts have been made

to develop vision-based vehicle surveillance systems.

Coifman et al. proposed a vision-based surveillance system with a goal of assisting

traffic flow management [39]. Their system would detect and track the vehicles, and

determine certain parameters deemed useful for the purpose of traffic management.

As part of the Video Surveillance and Monitoring (VSAM) project [40], researchers at

Carnegie Mellon University developed a system to detect, track, and classify objects

as vehicles and humans. They also designed methods for detecting simple activities

and interactions between human subjects. The European AVITRACK project was

aimed at developing methods for monitoring activities of service vehicles and person-

nel on airport aprons [41]. This would enable safer and more efficient servicing of

aircrafts. Li and Porikli described a method for estimating traffic conditions using

Gaussian Mixture Hidden Markov Models [42]. The IBM Smart Surveillance System

(S3) detects and tracks objects and has the capability for vehicle license plate recogni-

tion and detection of user-defined events [43]. In an alternative deployment scenario,

Gutchess et al. propose a surveillance system to monitor vehicles and persons in a

parking lot [44]. Their system can detect and track objects and study the interaction

15

of humans and vehicles. The system also offers nighttime operation capability by uti-

lizing visible and near-infrared imagery. Some other interesting surveillance systems

and technologies have been reported; these will be referenced in later sections.

Our work is different from these previous (or ongoing) projects because we are

mainly interested in detecting anomalous events in vehicular traffic that pose potential

risk to public and infrastructure safety. Therefore, we do not compute parameters

related to general traffic conditions. Furthermore, we do not consider human-vehicle

interaction with the exception of the vehicles’ occupants. This is justified because a

core requirement for our system is the ability to observe the traffic without affecting

the flow. Since the observed vehicles are almost always in motion the chances of

human-vehicle interaction are reduced to a minimum. Unlike most other cases where

one or more cameras are used to obtain similar views of the subjects, we use a novel

two orthogonal camera configuration to obtain the front and side views of the vehicles

simultaneously. This allows us to extract certain information in more efficient ways,

and other information (like tire size) which would otherwise not be possible. The

capabilities of this system can be further extended by addition of other non-video

sensors in a synergic manner.

1.3 Contributions of this Thesis

It is important to ensure faithful reproduction of visual data when a ditial im-

age/video is viewed on a user’s media. This is particularly valuable for professional

photography, cinema and television programming, and printing. In this thesis, we

propose a novel approach to color management using device models and look-up ta-

bles. The main contributions are as follows:

• We studied the traditional color profile based approach to color management and

identified the limitations which render it less suitable for the newer requirements

in color management. We proposed a simpler color management system which

would use only look-up tables which are created offline. Such a system would

16

be more hardware friendly and hence, more suitable for viewing content on low

power devices.

• We contructed a transformation based on device models for perceptually match-

ing two display devices.

• We approximated the above transformation using 3D LUT. We further identified

methods to optimally select LUT parameters (such as sample points) in a model-

based optimization framework under specified resource constraints.

• We compared the optimal LUT based color management system with an ICC

profile based system in terms of color reproduction accuracy and memory re-

quirements. It was shown that the proposed system was more accurate and

memory efficient.

Surveillance systems are deployed in many countries to assist law enforcement

and public safety. Image and video analysis techniques are being designed to extract

information from the videos. Such automated processing would help the operators

and reduce human errors. In this thesis, we describe a visual surveillance system for

monitoring vehicles and detecting potential anomalies. The main contributions are

as follows:

• We proposed a surveillance system with two orthogonal cameras which would

image approaching vehicles from the front and the side without obstructing the

traffic.

• We developed low complexity methods to extract physical information about

each vehicle (such as body type and make). These would enable the system

to estimate the normal ranges of dynamic measurements and help an operator

identify the vehicle.

• We proposed methods for detecting anomalous behavior based on dynamic tra-

jectory measurements (such as velocity). Toward this goal, we devised a co-

ordinate system which compensates for the road curvatures. We developed

17

methods to detect unexpected changes in the velocity and to identify signifi-

cant maneuvers (e.g. left turns and u-turns).

• We proposed a color correction technique which would make the color features

more reliable across multiple cameras under different illuminations. This tech-

nique was shown to improve the robustness of a color based object tracker.

1.4 Publications Resulting from this Work

Journal Papers:

1. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Color Management Using Optimal Three Dimensional Look-Up Tables,” Jour-

nal of Imaging Science and Technology, vol. 54, no. 3, May-June 2010, pp.

030402 (1-14).

2. Satyam Srivastava and Edward J. Delp, “Autonomous Visual Surveillance

of Vehicles for the Detection of Anomalies,” IEEE Transactions on Intelligent

Transport Systems, submitted.

Conference Papers:

1. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Co-Ordinate Mapping

and Analysis of Vehicle Trajectory for Anomaly Detection,” Proceedings of the

IEEE International Conference on Multimedia and Expo, Barcelona, Spain, July

2011 (to appear).

2. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Color Correction for

Object Tracking Across Multiple Cameras,” Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, Prague, Czech

Republic, May 2011 (to appear).

18

3. Satyam Srivastava and Edward J. Delp, “Standoff Video Analysis for the

Detection of Security Anomalies in Vehicles,” Proceedings of the IEEE Applied

Imagery Pattern Recognition Workshop, Washington DC, October 2010.

4. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Generating Optimal Look-Up Tables to Achieve Complex Color Space Trans-

formations,” Proceedings of the IEEE International Conference on Image Pro-

cessing, Cairo, Egypt, November 2009, pp. 1641-1644.

5. Thanh H. Ha, Satyam Srivastava, Edward J. Delp, and Jan P. Allebach,

“Model Based Methods for Developing Color Transformation Between Two

Display Devices,” Proceedings of the IEEE International Conference on Image

Processing, Cairo, Egypt, November 2009, pp. 3793-3796.

6. Thanh H. Ha, Satyam Srivastava, Edward J. Delp, and Jan P. Allebach,

“Monitor Characterization Model Using Multiple Non-Square Matrices for Bet-

ter Accuracy,” Proceedings of the IS&T Color Imaging Conference, Albuquerque,

New Mexico, USA, November 2009, pp. 117-122.

7. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Color Management Using Device Models and Look-Up Tables,” Proceedings of

the Gjøvik Color Imaging Symposium, Gjøvik, Norway, June 2009, pp. 54-61.

8. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Crowd Flow Estimation

Using Multiple Visual Features for Scenes with Changing Crowd Densities,”

Proceedings of the IEEE International Conference on Advanced Video and Sig-

nal based Surveillance, Klagenfurt, Austria, 2011, submitted.

19

2. COLOR MANAGEMENT OF DISPLAY DEVICES

Digital imaging has seen an unprecedented growth in the past five years. The enor-

mous variety of imaging systems available to users to create and view visual data is

quite large. Color management has become an important aspect of modern imaging

and display systems. Color profiles have been the de facto tool for achieving faith-

ful visual reproduction for a long time. In this chapter, we discuss issues associated

with profile-based color management systems. We describe an alternative approach

motivated by the problem of visually matching two known display devices. We use

a model-based method to achieve this goal and propose realizing the method with

simple table look-up operations. We devise a framework for designing look-up tables

(LUT) which are optimal in terms of color reproduction on the displays based on

resource constraints.

2.1 Color Management Using Device Models

This section describes the process by which we construct an analytical transforma-

tion from the color space of a reference device to the color space of the viewing device

with the goal of achieving visual similarity. This consists of objective measurement of

colors as displayed on the devices in order to obtain important information about the

devices and utilizing this information for constructing mathematical models. These

models allow us to relate the visual output of a device with the digital inputs and

hence, to devise ways to adjust the visual output by controlling the digital inputs.

20

2.1.1 Measurements

It is clear that our experiments for building the device models would require

measurement of colors as displayed on the monitors. Some information that might

be needed may fall under the following categories:

1. The gamma values for each channel is needed to be able to convert the native

(non-linear) RGB values to linear RGB values which serves as a bridge before

going to a device independent space.

2. The transformation matrixM , as described in the nomenclature section, is used

to transform linear RGB to CIE XYZ space.

3. The white point (in CIE XYZ) of each monitor is required for interpreting the

colors in CIE LAB space.

It is obvious that accurate measurement of color displayed on the monitors is

central to the process of building device models and transforming between the color

spaces. The measurements require providing desired color inputs to the monitors and

measuring the visual stimulus in XYZ. For better accuracy, all experiments related

to color measurements were conducted in total darkness. There are many desktop

color scanners that measure the image color but they have limited accuracy.

PR-705

Photo Research PR-705 SpectraScan System is a lab-grade fast scanning spectro-

radiometer widely used for radiometric applications (Figure 2.1). It can accurately

measure the intensity and color of light sources and display the measurements in

several formats. For our experiments, we used PR-705 to measure the color of the

image (a constant color patch) displayed on the above-mentioned monitors in CIE

XYZ. PR-705 can be used with manual trigger and the output can be obtained into

a software interface or read off from the rear LCD screen. It also allows remote mode

operation by communicating with a computer over an RS 232 channel.

21

Fig. 2.1. Photo Research PR-705.

It is also very common to use the instrument for making multiple measurements to

observe a temporal distribution or record measurements for a series of controlled time-

varying inputs. PR-705 comes with an accompanying software, called SpectraWin,

which allows remote measurement using a window based user interface which looks

like Figure 2.2. It also allows specifying number of measurements to be taken and time

interval between consecutive measurements. For the purpose of these experiments, if

there was a method to display a single color image full-screen on the monitors, the

self timed measurements could, at least in theory, be used.

Fig. 2.2. A screen shot of SpectraWin.

Whereas PR-705 allows multiple modes of data recording - actual spectral content

and measurement in XYZ/xy/Yxy - construction of device models requires only the

22

data measured in CIE XYZ (in candella per square meter, cd/m2) with a CIE 1931

2◦ Standard Observer [3]. It is also important to maintain a common spatial con-

figuration throughout and across experiments which include maintaining placement

of PR-705 at a fixed distance from the monitors, orienting it perpendicular to and

focussed at the center of the monitors and using a constant aperture size.

Automatic measurement tool

Complications arise as soon as we realize that PR-705 requires unequal amounts

of time for measuring different colors and for differing light intensities. Whereas a

bright display takes under five seconds, a black (monitor’s flare)1 screen could take as

long as ten minutes! It immediately becomes obvious that the recurring measurement

approach, based on constant time intervals, stated above cannot be used. If the time

interval is set to too small, some colors would not get sufficient time to be measured

and lead to an error. On the other hand, setting the interval very high would cause

unmanagably too many measurements for brighter colors and the experiment time to

blow up hugely. A good solution would be to find a means to synchronize PR-705

trigger with the change of color on the screen.

PR-705 can communicate with a computer over an RS 232 channel which is the

underlying principle behind the operation of SpectraWin software. Using the instruc-

tion set, a custom software master can trigger the instrument remotely to initiate

measurements or request previously recorded measurements. But unlike Spectrawin,

these triggers and data requests need not be time-based. Instead these were made

event-triggered for our purpose.

MATLAB’s Instrument Control Toolbox was used for providing RS 232 proto-

col compatibility whereas a MATLAB wrapper controlled image display and PR-705

instruction selection (which would be put on the serial port by the toolbox). Full

1Flare is the background illumination on a display when a black input (for example (0,0,0) in native
RGB) is applied to it.

23

screen2 images were displayed using a Jave-based MATLAB freeware. The MAT-

LAB wrapper then waits for a pre-defined time to allow monitor stabilization before

triggering a measurement in PR-705. Once the instrument acknowledges comple-

tion of the measurement, the recorded data is dumped into a data file. This custom

measurement tool was used in all subsequent experiments.

2.1.2 Models for prediction

The work presented in this section was done by the author jointly with Thanh H.

Ha, see [45] for a more complete description of his work. It is included here to make

the presentations easier to understand.

Let the problem be defined as follows: We have two monitors which we call the

Target Device and the Viewing Device. These monitors might differ from each other

in screen gamma values, gamut, white point and other properties. We wish to develop

a color transformation from the non-linear RGB space of the Target Device to the

non-linear RGB space of the Viewing Device such that a visual match between them

can be achieved. A correct white point rendering is also a desirable goal of this color

transformation. In this section, we will describe the methods for developing such a

desired color transformation. Specifically, in Section 2.1.2 and Section 2.1.2, we will

describe two different models for achieving a visual match when the two monitor are

viewed side by side (resulting in a colorimetric match), while in Section 2.1.2 and

Section 2.1.2, we will discuss two other models for achieving a visual match when the

two monitors are viewed in the different viewing conditions (matching in a perceptual

sense).

2Following the accepted practice in the field of monitor calibration, we illuminate only 50% of the
screen area with the desired color and keep the background at 10% gray (for example (25,25,25) in
native RGB.

24

Non-linear transformation model for colorimetric matching (NLX)

Let us assume that the two monitors are viewed side by side. We approach the

problem of achieving a colorimetric match between the two monitors by matching

their displayed colors in the device-independent XYZ space. This approach splits the

problem into two sub-problems where one is the inverse of the other:

• Sub-problem 1: To predict the XYZ value of a displayed color when we know

the non-linear RGB value which is used to drive the monitor.

• Sub-problem 2: To predict the non-linear RGB value which should be used to

drive a monitor so that a color with a known XYZ value is displayed.

We solve these two sub-problems by developing two types of models. We call the

model for solving sub-problem 1 the “forward characterization model” (or forward

monitor model), and the one for solving sub-problem 2 the “inverse characterization

model” (or inverse monitor model). If we ignore the gamut mismatch issue between

the two monitors, by cascading the forward monitor model of the target device and

the inverse monitor model of the viewing device, we can achieve a colorimetric match

between the two monitors. Figure 2.3 depicts the overall non-linear transformation

developed based on this approach. Throughout this report, we will denote this overall

non-linear transformation model for a colorimetric match as NLX. In Sections 2.1.2

and 2.1.2, we will discuss the development of the forward monitor model and the

inverse monitor model in more details.

Fig. 2.3. A block diagram of the NLX model.

The forward monitor model

25

Fig. 2.4. A block diagram of the forward monitor model.

Figure 2.4 shows the structure of the forward monitor model. In the first step,

an input non-linear RGB value (denoted as RGBnonl) is converted to an absolute

linear RGB (denoted as RGBlin
abs), whose three component values are linear to the

light intensity. We call this conversion the “gray balancing” process. In the second

step, RGBlin
abs is normalized with respect to the native monitor white as shown in

(2.1):

Rlin
nor =

Rlin
abs

Rlin w
abs

; Glin
nor =

Glin
abs

Glin w
abs

;Blin
nor =

Blin
abs

Blin w
abs

; (2.1)

where Rlin w
abs , Glin w

abs , and Blin w
abs are three components of the absolute linear RGB value

of the native monitor white.

Finally, the predicted XYZ value is computed by multiplying RGBlin
nor by a 3×3

non-singular transformation matrix M :








X

Y

Z







=








M 3×3















Rlin
nor

Glin
nor

Blin
nor








(2.2)

There are two main components in the forward monitor model: the gray balancing

module and the 3×3 matrix M which converts RGBlin
abs to XYZ . The gray balancing

step is often implemented by fitting a single gamma curve model to the mapping

between the non-linear and linear values of each component of the input RGB [46–48].

However, as stated in [47], a single curve model generally cannot fit well this mapping

for the whole range of the input. Consequently, it causes some high errors in the low

luminance regions. To avoid this issue, in our method, instead of using a gamma

curve model, we use an 1-D Look-up table (LUT) to convert the non-linear values to

26

the linear values for each channel. Let us assume that the monitor has three 8-bit

channels: R, G, and B. To populate a 1-D LUT for a channel, we generate a ramp of

65 levels obtained by uniformly sampling the corresponding channel, while setting all

components of the other two channels to 0. We then display the ramp on the monitor

which is to be characterized and measure the corresponding luminance Y values. The

measured Y values contribute 65 entries to the 1-D LUT. The remaining entries of

the LUT are computed by using spline-interpolation [49].

Now, we would like to discuss how to obtain the matrixM . In [50], the author dis-

cusses a normalized primary matrix (NPM), whose three columns are the normalized

XYZ values of the three monitor primaries, for transforming the normalized RGB to

the normalized XYZ values. Although the development of the NPM is quite simple,

the accuracy of the transformation using the NPM is not as good as we wish. This

is because the approach is based on some assumptions such as channel independence

and the primary chromaticity constancy which do not always hold true. In our re-

search, we adopt a method similar to those in [47,51] to obtain M . Our method can

be described as follows: starting with the primary matrix [50] as an initialization,

we use the Patternsearch algorithm [52] to optimize nine entries of M to minimize

a cost function that reflects the ∆E averaged over a training set. The training set

contains the pairs of the RGB values taken from a 6× 6× 6 grid uniformly spanning

the entire RGB cube and the corresponding XYZ values measured using a PR-705.

During the optimization process, we set a constraint to ensure that the white color is

transformed without error. The optimization process can be formulated as follows:

M
opt=argmin

M

∑

i∈Ω

∆E
(

LABref
i , F

XY Z→LAB

(
T

RGBnonl
→XY Z

(
M , RGBnonl

i

)))

(2.3)

Subject to








M 3×3















1

1

1







=








Xref
w

Yref
w

Zref
w








(2.4)

where, M opt is the optimal 3×3 matrix, Ω is the index set of the samples in the

training set, F
XY Z→LAB

is the non-linear conversion from XYZ to LAB with respect to

27

the native monitor white, T
RGBnonl

→XY Z
is the forward monitor model, LABref

i is the

LAB value we obtain by converting from the measured XY Zi value corresponding to

the input RGBnonl
i , ∆E (·, ·) is the operator for computing the difference in ∆E units

between two LAB values. In the constraint equation, the XYZref
w is the measured

XYZ value of the native monitor white.

The inverse monitor model

Fig. 2.5. A block diagram of the inverse monitor model.

The objective of the inverse monitor model is to predict the non-linear RGB

value that should be used to drive a monitor so that a color with a given XYZ will

be displayed. It is obvious that the inverse monitor model is obtained by simply

inverting the forward monitor model shown in Figure 2.4. Figure 2.5 shows the block

diagram of the inverse monitor model obtained in this way.

Once we have the forward monitor model of the target device and the inverse

monitor model of the viewing device available, the NLX is developed by combining

these two monitor models together as shown in Figure 2.3. In the next section, we

will show the experimental results of the NLX model.

Experimental results

Two different 24-inch LCD displays, CTLLMO-1 and CTLCSO-1, were used in

this experiment. Among the two displays, CTLLMO-1 serves as the target device

while CTLCSO-1 serves as the viewing device. First, we developed the forward mon-

itor model for CTLLMO-1, and then the inverse monitor model for CTLCSO-1. In

fact, the inverse monitor model for CTLCSO-1 was developed by first developing the

forward monitor model for CTLCSO-1 and then inverting this forward model. Fi-

28

nally, we combined both models to construct the NLX according to the block diagram

in Figure 2.3.

Figure 2.6(a) and Figure 2.6(b) show the plots of the 1-D LUTs for gray balancing

of CTLLMO-1 and CTLCSO-1, respectively.

0 50 100 150 200 250
0

50

100

150

200

250

Digital counts

L
u
m
i
n
a
n
c
e

(
c
d
/
m
2
)

(a)

0 50 100 150 200 250
0

50

100

150

200

250

Digital counts

L
u
m
i
n
a
n
c
e

(
c
d
/
m
2
)

(b)

Fig. 2.6. 1D gamma LUTs for the three channels of (a) CTLLMO-1,
(b) CTLCSO-1.

For each monitor, the training set for developing the matrix M in the forward

monitor model was generated by displaying an evenly-spaced 6×6×6 grid which spans

the entire RGB space, on the monitor, and then measuring the corresponding XYZ

values using the PR-705. The testing set was generated in the same way but with an

evenly-spaced 5×5×5 grid. There was no overlap between the training and testing

sets. Pattern Search algorithm [52] was used for the optimization problem (2.4).

Table 2.1 summarizes the testing error statistics of the forward models for CTLLMO-

1 and CTLCSO-1 monitors, respectively. It also shows that the matrix M computed

by our optimization process outperforms the matrix computed using the method

in [50].

After building the NLX according to the block diagram in Figure 2.3, we tested

the NLX model using the following procedure:

1. Display a 5×5×5 grid, which spans the entire RGB cube, on CTLLMO-1 and

measure its corresponding XYZ values. Let us call this XYZ set “SET 1.”

29

Table 2.1
Testing error statistics (in ∆E units) of the monitor characterization models.

Monitor CTLLMO-1 Monitor CTLCSO-1

Statistic\Using Primary Ma-

trix

Optimal Ma-

trix

Primary Ma-

trix

Optimal Ma-

trix

Mean 5.18 2.38 4.32 2.11

Max 9.76 6.59 7.76 5.46

Min 0.44 0.3 1.11 0.33

Median 5.21 2.25 4.42 2.15

1-Stdev 2.01 1.07 1.82 0.84

2. Use the NLX model to transform the grid in step 1 to the non-linear RGB space

of CTLCSO-1.

3. Display the transformed grid on CTLCSO-1 and measure its XYZ values. Let

us call this XYZ set “SET 2.”

4. Finally, compute the differences in ∆E units between SET 1 and SET 2.

Table 2.2
Testing error statistics (in ∆E units) of the NLX model.

NLX

Mean 1.65

Max 3.93

Min 0.43

Median 1.48

1-stdev 0.74

30

The testing error statistics in ∆E units are shown in Table 2.2. The distribution

of outliers (whose errors are greater than the mean error plus one standard deviation)

in the LAB space is shown in Figure 2.7. Red circles are the points in SET 1, blue

crosses are the points in SET 2 and the Euclidean distance between them represents

the deviation in ∆E units. As shown in Table 2.2 and Figure 2.7, the NLX performs

quite well to match between two non-linear RGB spaces of the two monitors.

−100

0

100

−100

0

100

0

20

40

60

80

100

b*a*

L
*

Fig. 2.7. Distribution of the 1− σ error outliers of the NLX model in LAB space.

Linear transformation for colorimetric matching (LX)

Although the NLX model described in the previous section performs very well

to visually match the non-linear RGB spaces of the two monitors, it is expensive

to implement. The goal of this exercise is to investigate how well the NLX could

be approximated by a simple linear transformation. Throughout the report, we will

denote this linear transformation as LX. The equation of LX is shown in (2.5):








Rnonl
2

Gnonl
2

Bnonl
2







=








MLX















Rnonl
1

Gnonl
1

Bnonl
1








(2.5)

31

where subscripts 1 and 2 imply the nonlinear RGB values in the target device and

viewing device, respectively and MLX is a 3×3 non-singular matrix.

Fig. 2.8. A framework for developing the LX model.

Figure 2.8 shows the framework for developing the LX model. As shown in the

figure, the NLX model serves as the reference to train the LX model. The problem

now is formulated as a constrained optimization problem whose cost function is the

∆E units averaged over a training set. The training set is a 7×7×7 grid uniformly

spanning the entire RGB cube. During the optimization process, a constraint is

set to ensure that the output RGBnonl
2 will fall within the gamut of the Viewing

Device. Again, Patternsearch algorithm [52], a derivative-free algorithm, is used for

the optimization process.

Experimental results

We also tested the LX model with CTLLMO-1 and CTLCSO-1 monitors. How-

ever, the experiment now was based on the simulated data using the NLX model.

In other words, instead of using the actual monitors, we used their forward monitor

models for the experiment. Although this method is weaker than that in Section 2.1.2,

this experiment is much simpler and the obtained results are reliable since the mon-

itor models of CTLLMO-1 and CTLCSO-1 are reasonably accurate. The following

procedure was used to test the LX model:

1. Use the forward monitor model developed for CTLLMO-1 to predict the XYZ

values of the displayed colors when CTLLMO-1 was driven with a 5×5×5 grid

32

uniformly spanning the entire RGB cube of CTLLMO-1. Let us call the pre-

dicted XYZ values SET 1’.

2. Use the LX model to transform the grid in Step 1 to the non-linear RGB space

of CTLCSO-1.

3. Use the forward monitor model for CTLCSO-1 to predict the XYZ values cor-

responding to the transformed grid input. Let us call these XYZ values SET

2’.

4. Finally, compute the differences in ∆E between SET 1’ and SET 2’.

Figure 2.9 shows the error distribution of the (one standard deviation) outliers of

the LX model in the LAB space. Table 2.3 summarizes the error statistics of the LX

model.

−100

0

100

−100

0

100

0

50

100

150

b*a*

L
*

Fig. 2.9. Distribution of the 1− σ error outliers of the LX model in LAB space.

Comparing with Table 2.2, the LX model is far from being able to approximate

the NLX model. This is understandable since the LX model is too constrained to map

between two non-linear RGB spaces - a highly non-linear transformation. However,

in some applications when the reproduction accuracy is not as important as the

implementation simplicity, the LX model may be useful. In this situation, a solution

33

Table 2.3
Testing error statistics (in ∆E units) of the LX model.

LX

Mean 11.44

Max 37.62

Min 1.46

Median 10.01

1-stdev 6.68

to improve the LX’s performance is to incorporate some sort of weighting into the

cost function so that the important colors such as memory colors or neutrals will be

reproduced with greater accuracy. Also the experimental results essentially suggest

that in the future we develop a piece-wise linear mapping between the two non-linear

RGB spaces.

Overall non-linear transformation for perceptual matching with white point

correction (NLXWP)

In this section, we will consider the case when the two monitors are viewed in

different viewing conditions. It is well-known that two colors with the same XYZ

values will look different in different viewing conditions [32, 53]. Therefore, the NLX

and LX models that yield a colorimetric match by achieving the same XYZ tristimulus

will fail in this case . To achieve a visual match, we need a model which takes

into account the chromatic adaptation ability of the human visual system [53]. The

chromatic adaptation enables the human visual system to discount the illumination,

and to approximately preserve the appearances of the objects. Once a chromatic

adaptation model (CAM) is available, it is easy to extend it to a chromatic adaptation

34

transformation (CAT) model which predicts the necessary XYZ values such that a

perceptual match is achieved across two different viewing conditions.

Let us assume that the monitors are viewed in the two different darkened rooms

and thus, the human visual system completely adapts to the corresponding monitor’s

white point. We call the viewing condition of the target device the “Viewing Condi-

tion 1,” and that of the viewing device the “Viewing Condition 2.” According to [2],

a CAT based on Von-Kries model [26] can be constructed as follows:








X2

Y2

Z2







= H

−1








Lw2

Lw1

0 0

0 Mw2

Mw1

0

0 0 Sw2

Sw1







H








X1

Y1

Z1







; (2.6)

where subscripts i = 1, 2 imply the viewing conditions of the target device and viewing

device, respectively; LMSwi is the LMS cone responses [54] to the reference white wi

in Viewing Condition i; H is a non-singular 3×3 matrix which transforms the XYZ

values to the LMS cone responses:








L

M

S







= H








X

Y

Z








(2.7)

Let us assume further that the reference white wi of the two monitors have the

same chromaticity coordinates denoted as xyw. Their corresponding XYZ values are

computed as follows:







Xw1

Yw1

Zw1







= Yw1








xw

yw

1

(1−xw−yw)
yw








(2.8)








Xw2

Yw2

Zw2







= Yw2








xw

yw

1

(1−xw−yw)
yw







. (2.9)

35

Thus,







Xw2

Yw2

Zw2







=

(
Yw2

Yw1

)








Xw1

Yw1

Zw1







. (2.10)

Under this case, from (2.7) and (2.10), we can easily simplify (2.6) to (2.11):








X2

Y2

Z2







=

(
Yw2

Yw1

)








X1

Y1

Z1







; (2.11)

where, Ywi, i = 1, 2 is the luminance of the reference white of Viewing Condition

i. Because two monitors might have different gamut, a gamut mapping module that

addresses this issue is necessary. Generally, gamut mapping algorithms are often

implemented in the perceptually uniform color spaces. In this research, we choose

LAB as the intermediate space. The equation for the conversion from the XYZ space

to the LAB space with respect to the reference white XY Zw is shown in (2.12):

L∗ = 116f
(

Y
Yw

)

− 16

a∗ = 500
(

f
(

X
Xw

)

− f
(

Y
Yw

))

b∗ = 200
(

f
(

Y
Yw

)

− f
(

Z
Zw

))

(2.12)

where

f (x) =







x
1

3 x > 0.008856

7.787x+ 16
116

otherwise
(2.13)

From (2.10), (2.11), and (2.12), it is easy to show that if we convert the XY Z2

computed by (2.11) to LAB with respect to XY Zw2, we will get the same LAB value

as we convert the XY Z1 to LAB with respect to XY Zw1:

LAB2 = LAB1. (2.14)

We use (2.14) as the basis to build up the overall color transformation between

the two monitors to achieve a perceptual match. The approach is first to correct the

white points of the two monitors to a common chromaticity, making them satisfy the

36

aforementioned common white point assumption. In a particular case, one can choose

the white point of the target device to be the desired target and correct the white

point of the viewing device according to it. Accordingly, we will denote the overall

non-linear transformation with white point correction as NLXWP. The NLXWP is

realized by a forward transformation from the non-linear RGB space of the target

device to LAB, followed by an inverse transformation from LAB to the non-linear

RGB space of the viewing device. The conversion between XYZ and LAB in the

forward and inverse transforms is with respect to the independently corrected white

points of the target tevice and the viewing device, respectively. The white point is

preserved through the transformation by setting the constraint on the forward and

inverse transformations. Figure 2.10 shows the diagram of the NLXWP model.

Fig. 2.10. A block diagram of the NLXWP model. Subscripts 1 and
2 imply that the values are in the viewing conditions of the Target
and Viewing Devices, respectively; n and b stand for “native” and
“white-balanced” spaces, respectively.

A method for white point correction We correct the native monitor white

point to a desired chromaticity by adjusting the balance between the three color

channels of the corresponding monitor. This is accomplished by two steps:

• Step 1: Determine the desirable reference white that has the desired chromatic-

ity and the highest achievable luminance.

37

• Step 2: Develop a white-balancing module to transform the native monitor RGB

space to a “white-balanced RGB space”. The reference white in the destination

space is determined in Step 1. The goal of this white balancing process is to

avoid the color cast artifact and to map the neutrals to the neutrals.

In the first step, given a desired chromaticity coordinates xydw (subscript d: de-

sired; subscript w: white), based on the inverse monitor model described in Sec-

tion 2.1.2, we can approximately compute the highest achievable luminance Ydw by

the monitor as follows: We first represent XY Zdw in terms of Ydw and xydw:








Xdw

Ydw

Zdw







= Ydw








xdw

ydw

1

(1−xdw−ydw)
ydw







= Ydwv (2.15)

Also, we present the inverse matrix M
−1 which transforms XYZ to RGBlin

nor in the

following form:

M−1 =








r1
T

r2
T

r3
T







; (2.16)

where, r1
T , r2

T , and r3
T are three row vectors of M−1. The three components of

the normalized linear RGB value RGBlin
nor dw of this desired white point is computed

as follows:

Rlin
nor dw = Ydw

(
r1

T
v
)
= YdwkR

Glin
nor dw = Ydw

(
r2

T
v
)
= YdwkG

Blin
nor dw = Ydw

(
r3

T
v
)
= YdwkB

(2.17)

where kR, kG, and kB are the scalar values. For a given XY Zdw to be achievable by

the monitor, it is necessary that the three components of RGBlin
nor dw be in the range

[0, 1]. From (2.17) we have:

0 ≤ YdwkR ≤ 1

0 ≤ YdwkG ≤ 1

0 ≤ YdwkB ≤ 1

(2.18)

38

Finally, the maximum achievable luminance Y max
dw with this fixed xydw can be deter-

mined as:

Y max
dw = min

(
1

kR
;
1

kG
;
1

kB

)

(2.19)

Using the inverse model of the monitor, we can compute further the absolute linear

RGB value (denoted as RGBlin
abs dw) of the desired white. Since the accuracy at this

stage is limited by the accuracy of the inverse monitor model, the coarse result then

is refined by a direct-search on the actual monitor. Starting with the coarse result,

a software program automatically controls the PR-705 to search in the monitor color

space for a color that is closest to the desired white point.

In the second step, the white balancing is implemented in the absolute linear RGB

space. First, the source non-linear RGB value is converted to the absolute linear RGB

space through the gray balancing process. Then, the converted absolute linear RGB

value is multiplied by a diagonal matrix D which is shown in (2.20):







Rlin
b

Glin
b

Blin
b







=








Rlin

dw

Rlin
nw

0 0

0
Glin

dw

Glin
nw

0

0 0
Blin

dw

Blin
nw








︸ ︷︷ ︸

D








Rlin
n

Glin
n

Blin
n








(2.20)

where subscript “b” implies white-balanced; “dw” implies desired white; “nw” implies

native monitor white and superscript “lin” implies linear. Note that all values in

(2.20) are in the absolute linear RGB space. Finally, RGBlin
b is converted to RGBnonl

b

through the inverse of the gray balancing process. The block diagram of this white

balancing process is shown in Figure 2.11. This process guarantees that the neutrals

will be mapped to the neutrals in the normalized linear RGB space. The normalization

for the white-balanced RGB values will be shown in (2.21) when we discuss the

forward monitor model with the white point correction.

Forward and inverse monitor models with white point correction After

the two monitors are white-point corrected, we need to re-develop the forward and

inverse monitor models for them. The goal of this stage is to increase the prediction

accuracy of the two models since now the input spaces are narrowed down due to the

39

Fig. 2.11. A block diagram of the white-balancing process.

white-balancing process. The development of the forward monitor model with white

point correction for a monitor is very similar to what we described in Section 2.1.2.

The differences are that the inputs now are the white-balanced non-linear RGB values,

and the normalization step is performed with respect to the desired white rather than

the native monitor white. The normalization now is implemented using the following

equations:

Rlin
nor =

Rlin
abs

Rlin dw
abs

; Glin
nor =

Glin
abs

Glin dw
abs

;Blin
nor =

Blin
abs

Blin dw
abs

; (2.21)

where Rlin dw
abs , Glin dw

abs , and Blin dw
abs are the three components of the absolute linear

RGB value of the desired reference white. We also use the optimization technique

as in Section 2.1.2 to develop the matrix M for the forward monitor model with

white point correction. However, the training set now includes the white-balanced

RGB values rather than those native to the monitor. We obtain the training set by

applying the white-balancing module to a 6×6×6 grid uniformly spanning the entire

native RGB cube of the monitor. Once the forward monitor model with white point

correction is available, the inverse model with white point correction is obtained by

simply inverting the corresponding forward model.

Gamut mapping module An important unit of the NLXWP model is the gamut

mapping module. The gamut mapping module handles the gamut mismatch issue

between the two monitors. In this research, we use the straight chroma clipping

technique (SCC) [55] for this module. SCC is simple and was demonstrated to perform

better than some other popular clipping approaches such as closest LAB clipping, cusp

clipping, node clipping [55] as well as some compression techniques [56].

40

In [55], SCC is implemented in the LAB space by first mapping the L* (lightness)

extremes of two gamuts to each other, and then shifting (i.e. clipping) the out-

of-gamut colors to the destination gamut’s boundary white still preserving L* and

h*(hue). In our approach, the L* extremes of the two gamuts are already equal to

each other (the maximum is 100 and the minimum is 0 units). Therefore, the L*

mapping step for SCC is not necessary. This key characteristic is a good point since

the sequential L* mapping approach used in [55] has some potential problems as

discussed in [57]. The SSC technique is depicted in Figure 2.12.

Fig. 2.12. The SSC technique for gamut mapping, red circles are
out-of-gamut colors and blue stars are the mapped colors.

To clip an out-of-gamut color described by L*, h*, and c* (chroma), we fix L*

and h*, and then use the inverse monitor model of the viewing device to determine

its maximum achievable chroma (clipped c*). The method for determine the clipped

c* can be described in more details as follows:

For a given color described by L*, h*, and c*, the a* and b* coordinates in the

LAB space can be computed according to (2.22):

a∗ = c∗ cos (h∗)

b∗ = c∗ sin(h∗)
(2.22)

Set fy =
(
L∗+16
116

)
, then the conversion from LAB to XYZ is (2.23):

41

X = Xw

(
a∗

500
+ fy

)3
= Xw

(
c∗ cos(h∗)

500
+ fy

)3

Y = Ywf
3
y

Z = Zw

(
fy − b∗

200

)3
= Zw

(

fy − c∗ sin(h∗)
200

)3

(2.23)

where [Xw, Yw, Xw]
T is the XYZ value of the reference white. We present the

inverse matrix M
−1 in the inverse monitor model in the following form:

M−1 =








rT1

rT2

rT3







; (2.24)

where rT1 , r
T
2 , and r

T
3 are three row vectors of M−1. Then three components of the

normalized linear RGB can be computed as follows:

Rlin = rT1








Xw

(
c∗ cos(h∗)

500
+ fy

)3

Ywf
3
y

Xw

(

fy − c∗ sin(h∗)
200

)3








Glin = rT2








Xw

(
c∗ cos(h∗)

500
+ fy

)3

Ywf
3
y

Xw

(

fy − c∗ sin(h∗)
200

)3








Blin = rT3








Xw

(
c∗ cos(h∗)

500
+ fy

)3

Ywf
3
y

Xw

(

fy − c∗ sin(h∗)
200

)3








(2.25)

For the given color to be inside the gamut of the viewing device, it is necessary

that the three components of the normalized linear RGB be inside the range [0,1]:

0 ≤ Rlin, Glin, Blin ≤ 1 (2.26)

where Rlin , Glin, and Blin are computed by (2.25). It is obvious that deriving a

closed-form equation to compute the maximum c* satisfying (2.26) is very difficult.

42

Therefore in this research we use a search-based approach. The maximum c* (or

clipped c*) satisfying the (2.26) is determined by an optimization process as follows:

maximize f(c∗) = c∗

subject to 0 ≤ Rlin, Glin, Blin ≤ 1

0 ≤ c∗

(2.27)

where Rlin , Glin, and Blin are the functions of c* computed by (2.25). This optimiza-

tion (2.27) can be easily implemented using any non-linear constrained optimization

algorithm, for example the fmincon routine in MATLAB [58].

The L*, h*, and clipped c* will describe the clipped color. Varying L* from 0 to

100 lightness units and h* from 0 to 360 degree, using the approach above we can

also visualize the 3-D gamut of the monitor in the LAB space. Figure 2.13 shows the

gamut leaf vertically cut at h*=330 degree from the 3-D gamuts.

0 20 40 60 80 100 120
0

20

40

60

80

100

L
*

c*

Gamut of Monitor 1

Gamut of Monitor 2

Fig. 2.13. Gamut leaf in the LAB space at h*=330 degree.

Experimental results

The monitors used in this experiment were the two 24-inch LCD displays, BLRLMO-

2 and BLRCSO-2, among which, BLRLMO-2 served as the target device; and BLRCSO-

2 served as the viewing device. First, we used the method described in Section 2.1.2

to correct the white point of the two monitors to D-65 [2]. The errors in ∆E units

43

between the corrected white colors of BLRLMO-2 and BLRCSO-2 and the corre-

sponding closest colors which have D-65 chromaticity are 0.56 and 0.84, respectively.

Table 2.1.2 summarizes the correction results in detail.

Table 2.4
White point correction results for the two monitors with D-65 as the
target white point.

Monitor 1 Monitor 2

Corrected Corrected

D-65 Native Coarse Refined Native Coarse Refined

Y 162.56 96.16 103.98 268.24 220.01 218.78

x 0.3127 0.3687 0.3052 0.3130 0.2902 0.3157 0.3127

y 0.3290 0.3761 0.3220 0.3300 0.3256 0.3346 0.3303

Then we built the white balancing module for BLRLMO-2 according to the dia-

gram in Figure 2.11. In the next step, we developed the forward model with white

point correction for BLRLMO-2 and the inverse model with white point correction for

BLRCSO-2. Table 2.5 summarizes the testing errors of the characterization models

with white point correction for the two monitors.

Finally, we combined these two developed models to construct the NLXWP model

according to Figure 2.10. To test the NLXWPmodel, we used the following procedure:

1. Generate a 5×5×5 grid which uniformly spans the entire non-linear RGB cube,

then use the white-balancing module for BLRLMO-2 to transform this grid to

the white-balanced non-linear RGB set.

2. Use this white-balanced set to drive BLRLMO-2 and measure the corresponding

XYZ set. Convert the measured XYZ set to the LAB space with respect to the

corrected white point of BLRLMO-2. We call this obtained LAB set “SET 1”.

44

Table 2.5
Testing error statistics (in ∆E units) of the characterization models
for BLRLMO-1 and BLRCSO-1 monitors.

BLRLMO-2 BLRCSO-2

Mean 2.38 1.87

Max 5.72 5.91

Min 0.15 0.27

Median 2.67 1.68

1-stdev 0.92 0.94

3. On the other hand, we use the NLXWP model developed above to transform

the 5×5×5 grid in the first step to the non-linear RGB space of BLRCSO-2.

4. Use this transformed data to drive BLRCSO-2 and measure the corresponding

XYZ values. Then, convert this XYZ set to LAB with respect to the corrected

white point of BLRCSO-2. We call this LAB set “SET 2”.

5. Finally, we compute the differences between SET 1 and SET 2 in ∆E units.

Table 2.5 summarizes the testing errors of this experiment. Figure 2.14 shows the

distribution of error outliers of the NLXWP model in the LAB space.

Linear transformation for perceptual matching (LXWP)

Model Development We would like to see how well we can approximate the

NLXWP by a single 3×3 matrix which maps directly between the non-linear RGB

spaces of the two monitors. We denote this transformation as LXWP. Equation 2.28

shows the formula of the LXWP model:

45

Table 2.6
Testing error statistics (in ∆E units) of the NLXWP model.

NLXWP

Mean 1.94

Max 3.88

Min 0.37

Median 1.88

1-stdev 0.80

−100

0

100

−100

0

100

0

20

40

60

80

100

b*a*

L
*

Fig. 2.14. Distribution of the 1 − σ error outliers of the NLXWP
model in LAB space.








Rnonl
2

Gnonl
2

Bnonl
2







=








MLXWP















Rnonl
1

Gnonl
1

Bnonl
1








(2.28)

Figure 2.15 shows the framework for developing the LXWP. The development for

LXWP is formulated as an optimization process in which NLXWP model serves as

46

the reference and the entries of MLXWP serve as the independent variables. The cost

function reflects the differences in ∆E units between the NLXWP and the LXWP.

Fig. 2.15. A block diagram of the LXWP model.

Experimental results

We tested the NXWP in the same way as we did for the NX model in Section 2.1.2

except that we used the monitor models for BLRLMO-2 and BLRCSO-2 rather than

for those for CTLLMO-1 and CTLCSO-1.

1. Use the characterization model developed for BLRLMO-2 to predict the XYZ

values of the displayed colors when the input is a white-balanced 5×5×5 grid

spanning the RGB cube of BLRLMO-2. Let us call the predicted XYZ values

SET 1’.

2. Use the LXWP model to transform the grid in Step 1 to the non-linear RGB

space of BLRCSO-2.

3. Use the monitor model for BLRCSO-2 to predict the XYZ values corresponding

to the transformed grid input. Let us call these XYZ values SET 2’.

4. Finally, compute the differences in ∆E units between SET 1’ and SET 2’.

Figure 2.16 shows the error distribution of the outliers of the LXWP model in the

LAB space. Table 2.7 summarizes the error statistics of the LXWP model.

47

−100

0

100

−100

0

100

0

20

40

60

80

100

b*a*

L
*

Fig. 2.16. Distribution of the 1−σ error outliers of the LXWP model
in LAB space.

Table 2.7
Testing error statistics (in ∆E units) of the LXWP model.

LXWP

Mean 10.27

Max 24.57

Min 0.79

Median 10.01

1-stdev 8.67

Similar to the case of the LX versus the NLX, the LXWP is still far from being

able to approximate the NLXWP model. This is because the NLXWP model is too

non-linear to approximate by a linear transformation.

48

2.2 Color Management With 3D Look-Up Tables

The NLXWP function is computationally complex and may not be easy to im-

plement for all displays. Therefore, we use 3D look-up tables (3D LUT) to realize

the function in a computationally efficient manner. Look-up tables (LUT) are a

convenient tool used in many applications in image processing. Consider a function

y = f(x) which maps an input x ∈ D to an output y ∈ R where D and R are

the domain and the range of f respectively. The concept of a table look-up involves

computing discrete values of f for a set of discrete inputs SD ⊂ D and storing them

as a set SR ⊂ R. In order to evaluate the function at a given input x ∈ D, we locate

points in SD which surround x. In other words, we identify the elements of SD which

form a box (or a polytope) such that x is an internal point of the box. These points

are known as neighbors of x. Finally, f(x) is obtained by interpolating between the

known values of the function at its neighbors. The elements of the subset SD for

which the function is evaluated are known as the sample points or knot points.

Look-up tables have been used to realize color space transformations between dif-

ferent media [59]. Some of these methods were in use well before the development

of standardized profile-based methods. In 1975, Pugsley [60] described a method

for color correcting the output of a scanner using pre-computed values stored in the

memory. In 1978, Kotera described LUT-based techniques for Bayesian color sep-

aration [61]. Researchers at Polaroid Corporation developed a LUT-based method

in 1989 for managing color transformations between photographic films and printed

media [62]. McCann describes 3D LUT-based methods to perform color space trans-

formations for various applications, including matching of photographic films with

printed media, and transforming between the CIE LAB space and a more uniform

Munsell color space [63, 64]. These transformations were designed on a 8 × 8 × 8

hardware LUT, and achieved high levels of accuracy. The LUT-based techniques were

also used for color correction in the successful efforts to create life-size replicas of fine

art [65].

49

We previously described the applicability of a 3D LUT for achieving complex

transformations [66]. We also described a method for obtaining the optimal param-

eters for such a system. In the following sections, we provide more detail about the

approach and some motivation behind the proposed scheme for the optimal sampling

of the RGB space. desired LUT is constructed using the NLXWP function and also

cross-validated against it. Figure 2.17 illustrates the method of generating and eval-

uating the LUT using the NLXWP model. This is referred to as LUTEVAL and is

used (as a black box) in our optimization setup. The block arrow between NLXWP

and LUT represents the offline process of generating the table by evaluating NLXWP

at desired points. The LUT generated by LUTEVAL is stored as a file and, hence,

this step does not occur when the LUT is evaluated against the model.

Fig. 2.17. A block diagram of the system for constructing and evalu-
ating a 3D LUT (LUTEVAL).

Let f() represent the non-linear transformation (NLXWP) using the device mod-

els. Since our transformations map non-linear RGB space to non-linear RGB space,

let [r, g, b]in and [r, g, b]out indicate the input and output vectors respectively. Next,

we let the table look-up be described by a function Φ(). As in the previous sections,

a subscript 1 stands for the first monitor (reference/target device) and subscript 2

50

stands for the user device or the second monitor. Then, for the same input [r, g, b]in

to the two functions:

[r, g, b]outLUT = Φ([r, g, b]in), (2.29)

and

[r, g, b]outNL = f([r, g, b]in). (2.30)

Using the forward monitor models, we can obtain the corresponding values in the

LAB space and compute the difference between the colors:

∆E = ‖[LAB]outNL − [LAB]outLUT‖. (2.31)

This is illustrated in Fig. 2.17.

The transformation f requires a three dimensional (3D) LUT with a vector [r, g, b]

as input. Each entry in the LUT is also a vector [r, g, b] corresponding to the color-

corrected digital input for the user device. For 8-bits per channel, the input space is

of size 256× 256× 256 but practical LUTs would be much smaller. Consider a LUT

of size nR × nG × nB and sample points selected according to the set

Ω = {r0, r1, . . . , rnR−1} × {g0, g1, . . . , gnG−1} × {b0, b1, . . . , bnB−1}, (2.32)

where × denotes a Cartesian product. Then, the function Φ() can be specified as:

Φ([r, g, b]) =







f([r, g, b]), ∀[r, g, b] ∈ Ω,

£([r, g, b]), otherwise.
(2.33)

Here £() represents an interpolation operation which is used to transform the input

values not aligned with any of the table entries.

The accuracy of a LUT-based transformation is measured in terms of the deviation

of the colors in ∆E units. Let ST be a training set of N RGB values taken randomly

from the RGB space. The difference between the colors produced by the NLXWP

model (f) and the LUT (Φ) is given by:

∆Ei = ‖[L,A,B]out,iNL − [L,A,B]out,iLUT‖. (2.34)

51

An average of all the differences is referred to as the transformation error:

∆E =
1

N
·
N−1∑

i=0

∆Ei. (2.35)

This average error over the selected training set serves as our yardstick for evaluating

the effects of different parameters of a LUT-based system.

Having constructed a method for using a function to generate and evaluate a

LUT, we next focus on the various factors which affect the accuracy with which the

LUT can approximate the function. Given resource constraints, these can be broadly

categorized as follows.

The size of each dimension of a multi-dimensional LUT is related to the relative

importance of each dimension. In our problem, this relates to how many sample

points are selected from each of R, G and B color channels (nR, nG, nB respectively)

such that the overall LUT complies with the overall size constraint. As an example,

one can construct a 10 × 10 × 10 LUT or a 10 × 12 × 8 LUT if no more than 1000

table entries are allowed. In our experiments, we assume an equal number of sample

points are collected from each color channel. Such LUTs are referred to as regular.

A typical (except boundary) point in the 3D space has eight nearest neighbors

where the value of the function is known. An interpolation algorithm may use all the

eight values or a subset of these to determine the function’s value at the unknown

point. It may also assign unequal weights to the known values according to the neigh-

bor’s “distance” from the point. Thus, the method of interpolation is an important

aspect that affects the accuracy of a LUT system.

The sampling set Ω contains the elements of the discrete domain of the function.

This set is representative of the function and, hence, the choice of its elements plays

a key role in the successful interpolation of other values. We also define a special

type of sampling for a regular LUT in which ri = gi = bi∀i ∈ {0, 1, . . . , nR− 1}. Such
tables will be called symmetric and regular tables not meeting this condition will be

known as non-symmetric.

52

2.2.1 Interpolation

Interpolation has been well explored and several interesting methods have been

proposed in one and more dimensional spaces, and on regular and irregular shaped

data grids. Bala and Klassen [67] provide a survey of the commonly used interpo-

lation methods, in the context of color transformations. They also describe some

acceleration techniques that can result in faster operation under suitable conditions.

Kidner et. al. [68] review many interpolation and extrapolation methods as applicable

to the problem of building sophisticated digital elevation models, used (among oth-

ers) in terrain analysis, infrastructure design and global positioning. In the following

discussion, we describe a simple interpolation scheme in three dimensions. We also

present some results demonstrating the relative effectiveness of two derived schemes

in our problem of approximating the NLXWP model. Note that this discussion is

included primarily for the purpose of completeness, and as an illustration of the ef-

fect of choosing an interpolation technique on the performance. The focus of our

optimization efforts is on the sampling of the RGB space.

In the most generalized situation, an input point [x, y, z]s (whose output needs to

be predicted) can have k neighbors [x, y, z]i for i = 0, 1, . . . k − 1. Let d(i, s) be some

metric of distance between the points i and s. Note that each neighbor is an entry of

the table and hence their outputs f([x, y, z])i are known. Then using interpolation,

f([x, y, z])s = ψ(fi, di) for i = 0, 1, . . . k − 1, (2.36)

where ψ is determined by the method used.

For example, a simple linear interpolation in 1D space would be

fs = (f0 · d (s, 1) + f1 · d (s, 0)) / (d (s, 0) + d (s, 1)) , (2.37)

where d(s, i) is the Euclidean distance between s and its ith neighbor. A simple

extension to 3D would be one where fs is evaluated as a weighted sum of fi for

i = 0, 1, . . . 7, with each fi weighted by the Euclidean (3D) distance of the other

neighbor (and normalized by the sum of these distances) from the required point

53

Fig. 2.18. An illustration of the neighbors of a point in 3D space.

s as shown in Fig. 2.18 where the neighbors are denoted by ni. Note that in our

problem, the 3D box formed by the eight neighbors is not required to be a cube,

or even a regular polytope because of non-uniform sampling. A number of schemes

exist for interpolation using different neighbor sets and different distance metrics.

Shepard’s [69] interpolation is a general framework for interpolation on an irregularly

spaced data. Another general technique known as Sequential Linear Interpolation

optimizes an nD interpolation problem by sequentially reducing the dimensionality

while maintaining optimal performance [70].

As noted earlier, a point in a 3D space has eight nearest neighbors, located at

the vertices of a bounding box. It is possible to use a subset of these eight points

for interpolation, such as in tetrahedral interpolation [71]. In our experiments for

color space transformation, we employ interpolation methods which use all the eight

neighbors of the unknown point. Let [r, g, b]s be the input value for which an output is

needed. We define [r, g, b]i as the eight neighbors of the input, where i = 0, 1, . . . 7, and

the order/position is as indicated in Fig. 2.18. Observe that [r, g, b]0 = [⌊r⌋, ⌊g⌋, ⌊b⌋]s
where ⌊⌋ denotes the nearest lower neighbor, that is the nearest neighbor of s which

can be reached by only reducing the value of the color channel. Noted that in this

54

context ⌊⌋ does not represent the usual integer flooring. Similarly, [r, g, b]7 is the

nearest upper neighbor.

The interpolated value rout can now be obtained in the following manner. In

the following equations, the symbols pi represent intermediate points as shown in

Fig. 2.18 and ti are the corresponding function values. The symbol ri represents the

first component of [r, g, b]i and li is a metric of distance of the ith neighbor from s.

The values of gout and bout can be similarly obtained.

t1 = (r0 · l1 + r1 · l0)/(l1 + l0), (2.38a)

t2 = (r2 · l3 + r3 · l2)/(l3 + l2), (2.38b)

t3 = (r4 · l5 + r5 · l4)/(l5 + l4), (2.38c)

t4 = (r6 · l7 + r7 · l6)/(l7 + l6), (2.38d)

t5 = (t1 · lp2 + t2 · lp1)/(lp2 + lp1), (2.38e)

t6 = (t3 · lp4 + t4 · lp3)/(lp4 + lp3), (2.38f)

and finally,

rout = (t5 · lp6 + t6 · lp5)/(lp6 + lp5). (2.39)

In the above formulation, we can define li = d(s, i). Then, the known value at a

neighbor is linearly weighted by the Euclidean distance of the opposite neighbor from

the unknown point. This can also be viewed as weighting the value at a neighbor

with its inverse distance from the unknown point. For example, Eq. (2.38a) can be

written as:

t1 = (r0 · l−1
0 + r1 · l−1

1)/(l−1
0 + l−1

1). (2.40)

Note that this equivalence holds only when interpolating between two points. We

refer to this scheme as separable inverse distance interpolation. We can also define

li = d2(s, i). The resultant scheme is referred to as separable squared inverse distance

interpolation in this thesis.

The choice of non-linear weighting of the function values becomes particularly

significant because we are selecting the grid points for the LUT in a non-uniform

55

fashion, which we describe in the following section. Shepard presented a method for

interpolating on an irregular grid in a two dimensional space [69]. The central idea

of the method can be described by,

fs =







fi if d(s, i) = 0 for any i ∈ {0, 1, . . . , P − 1},
P−1∑

i=0

fi·d
−u(s,i)

P−1∑

i=0

d−u(s,i)

, otherwise,
(2.41)

where P specifies the total number of neighbors used in the interpolation and the

parameter u determines the weighting of grid points. Shepard goes on to describe the

criteria for the selection of u. Based on empirical results, Shepard states that a value

of u = 2 would provide satisfactory results for surface mapping and is computationally

inexpensive (compared to fractional values).

We note that by defining li = du(s, i), we can approximate Shepard’s interpolation

by a sequence of pairwise interpolations, represented by Eq. (2.38) and (2.39). It was

observed in our experiments that the use of squared inverse distance (li = d2(s, i))

results in lower errors when 3D LUTs were used to approximate NLXWP, than when

using simple inverse distance (li = d(s, i)) [66]. This is summarized in Table 2.8

where the average errors of the two schemes are presented with respect to a ran-

domly generated testing set of 1000 RGB values. The errors were obtained using

the LUTEVAL block described earlier. Here, ∆Einv is the error corresponding to

the separable inverse distance scheme and ∆Esq,inv is the error corresponding to the

separable squared inverse distance scheme.

All the LUTs were generated by uniformly sampling the RGB space in these ex-

periments. This ensures that the difference in the errors resulted only from the choice

of the interpolation techniques. Note that the impact of squared inverse distance in-

terpolation decreases (in both absolute ∆E units and in percentage) as the size of the

LUT increases. This is expected and emphasizes the role that proper selection of the

system parameters can play when the resources are constrained. We also performed

this experiment with the non-separable Shepard’s interpolation as given in Eq. (2.41),

with P = 8. We observed that the non-separable method resulted in lower average er-

56

Table 2.8
Average errors (∆E units) obtained when approximating the NLXWP
model with uniform LUTs using two interpolation methods.

Size ∆Einv ∆Esq,inv ∆Esq,inv−∆Einv

9× 9× 9 5.49 3.79 1.70 (30.9%)

15× 15× 15 3.10 2.16 0.94 (30.3%)

21× 21× 21 2.30 1.65 0.65 (28.3%)

57

rors compared to the two separable methods described above. However, the difference

between the average errors becomes smaller when interpolating on lattices, optimized

with respect to the corresponding interploation schemes. It should be emphasized

that the regular structure of the separable methods makes them more suitable for

hardware applications particularly when interpolating in a 3D space. Therefore, in

this thesis, we only provide detailed results based on the separable inverse distance

interpolation and the separable squared inverse distance interpolation. In subsequent

sections, the squared inverse distance interpolation is used because it produces lower

errors.

We would also like to mention that the use of squared inverse distance interpo-

lation has been selected on the basis of accuracy and the simplicity of design. We

optimize the sampling of the RGB space (in the next section) with the assumption

that this interpolation would be done when using the optimal LUTs. However, other

interpolation schemes may be selected based on application-specific requirements such

as simplicity, regularity and accuracy. While an interpolation scheme based on only

linear interpolations would be simple and involve lower computational costs, an in-

terpolation method based on higher degree polynomials, or on splines, may result in

a smoother interpolated surface.

Splines are commonly used in image interpolation [49, 72] because they can pro-

duce high levels of accuracy, and can be selected to satisfy regularity requirements.

Splines can be represented as piecewise polynomial functions of a specified degree.

Thus, unlike higher degree polynomials, splines can be designed to avoid excessive

oscillation. The theory of basis splines (B-splines) [73,74] allows interpolation in such

a way that each piecewise function is a linear combination of a set of basis functions.

This results in a reduction in the complexity of spline interpolation. Two common

methods for extending B-splines to a multi-dimensional space are the use of tensor

product splines [75] and the use of thin plate splines [76].

We do not use spline interpolation for two reasons. The spline basis functions

must be computed directly using the positions of the knot points. It is not practical

58

for hardware implementations to precompute these basis functions if the knot points

are irregularly spaced. Secondly, the actual interpolation uses a linear combination of

the basis functions and the coefficients used as weights must also be computed before

interpolation. Therefore, an implementation of splines in a high dimensional irregular

space would be more complex.

We summarize this discussion by stating that our optimization framework is ag-

nostic to interpolation and a simple modification of the cost function is needed to

reflect the change.

2.2.2 Sampling

Sub-sampling of the RGB space is a complex problem that has been discussed

in the literature. Monga and Bala [77] propose a strategy for the optimization of

the knot points (or nodes) based on a 3D importance function. They construct a

significance function using the input distribution and the curvature of the analytical

function to be approximated. Instead of trying to determine an exact solution to the

problem of optimal node selection, they devise an efficient algorithm to obtain an

approximate optimal lattice, in an iterative manner. They later proposed a method

to jointly optimize node selection and the output values stored at the nodes [78] in

order to minimize the expected interpolation error. However, a general solution for

approximating 3D functions is not available, particularly when the function cannot

be rigorously defined (in order, for example, to compute the curvature). Intuition

suggests that a discrete domain Ω for a LUT constructed by uniformly sampling the

input space may not deliver the optimal performance. It is possible that using more

samples from the dark regions of the color space for Ω may lower the average error.

This is mainly because a small change in the RGB values in the low lightness regions

causes a large perceptual change in the response of the human visual system.

59

We experimented with different approaches to arrive at a sampling strategy that

would provide an improved performance relative to uniform sampling. These are

described below:

Sampling in LAB space. A straightforward way to achieve perceptual unifor-

mity would be to use the color space that best models the human visual perception.

The goal would be to divide the CIE LAB space into n equal sub-spaces. The bound-

aries of these sub-spaces could then be translated back to the RGB space using the

available non-linear monitor models and a LUT could be constructed from these val-

ues. While this approach is attractive, it is intractable because the LAB space is not

a regular polyhedron like the RGB space. It is quite possible that the space for a

given display device is shaped like a deformed sphere. Locating the exact bounding

surfaces of the LAB space might require enormous computation and it is unlikely that

such a space can be divided into regularly shaped sub-spaces.

Uniform lightness sampling. It is tempting to try achieving at least uniform

sampling in the CIE L∗ dimension. One would expect that the function of lightness

versus R (or G or B) would be concave with higher gradient near the dark region.

Therefore, if the color channels are sampled for uniform L∗, it should result in more

samples collected from the dark areas. A plot of non-linear R versus L∗ is shown

in Fig. 2.19. Although there is significant non-linearity near the dark end, most of

the function is nearly linear. However, this is not so unexpected if we understand

the relationship between the native color space and the L∗ axis. There are two basic

steps in going from R to L∗ – first R (along with G and B values) is converted to

linear RGB by a power law correction (gray balancing), and then it is transformed to

XYZ by a linear transformation. Finally, lightness is obtained using another power

law. The two power law corrections reduce the effect of each other to a large extent

and hence a near-linear behavior is observed for most inputs.

Optimal RGB sampling. It is evident that no clear methodology seems to exist

for achieving the best sampling map or the set Ω. Therefore, we try to obtain the

optimal value of Ω using constrained optimization. Given a specification of the table

60

Fig. 2.19. Variation of lightness (L∗) with digital red input R.

dimensions nR × nG × nB, the universe of all possible sampling maps (without any

constraints) would be roughly 256nR+nG+nB . Once we apply some obvious constraints

(described below), this number reduces slightly but it is still O(256nR+nG+nB). Con-

sidering the fact that it is unlikely that a particular knot point is selected twice, a

more accurate estimate of the size would be [256× (256− 1)× . . . (256− (nR − 1))]3

In simple terms, this is an optimization problem in a nR+nG+nB dimensional space.

An optimization problem is defined in terms of a cost function. In our case, we use

the average prediction error ∆E as the cost function given the training data set. We

obtain a training data set ST consisting of 1000 points (RGB triples) by constructing

a (10× 10× 10) grid in the RGB space:

ST = {r0, . . . , r9} × {g0, . . . , g9} × {b0, . . . , b9}, (2.42)

where × denotes a Cartesian product. Initially all elements of this set were chosen

randomly from the RGB space, but this approach often returns a skewed data set.

Therefore, we enforce order by adding the eight corners of the RGB space to the set.

The remaining 992 elements were randomly selected. The size of the training set is

61

chosen to be significantly larger than the number of unknowns, thereby avoiding the

possibilities of overfitting.

We proceed by inserting constraints which make the problem more tractable.

First, we assume nR = nG = nB which means that we optimize only regular LUTs.

Let

MR = {r0, r1, . . . , rnR−1}, (2.43)

MG = {g0, g1, . . . , gnG−1}, (2.44)

MB = {b0, b1, . . . , bnB−1}, (2.45)

and map =MR ×MG ×MB. (2.46)

Then Ωopt = argmin
map

∆E. (2.47)

where the vectorsMR,MG,MB are known as channel maps whilemap is the Cartesian

product of the channel maps and contains all the knot points at which Φ() is evaluated

to construct the table. Ωopt is the value of map such that the LUT based prediction

model has the smallest ∆E for a given training data set. The minimization is subject

to the constraints that each element of map belongs to {0,1,. . .,255} and the elements

of each channel map MR,MG,MB are strictly increasing. For example, in the case of

the red channel: r0 < r1 < . . . < rnR−1.

Fig. 2.20. A block diagram of the optimization problem of sub-
sampling the RGB space.

62

The computation of ∆E for a given map is a two step process consisting of gener-

ating the LUT by evaluating the function according to map and then using this LUT

to transform elements of the training set ST to obtain the average prediction error.

Since this process cannot be rigorously defined, many optimization techniques (such

as gradient-based schemes) cannot be used. Figure 2.20 illustrates the optimization

problem graphically, and the problem is solved using the pattern search algorithm.

Pattern search [52, 79] is a non-gradient based optimization technique which can

locate the global minimum of a given objective function with linear constraints. It

has been used in a wide variety of optimization problems. At any iteration, the

algorithm evaluates the objective function at every point in a set, known as a pattern.

The pattern is expanded or shrunk depending on these values. More specifically, the

pattern is expanded if any point in the set results in a lower cost than the current

minimum; otherwise the set is shrunk (usually by a factor of two). Since the method

does not require computation of derivatives to update the pattern, it can be used

when the objective function is such that this information is not available, or difficult to

obtain. Hence, it is suitable for our optimization problem. The search for the optimum

terminates when the pattern shrinks below a specified maximum size. The method has

been shown to possess robust convergence properties [80]. Software implementations

of the method can be obtained in the MATLAB Genetic Algortihms and Direct Search

toolbox [81], in the open source OPT++ library from Sandia Corporation [82], and

from the authors of the algorithm [83].

It should be noted that a symmetric sampling might allow greater control over

the transformation of the neutral axis. This may be an important decision for certain

applications that require pure neutral colors to be faithfully reproduced. Similarly,

some applications (such as motion pictures) may place more importance on the skin

tones. Our optimization setup provides an interesting method of specifying such

preferences, which is by allowing the user to carefully design the training set ST . By

an intuitive crafting of ST , one can instruct the system to acquire greater accuracy

in the desired regions of the color space.

63

Let the optimal LUT be represented by Φ : ℑ → ℑ such that Ψreference(i) ≈
Ψuser(Φ(i)) for any i ∈ ℑ. We would like to compare the visual similarity achieved

by a LUT-based approach with that achieved by a profile-based approach. Typical

ICC profiles can range from 500 bytes to over 500 kilobytes [84] and a profile-based

color management system would use two such profiles as shown in Fig. 1.7. Therefore,

for a fair comparison we assume that our LUT can be as large as two ICC profiles.

We perform our comparative experiments using profiles of two sizes – 7 kilobytes

and 66 kilobytes. The process of generating these profiles and obtaining a color

transformation using them is described in the next section.

64

3. VISUAL SURVEILLANCE OF VEHICLES

The large volume of vehicles on the road has created new challenges for agencies

responsible for traffic management, law enforcement, and public safety. Such agencies

frequently utilize visual surveillance technology to assist monitoring of vehicles from a

remote location. Such surveillance systems typically require trained human operators.

Consequently, they are prone to human errors due to fatigue or diverted attention

caused by excess information. Thus, a need exists for an automated system that can

analyze the surveillance videos and extract important information. This information

would be used to detect occurrence of “anomalous” events, in which case the human

operator would be alerted.

In this chapter, we propose a visual surveillance system designed to function in

the above-mentioned manner. More precisely, the system observes vehicular traffic

from a standoff range and extracts information for each vehicle. This information

includes vehicle type, make, tire size, and velocity. Based on the information, the

system checks for anomalies in the appearance and/or motion of the vehicle. We

describe methods for obtaining the vehicle information from two cameras placed in

an orthogonal configuration, and for classifying the vehicles using these observations.

We present the results of applying these methods on traffic videos. Our proposed

system can be deployed for traffic monitoring (at intersections), or infrastructure

protection (at check points). It can also be extended to incorporate other non-video

sensors in a complementary fashion.

3.1 Overview of the Proposed Surveillance System

The objective of this project was to determine the feasibility of a multi-sensor

surveillance system to observe vehicles and detect any anomalies, particularly anoma-

65

lous vehicle payloads. It was required that the system should operate from a standoff

range and not obstruct the traffic flow. The different sensing techniques investigated

for the task are as follows:

• Instrumented cleats would be placed on the road with accelerometers to

estimate the weight distribution along a vehicle’s length.

• Laser vibrometer would be used to capture the acoustic signature of different

parts of the vehicle (including the trunk and the door panels).

• Acoustic arrays would estimate the acoustic modes in the tires to determine

their inflation material and/or pressure remotely.

• Inverse synthetic aperture radar would monitor the vertical oscillations of

a vehicle and image its interior.

• Video analysis would be responsible for – (i) detecting vehicles and trigering

other sensors, (ii) extracting miscellaneous information needed to characterize

a vehicle, and (iii) performing dynamic analysis of vehicle’s motion to detect

anomalous maneuvers.

A schematic diagram of the surveillance system deployment is shown in Figure 3.1.

Note that the position of different sensors is approximate. In this thesis we describe

the video analysis system in detail. The tasks associated with the non-video sensors

were studied by our project collaborators and will not be described here.

In this section, we describe our video surveillance system that can autonomously

observe vehicular traffic from a standoff range of approximately 50 feet (15m) and

classify the vehicles in terms of “normal” behavior. The system is primarily based on

video analysis but also provides interfaces for synergic operation with other types of

sensors (including rumble strips for sensing mechanical abnormalities and synthetic

aperture radar). There are two premises on which this system is based. First, in most

situations there is a logically acceptable range of behaviors that would be considered

normal. If the response of an individual (vehicle) deviates from this range the behavior

66

Fig. 3.1. An illustration of the multi-sensor surveillance system. The
sensors 1, 2, and 3 represent cleats, acoustic sensors, and radar, re-
spectively.

is considered anomalous. Secondly, there are many traits of anomalous behavior which

can be ignored if they occur in isolation. However, the occurrence of multiple such

behavior patterns is more likely to signal a potentially anomalous situation. This is

described in more detail below.

We begin with examples illustrating the two hypotheses of our approach. In

normal circumstances vehicles are driven within the lane boundaries and lane changes

are only occasional. However, a vehicle repeatedly ignoring the lane markings may

be indicative of drunk/impaired driving or of road rage. Therefore, it is possible

to identify anomalous driving behavior, in this case by observing the frequency of

lane departures. Similarly, presence of relatively flat tires may not convey much

information alone. But, a vehicle with visibly flat tires and moving below the speed

limit could be overloaded and pose a threat. We select certain traits associated with

a vehicle and define normal and abnormal “observations.” These can be later used

to identify anomalies.

67

Fig. 3.2. An overview of the standoff video surveillance system de-
ployment. The distances are not drawn to scale.

An overview of our proposed system is illustrated in Figure 3.2. The screening

system can be deployed near the entrance to a point of interest (such as airport, sports

venue, or a pubic building). The goal is to observe the vehicles without affecting the

traffic flow. Our system uses two video cameras – the front view camera (FVC) and

the side view camera (SVC). The actual position of these sensors is determined based

on the desired field of view and camera resolution. It should be noted that the FVC

is located at a fixed height above the road surface (although this is not evident in the

top-view schematic) to allow sufficient clearance for vehicles.

The selection of two cameras and the particular configuration is described as

follows. In our system, the purpose of multiple cameras is to generate complementary

information (rather than redundant information). Thus, for a cost-effective design,

the number of cameras should be small. It can be argued that a two-camera system

provides considerably more information than a one camera system. However, the

incremental gain with a three camera system is small. Furthermore, the front and

68

side views provide more important information than alternative configurations of a

two camera system. For example, a rear-view (instead of front-view) allows license

plate detection but eliminates the scope for driver behavior monitoring.

For any vehicle, the system would produce one of the three “actions” – Pass,

Monitor, and Stop. The vehicle designated for ‘Stop’ would be diverted for sec-

ondary screening while the ‘Pass’ vehicles will be allowed passage unobstructed. While

an ideal system should produce minimum ‘Monitor’ labels, in practice, the passage of

certain vehicles may need to be determined based on the application. In certain areas,

all ‘Monitor’ vehicles may be screened; in others, they may all be allowed passage.

The system would also enable human operator in making such a decision by provid-

ing them with the information associated with the vehicle. The exact mechanism for

vehicle diversion and secondary screening is not discussed in this thesis.

Using the two cameras we extract, using image analysis methods described in the

next section, various information about the oncoming vehicles that can be placed into

two categories.

Physical Information: The data obtained here is primarily used to characterize

and/or identify a vehicle. This information includes vehicle body type, tire size, and

make.

Behavioral Information: This set of information includes high-level analysis of the

vehicle’s appearance and motion. It includes analysis of the velocity and trajectory

of the vehicle. This information is directly used for assigning an action label for the

vehicle.

We can organize the various types of information extracted and/or inferred from

our image analysis described below into an approximate hierarchy. This is shown

in Figure 3.3. Note that certain information extracted from one camera is used to

analyze the images from the other camera, thus highlighting the usefulness of the

orthogonal camera configuration. A typical sequence of operations when a vehicle

approaches would be as follows. The name of the camera which is primarily used

69

for making a particular detection is provided inside parentheses. The image analysis

methods used to perform these tasks are described in more detail below.

Fig. 3.3. An illustration of inter-dependencies in the information ex-
tracted from the cameras.

1. An oncoming vehicle is detected. (FVC)

2. The vehicle tracking and trajectory analysis systems are activated. An unex-

pected slowing/stopping may lead to the vehicle being marked for ‘Monitor’

while a sudden acceleration may result in a ‘Stop’ label. These decisions are

based on the assumption that the driver may be searching for ways to evade the

security systems or may be intending to crash through them resulting in these,

respective, patterns in the vehicle’s approach. (FVC)

3. When the vehicle enters the SVC’s field of view, its body type is determined.

(SVC)

70

4. The vehicle’s tires are segmented and the tire size is estimated. (SVC)

5. The make of the vehicle is determined. (FVC)

6. The gap between the tires and the vehicle body (wheel well) is estimated and the

front and rear values are compared. If the gap above the rear tire is significantly

smaller, it can indicate a heavy load in the trunk which may lead to a ‘Monitor’

label. (SVC)

3.2 Image and Video Analyses

We now describe the different image and video analysis techniques used to ex-

tract information from the camera feeds. Our focus is on developing low complexity

methods which would be more suitable for real-time operation.

3.2.1 Vehicle Detection

The initial steps in all intelligent surveillance systems involve detection of a subject

of interest. Background subtraction is the most common approach to object detection,

and several elegant algorithms have been proposed [85]. A background subtraction

operation consists of comparing the current video frame with a background model

with respect to some properties like pixel intensity and color. Since object detection

is so important to our system, we describe it in some detail.

Let the current frame be represented (as a digital image) by

C = {c(i, j) : i = 0, 1, . . . ,W − 1; j = 0, 1, . . . , H − 1}. (3.1)

Here, c(i, j) represents the value of the chosen image property at the pixel located

at (i, j). The frame is considered to be of width W and height H. Similarly, we

71

can represent the background model as an image B = {b(i, j)}. Then, the output of

background subtraction is a spatial mask F = {f(i, j)} defined as follows:

f(i, j) =







1.0, if c(i, j) is in the foreground,

0.0, if c(i, j) is in the background.
(3.2)

The decision of classifying a pixel as foreground is based on a metric to measure

the difference and a decision threshold corresponding to the metric. Let the features

used to specify each pixel belong to a space Ψ, and consider a function δ : Ψ2 → ℜ
where ℜ is the real number line. The value of the function δ(c(i, j), b(i, j)) quantifies

the difference between the current frame pixel and the background model pixel at

the location (i, j). While the space Ψ can contain one or more of velocity vectors,

acceleration vectors, intensity levels, edge orientation and trichromatic digital values

(like R, G, B), we consider a simple case of grayscale images with the pixel intensity

specified by a real number between 0.0 and 1.0 where 1.0 represents the maximum

gray level. The corresponding difference function would be δ(x, y) = |x− y|. We can

redefine the mask F as:

f(i, j) =







0.0, if |c(i, j)− b(i, j)| ≤ τ,

1.0, otherwise.
(3.3)

Note that 0.0 ≤ δ(x, y) ≤ 1.0. Therefore, the decision threshold τ would be a real

number in [0.0, 1.0].

In the basic background subtraction algorithm, the threshold τ and the model B

may be empirically chosen and remain fixed throughout the operation. Most of the

improvements in the basic algorithm affect the selection and updating of these two

parameters. Some algorithms allow gradual modification of the background model

after each frame based on the latest classification. This gives the algorithm some

flexibility to perform correct classification even when the background is not truly

static. These tasks may be performed statistically [86–88] or adaptively [89,90]. One

of the key considerations for a real-time surveillance system is the complexity of the

algorithm. We next describe our method for background subtraction which does not

require a model update every frame and still accounts for background perturbations.

72

Most commonly used background subtraction methods update the background

model using the results from the current frame classification. Let Cn and Bn represent

the current frame and the background model at time n. Similarly, let Fn be the

foreground mask corresponding to Cn. Then, the new background model can be

constructed as:

Bn+1 = α× Cn + (1− α)× Bn, (3.4)

where α represents the learning rate of the algorithm and 0.0 ≤ α ≤ 1.0. This

approach has the limitation that if a foreground object stays in the scene for an

extended amount of time, it may alter the background model unnecessarily. Another

issue is that for certain types of repetitive motion (tree leaves or shaky camera) the

model might never be able to “catch up” and always result in incorrect classification.

Moreover, updating the model for every frame is computationally expensive.

We observe that whenever the background model is changed due to small (and

temporary) displacement of a background object, we can account for the change

simply by comparing the current pixel with the correct background pixel. However,

since the correct position of such a pixel is not known, we compare the current pixel

with a neighborhood of pixels in the background model. Let (i, j) be the pixel location

being investigated. Then, we construct a neighborhood of c(i, j) as:

N(i, j) = {b(p, q) ∈ B : i− ǫ ≤ p ≤ i+ ǫ, j − ǫ ≤ q ≤ j + ǫ}, (3.5)

where ǫ is the search window size. Next, the foreground mask as generated by our

method is given by:

f(i, j) =







0.0, if ∃b ∈ N(i, j) such that |c(i, j)− b| ≤ τ1

0.5, if τ1 < |c(i, j)− b|∀b ∈ N(i, j) and ∃b ∈ N(i, j)

such that |c(i, j)− b| ≤ τ2

1.0, otherwise.

(3.6)

In this formulation, an extra state of low confidence is added, represented by f(i, j) =

0.5 and computed using a second threshold τ2 > τ1. For the purpose of classification,

every pixel c(i, j) is considered a background pixel if f(i, j) ∈ {0.0, 0.5}. This extra

73

state of low confidence classification is used in background model update which we use

only when a global illumination change is detected. The new threshold τ2 is chosen

as a fixed fraction of the dynamic range of the frame. We refer to our method as

motion-assisted background subtraction (MABS).

It is natural to expect that in most situations, a given pixel will either be at its

original position (in B) or be displaced by a small amount compared to the size of

the neighborhood characterized by ǫ. Therefore, we examine the elements of N(i, j)

in an outward spiral fashion. This is illustrated in Figure 3.4. The approach boosted

the speed of MABS, particularly in sequences with small motion.

Fig. 3.4. Illustration of outward spiral search in B with ǫ = 3.

A global illumination change is inferred when the average gray level of the current

frame differs from the background model by a pre-defined measure τi. This constant

is empirically chosen by considering the effects of multiple foreground objects, the

global gray levels, and the tolerance provided by the selection of the threshold used

in Equation 3.6. In the event of a global illumination change, the background model

is updated as follows:

bn+1(i, j) =







cn+1(i, j), if fn(i, j) = 0.0

α× cn+1(i, j) + (1− α)× bn(i, j), if fn(i, j) = 0.5

bn(i, j), if fn(i, j) = 1.0.

74

Thus, we select the learning rates for model update on the basis of confidence in the

current classification.

3.2.2 Vehicle Body-Type Determination

The knowledge of an oncoming vehicle’s body type is useful in several ways. It

narrows the expected range of values corresponding to different measurements being

taken. For example, we describe the tire size estimation in the next topic. This

task would be much harder if the estimation algorithm is ignorant of the body type.

This information also helps in locating the windshield area in the front view camera

(FVC) video which can be used to count and observe the occupants. Therefore,

the primary role of this information is to aid the functioning of other modules. We

consider vehicles belonging to four classes – sedan, light truck, sport/utility vehicle,

and hatchback.

Determination of a vehicle’s type is a part of many traffic monitoring systems

where it may be used to generate the temporal composition of traffic on a busy

route. Some traffic monitoring systems are based on inductive loops and other non-

video methods [91]. Several elegant video-based methods have been proposed for the

problem. In [92], a statistical model-based approach is used to detect and classify

vehicles using a two stage process. Avery [93] presents a simple method to distinguish

cars from trucks based solely on the vehicle length. Other techniques extract shape

and motion information to identify the type [94,95]. Lai [96] describes a traffic analysis

system using a video-based virtual loop technique which also classifies vehicles.

We now describe a simple shape matching technique to determine the most likely

class of a vehicle using an image taken by the side view camera (SVC). This approach

is suitable because it can use the output of the background subtraction algorithm with

only a small amount of processing. Recall that the output of the vehicle detection

routines is a binary image or video frame where the pixels are marked as a part of

the vehicle or a part of the background. Note that the third state of low confidence

75

described in Section 3.2.1 is treated the same as the background for classification.

Thus, an intensity inversion on the foreground mask F produces a silhouette of the

vehicle, on a white background.

Unlike [94], we do not extract features from the silhouette. Instead, we directly

perform a silhouette-matching against the templates corresponding to each vehicle

class. Let S = {s(i, j)} be the silhouette of an oncoming vehicle as obtained by

inverting the foreground mask F . Also, let us represent the silhouettes of the template

vehicles as T1, T2, T3, T4, where the class labels correspond to sedan, truck, SUV,

and hatchback, respectively. These templates are obtained by thresholding carefully

selected images in which the vehicles differ considerably from a neutral background.

An example of such a vehicle and the resulting template is shown in Figure 3.5. After

thresholding, the binary image is cropped so that the vehicle silhouette is immediately

surrounded by the image boundaries. At this instant, the aspect ratio of the vehicle

and the size of the cropped image are not altered in any way. Thus, the templates

may mutually differ in the image dimensions.

Fig. 3.5. An example of the template extracted from a vehicle belong-
ing to the “sedan” class.

While the templates are obtained from images with highly favorable backgrounds,

the test vehicle may not be viewed against such conditions. Therefore, the silhouette

S may contain white patches at places where the background subtraction algorithm

made erroneous classification. This would be a problem if the image was used to

extract, for instance, edge features as the patches would give rise to false edges.

However, we use a direct difference-based approach and the patches only appear as

76

an additive constant in each vehicle class. The differencing operation is described

next:

1. As in the case of the templates, the test vehicle silhouette is obtained by crop-

ping the inverted foreground mask to the smallest size that still contains the

whole vehicle. Let the silhouette S have dimensions w × h. It should be noted

that cropping eliminates the issues related to registration.

2. Each class template is scaled to a size of w × h. These scaled templates T̃k are

used to compute the sum of absolute difference (SAD) ∆k = Σ|s(i, j)− t̃k(i, j)|
where the summation is taken over all the pixels.

3. The class corresponding to the smallest SAD value would be the most likely

type of the test vehicle.

The primary purpose of obtaining the vehicle’s silhouette was to compute the

SAD against the templates but in the process, we have also determined the vehicle’s

height and length in image co-ordinates. More specifically, we note that the values

w and h in the cropped templates are exactly the length and height of the vehicle in

pixels. By mapping these to “world co-ordinates,” the true dimensions of the vehicle

can be estimated. There are two popular methods to perform this mapping – camera

calibration and use of fiducial marks.

Camera calibration techniques use spatial transformations along with some ana-

lytical models to develop the pixel-inches mapping. These can also be realized using

simpler approximate functions or even look-up tables. However, in the circumstances

when such calibration is not possible, the algorithms utilize the presence of objects of

known dimensions in the scene for the purpose. These objects are known as fiducial

marks and are, typically, simple geometric shapes like lines and points. In cases when

such marks are not intrinsically present in the scene, they may be explicitly added.

77

3.2.3 Tire Size Estimation

Visual inspection of a vehicle’s tires sometimes provides useful information like

over/under inflation or the presence of oversized tires for better towing and off-road

capability. However, much of this information is not directly of value to traffic mon-

itoring and analysis systems. Thus, most traffic surveillance systems lack the capa-

bility to accurately segment the tires and estimate their size. Although many of the

advanced object recognition systems may be trained to detect tires, they may not be

suitable for a real-time and real life application because of the high complexity, and

because of the variability in the tire profiles. Some examples of tires with differing

hubs are shown in Figure 3.6.

Fig. 3.6. Some examples of tire hubs including bare wheels, plastic
hubcaps and alloy wheels.

Accurate location of an oncoming vehicle’s tires is important to us for two main

reasons. This information, along with the make (described in Section 3.2.4) and

the exterior dimensions, helps in identifying the vehicle’s model.Secondly, a direct

analysis of the tire flatness and bounce (described in Section 3.2.5) may be used

to detect overloading. We now describe a method to correctly locate the tires and

determine their size. This analysis is performed using frames from the SVC’c output.

There are two major challenges in accurate segmentation of a moving vehicle’s tires

– the lack of information about both the position and size of the tire, and the different

shapes of tire hubs. We note that despite the variation in the shapes of the hub, most

tires have one common feature, which is the prominent circular edge between the

78

wheel and the rubber. Since most vehicles on the road today have either hub caps

or alloy wheels, this observation holds true for them. The notable exceptions include

vehicles with older wheels and missing hubcaps and the newer black alloy wheels.

Since a single approach is not universally applicable in all tires, we describe the two

cases separately.

Tires with shiny hub: In the cases when a significant level of contrast exists

between the tire’s wheel and rubber, it is possible to detect the wheel-rubber edge.

This situation is illustrated in Figure 3.7. Our goal is to accurately locate the circular

edge because it provides us the knowledge of the tire’s center and the radius of the

(visible part of the) wheel. For the present discussion, consider only the front tire

of the vehicle as seen during a particular video frame VSV C . Let (xt, yt) be the true

location of the front tire center in the frame and the true tire radius be rt pixels.

Further, let rw be the true radius of the wheel as visible from a side view.

Fig. 3.7. A graphical illustration of the system’s view of a tire with shiny hub.

We model the wheel-rubber edge as concentric white and black circles on a neutral

background as illustrated in Figure 3.8. The thickness of the circles t is kept constant

(usually 2 pixels) whereas the radius can be changed during the estimation process.

Let r be the (outer) radius of the white circle. Then, at the end of the processing, r

would be the algorithm’s estimate of rw. The estimation is performed by placing the

edge model of a chosen radius at different positions in the frame.

79

Fig. 3.8. In the case of a tire with shiny hub, the wheel-rubber edge
is modeled as concentric circles of chosen radii.

Let the tire model be represented by Tr,p,q where r is the radius of the wheel and

(p, q) is the hypothesized position of the wheel center. In order to superpose the edge

model on the frame, we can define the model for the same width and height as the

frame:

Tr,p,q(i, j) =







0.0, if r − t < ‖(p, q)− (i, j)‖ ≤ r

1.0, if r < ‖(p, q)− (i, j)‖ ≤ r + t

0.5, otherwise.

(3.7)

Then, the error associated with this set of values for (r, p, q) is computed by

∆̃r,p,q = Σ|VSV C − Tr,p,q|, (3.8)

where the summation is carried out over all pixels in the frame for which the edge

model is not neutral. That is, the difference is computed only if tr,p,q(i, j) 6= 0.5.

Finally, the best estimate of wheel parameters is given by,

(r, p, q)optimal = argmin{δ̃r,p,q}. (3.9)

It should be noted that the ranges of (r, p, q) to be searched over can be intelligently

limited by using information about the vehicle’s body type and the vehicle’s posi-

tion with respect to the speed bump shown in Figure 3.2 (and labeled as a cleat in

Figure 3.7).

80

Once the position of the tire center is determined, the tire radius can be determined

by dropping straight lines away from the center as illustrated in Figure 3.9. Multiple

estimates of the radius are made by measuring the length of each such lines between

the center and the rubber-background edge. We drop lines only in the lower half of

the tire and consider only the lines which are longer than rw. Then, the best estimate

of the tire radius is the shortest such length.

Fig. 3.9. Multiple lines are dropped from the known tire center to-
wards the rubber-background edge to estimate the tire radius.

Tires with dark hub: If there is insufficient contrast between the tire rubber

and the wheel (as in Figure 3.10), the strategy to look for a distinct circular edge

fails. In such cases, additional information is needed by the algorithm to estimate

the size of the tire. Therefore, we assume that the horizontal position of the tire’s

center can be determined by non-video methods. One way to accomplish this is to

place pressure or switching sensors near (or inside) the speed bump to determine the

exact instant when the tire crosses the bump (marked as a cleat in the figure). Since

the position of the speed bump in the frame is known, the position of the lower-most

point of the tire is determined.

Assuming that the tires are roughly circular in shape, we model the tire Tr as a

black disk on a neutral background such that the disk has a radius r and its lower-

81

Fig. 3.10. A graphical illustration of the system’s view of a tire with dark hub.

most point coincides with the speed bump. As in the case of tires with shiny hubs,

we compute the error associated with a particular choice of r using,

∆̃r = Σ|VSV C − Tr| (3.10)

where the summation is performed over all pixels for which the tire model is not

neutral. It can be argued that if the radius of the disk is taken small enough, the

error will vanish but this value could be much smaller than the actual tire radius.

Thus, we define our estimate of the tire radius as:

roptimal = max{r : ∆̃r < ǫ} (3.11)

In other words, the largest disk which can be superposed on the frame and still

produce no more than ǫ error will be the best estimate of the tire. Note that, unlike

in the previous method, we cannot determine the wheel radius separately. Also, the

observations about efficient realizations described previously are applicable in this

method.

Once the tire radius is available, the algorithm can determine the wheelbase (the

distance between the centers of the front and rear tires) by locating two wheel-rubber

edges or two fully dark disks of the (now) known radius, in the two cases described

above, respectively. For this purpose, we would use a single video frame in which

82

both tires are visible. In fact, a good frame would contain the two tires at roughly

the same angular distance form SVC’s axis of view. The tire size estimate computed

using the above methods could also be used to determine other tire parameters, such

as remote tire pressure measurement [97].

3.2.4 Make Recognition

The problem of make and model recognition (MMR) has been actively researched

in the last few years, primarily to assist law enforcement authorities in identify-

ing errant drivers. Significant advances have been made in automatic license plate

recognition, and such technologies are deployed in many highway and border surveil-

lance systems. These systems use optical character recognition to obtain the license

plate information which may be used to query a database of vehicle/driver infor-

mation indexed by the license number. Recent studies have focussed on extracting

the make/model information directly from the vehicle as a means to supplement and

verify the information returned by the database. This is particularly useful when the

license plates are missing/tampered or otherwise unintelligible to the camera.

We can broadly classify the various MMR techniques into two categories – the

ones based on feature matching and the ones based on appearance matching. In [98],

Petrovic and Cootes describe the use of gradient features for vehicle identification.

Clady proposes a two stage method based on oriented contours which uses multi-

ple frontal images and is claimed to be robust to partial occlusion [99]. Methods

based on scale invariant feature transform (SIFT) proposed by Lowe [100] have also

been applied to the MMR problem [101, 102]. Appearance based methods use pixel

intensities and provide more global features. Zafar discusses the use of appearance

matching using principle component analysis (PCA) and two-dimensional linear dis-

criminant analysis (2D-LDA) [103]. This approach is inspired by the application of

these techniques in face recognition systems.

83

The above-mentioned methods are promising solutions for the MMR problem.

They can be applied in our system with the following modification. The selection

of a region-of-interest (ROI) is critical to the success of any recognition algorithm.

Many of the techniques above use existing license plate recognition tools to locate

the license plate. This gives the algorithms adequate reference to demarcate the ROI

in the image. While all vehicles have a rear license plate, in our sensor deployment

scheme (Figure 3.2), the rear plate and the rear view of the vehicle cannot be used.

Since, many places in the United States do not require a front license plate, there is

practically no reference for an MMR algorithm to select the ROI. We select a large

ROI containing the entire front grille using the vehicle body type information.

We construct an experimental make recognition system which uses the front view

of a vehicle (and the body type information provided manually) with no other spatial

reference objects. We work with vehicles from a small number of car makers and

perform feature matching using histograms of edge orientations on the front grille.

Let the video frame in which Make recognition is performed be represented by VFV C

and the foreground mask generated by the vehicle detection system be F for this

frame. Recall that f(i, j) = 1 implies that the pixel located at (i, j) belongs to

the foreground object (the vehicle). Assuming that the object detection can reliably

classify the pixels, we can define a bounding box around the vehicle. Let (i1, j1) and

(i2, j2) be the defining vertices of a rectangular box (i1 < i2 and j1 < j2) such that,

f(i, j) = 1 =⇒ i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2

Then, the geometric center of the vehicle in the image is given by (ci, cj) = (i1+i2
2
, j1+j2

2
).

The region of interest is specified as a rectangular region whose defining vertices are

given by (i1, cj) and (i2, cj + ǫ). Note that this definition covers the entire width of

the vehicle’s front and considers the area up to ǫ pixels below the geometric center of

the vehicle. Different values of ǫ can be used with a larger value selected when the

vehicle is a truck or an SUV than when it is a sedan or a hatchback. Thus, we define

the ROI as the pixels in VFV C such that i1 ≤ i ≤ i2 and cj ≤ j ≤ cj + ǫ. This method

84

tends to over-select the region where desired features are located but we prefer it over

under-selection where the key features may lie outside the ROI.

Having decided on the ROI, we construct a histogram of edge features using the

Sobel operator [104]. More specifically, we evaluate the gradient at each pixel inside

the ROI in terms of magnitude and orientation. Consider a pixel in the video frame

at a location (p, q), inside the ROI. We represent the Sobel operator as a 2D array or

a spatial filter,

M =








1 0 − 1

2 0 − 2

1 0 − 1








(3.12)

Then, the operation of pointwise multiplication and summation can be seen as a 2D

convolution after shifting the filter to the desired location. Let Cx = {cx(i, j)} such

that cx(i, j) = VFV C ∗M be the two dimensional array containing the filter output

when M is shifted so that its center is at the position (i, j). Note that Cx contains

the edge information in the horizontal direction. Similarly, we can compute the edge

information in the vertical direction cy(i, j) = VFV C ∗MT .

The magnitude of the edge at any point (i, j) is given by

σ =
√

c2x(i, j) + c2y(i, j), (3.13)

and the orientation is given by

θ = arctan cy(i, j)/cx(i, j), (3.14)

where −π/2 ≤ θ ≤ π/2. We compute the edge orientation at each point (p, q) inside

the ROI and construct an N -point histogram of these values. Let hNα be the N -point

histogram of edge orientations for an arbitrary vehicle α. We select a front view

image for vehicles from each car maker and generate the histograms which are used

as the signatures of the particular make, hN1 , h
N
2 , . . . , h

N
k . We further process the

histograms by normalizing them with respect to the size of the ROI in each of the

Make. Thus, h̃1 = 1
w×t

hN1 where w and t are the width and height of the ROI in

the image of car maker 1. The other histograms are similarly normalized. We then

85

compute the histogram for an oncoming vehicle hNtest and normalize it with respect

to its own ROI to obtain h̃test. Finally, we compute the correlation coefficient as the

measure of similarity between the test vehicle and the rth make template. This is

defined as

ρr =
h̃Tr h̃test

√

h̃Tr h̃r

√

h̃Ttesth̃test

(3.15)

Then, the most likely make is given by,

α = argmax
r

(ρr), (3.16)

where α is the index number associated with each car maker.

With the information about the vehicle’s make obtained above and the exterior

dimensions obtained using the methods described in Section 3.2.2, we can estimate

the likely model of the vehicle (or a set of most likely models). This can be achieved by

querying a database of vehicle information. The make and model information is used

to determine the expected range of “normal” behavior for the various measurements

made by the system.

3.2.5 Squat And Bounce Analysis

Our goal is to detect, from the exterior appearance and motion, if a vehicle is

carrying excess load which could potentially include illegal goods or persons. Even

otherwise, overloading is often associated with compromised handling and braking

[105], thus requiring attention and monitoring. We assume in this analysis that the

vehicles are not modified for extra load-bearing, in which case the visible signs of

loading would be absent.

We consider both the static and the dynamic behavior of the vehicle as seen by

the SVC. We denote the measurement of lowering of the vehicle upon loading as

“squat analysis” while the study of the vertical oscillations induced by a speed bump

is denoted as “bounce analysis.”

86

Squat analysis: Addition of a large load into a vehicle’s trunk causes two visible

effects. The rear tires might appear more flat than the front tires, and the gap between

the rear tire and the body (the wheel well) may appear smaller than that between

the front tire and the body. While the flatness of the tires can be easily compensated

by over-inflation, the lowering of the body cannot be avoided without modifying the

suspension. Therefore, we focus only on measuring the gaps.

Similar to the problem of accurate tire extraction, the problem of visual determi-

nation of rear-heaviness has not been explored sufficiently. Recall Figure 3.7 where

the side view of a vehicle’s tire is illustrated. The region above the tire, marked as

shadow is the gap we are interested in characterizing. More specifically, we need an

accurate estimate of the thickness of this gap at a point which is vertically aligned

with the center of the tire. Let us denote this value by δ. Ideally, one would like to

compare this value with a predefined normal δnorm for a vehicle of the same make

and model. If the measured gap is significantly smaller, δnorm − δ > τ , it would be

deemed anomalous. On the other hand, one can also compare the δ value for the

front and rear tires. This approach is more appealing because it does not depend on

the knowledge of the make and model (and the normal values associated with it),

and the decision threshold can be specified directly in pixels, thus avoiding additional

errors that may arise from the image co-ordinate to world co-ordinate mapping.

Our approach to determining the thickness of the gaps is by using the information

about the tire centers. Consider for example the rear tire of a vehicle which has

been analyzed by the tire size estimation method described earlier. Let (xt, yt) be the

location of the tire center and rt be the best estimate of its radius. Our goal is to

find a point (x∗, y∗) such that x∗ = xt and yt − y∗ is the smallest distance from the

tire center to the vehicle body directly above it. Then, the gap thickness δ is given

by δ = yt − (y∗ + rt) (recall that y increases from top to bottom).

An identical set of operations would be performed on the front tire and the gap

value recorded as δfront. Then, the decision about rear-heaviness is made if δfront −
δrear > τ where τ is an experimentally determined constant. Note that, the difference

87

is not absolute. This is because, under normal conditions, some front engine cars

may have lower front than the rear. Thus, the method may detect a false positive if

absolute difference is taken.

Bounce analysis: The suspension of a vehicle is designed so that it can navigate

uneven road surfaces in an optimal manner. Specifically, the parameters are adjusted

so as to control the magnitude, frequency and decay of the oscillations induced by

such an uneven surface. A speed bump is a particular kind of uneven surface which

excites the oscillations during a very short duration of contact with the vehicle. Thus,

the oscillations caused by a speed bump can be treated as the impulse response of the

vehicle. Without delving into the physics of loaded springs, we state that this response

is affected by the amount of load carried by the vehicle. Our goal is to observe and

characterize this response using visual methods. The concept of overload detection

by visually analyzing the vehicle’s bounce is discussed by Dockstader in [106].

Our approach to observe the oscillations is to select a point (P) on the vehicle

and record its trajectory across the frames. Since we are interested in the response

at the vehicle’s rear, we can select the tip of the trunk, or the highest point in the

vehicle directly above the rear tire’s center. The methods for vehicle detection and

tire location, as already described above, can be directly applied to note the position

of the chosen point in every frame. This can be referred to as (xPn , y
P
n) where n

denotes the frame number. The vertical position yPn describes the oscillations and

can be used to determine the oscillation parameters including amplitude and the

rate of decay. The parameters hence estimated would be compared with the known

parameters observed when another vehicle of the same make and model was excited

by the bump under loaded and unloaded conditions.

3.2.6 Trajectory Analysis for Anomaly Detection

Video surveillance of vehicles has emerged as the preferred technology for traffic

monitoring, public safety, and law enforcement applications. In recent years, several

88

efforts have been made to incorporate automation into the systems using image and

video analysis techniques [39, 107,108].

The range of behavioral analysis for vehicles is limited when compared with human

subjects [109] due to rigid shapes and regularity of motion. Still, timely detection of

anomalies can potentially prevent mishaps and damage to life/property. Tradition-

ally such anomaly detection is achieved using trajectory clustering and identifying

deviations from the clusters [110–112]. Although the trajectory given by a tracker

includes both position and velocity estimates, many approaches end up discarding

the velocity changes which can be highly informative. Furthermore, path learning

via clustering is affected by issues such as unequal trajectory lengths, choice of path

models, and effects of distance metric.

We approach the task by hypothesizing that the velocity and shape of the trajec-

tory can be analyzed separately and that in most situations patterns in the velocity

provide enough information to detect anomalies. Basharat et al. describe modeling

of motion patterns which does not require clustering [113]. We illustrate this with an

example of vehicles approaching a check point. Medioni et al. use a clustering-based

method to detect if a vehicle tries to evade the check point [111]. However, their

approach does not detect if the vehicle slows down or stops and then proceeds toward

the check point or picks up speed as it approaches indicating an intention of crashing

through it. In contrast, a simple velocity differential [107] can detect these patterns.

We propose to form path models of velocities as functions of position rather than

time. We also estimate the velocity models for finite sub-regions of the field of view.

This is different from identifying sub-paths after clustering. In each such division, we

represent the velocity with a Gaussian distribution. Note that the use of finite spatial

divisions prevents the issue of unequal trajectory lengths. This allows an anomaly

detection system to utilize the patterns in the velocity and also allows better modeling

of the decision function than the simple thresholding used in [107]. We further observe

that such velocity clusters would intrinsically have high variance because people drive

at different speeds, often near the speed limits. Thus, we first scale the velocities with

89

the average speed estimated when the vehicle is relatively far from the observation

point. These methods are described in Section 3.2.8.

Next we observe that detecting deviations from “normal” velocity would be easier

if there is only one set of normal driving patterns. This is not true in general. For

instance, a vehicle would slow down from its original speeds when making a turn or

taking a highway exit. Thus, if a vehicle’s velocity matches a cluster corresponding to

vehicles that made a turn, this vehicle should also be making a turn. We use template

matching to identify significant maneuvers from the trajectory shape in Section 3.2.9.

By separating the temporal and spatial analyses of the trajectory, we obtain better

flexibility to define the rules of anomalous behavior.

The above analyses assume that vehicles are point objects moving in a 2D plane.

In Section 3.2.7 we define a co-ordinate transformation in which the motion of the

vehicle consists of two components – motion along the direction of the road and

motion perpendicular to it. This transformation allows us to represent the velocity

with a 1D descriptor (by ignoring the perpendicular component). It also improves

the shape analysis by discarding the curvature caused by naturally curved roads.

3.2.7 Trajectory Estimation and Co-Ordinate Mapping

The tasks of robust object detection and tracking are central to many image

analysis problems. Over the years many interesting methods have been proposed

to detect moving objects and to track them. Haritaoglu et al. [114] and Stauffer

and Grimson [86] describe popular methods for object detection and tracking. A

comprehensive survey on tracking is provided by Yilmaz [115].

In this paper, we only provide some qualitative features of our tracking system

and refer to appropriate publications for further details. Our system does object

detection and tracking in a continuous manner. Foreground objects are detected

by adaptive background subtraction as described in [116]. The method consists of

adaptive computation of classification thresholds and background model updates at

90

variable learning rates. The output of detection (foreground blobs) is characterized by

connected components analysis and is used to create targets which are tracked using a

particle filter framework as described in [117]. Particle filter is a Bayesian framework

which is used to estimate the “state” of a target being tracked. In our system, the

object’s state includes its position and size. The filter generates several hypotheses

(particles) of the new state and computes the weighted average of these hypotheses

as the estimate of the new state. The weights are computed by determining the

similarity of the hypotheses with respect to some chosen object features. We use

color and edge orientation as the objects features. Arulampalam et al. provide a

detailed tutorial on the application of particle filters in object tracking [118].

Fig. 3.11. An example of results produced by our object detection
and tracking systems – from left to right: original frame and the
foreground mask (top), three tracked vehicles and a close-up of the
scene (bottom).

Figure 3.11 shows a snapshot from one of our test sequences. The corresponding

outputs from background subtraction and object tracking are also provided. For the

rest of this paper, we assume that the vehicle’s position in the video frame is available.

More precisely, a vehicle’s “image trajectory” is defined as its position in the frame as

a function of time (or frame number), and is provided by the tracker. Let this image

trajectory be represented by

Φi
c = {(xit, yit) : 1 ≤ t ≤ Tc}, (3.17)

91

where the subscript c denotes a particular object. For the sake of brevity, this sub-

script is not used in further discussion. Similarly, Tc is the lifetime of the object

in number of frames, t is the time index, and the superscript i denotes image co-

ordinates. We follow the convention that x increases from left to right and y from

top to bottom.

For any object, one would like to transform the trajectory into actual ground

co-ordinates in order to remove the distortion due to camera perspective. Let this

transformed trajectory be represent by Φg with definition similar to Φi. In our appli-

cation scenario where an object can be modeled as a point, an ideal transformation

would result in an aerial view of the trajectory. This can be achieved with a pla-

nar homography [119] or an approximation of the same. Our preferred method of

perspective correction uses look-up tables because it is fast and requires minimal cal-

ibration. However, from our experiments we have observed that ground co-ordinates

are often not the most efficient representation for trajectory analysis. For example,

vehicles moving along a naturally curved road traverse a curved trajectory in ground

co-ordinates whereas their motion is a “straight line” with respect to the road.

We propose analyzing vehicle trajectories in a hypothetical co-ordinate system

in which the distances are arbitrarily close to the distance in ground co-ordinates

but the axes are defined with respect to the shape of the roads. Thus, a vehicle

moving parallel to the center median is considered as moving along a straight line.

This transformation results in two immediate benefits – (1) the vehicle’s velocity

can be specified with a single component (in the direction of the road) and (2) false

curve/turn detection along gently curved roads can be suppressed. Again, we utilize

2D look-up tables to achieve this transformation from ground to the hypothetical

co-ordinate system. This table is constructed interactively by user input. This is

explained next with an example.

Consider the situation in Figure 3.12 where the parallel curves represent the

boundaries of a curved road. This image is assumed to be perspective corrected.

We next assume that this corresponds to a road in the hypothetical space whose

92

Fig. 3.12. An illustration of user specified co-ordinate transforma-
tion. The points marked with red crosses divide the “road” into equal
distance segments.

length and width matches the actual section of the road but which is not curved.

We establish an approximate point correspondence by asking a user to divide the

two curves into equal intervals (equal in the ground co-ordinates). Depending on the

number of divisions, corresponding points are located on the hypothetical road. This

completes the look-up table where the input is a position in the ground co-ordinates

and the output is the corresponding position in the hypothetical system. For points

not aligned with the input grid, 2D Shepard interpolation [69] is used. This look-up

table is later used to transform the vehicle’s trajectory into the desired co-ordinate

system.

Note that a single look-up table can be created to map the object position from

the image co-ordinates directly to the hypothetical co-ordinates. That is, no explicit

perspective correction step is required. This is done by taking the user input (or an

equivalent method) to divide the road boundaries in the image co-ordinates. This

is our recommended approach and has been used in our experiments. Let the final

trajectory be represented as

Φh = {(xht , yht) : 1 ≤ t ≤ T}, (3.18)

where the position xh is along the road and yh is perpendicular to it.

93

3.2.8 Velocity Analysis

We first introduce our proposed representation of the velocity as a function of the

vehicle’s position. Note first that we only consider the axial component of the velocity

(parallel to the road) in this section. Let x(t) and v(t) represent the (axial) position

and velocity estimates of a vehicle at time t. At this point we make the following key

observations:

• Even in the absence of obstacles there is natural variation in “normal” driving

speeds due to curves, turns, and inclinations/declinations. However there will

not be many variations when looking at a small portion of the roadway. There-

fore, patterns of normal velocities should be estimated for different portions of

the road.

• A fast moving vehicle will have fewer samples in its trajectory while a slow

moving vehicle will have more samples. Thus, the kth sample of these vehicles’

trajectories would not correspond to the same portion of the road.

• Resampling of trajectories to get the same number of samples may solve this

problem of mis-registration. For instance, if a vehicle A drives twice as fast as

another vehicle B we can upsample A’s trajectory by a factor of 2. If the sam-

pling time (inverse of the frame rate) is τ then the kth sample in A’s resampled

trajectory corresponds to time kτ/2 (since A’s entry) while in B’s trajectory it

represents time kτ . However, their spatial position would be very similar due

to the inverse effect of velocities.

The third observation motivated us to represent the velocities as function of posi-

tion u(x). This representation removes the need for resampling because the velocities

of two vehicles at same position are comparable. To allow easier indexing we quantize

the position x by dividing the road into M smaller segments. The velocity can be

specified using the index of the segment in which x lies. Let the length of the road in

the field of view be L (feet/meter) where we follow the convention that x increases

94

from 0 to L as the vehicle gets closer to the observation point. We represent the

segments by a set of points {s0, s1, . . . , sM} such that s0 = 0, sM = L, and

si − si−1 =
L

M
, ∀i ∈ {1, 2, . . . ,M}. (3.19)

With the length of the segments ∆ = L
M
, the velocity u(x) can be represented using

ū(i) where

i = ⌊x/∆⌋ (3.20)

indicates the ith segment and ⌊·⌋ denotes integer floor operation. The length ∆ (or

equivalently, M) would be chosen small (large) enough to prevent velocity behav-

ior changes within a segment while not over-segmenting because that would discard

spatial averaging.

In the final pre-processing stage, we propose to scale the velocities with respect

to each vehicle’s average speed. This allows us to emphasize the changes in the

velocity rather than the absolute speeds. Further, it also leads to smaller variances

in the normal behavior distributions which we describe next. Note that our goal

is to achieve real-time operation. Thus, the average speed must be estimated with

only part of the observations. We estimate the average speed uavg over the velocities

observed when x < L/2. This was motivated by the assumption that a visible change

in behavior is more likely to occur when a vehicle is near the observation point (e.g.

a check point). Hence it will exhibit more “typical” behavior when in the far field of

view. The final form of the velocity is given by

c(i) = ū(i)/uavg. (3.21)

The normal velocity behavior for each segment i is modeled with a mixture of

Gaussian distributions specified by the mean µi,k and variance σ2
i,k of vehicle velocities

for the kth Gaussian component. One can use clustering to obtain these parameters.

We use a simpler context-based approach in which the number of Gaussian compo-

nents is related to the number of maneuvers observed in the segment. For instance, a

“straight-only” lane with no curvature and/or grade will require only one component

while other sections may require components for turns and straight line course.

95

In the testing phase, the scaled velocity c(i) of an oncoming vehicle is compared

with the components in the ith segment. An “anomaly” is detected if

|c(i)− µi,k| > α · σi,k ∀k. (3.22)

Here α is a scalar that determines the threshold. Under Gaussian assumption, a value

of α = 2 would imply approximately 5% outliers. In the case when there exists some

component such that the velocity difference is within the threshold, we validate the se-

lection of this component by estimating the maneuver with shape analysis (described

next). This ensures, for example, that if a vehicle’s velocity matches the component

obtained for turning vehicles then that vehicle should also turn. A mismatch in the

anticipated and observed maneuver would also result in an anomaly detection.

3.2.9 Shape Analysis

We now describe our methods to characterize the shape of a vehicle’s trajectory.

In this exercise our goal is to develop techniques to identify significant maneuvers like

turns and lane changes. We construct a library of shapes associated with different

maneuvers and match the vehicle’s trajectory to these templates. Note that we per-

form template matching in the hypothetical co-ordinates defined earlier and both xh

and yh are used to define the vehicle position. In order to simplify discussion (and

implementation) we use a complex number representation of the trajectory in this

section.

Let a spatial trajectory be defined as:

P = {pt = xht + jyht : 1 ≤ t ≤ N}, (3.23)

where N is the number of samples in the trajectory and j denotes the square root

of −1. We obtain a trajectory template for each significant maneuver. Thus for k

maneuvers we obtain the templates P1, P2, . . ., Pk.

96

Procrustes Analysis

According to Dryden [120], “shape is all the geometrical information that remains

when location, scale, and rotational effects are filtered out from an object.” For

analysis purposes we represent the shape of an object by a finite number of pixels on

the object’s surface. There are different methods to estimate the similarity of object

shapes. Procrustes shape analysis is one such method which is invariant to scale,

translation, and rotation [121]. Our use of Procrustes analysis for turn detection is

inspired by a similar work by Harguess and Aggarwal [122]. Our approach is different

because we do not pre-segment the trajectories resulting in a real-time analysis.

Let each object be represented by a N × 1 vector where N is the number of 2D

points on the object’s surface (in our case, the number of points on the trajectory).

We represent the two trajectories as U = (U1, U2, . . . , UN)
T and V = (V1, V2, . . . , VN)

T

where U, V ∈ C
N . That is, each 2D point is represented by a complex number as

in Equation 3.23. The Procrustes distance is a minimum sum of squared distances

shape metric that requires shapes with one-to-one corresponding point pairs. After

filtering the location, scale, and rotational effects the minimum Procrustes distance

configurations that is used in this paper is defined by:

dF (U, V) = (1− V ∗UU∗V

U ∗UV ∗V
)1/2. (3.24)

Shape Matching with Sliding Windows

Our motivation for using a sliding window based method arises from the need for

real-time operation. We observe that the approach used by Harguess [122] creates

significant delay in the analysis because it requires the complete trajectory (or at

least a large part of it) in order to detect steps, ramps, and impulses. Thus we devise

a method to use template matching without a need for explicit segmentation of the

trajectory.

97

Let us represent a window W as an index set defined by the two end points τ1

and τ2:

W = {τ1, τ1 + 1, . . . , τ2 : 1 ≤ τ1 < τ2 ≤ N}. (3.25)

We ensure sufficient samples in the windows by the constraint that τ2 − τ1 > nmin

(nmin = 20 in our experiments). The shape to be matched is constructed from the

trajectory points located in the window. Thus,

β = {pt ∈ P : t ∈ W}. (3.26)

The shape descriptor thus obtained is a complex vector of length τ2− τ1+1. In order

to compute the Procrustes distance with respect to the k templates described above,

two operations are needed. First, the vector is centered by subtracting the median

value. Next, the centered vector must be resampled so that it contains exactly the

same number of elements as the lth template for each 1 ≤ l ≤ k. The resampling is

achieved using linear interpolation. Let β̂ represent the centered and length-adjusted

shape vector corresponding to a given window W .

Let ∆ represent the Procrustes distances for β̂ for each of the template. That is,

∆ = {δl : 1 ≤ l ≤ k}, (3.27)

where δl is the distance from the lth template shape. We declare the occurrence of

a particular maneuver when the distance of its template is significantly smaller than

the other distances. From our experiments, we observed that a 25 − 35% difference

works well. We use 30% as the decision threshold in our experiments. An event is

declared by marking pτ2 as the position of occurrence.

Since the only two parameters determining a window are the end points, we now

explain how these points get updated during the process.

• If a turn is detected, all but the very latest parts of the current window are

discarded, and a new window is created with the smallest permissible size (nmin).

Thus,

τnew1 = τ old2 − nmin

2
and τnew2 = τ old2 +

nmin

2
, (3.28)

98

where the superscripts new and old have been inserted for illustration purpose.

• If a turn is detected and is the same type as the last detected turn, a u-turn

is inferred if the two events occurred within a chosen distance from each other.

We declare a u-turn if two identical turns occur within 50 samples of each other.

The end points are updated as earlier.

• If the event detected is a straight line course or no event is detected, only τ2 is

modified – increased by one if the end of the trajectory has not been reached.

The analysis terminates when the end is reached.

• If the event detected is a straight line course or no event is detected, one can

optionally choose to discard the oldest points in the window if the window

exceeds a certain size threshold. We discard the older half of the samples if the

window becomes larger than 100 samples.

3.2.10 Color Correction for Object Tracking

Video surveillance is a popular tool used by law enforcement and security person-

nel. The deployment of multiple cameras is particularly useful for remotely observing

extended areas. These cameras may have different characteristics and may be op-

erating under dissimilar illumination conditions. Thus, their outputs will exhibit

considerable difference even when imaging the same object. While the white balanc-

ing algorithm in many cameras tries to adjust the colors, its function may be affected

by the foreground object. This is an undesirable situation for video analysis purposes.

Many image analysis tasks (such as tracking and identification) utilize color fea-

tures because they are more invariant to shape and orientation changes. However, the

variability across the outputs of many cameras makes color a less reliable property

when observing a subject over an extended period of time and/or region in space.

For example, a parking facility may be interested in tracking a violating vehicle even

99

after it exits the parking area, but this task may be difficult if the lighting coditions

inside the parking area are significantly different from the outside.

Some approaches attempt to construct more robust color features (histograms

and correlograms) by transforming the colors to a different color space, such as HSV

or LAB, instead of the devices’ RGB [123]. These methods result in only marginal

improvements. Porikli proposed an inter-camera calibration technique based on a cor-

relation matrix analysis [124]. Gilbert and Bowden describe an incremental learning

approach to determining the inter-camera transformation [125]. Both methods would

result in a transform for every camera pair in the network. A conversion vector based

method was described by Choi et al. and shown to produce promising results [126].

This appraoch is very suitable for real-time video applications becuase of its simplic-

ity. In this section, we propose a systematic approach to solving the problem of color

consistency using principles of colorimetry and color management for imaging and

display devices [127].

Consider a public site (such as an airport or a shopping mall) which is surveilled

with a network of k video cameras, possibly under k different illumination conditions.

In this work, we assume that each illumination remains fairly constant over time.

Thus, we can combine a camera-illumination pair into a single entity which we denote

as an imaging unit (IU). Let the output of the k IUs at any time t be represented by

I0(t), I1(t), . . . , Ik−1(t). Note that each Ir(t) consists of pixel-wise color co-ordinates

for the scene. For all practical purposes, we can safely assume that the color at a

pixel is specified as an RGB value in the camera output. Further, we note that it

is unrealistic to assume that an object would be imaged at the same time by all the

IUs. Therefore, we drop the time index in subsequent discussions.

It is natural to expect significant variation in the images (Ir) of an object generated

by the different imaging units. If the subject entered the surveillance system from IU

a and subsequently moved into the field of IU b, one would like to transform Ib such

that the colors resemble those in Ia. Thus, we would need an RGB-RGB transform

for every pair of imaging units in the system.

100

Our first step to solving this problem is to prevent the quadratic growth in the

number of transforms needed (
(
k
2

)
for k IUs). We do this by modeling the image

analysis system as an “observer.” Note that while the term observer is inspired by

colorimetry, its interpretation here is very different from the CIE standard observer [3].

Our observer can be viewed as a standard camera operating under chosen illumination

conditions – in other words, an imaging unit as defined above. Therefore, our goal

is to match the output of every IU with that of the reference IU. The problem now

scales linearly with the number of IUs. Without loss of generality we designate I0 as

the output from the reference IU.

Fig. 3.13. A schematic diagram of an imaging unit.

Since the effects of illumination are abstracted into the IUs, the only invariant

property of a subject would be its surface reflectance. However, to make the discus-

sion more intuitive, we refer to this as “shade.” Shade is the identifier that a human

would associate with an object with such surface reflectance and viewed under typi-

cal illumination. Thus, we require that subjects with the same shade produce similar

RGB values in all IUs. The actual relation between the shade and the observed

tri-stimuli (under given illumination) is difficult to establish and requires extensive

radiometric measurements. Instead, we make this key assumption that the two quan-

tities are related through the illumination white point. The resultant tri-stimuli in

CIE XYZ would be the input to the camera which itself can be modeled with gray bal-

ancing and a linear transformation [128]. The complete model of an IU is illustrated

in Figure 3.13.

101

Particle filter is popularly used for object tracking because it has been shown to be

very successful for non-linear and non-Gaussian dynamic state estimation problems

and is very reliable in cases like clutter and occlusions [129]. Each hypothesized state

is referred to as a particle and a weighted sum of all particles gives the final estimate

of the state. An observation likelihood model assigns each particle a weight according

to how this particle resembles the target object. This model or rule is determined

quantitatively by measuring the dissimilarity between the feature (in our case, color

is used) distributions of the target q and the particle p. We use the Bhattacharyya

distance as the metric of distance which is given by:

d[p, q] =

√
√
√
√1−

m∑

u=1

√
puqu, (3.29)

where u is the bin index of the color distributions. The particle weights are ap-

proximated using a Gaussian distribution of the Bhattacharyya distances. Similar

distributions result in smaller d[p, q].

Color distributions have been widely used for tracking problems [130] because

they are robust to partial occlusion, and are rotation and scale invariant. The color

distribution is expressed by an m-bin histogram, whose components are normalized

so that the sum of all bins equals one. For a region A in an image, given a set of

n pixels in A denoted by B = {xi, i = 1, 2, . . . , n} ∈ A, the m-bin color histogram

T (A) = {hj, j = 1, 2, . . . ,m} can be obtained by assigning each pixel, xi to a bin, by

the following equation:

hj =
1

n

∑

xi∈B

δj[b(xi)], (3.30)

where b(xi) is the bin index in which the color component at xi falls and δ is the

Kronecker delta function.

Detailed Formulation

An advantage of selecting a reference is that the discussion and modeling can

be build for two camera systems (k = 2) and extended to multi-camera systems

102

without any changes. In this section, we first describe a model-based method to

match the output of a test imaging unit (I1) with that of a reference IU (I0), and

then approximate this transformation using 3D look-up tables (LUT). This two-step

approach to solving a color correction problem was also proposed by Srivastava et al.

for color management of display devices [131].

Let ℑ represent the commonly used RGB color space. This is distinct from the

linear RGB representation, where the values are proportional to the photon count.

The latter are explicitely marked with a superscript (for example, Rlin
2). We require

a function Φ : ℑ → ℑ such that Φ(I1) = I0, for the same shade. If the camera

model is represented by S, then Figure 3.14 illustrates the construction of Φ. This

method is denoted by CCMX (Camera to Camera Model-Based Transformation) in

this thesis. The white correction step consists of a technique to account for the

different illumination conditions.

Fig. 3.14. A block diagram of the device to device transformation CCMX (Φ).

We choose a camera model which consists of gray balancing and a linear transform.

Thus, a camera model S transforms a stimulus (X, Y, Z)T to (R,G,B)T as follows:








Rlin
n

Glin
n

Blin
n







=








M3×3















X

Y

Z







. (3.31)

Here (R,G,B)linn signify the normalized linear values and M is a linear transform.

Absolute linear values can be obtained by scaling with the absolute linear values of

103

the device white. This can also be represented using the inverse but more intuitive

normalization operation,

Rlin
n =

Rlin
abs

Rlin w
abs

; Glin
n =

Glin
abs

Glin w
abs

;Blin
n =

Blin
abs

Blin w
abs

, (3.32)

where (R,G,B)linabs represent the absolute linear values which are proportional to the

photon count at the camera sensor. Finally, the device RGB output is obtained by

gamma correction or gray balancing [1]. This can be represented by a 3D function

f : ℜ3 → {0, 1, . . . , 255}3. (3.33)

In our modeling, we use a gain-gamma-offset model [132] for the function f , and

obtain the transformation matrix M by linear regression. The parameters of the

models are computed by measuring the RGB and CIE XYZ values for a small number

of printed patches. We used only 24 colored patches (shown in Figure 3.15) and

measured the XYZ values with a spectroradiometer PR-705.

Fig. 3.15. A printed sheet of colored patches used to construct the
camera models. Courtesy: Norman Koren [8].

While many white point compensation techniques have been proposed in the liter-

ature [2], we use a simple rescaling based approach because it is easy to apply in real

situations with very little information about the illumination available. Let the ref-

erence illumination white point be (X, Y, Z)0w and the test white point be (X, Y, Z)1w.

104

Then to transform an object’s tristimulus (X ′, Y ′, Z ′) to the reference conditions, we

obtain 






X

Y

Z







=








X0
w

X1
w

0 0

0 Y 0
w

Y 1
w

0

0 0 Z0
w

Z1
w















X ′

Y ′

Z ′







. (3.34)

Our goal is to efficiently color correct the output I1. It has been shown that

look-up tables (LUT) can be used to achieve complex transformations [66]. LUTs are

suitable for hardware implementations and allow elaborate modeling of the system

they approximate. This is because we can improve the function Φ at the cost of added

complexity. But the use of LUTs makes this additional complexity inconsequential.

Let the table look-up operation be represented by a function £ : ℑ → ℑ. If the

function Φ has a domain D and range S, then we evaluate Φ at certain points given

by D1 ⊂ D. In our application, we require a 3D LUT whose output is also a 3-tuple.

Consider a LUT of size nR × nG × nB, then

D1 = {r0, r1, . . . , rnR−1} × {g0, g1, . . . , gnG−1} (3.35)

× {b0, b1, . . . , bnB−1}, (3.36)

where × represents a Cartesian product. The output of the LUT is given by

£([r, g, b]) =







Φ([r, g, b]), ∀[r, g, b] ∈ D1,

H([r, g, b]), otherwise.
(3.37)

Here H represents interpolation which is used to estimate the value of Φ using the

known values at the neighboring points in D1.

105

4. EXPERIMENTAL RESULTS

In this chapter we present the results of testing our proposed methods on different

test cases. Note that the evaluation of the methods is different for the problems

of color management and visual surveillance. It can be stated that in both cases,

the outputs of the methods should be evaluated by human observers. Whereas such

“ground truth” can be defined in surveillance problems (such as make of a vehicle)

and remains invariant across observers, the perception of color and image quality is

highly subjective. Therefore, we adopt a quantitative approach to evaluating color

accuracy by estimating the errors in ∆E units. The methods for visual surveillance

tasks are evaluated against the ground truth.

4.1 Color Management

4.1.1 Comparison of LUT With the Models

In order to test the accuracy of the LUT engine against the NLXWP model

(Section 2.1), a randomly generated set of 216 RGB values is constructed by first

choosing any six integers between 0 and 255. Let α = [r0, r1, r2, r3, r4, r5] Then

Stest = α × α × α is a 6 × 6 × 6 cube of training data points. Each color in the set

is transformed using the two functions - Φ() representing the model NLXWP and

f() representing a LUT-based implementation. The deviation of the two outputs is

measured in ∆E and the average prediction error ∆E is found to be 3.76 ∆E units.

Figure 4.1 shows the histogram of errors for the testing set.

The plot of 1 − σ outliers of the experiment in the x − y space (Figure 4.2)

shows a small drift in the output color. This drift is measured by the separation be-

tween crosses (output of NXLWP) and corresponding circles (output of LUT-based

106

Fig. 4.1. Histogram of errors in LUT based prediction (against NLXWP).

Fig. 4.2. Distribution of the 1 − σ error outliers of the LUT-based
implementation in xy space.

107

prediction). That concluded the first check operation and it is safely inferred that

significantly accurate predictions can be obtained using a moderate sized LUT. How-

ever, the chromaticity diagram does not provide all the information about the error

points. Therefore, all future results are presented in LAB space.

Another experiment for evaluating the three implementations was conducted in

which a set of 122 data points (RGB triples) was displayed on the reference monitor

and the color measured using PR-705. Then, the three models (NLXWP, LXWP

and the LUT-based model) were used to predict the color on the viewing device.

The output of each model was compared to the measured values in LAB space and

their deviation computed in ∆E units. This process is illustrated in Figure 4.3. The

number 122 is chosen because we started with a 5× 5× 5 data set and removed the

colors which transformed to a location outside of the viewing device gamut.

Fig. 4.3. A block diagram for evaluating the three implementation models.

The average error ∆E was recorded for each case and the outliers were plotted in

the LAB space as shown in Figure 4.4. The red stars indicate position of the color

as measured on the reference device while blue circles indicate the position of the

108

color as obtained on the viewing device. The distance between corresponding stars

and circles gives a measure of the prediction error. The plots represent outliers for

NLXWP (left), LXWP (center) and the LUT-based implmentation (right). Table 4.1

shows some statistics for the errors obtained with each model.

Table 4.1
Testing error statistics (in ∆E units) of the three implementations.

Statistic\Model Non-linear Linear Look-up table

Mean 2.9253 10.9185 3.3623

Median 2.7723 9.4240 3.1945

Standard deviation 1.4184 4.8038 1.4318

Fig. 4.4. Distribution of the 1−σ error outliers for each of the imple-
mentation models in LAB space.

A number of experiments are performed to study and evaluate the impact of

varying different system parameters in a LUT-based prediction model. The reference

for all experiments is taken as the NLXWP model although actually measuring colors

using PR-705 may be more accurate.

We provide the results of the training process described in Section 2.2 for LUTs

of three sizes in Table 4.2. These were obtained for a 1000 point training data set as

stated earlier. Therefore, the values can be seen as the minimum cost at the end of

109

the optimization process as shown in Figure 2.20 (although there is no optimization

in the case of uniform LUT, we can still view the value as the cost after a single

iteration). Optimization was done for both symmetric and non-symmetric LUTs

and the numbers inside the respective parentheses indicate the percentage reduction

in the average prediction error as compared to a LUT of the same size but with

uniformly sampled Ω. Note that the optimization is carried out only with respect

to sampling and all three types of LUTs use the same (separable squared inverse

distance) interpolation scheme.

Table 4.2
Final values of the cost function (∆E units) evaluated at the points
in the training set at the end of optimization (Numbers inside paren-
theses indicate percentage improvement over a uniform regular LUT
of the same size).

Type\Size 6× 6× 6 9× 9× 9 12× 12× 12

Uniform regular 6.21 3.79 2.79

Symmetric optimal 5.38 (13.36%) 3.39 (10.55%) 2.38 (14.69%)

Non-symmetric optimal 4.87 (21.58%) 2.93 (22.69%) 2.19 (21.51%)

Figure 4.5 shows the progress of optimization for three LUT sizes, 6 × 6 × 6

(top), 9 × 9 × 9 (middle) and 12 × 12 × 12 (bottom), where the dashed line tracks

symmetric LUTs and the solid line indicates progress of non-symmetric LUTs. It must

be noted that the x-axis is not a time scale. This is because optimizing symmetric

and non-symmetric tables takes unequal number of iterations and, hence, unequal

time. Instead twenty uniformly spaced iterations are selected and the value of cost

function (APE) at that iteration is used to track the progress of optimization process.

Since the sampling map as shown in Figure 2.20 is initialized with uniform sampling,

both optimizations start with the same APE in the first iteration.

These results validate the applicability of our optimization technique to the prob-

lem of generating optimal LUTs for color management. It can be seen that by opti-

110

0 20 40 60 80 100
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Optimization progress (%)

A
P

E
 (

∆
 E

)

Symmetric LUT

Non−symmetric LUT

(a) 6× 6× 6

0 20 40 60 80 100
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

Optimization progress (%)

A
P

E
 (

∆
 E

)

Symmetric LUT

Non−symmetric LUT

(b) 9× 9× 9

0 20 40 60 80 100
1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

Optimization progress (%)

A
P

E
 (

∆
 E

)

Symmetric LUT

Non−symmetric LUT

(c) 12× 12× 12

Fig. 4.5. Convergence of optimization error for the three LUT.

mizing just one variable in the LUT-based system (sampling of the RGB space), we

can reduce the average error by more than 20%. This is true even when the size of

the LUT is as small as 6 × 6 × 6. We further observe that addition of constraints

on the optimization problem (resulting in symmetric LUTs) still reduces the average

111

error by over 10% while significantly reducing the size of the problem as described in

Section 2.2. In the next experiment we test the optimal LUTs against simple LUTs

which do not use any optimized parameters.

4.1.2 Evaluation of Optimal LUT

Fig. 4.6. Block diagram for evaluating the optimal and non-optimal
LUTs against the NLXWP model.

Figure 4.6 shows our method for evaluating the accuracy of the optimal LUT.

Similar to Fig. 2.17, the block arrows represent the offline process of constructing

and training the LUTs. The optimal LUTs (which use optimal sampling and sep-

arable squared inverse distance interpolation) were tested relative to the NLXWP

function using another 1000 point data set, the results are presented in Table 4.3.

The statistics correspond to the errors denoted by E2 in Fig. 4.6. The function was

also approximated by non-optimized LUTs (represented as “n×n×n Simple” in the

table and producing errors denoted by E1 in the figure) which used separable inverse

distance interpolations on a uniformly sampled Ω. While the (R,G,B) values used

112

in the testing set were also randomly generated from the RGB space, we verified that

the training and testing sets did not have any overlapping data points.

Table 4.3
Testing error statistics (∆E units) for LUTs evaluated relative to the
NLXWP model (Simple LUTs use separable inverse distance interpo-
lations and a uniform sampling of the RGB space, and numbers inside
the parentheses represent percentage improvement as obtained by an
optimal LUT).

Type\Statistic Mean Median 1-Std. Dev.

6× 6× 6 Simple (E1) 8.71 7.31 6.81

6× 6× 6 Optimal (E2) 4.84 (44.43%) 4.21 3.47

9× 9× 9 Simple (E1) 5.49 4.69 4.72

9× 9× 9 Optimal (E2) 2.92 (46.81%) 2.49 2.39

12× 12× 12 Simple (E1) 3.96 3.28 3.80

12×12×12 Optimal (E2) 2.19 (44.70%) 1.85 1.98

It can be observed from the statistics that the optimal LUTs generated by our

system offers significant improvement over simple LUTs of the same size. Note that

the mean values (column 2) are comparable to the cost function computed for the

optimization and, hence, we compute the percentage reduction in this quantity as

achieved by an optimal LUT over a simple LUT (provided inside parentheses). It is

also evident that the effect of two independently selected methods (optimal sampling

and interpolation) is cumulative and the percentage reduction in the average error

exceeds the percentage reduction obtained in Table 4.2 where only the sampling

method was being optimized. This completes our analysis of how well an optimal

LUT can approximate a given function and we proceed to testing our optimal LUTs

in a color management scenario.

At this point, we remind the reader that all our experiments were done on two

virtual (or simulated) display devices. These devices were, essentially, highly accurate

113

models of two real display devices (which are shown in Fig. 1.4). Generating the

output with these models (for a given input RGB value) is equivalent to measuring

the output obtained on the actual displays for the same input.

Fig. 4.7. Block diagram for the comparison of a profile-based and a
LUT-based system using the output of the simulated reference device
as the reference. Here E1 and E2 are the errors obtained for the
profile-based and the LUT-based approaches, respectivly.

4.1.3 Comparison of Optimal LUT With ICC Profiles

In order to compare the LUT-based system with a profile-based system, we require

a function g : ℑ → ℑ which achieves perceptual similarity and is obtained from

ICC-compatible device profiles. We used the open source software LPROF [133] to

generate monitor profiles. The LPROF software is actively supported and is ICC

version 2 compatible. It can generate a device profile based on selected parameters

and a measurement sheet. The following steps are involved in obtaining the function

g:

• We use the simulated ideal monitors to obtain the set of measurements required

by the profiling software. This consists of computing the simulated CIE XYZ

114

values obtained when different RGB inputs are used. Our set of RGB inputs

contains grayscale, red, green, blue and composite colors. The measurements

for the two displays are recorded into corresponding “IT8” files [134]. Note that

unlike a scanner calibration operation, we do not read the RGB values for an

IT8 target. Instead we generate an IT8 target by passing known RGB inputs

to the monitors and recording the output in CIE XYZ. For our experiments, we

used 432 RGB values for creating the IT8 files. These consisted of 24 gray, 64

red, 64 green, 64 blue, and 216 mixed colors.

• LPROF uses the IT8 files as input and generates the corresponding “ICM” files.

We specify the desired color LUT size and the chromatic adaptation model to

be used as parameters while generating the profiles. The color reproduction

intent for generating the profiles is specified as “perceptual.”

• The profiles thus generated are processed using MATLAB with the MATLAB

“iccread” function, and the color transformation g is obtained using the MAT-

LAB “makecform” function. Note that the steps involved in creating the trans-

formation g is similar to the steps involved in generating a device-link profile,

using the two device profiles as inputs. Hence, the accuracy of the color repro-

duction using such a device-link profile will not be significantly different from

the accuracy when using the transformation g. Therefore, we did not perform

separate experiments comparing our LUT-based approach with device-link pro-

files.

As illustrated in Fig. 4.7, we compare the performance of the profile-based trans-

form with that of the LUT-based transform by using the output of the simulated

reference device as the benchmark. Note that this is different from the evaluation of

the LUT when compared with NLXWP as shown in Fig. 4.6. There the output of

the user device as predicted by NLXWP was taken as the benchmark, and hence, the

error statistics may be different. Table 4.1.3 summarizes the error statistics achieved

by the profile-based transform and the LUT-based transform for various profile and

115

LUT sizes. The numbers inside parentheses represent the memory required by the

two approaches in kilobytes. In the case of profiles it is the size of the respective

“ICM” files, while in the case of 3D LUT it is the memory required to store the LUT,

and the sampling maps MR, MG and MB as defined in Equations (2.43), (2.44), and

(2.45).

Table 4.4
Testing error statistics (∆E units) for LUTs and ICC profiles.

Type\Statistic Mean Median 1-Std. Dev. P95
1

ICC-12(7 KB) 10.12 8.76 5.95 22.76

ICC-23(66 KB) 10.24 8.91 5.90 22.82

6 × 6 × 6 Optimal (0.65

KB)

9.42 8.88 4.36 15.85

9 × 9 × 9 Optimal (2.14

KB)

8.15 8.02 3.77 12.92

12 × 12 × 12 Optimal (5

KB)

7.86 7.74 3.81 12.61

1 The 95th percentile of the distribution.

2 Profiles were generated using Linear Bradford [135] chromatic transformation.

3 Profiles were generated using CIECAM97s [136] color adaptation models with sim-

ulated dark surroundings.

We observe that the LUT-based system provides more accurate color reproduc-

tion than a system that uses ICC profiles of much larger sizes. Futhermore, this

observation is consistent in all the statistics – mean, median, 1-standard deviation

and the 95th percentile. This agrees with the intuition that a one-step transformation

between two known devices can be achieved with greater success than a multi-step

transformation in which the devices are only characterized by their profiles. It is also

116

seen that a larger optimal LUT provides better color reproduction accuracy than a

smaller LUT. This is also not evident for profiles. Our aim in these experiments is

to demonstrate the improved color reproduction offered by a LUT-based approach

compared with profile-based approaches.

4.2 Surveillance of Vehicles

We applied the methods described in the previous sections to actual traffic videos

in our experiments. There are two important points about these experiments. First,

our primary goal in this thesis is to demonstrate the feasibility of our system using

off-the-shelf equipment and easily obtained video data. While a thorough testing

of the system would require running the system in real time using live video feed,

such experimentation is not reported in this thesis. The inter-dependencies described

in Section 3.1 are realized by manually channeling the outputs of different modules.

Secondly, we conducted many of our experiments using publicly available datasets.

However, due to the unique camera configuration proposed in this article, all the

methods cannot be tested on these datasets. Therefore, we also present the results

of applying our methods on a 20 minute front and side view video collected for the

purpose.

4.2.1 Vehicle detection

Our method for background subtraction (MABS) was applied to videos containing

vehicles against an uncontrolled outdoor background. Four such videos were used to

test the method – (A) the Lankershim Boulevard dataset [137] (camera 3, footage

starting at 8.45), (B) the Peachtree Street dataset [137] (camera 4, footage starting

at 4.00), and (C and D) traffic videos recorded by the authors. The C and D videos

were taken from a much lower height (about six feet above the road) and under

different weather conditions. Thus, unlike the first two datasets, the size of vehicle

“blobs” changes with its position in the camera’s field of view in these videos.

117

Fig. 4.8. An example of vehicles detected by background subtrac-
tion. The image shows a close-up of the scene to illustrate the object
ellipses.

A detection was defined as a successful hand-off from object detection method to

the particle filter-based tracker. In other words, we count a true positive when a new

“target” is created in the tracker following its entry into the field of view. This is

depicted by the red ellipses in the Figure 4.8. Missed detections and false positives

have corresponding definitions. However, note that we do not focus on the results

of the tracker in this thesis. Instead, the significant visual output from the object

detection stage is the foreground-background mask. Some representative frames from

the different datasets and their foreground masks are provided in Figure 4.9.

During the nearly fifteen (combined) minutes of analysis, about one thousand

vehicles appeared in the video. Less than 5 percent of detection failures occurred.

Most of the failures were missed detections when the vehicles were highly similar to

the background (the road). Failures were also encountered when the system counted

two vehicles moving very close to each other as a single object.

118

Fig. 4.9. Output of object detection applied to different video sets
(A, B, C, and D). Column D shows a result of vehicle detection on
the side view video.

Fig. 4.10. Comparison of MABS (bottom) with GMM (center) for
object detection on three test sequences. Columns 1 and 2 show pro-
cessed frames from sequences with considerable background clutter
while column 3 shows a frame shortly after a sudden change of illu-
mination.

In order to estimate the time complexity of the method, we created five video se-

quences with dynamic background, large foreground objects, and sudden illumination

changes. Owing to the difficulty of creating such test cases with vehicles, we used hu-

man subjects for this experiments. The proposed method for background subtraction

was used on these sequences. We also used a background subtraction method based

on Gaussian mixture models [86] with each pixel represented by a mixture of three

119

Gaussian distributions. The parameters were selected such that both methods pro-

vided comparable outputs (visually determined). Figure 4.10 shows some examples

from the video sequences and the outputs of the two methods. The execution time of

the two methods are listed in Table 4.5. It can be observed that the proposed method

is much faster than the GMM method, and hence, more suitable for our application.

Table 4.5
Running time for the two object detection methods (in seconds). The
experiments were conducted in MATLAB running on a Mac OS-X
machine.

Sequence Frames GMM MABS

Seq 1 100 1020 102

Seq 2 100 994 104

Seq 3 180 1910 225

Seq 4 270 2150 224

Seq 5 210 2092 193

4.2.2 Vehicle type determination

The template-based vehicle body type determination was tested using vehicle side

view (still) images. Examples of the results are shown in Figure 4.11. Note that the

y-axis in the graphs represents the normalized absolute difference. Thus, the class

with the smallest difference is chosen.

Since most vehicle datasets do not contain front and side view videos we generated

a testing dataset with about 20 minutes of traffic video footage. The camera was

placed about one foot above the road surface and positioned such that the field of

view was large enough to contain 3 − 4 typical length vehicles. Some frames from

the dataset can be shown in the top row of Figure 4.12. Most vehicles were moving

between 30 and 45 miles per hour. As stated earlier, we restrict the vehicle type to

120

Fig. 4.11. Examples of vehicle type identification from still side-view
images. The middle column shows the silhouettes obtained from vehi-
cle detection. The graphs represent the SAD values (y-axis) for each
vehicle type (x-axis).

one of the four classes – sedan, light truck, sport/utility, and hatchback. Hence, the

frames used in this experiment were manually selected.

The method was applied to 85 vehicles roughly equally distributed over the four

classes. While all the sedans and trucks were correctly identified, the SUV and

hatchback classes were not so well separated. Nine vehicles were assigned to the wrong

class, and many other (correct) classifications were achieved with a small margin.

Figure 4.12 shows examples of classification with a good margin, another with a

small margin, and a failure case. It also be noted that the proximity of the SUV and

hatchback classes is expected since both types have similar shapes. These classes can

be easily separated by using a simple threshold on the vehicle length because most

utility vehicles are bigger than hatchbacks. However, this has not been incorporated

in the present results.

121

Fig. 4.12. Examples of vehicle type determination using shape match-
ing. The three columns represent (left to right) cases of classification
with high confidence, classification with low confidence, and a mis-
classification.

4.2.3 Tire size estimation

As in the case of body type determination, we first tested the tire extraction

methods on side view still images. Examples of the results are shown in Figure 4.13.

Fig. 4.13. Examples of vehicle tires extracted from still side-view
images. The middle column shows intermediate results in the form of
wheel positions.

122

Since the methods for tire extraction require a side view of the vehicles, the above-

mentioned dataset (containing 20 minutes of footage) was used in these experiments.

The ground truth regarding the tire sizes (measured in pixels) was obtained manually.

Therefore, these methods were applied on manually selected frames and on a smaller

testing set with 24 vehicles. In all but one cases, the tire diameter was correctly

estimated to within one pixel tolerance. The failure case reported an incorrect position

for the tire center and hence, the size estimate was irrelevant. Figure 4.14 shows some

examples of the vehicles and the tire region as extracted by the system. The failure

case is also shown.

Fig. 4.14. Examples of vehicle tire extraction using the circular edge
search method. In each case, the rear tire was segmented. Column 3
shows the failure case.

Note that all 24 vehicles in these experiments had a bright hub compared to the

rubber. In the absence of a suitable test case, the method for estimating the size

of a tire with dark hub was applied to an synthetic test case. This was done by

manually coloring the tire area of a vehicle’s image and is illustrated in Figure 4.15.

The position of the lower-most point of the tire was provided as input to the system

(corresponding to the position of the cleat as explained in Section 3.2.3). The diameter

of the tire was correctly estimated. We would like to emphasize that this particular

experiment (with dark tires) was only conducted as a proof of concept and does not

capture rigorous evaluation of the method. On the contrary, the absence of vehicles

123

with such tires in the 20 minutes of traffic footage itself demonstrates the rarity of

such a situation.

Fig. 4.15. Result of tire extraction on a vehicle with artificially col-
ored dark tires. The position of the lowermost point of the tire was
provided as input.

4.2.4 Make recognition

Many experiments on vehicle make and model recognition are carried out using

“clean” images of vehicles. Such images have high resolution and use vehicles which

are stationary or near-stationary (for example, near the entrance of a parking lot or

at a toll booth). Instead, we apply our methods on video frames taken in outdoor

conditions and on vehicles moving as fast as 40 miles per hour. In fact, the traffic

video used in this experiment was recorded at the same time and location as the video

used in the previous two experiments. For some vehicles, the front grille area used

to determine the make was as small as 30× 15 pixels. Some sample frames from the

datset are shown in the top row of Figure 4.16.

Vehicles from five car makers were used to test our methods. These five makes

were determined by viewing the video and identifying the most frequently occurring

makes. Then a total of 65 vehicles were selected as the testing set. Of these, the

system correctly recognized 56 makes. As in the case of vehicle type experiment,

some decisions had a large margin (or confidence) while others (both correct and

incorrect) were close calls. Figure 4.16 shows some examples of the make recognition

124

Fig. 4.16. Examples of vehicle make recognition using edge orientation
histograms and automatic region selection. Column 4 shows a failure
case.

output. These include both the well-resolved and the marginal cases. Note that the

y-axis represents a normalized similarity metric. Thus, the class with the highest

value is selected. It is evident that the classification accuracy is lower than some of

the state-of-the-art make recognition methods. Even the edge orientation method of

Petrovic and Cootes [98] results in about a 90 percent accuracy. This can be explained

by two factors – the use of more realistic images and the automatic selection of the

front region of interest. While these two factors reduce the accuracy, our experiments

prove that the method is robust enough to be deployed in real-life scenarios.

4.2.5 Squat and Bounce Analysis

The purpose of this particular experiment was to determine the feasibility of the

proposed methods for detecting overloaded vehicles, rather than rigorous testing of

the methods. The vehicles were loaded by placing 500 pounds of sand bags in the

trunk. We photographed the lowering of the vehicle due to loading, as well as drove

the vehicle over a bump to observe the pattern of oscillations. A checkerboard shaped

fiducial marker was attached to each test vehicle to allow easier tracking.

Figure 4.17 shows 3-tuples of images corresponding to the test vehicles under

unloaded and loaded conditions, and the difference image. It should be noted that

125

Table 4.6
The gap above tires measured in pixels for the test vehicles.

Unloaded Loaded

Vehicle Front Rear Front Rear

Vehicle 1 56 57 55 49

Vehicle 2 53 53 54 48

Vehicle 3 70 72 71 67

these images has been significantly downsized. It can be observed that for all the

three test vehicles, the vehicle depresses by a visually significant amount in the rear

while the front end is unaffected. In a standard resolution video frame, the lowering

was between 5 and 8 pixels. The gap above the front and rear tires under loaded and

unloaded conditions is listed is Table 4.6.

One of the test vehicles shown in Figure 4.17 was driven over a road bump and

the vertical motion of the vehicle was recorded. This was achieved by tracking the

position of the fiducial marker. Figure 4.18 shows the oscillation trajectory in which

the vertical position is plotted against the horizontal position. The oscillations are

plotted with the test vehicle with and without the payload of sand bags represented by

the solid and the dashed plots, respectively. The vehicle traverses the bump around

the horizontal position of 230. We observe that (a) the loaded vehicle always sits

lower than the unloaded case, (b) the depression immediately after traversing the

bump is much steeper when the vehicle is loaded, and (c) the loaded vehicle takes

longer to return to the stable state. All three observations agree with the intuition

and the physics of damped oscillation.

126

Fig. 4.17. Illustration of the visual impact of loading on test vehicles.
The difference image (column 3) captures the displacement caused by
loading. Columns 1 and 2 show the unloaded and loaded vehicles.

4.2.6 Trajectory Analysis

The results are provided under three categories – evaluation of the co-ordinate

transformation technique, evaluation of the velocity analysis method, and the evalu-

ation of turn identification using shape analysis. Three video sequences were used in

our experiments. These included the Lankershim Boulevard, California surveillance

dataset generated for the NGSIM project [137] (denoted by LANK in this section)

and two videos recorded by the authors (denoted by ANON1 and ANON2). A snap-

shot of the video sets is provided in Figure 4.19. In order to illustrate the role of the

hypothetical co-ordinate system, we also provide a satellite image of the road in the

field of view, using Google Maps [138]. Due to the nature of our outputs, the figures

in this section are best viewed in color. For the datasets collected by the authors, the

labels have been erased for this anonymous review draft.

127

Fig. 4.18. A graphical representation of the vehicle’s bounce upon
excitation by a road bump. The oscillations are larger and decay
slower under loaded conditions.

We present two cases in which the proposed look-up table based method has

been used on curved trajectories. These are shown in Figure 4.20. The first case

is a synthetic trajectory created for the curved road used to illustrate the training

process in Section 3.2.7. The second case is a trajectory from the ANON2 dataset.

The linearized trajectories (in the hypothetical co-ordinate system) are shown in the

second row. Note that in the second case, a single 2D LUT is used to transform

from the image co-ordinates to the desired co-ordinates. The perturbation seen in

the upper part of the transformed trajectory (in case 2) is due to the sensitivity of the

transformation very deep in the field of view. This error can be improved by better

user input or with alternative camera calibration methods although the non-linearity

will always cause greater errors in the far field of view.

128

(a) LANK (b) ANON1 (c) ANON2

(d) Map of LANK (e) Map of ANON1 (f) Map of ANON2

Fig. 4.19. Sample images from our test videos (a-c) and the corre-
sponging map (d-f) (courtesy: Google Maps [138]). The field of view
is highlighted in yellow and the labels have been erased for review.

4.2.7 Velocity Analysis

Our method for analyzing the approach velocity of a vehicle was used with the

ANON1 dataset. Different scenarios were realized by driving a designated vehicle in

various manners. In Figure 4.21, we present the decision vectors corresponding to four

cases – driving at nearly uniform velocity, unexpected slowing, unexpected sudden

acceleration, and making a u-turn. Recall that we treat velocity as a one-dimensional

signal (in the direction of the road) as a function of the position. Thus, the vertical

axis represents the scaled velocity at different points in the roadway. The blue cir-

cles indicate normal approach while the red crosses denote (atomic) anomalies. The

dashed black line represents the mean (scaled) velocity estimated from the “normal”

vehicles. The anomaly flags plotted as functions of time are also provided in Fig-

ure 4.22 as described in [107]. It is clear to see that this treatment and the resultant

129

(a) Case 1 (b) Case 2

(c) Case 1 Transformed (d) Case 2 Transformed

Fig. 4.20. Results of the LUT-based co-ordinate transformation to
curved trajectories. Case 1 pair is a synthetic test case while the
Case 2 pair is from the dataset ANON2.

method for visualization of the decisions would enable very fast decision-making by

an operator.

(a) Normal. (b) Slowing. (c) Accelerating. (d) U-turn.

Fig. 4.21. Plot of the decision vectors corresponding to different driv-
ing behaviors. The red crosses indicate occurrence of atomic anoma-
lies.

130

0 20 40 60 80 100 120 140
0

200

400

600

800

1000

1200

1400

Frame instant

G
ro

u
n

d
 p

o
s
it
io

n

Observed vehicle trajectory

0 20 40 60 80 100 120 140 160
0

200

400

600

800

1000

1200

1400

1600

Frame instant

G
ro

u
n

d
 p

o
s
it
io

n

Observed vehicle trajectory

0 20 40 60 80 100 120
700

800

900

1000

1100

1200

1300

1400

Frame instant

G
ro

u
n

d
 p

o
s
it
io

n

Observed vehicle trajectory

Fig. 4.22. Plot of the decision vectors corresponding to a vehicle being
driven at uniform velocity, slowing and accelerating, and making a u-
turn. The red crosses indicate occurrence of atomic anomalies.

4.2.8 Shape Analysis

Shape analysis for detecting turns was used on both synthetic and true trajecto-

ries. Figure 4.23 shows the examples of template matching output on four types of

maneuvers. These trajectories were obtained by tracking individual vehicles in the

LANK dataset [137]. The black circle indicates the starting end of the trajectory

(since there is no temporal information in these plots). Right turns are denoted by

red circles and left turns by blue circles. The color of a u-turn marker is chosen based

on the turn being left-handed or right-handed. A total of 46 vehicle trajectories were

analyzed and 45 maneuvers were correctly identified. These cases included vehicles

from East-West and North-South traffic and roughly equal number of right, left, and

no turns. The u-turn case in Figure 4.23 was the only such maneuver in the dataset.

The failure case occurred when a vehicle made a turn after prolonged delay and our

shape matching method did not detect the turn.

A synthetic trajectory was generated to simulate complex multi-turn scenarios to

test the effectiveness of our methods. Figure 4.24 shows the result of turn detection

on the synthetic trajectory. It can be seen that our methods not only detect all

the turns but also declare the occurrence of turns at a logically correct point in the

trajectory.

Finally, we demonstrate the usefulness of the hypothetical co-ordinate system by

using shape matching for the two test cases shown in Figure 4.20. The window method

131

(a) Right. (b) Left. (c) Straight.

(d) Right u-turn.

Fig. 4.23. Results of shape analysis on trajectories of different ma-
neuvers from the LANK dataset. A black circle is used to denote the
starting end of the trajectory.

Fig. 4.24. Result of shape analysis on a synthetic multi-turn trajectory.

was used to detect turns in the original (ground) and the transformed trajectories (in

the hypothetical co-ordinates). The results are shown in Figure 4.25. Clearly, the

linearization enforced by the co-ordinate transformation is effective in suppressing the

false turn detections.

132

(a) Case 1 Ground. (b) Case 2 Ground.

(c) Case 1 Hypothetical. (d) Case 2 Hypothetical.

Fig. 4.25. Window method for turn detection applied to curved roads.
The rows represent output of turn detection in ground (a-b) and hy-
pothetical (c-d) co-ordinates. Note that false turns are detected only
in the ground co-ordinates.

4.2.9 Color Correction for Tracking

The methods developed above were tested for a system with two imaging units. We

used a single video camera (Sony DCR-TRV33) to image objects under two different

illumination conditions. The controlled illumination was achieved using a Gretag

MacBeth light booth and the two illuminants were selected to approximately resemble

the inside and outside lighting of a typical parking garage.

Since our objective is to make the corrected colors (R̃, g̃, B̃) closer to the reference

colors (R,G,B) in the RGB space, we use a Euclidean metric of distance given by:

∆ = ‖(R̃, g̃, B̃)− (R,G,B)‖. (4.1)

133

Table 4.7 shows the mean error (∆) values for different objects and corrected using

the proposed techniques. We also corrected the colors using a constant offset in every

channel as proposed by Choi [126].

Table 4.7
Mean errors (∆) between the reference image and the corrected images.

Test\Method None Offset LUT CCMX

Golf 22.86 23.65 16.58 10.46

DVD 27.57 27.72 19.47 15.54

Phone 37.05 20.01 18.02 10.17

Patch 15.00 25.83 9.67 5.01

In order to test the effect on color tracking, we estimate the improvement in the

observation likelihood model due to color correction. Recall that the suitability of

a particle is measured using the Bhattacharyya distance. Thus, we compute the

Bhattacharyya distance of the object under the reference and the test conditions

with different correction methods. The color features are extracted only in a small

elliptical region around the object as shown in Figure 4.26. The distances for different

test obejcts are presented in Table 4.8. As stated in Section 3.2.7 a lower distance

would result in the particle being assigned a higher weight. In these experiments, the

particle actually contains the target. Therefore, a higher weight (and lower distance)

implies improved performance of the tracker.

There are three important observations in these results. It is evident that the color

features become more robust after correction with our proposed methods. Secondly,

the offset method [126] can sometimes result in more error than the uncorrected

image. Finally, none of the methods appear to work when correcting a constant color

patch with our chosen feature (8× 8× 8 histogram). This is not entirely unexpected

because of the high granularity of our histogram bins. The corrected color may

fall into a different bin even when its Euclidean distance from the reference is only 5

134

Fig. 4.26. An illustration of the target region used to compute the color histogram.

Table 4.8
Bhattacharyya distances of the candidate object in the reference and
corrected images.

Test\Method None Offset LUT CCMX

Golf 0.81 0.67 0.35 0.19

DVD 0.56 0.82 0.29 0.22

Phone 0.58 0.86 0.39 0.32

Patch 1.00 1.00 1.00 1.00

units. Since the histogram in this case will be an impulse function, the Bhattacharyya

coefficient would be zero. Such degeneracy can be avoided by “soft” assignment to

histogram bins but this has not been used in this thesis.

The resultant images for two of the test cases are shown in Figure 4.27. Due to

the nature of the results, these figures are better viewed in color. From these results

we can conclude that the proposed methods offer improved color correction in both

quantitative and qualitative tests. The LUT-based method slightly increases the error

as compared to the CCMX method but is considerably more accurate than the offset

method.

135

Fig. 4.27. Qualitative results using different color correction tech-
niques. The columns represent (from left to right) (i) the test image,
(ii) output of the offset method, (iii) output of the 3D LUT method,
(iv) output of the CCMX method, and (v) the reference image.

136

5. CONCLUSIONS AND FUTURE WORK

In this thesis two topics of active research in image processing are described. Color

management has become increasingly important because of the large quantities of

visual data and the variety of image capture/viewing devices. Visual surveillance is

ubiquitous and image analysis tools are being developed to make these surveillance

systems more automated and efficient.

5.1 Conclusions

It is important to ensure faithful reproduction of visual data when a ditial im-

age/video is viewed on a user’s media. This is particularly valuable for professional

photography, cinema and television programming, and printing. In this thesis, we

propose a novel approach to color management using device models and look-up ta-

bles. The main contributions are as follows:

• We studied the traditional color profile based approach to color management and

identified the limitations which render it less suitable for the newer requirements

in color management. We proposed a simpler color management system which

would use only look-up tables which are created offline. Such a system would

be more hardware friendly and hence, more suitable for viewing content on low

power devices.

• We contructed a transformation based on device models for perceptually match-

ing two display devices.

• We approximated the above transformation using 3D LUT. We further identified

methods to optimally select LUT parameters (such as sample points) in a model-

based optimization framework under specified resource constraints.

137

• We compared the optimal LUT based color management system with an ICC

profile based system in terms of color reproduction accuracy and memory re-

quirements. It was shown that the proposed system was more accurate and

memory efficient.

Surveillance systems are deployed in many countries to assist law enforcement

and public safety. Image and video analysis techniques are being designed to extract

information from the videos. Such automated processing would help the operators

and reduce human errors. In this thesis, we describe a visual surveillance system for

monitoring vehicles and detecting potential anomalies. The main contributions are

as follows:

• We proposed a surveillance system with two orthogonal cameras which would

image approaching vehicles from the front and the side without obstructing the

traffic.

• We developed low complexity methods to extract physical information about

each vehicle (such as body type and make). These would enable the system

to estimate the normal ranges of dynamic measurements and help an operator

identify the vehicle.

• We proposed methods for detecting anomalous behavior based on dynamic tra-

jectory measurements (such as velocity). Toward this goal, we devised a co-

ordinate system which compensates for the road curvatures. We developed

methods to detect unexpected changes in the velocity and to identify signifi-

cant maneuvers (e.g. left turns and u-turns).

• We proposed a color correction technique which would make the color features

more reliable across multiple cameras under different illuminations. This tech-

nique was shown to improve the robustness of a color based object tracker.

138

5.2 Future Work

Our look-up table based color management system can be extended in the follow-

ing directions:

• The model based transformation between the display device is constructed for

chosen device settings. If these settings are altered (e.g. brightness and con-

trast) the models and the LUT derived from them will become inaccurate. Since

rebuilding the models for new settings would require computation and user ef-

fort, we would like to find ways to directly “tweak” the LUT to adjust for the

new settings.

• In practical applications, there may be more than one reference displays that

the user’s device should be able to match. This has two implications – (i) the

digital content should have embedded information about the desired reference

display and (ii) the user’s device should be able to select the appropriate LUT

from a collection of LUTs.

Our proposed visual surveillance system can be extended as follows:

• More types of information can be extracted from the video by image analysis

techniques. In paticular, we would like to develop tools to observe and under-

stand the behavior of vehicle occupants.

• The methods described to accomplish different tasks should be robust to chang-

ing conditions (traffic, weather, and lighitng). Developing such methods would

also involve potential use of external illumination including near infrared imag-

ing for night operation.

• The tools for behaviral analysis of vehicles can be extended to detect group ac-

tivities rather than just individual vehicles. This would allow detection of both

synchronized activities and ocurrence of events that affect multiple vehicles.

139

5.3 Publications Resulting from this Work

Journal Articles:

1. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Color Management Using Optimal Three Dimensional Look-Up Tables,” Jour-

nal of Imaging Science and Technology, vol. 54, no. 3, May-June 2010, pp.

030402 (1-14).

2. Satyam Srivastava and Edward J. Delp, “Autonomous Visual Surveillance

of Vehicles for the Detection of Anomalies,” IEEE Transactions on Intelligent

Transport Systems, submitted.

Conference Papers:

1. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Co-Ordinate Mapping

and Analysis of Vehicle Trajectory for Anomaly Detection,” Proceedings of the

IEEE International Conference on Multimedia and Expo, Barcelona, Spain, July

2011 (to appear).

2. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Color Correction for

Object Tracking Across Multiple Cameras,” Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, Prague, Czech

Republic, May 2011 (to appear).

3. Satyam Srivastava and Edward J. Delp, “Standoff Video Analysis for the

Detection of Security Anomalies in Vehicles,” Proceedings of the IEEE Applied

Imagery Pattern Recognition Workshop, Washington DC, October 2010.

4. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Generating Optimal Look-Up Tables to Achieve Complex Color Space Trans-

formations,” Proceedings of the IEEE International Conference on Image Pro-

cessing, Cairo, Egypt, November 2009, pp. 1641-1644.

140

5. Thanh H. Ha, Satyam Srivastava, Edward J. Delp, and Jan P. Allebach,

“Model Based Methods for Developing Color Transformation Between Two

Display Devices,” Proceedings of the IEEE International Conference on Image

Processing, Cairo, Egypt, November 2009, pp. 3793-3796.

6. Thanh H. Ha, Satyam Srivastava, Edward J. Delp, and Jan P. Allebach,

“Monitor Characterization Model Using Multiple Non-Square Matrices for Bet-

ter Accuracy,” Proceedings of the IS&T Color Imaging Conference, Albuquerque,

New Mexico, USA, November 2009, pp. 117-122.

7. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Color Management Using Device Models and Look-Up Tables,” Proceedings of

the Gjøvik Color Imaging Symposium, Gjøvik, Norway, June 2009, pp. 54-61.

8. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Crowd Flow Estimation

Using Multiple Visual Features for Scenes with Changing Crowd Densities,”

Proceedings of the IEEE International Conference on Advanced Video and Sig-

nal based Surveillance, Klagenfurt, Austria, 2011, submitted.

LIST OF REFERENCES

141

LIST OF REFERENCES

[1] C. Poynton, Digital Video and HDTV: Algorithms and Interfaces. San Fran-
sisco, California: Morgan Kaufmann, 2003.

[2] G. Sharma, Ed., Digital Color Imaging Handbook. Boca Raton, Florida: CRC
Press, 2002.

[3] CIE, Commission Internationale de l’Eclairage Proceedings. Cambridge, Mas-
sachusetts: Cambridge University Press, 1931.

[4] ITU - Radiocommunication Sector, “Parameter values for the HDTV stan-
dards for production and international programme exchange,” Recommenda-
tion BT.709-5, Geneva, Switzerland, 2008.

[5] Digital Cinema Initiative, LLC, “Digital cinema system specification,” Adopted
and released document, version 1.2, Hollywood, California, 2008.

[6] S. Upton, “Vista’s new color management system: WCS,” http://www2.
chromix.com/ColorNews/index.cxsa, Accessed January 2009.

[7] International Organization for Standardization, “Image technology colour man-
agement - architecture, profile format and data structure - part 1: Based on
ICC.1:2004-10,” ISO 15076-1:2005, Geneva, Switzerland, 2005.

[8] N. Koren, “Color management and color science: Introduction,” http://www.
normankoren.com/color_management.html, Accessed January 2009.

[9] International Organization for Standardization, “Portable network graphics
(PNG) specification,” ISO/IEC 15948:2003, Geneva, Switzerland, 2003.

[10] Adobe Systems Inc., “Encapsulated PostScript - file format specification,” Tech
note 5002, San Jose, CA, 1992.

[11] D. Richardson, “Firefox 3: Color profile support,” http://www.dria.org/
wordpress/archives/2008/04/29/633/, Accessed January 2009.

[12] M. D. Fairchild, “A color scientist looks at video,” Proceedings of the Interna-
tional Workshop on Video Processing and Quality Metrics for Consumer Elec-
tronics, Scotsdale, Arizona, January 2007.

[13] S. Shaw, “Digital intermediate: A real world guide to the DI process,” http:
//www.digitalpraxis.net/zippdf/di-guide.pdf, Accessed January 2009.

[14] Colour Science AG, “Test images for monitor and printer calibration,” http:
//www.colour-science.com/, Accessed October 2008.

142

[15] C. S. McCamy, H. Marcus, and J. G. Davidson, “A color-rendition chart,”
Journal of Applied Photographic Engineering, vol. 2, no. 3, 1976.

[16] S. A. Henley and M. D. Fairchild, “Quantifying mixed adaptation in cross-media
color reproduction,” Proceedings of the IS&T/SID Color Imaging Conference,
Scotsdale, Arizona, November 2000, pp. 305–310.

[17] N. Katoh et al., Chromatic Adaptation under Mixed Illumination Condition
when Comparing Softcopy and Hardcopy Images. Vienna, Austria: Technical
Committee 8 of the CIE, 2004.

[18] Adobe Systems, Inc., “Matching RGB color from monitor to printer,” Tech note
5122, San Jose, California, 1992.

[19] B. Robertson, “The colorists,” http://featres.cgsociety.org/story_
custom.php?story_id=3549, Accessed January 2009.

[20] The Internet Movie Database, “Touchstone pictures (US),” http://www.imdb.
com/company/co0049348/, Accessed January 2009.

[21] G. Gill, “What’s wrong with the ICC profile format anyway?” http://www.
argyllcms.com/icc_problems.html, Accessed February 2009.

[22] P. Green, “New developments in ICC colour management,” Proceedings of Dig-
ital Futures: International Standards around Printing and Imaging, London,
UK, October 2008.

[23] C. Starr, “An introduction to color management,” http://
aaaprod.gsfc.nasa.gov/teas/CindyStarr_GST/ColorMgmt5examples/
ColorMgmt5examples.PPT, Accessed February 2009.

[24] R. W. G. Hunt, The Reproduction of Color. Hoboken, New Jersey: Wiley,
2004.

[25] International Color Consortium, “File formats for color profiles,” ICC.1:2001-
04, Reston, Virginia, 2001.

[26] J. V. Kries, Chromatic Adaptation. Friboug, Switzerland: Festschrift der
Albrecht-Ludwig-Universitat, 1902.

[27] International Color Consortium, “The role of ICC profiles in a colour repro-
duction system,” ICC White Paper: http://www.color.org/ICC_white\
_paper_7_role_of_ICC_profiles.pdf, December 2004.

[28] Heidelberger Druckmaschinen AG, “Generation and application of de-
vicelink profiles,” Prinect Color Solutions: http://www.heidelberg.com/
www/html/en/binaries/files/prinect/device_link_profile_pdf, Ac-
cessed February 2010.

[29] Microsoft Corporation, “Using device profiles with WCS,” http:
//msdn.microsoft.com/en-us/library/dd372213\%28VS.85\%29.aspx,
Accessed February 2010.

[30] M. Maria, “Little CMS engine,” http://www.littlecms.com/TUTORIAL.TXT,
Accessed February 2010.

143

[31] M. R. Balonen-Rosen and J. E. Thornton, “User-interactive corrective tuning
of color profiles,” United States Patent 6,307,961, 2001.

[32] M. D. Fairchild, Color Appearance Models. Chichester, UK: Wiley, 2005.

[33] G. J. D. Smith, “Behind the screens: Examining constructions of deviance and
informal practices among CCTV control room operators in the UK,” Surveil-
lance and Society, vol. 2, no. 2-3, pp. 376–395, 2004.

[34] J. Tullio et al., “Experience, adjustment, and engagement: The role of video in
law enforcement,” Proceedings of the ACM Conference on Human Factors in
Computing Systems, Atlanta, Georgia, April 2010, pp. 1505–1514.

[35] E. Wallace and C. Diffley, “CCTV control room ergonomics,” Technical Report
14/98, Police Scientific Development Branch, UK Home Office, 1998.

[36] N. Haering, P. L. Venetianer, and A. Lipton, “The evolution of video surveil-
lance: an overview,” Machine Vision and Applications, vol. 19, no. 5-6, pp.
279–290, September 2008.

[37] P. Meer, Emerging Topics in Computer Vision. Englewood Cliffs, New Jersey:
Prentice Hall, 2004.

[38] H. M. Dee and S. A. Velastin, “How close are we to solving the problem of
automated visual surveillance?” Machine Vision and Applications, vol. 19, no.
5-6, pp. 329–343, September 2008.

[39] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A real-time computer
vision system for vehicle tracking and traffic surveillance,” Transportation Re-
search: Part C, vol. 6, no. 4, pp. 271–288, August 1998.

[40] R. T. Collins et al., “A system for visual surveillance and monitoring,” Final
Report CMU-RI-TR-00-12, Carnegie Mellon University, 2000.

[41] J. Aguilera et al., “Visual surveillance for airport monitoring applications,”
Proceedings of the Computer Vision Winter Workshop, Telc, Czech Republic,
February 2006.

[42] X. Li and F. M. Porikli, “A hidden markov model framework for traffic event de-
tection using video features,” Proceedings of the IEEE International Conference
on Image Processing, vol. 5, Singapore, October 2004, pp. 2901–2904.

[43] Y. Tian et al., “IBM smart surveillance system (s3): event based video surveil-
lance system with an open and extensible framework,” Machine Vision and
Applications, vol. 19, no. 5-6, pp. 315–327, September 2008.

[44] D. Gutchess et al., “Video surveillance of pedestrians and vehicles,” Proceedings
of the SPIE: Acquisition, Tracking, Pointing, and Laser Systems Technologies,
vol. 6569, Orlando, Florida, April 2007.

[45] T. H. Ha, S. Srivastava, E. J. Delp, and J. P. Allebach, “Model based methods
for developing color transformation between two display devices,” Proceedings of
the IEEE International Conference on Image Processing, Cairo, Egypt, Novem-
ber 2009, pp. 3793–3796.

144

[46] R. S. Berns, “Methods for characterizing CRT displays,” Displays, vol. 16, 1996.

[47] O. Arslan, Z. Pizlo, and J. P. Allebach, “CRT calibration techniques for better
accuracy including low-luminance colors,” Proceedings of the SPIE/IS&T Con-
ference on Color Imaging: Processing, Hardcopy, and Applications, vol. 5293,
San Jose, California, January 2004, pp. 18–22.

[48] N. Katoh, T. Deguchi, and R. S. Berns, “An accurate characterization of CRT
monitor (i) verification of past studies and clarifications of gamma,” Optical
Review, vol. 8, no. 5, pp. 305–314, September-October 2001.

[49] C. D. Boor, Guide to Splines. New York: Springer, 2001.

[50] G. Kennel, Color and Mastering for Digital Cinema. St. Louis, Missouri: Focal
Press, 2006.

[51] S. Bianco, F. Gasparini, A. Russo, and R. Schettini, “A new method for RGB to
XYZ transformation based on pattern search optimization,” IEEE Transactions
on Consumer Electronics, vol. 53, no. 3, 2007.

[52] R. M. Lewis and V. Torczon, “Pattern search methods for linearly constrained
minimization,” SIAM Journal on Optimization, vol. 10, no. 3, pp. 917–941,
February-March 2000.

[53] K. M. Braun, M. D. Fairchild, and P. J. Alessi, “Viewing techniques for cross-
media image comparisons,” Color Research & Application, vol. 21, no. 1, pp.
6–17, 1996.

[54] R. W. G. Hunt and L. M. Winter, “Colour adaptation in picture-viewing situ-
ations,” Journal of Photographic Science, vol. 23, pp. 112–115, 1975.

[55] E. D. Montag and M. D. Fairchild, “Evaluation of chroma clipping tech-
niques for three destination gamuts,” Proceedings of the IS&T/SID Color Imag-
ing Conference: Color Science, Systems and Applications, Scotsdale, Arizona,
November 1998, pp. 57–61.

[56] R. S. Gentile, E. Walowit, and J. P. Allebach, “A comparison of techniques for
color gamut mismatch compensation,” Journal of Imaging Technology, vol. 16,
no. 5, pp. 176–181, October 1990.

[57] J. Morovik, “To develop a universal gamut mapping algorithm,” Doctoral dis-
sertation, University of Derby, Derby, UK, 1998.

[58] The MathWorks, “Optimization toolbox,” http://www.mathworks.com/
access/helpdesk/help/toolbox/optim/index.html, Accessed June 2008.

[59] H. R. Kang, “3D Lookup Table With Interpolation,” Color Technology for
Electronic Imaging Devices. Bellingham, Washington: SPIE Press, January
1997.

[60] P. C. Pugsley, “Colour correcting image reproducing methods and apparatus,”
United States Patent 3,893,166, 1975.

[61] H. Kotera et al., “Color separating method and apparatus using statistical
techniques,” United States Patent 4,090,243, 1978.

145

[62] M. Abdulwahab, J. L. Burkhardt, and J. J. McCann, “Method of and apparatus
for transforming color image data on the basis of an isotropic and uniform
colorimetric space,” United States Patent 4,839,721, 1989.

[63] J. J. McCann, “High-resolution color photographic reproductions,” Proceedings
of the SPIE: Very High Resolution and Quality Imaging II, vol. 3025, San Jose,
California, February 1997, pp. 53–59.

[64] J. J. McCann, “Color spaces for color mapping,” Journal of Electronic Imaging,
vol. 8, no. 4, pp. 354–364, October 1999.

[65] J. J. McCann, “Digital color transforms applied to fine art reproduction,” Pro-
ceedings of the International Conference on Imaging Science and Hardcopy,
Guilin, China, May 1995, pp. 377–379.

[66] S. Srivastava, T. H. Ha, E. J. Delp, and J. P. Allebach, “Generating optimal
look-up tables to achieve complex color space transformations,” Proceedings of
the IEEE International Conference on Image Processing, Cairo, Egypt, Novem-
ber 2009, pp. 1641–1644.

[67] R. Bala and V. Klassen, “Efficient implementation of color transformations,”
Digital Color Imaging Handbook, G. Sharma, Ed. Boca Raton, FL: CRC Press,
2002.

[68] D. Kidner, M. Dorey, and D. Smith, “What’s the point? interpolation and
extrapolation with a regular grid DEM,” Proceedings of the International Con-
ference on GeoComputation, Fredericksburg, Virginia, July 1999.

[69] D. Shepard, “A two-dimensional interpolation function for irregularly-shaped
data,” Proceedings of the ACM National Conference, Princeton, New Jersey,
January 1968, pp. 517–524.

[70] J. Z. Chang, J. P. Allebach, and C. A. Bouman, “Sequential linear interpolation
of multidimensional functions,” IEEE Transactions on Image Processing, vol. 6,
no. 9, pp. 1231–1245, September 1997.

[71] J. M. Kasson, S. I. Nin, W. Plouffe, and L. James, “Performing color space
conversions with three dimensional linear interpolation,” Journal of Electronic
Imaging, vol. 4, no. 3, pp. 226–250, July 1995.

[72] H. Hou and H. Andrews, “Cubic splines for image interpolation and digital fil-
tering,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 26,
no. 6, pp. 508–517, December 1978.

[73] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part I -
Theory,” IEEE Transactions on Signal Processing, vol. 41, no. 2, pp. 821–833,
February 1993.

[74] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part II -
Efficiency, design and applications,” IEEE Transactions on Signal Processing,
vol. 41, no. 2, pp. 834–848, February 1993.

[75] I. E. Bell and W. Cowan, “Device characterization using spline smoothing and
sequential linear interpolation,” Proceedings of the IS&T/SID Color Imgaing
Conference: Color Science, Systems, and Applications, vol. 2, Scottsdale, Ari-
zona, November 1994, pp. 29–32.

146

[76] G. Sharma and M. Q. Shaw, “Thin-plate splines for printer data interpo-
lation,” Proceedings of the European Signal Processing Conference, Florence,
Italy, September 2006.

[77] V. Monga and R. Bala, “Sort-select-damp: An efficient strategy for color look-
up table lattice design,” Proceedings of the IS&T/SID Color Imaging Confer-
ence: Color Science and Engineering Systems, Technologies and Applications,
Portland, Oregon, November 2008, pp. 247–253.

[78] V. Monga and R. Bala, “Algorithms for color look-up-table (lut) design via joint
optimization of node locations and output values,” Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, Dallas,
Texas, March 2010, pp. 998–1001.

[79] R. M. Lewis and V. Torczon, “Pattern search methods for bound constrained
minimization,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 1082–1099,
September 1999.

[80] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal
on Optimization, vol. 7, no. 1, pp. 1–25, February 1997.

[81] The Mathworks Inc., “Finding minimum of functions using pattern
search,” http://www.mathworks.com/access/helpdesk/help/toolbox/
gads/patternsearch.html, Accessed February 2010.

[82] Sandia Corporation, “OPT++: an object-oriented nonlinear optimization li-
brary,” https://software.sandia.gov/opt++/, Accessed February 2010.

[83] E. Dolan and V. Torczon, “C++ class-based pattern search,” http://www.cs.
wm.edu/\~va/software/PatternSearch/, Accessed Februrary 2010.

[84] T. Newman, “Improved color for the world wide web: A case study in color
management for distributed digital media,” http://www.color.org/wpaper2.
xalter, Accessed March 2009.

[85] A. M. McIvor, “Background subtraction techniques,” Proceedings of Image and
Vision Computing, Hamilton, New Zealand, November 2000, pp. 147–153.

[86] C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using real-time
tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 8, pp. 747–757, August 2000.

[87] N. Ohta, “A statistical approach to background supression for surveillance sys-
tems,” Proceedings of the International Conference on Computer Vision, Van-
couver, Canada, July 2001, pp. 481–486.

[88] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh, “Background modeling and
subtraction of dynamic scenes,” Proceedings of the International Conference on
Computer Vision, Nice, France, October 2003, pp. 1305–1312.

[89] S. J. McKenna and S. Gong, “Tracking color objects using adaptive mixture
models,” Image and Vision Computing, vol. 19, pp. 225–231, 1999.

[90] M. Seki, H. Fujiwara, and K. Sumi, “A robust background subtraction method
for changing background,” Proceedings of the Workshop on Applications of
Computer Vision, Palm Springs, California, December 2000, pp. 207–213.

147

[91] S. Y. Cheung, S. Coleri, B. Dundar, S. Ganesh, C. Tan, and P. Varaiya, “Traf-
fic measurement and vehicle classification with single magnetic sensor,” Trans-
portation Research Record, vol. 1917, no. 19, pp. 173–181, 2005.

[92] X. Song and R. Nevatia, “A model-based vehicle segmentation method for track-
ing,” Proceedings of the International Conference on Computer Vision, vol. 2,
Beijing, China, October 2005, pp. 1124–1131.

[93] R. P. Avery, Y. Wang, and G. S. Rutherford, “Length-based vehicle classifica-
tion using images from uncalibrated video cameras,” Proceedings of the IEEE
International Conference on Intelligent Transportation Systems, Washington,
D.C., October 2004, pp. 737–742.

[94] C. Huang and W. Liao, “A vision-based vehicle identification system,” Proceed-
ings of the International Conference on Pattern Recognition, vol. 4, Cambridge,
UK, August 2004, pp. 364–367.

[95] B. Morris and M. Trivedi, “Robust classification and tracking of vehicles in traf-
fic video streams,” Proceedings of the IEEE Intelligent Transportation Systems
Conference, Toronto, Canada, September 2006, pp. 1078–1083.

[96] A. H. S. Lai and N. H. C. Yung, “Vehicle type identification through automated
virtual loop assignment and block-based direction-biased motion estimation,”
IEEE Trasactions on Intelligent Transportation Systems, vol. 1, no. 2, pp. 86–
97, June 2000.

[97] R. J. Barnett, “Wireless remote tire parameter measurement method and ap-
paratus,” United States Patent 6,448,891, 2002.

[98] V. S. Petrovic and T. F. Cootes, “Vehicle type recognition with match re-
finement,” Proceedings of the International Conference on Pattern Recognition,
vol. 3, Cambridge, UK, August 2004, pp. 95–98.

[99] X. Clady, P. Negri, M. Milgram, and R. Poulenard, “Multi-class vehicle type
recognition system,” Proceedings of the International Workshop on Artificial
Neural Networks in Pattern Recognition, Paris, France, July 2008, pp. 228–239.

[100] D. Lowe, “Distinctive image features from scale-invarant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–100, 2004.

[101] L. Dlagnekov, “Video-based car surveillance: License plate, make and model
recognition,” Masters Thesis, University of California, San Diego, 2005.

[102] D. A. Torres, “More local structure information for make-model recognition,”
Project report, CSE252, University of California, San Diego, 2005.

[103] I. Zafar, E. A. Erdisinghe, S. Acar, and H. E. Bez, “Two dimensional statistical
linear discriminant analysis for real-time robust vehicle type recognition,” Pro-
ceedings of IS&T/SPIE Electronic Imaging: Real Time Image Processing, vol.
6496, San Jose, California, January-February 2007.

[104] I. Sobel and G. Feldman, “A 3 × 3 isotropic gradient operator for image pro-
cessing,” Unpublished, presented at Stanford Artificial Project, 1968.

148

[105] Vehicle and U. Operator Safety Agency, “Vehicle safety: the dangers
of overloading,” Guidance sheet: http://www.dvtani.gov.uk/uploads/
compliance/VOSA_VehicleSafety_DangersofOverloading.pdf, Accessed:
July 2010.

[106] S. H. Dockstader, “Motion trajectory classification for visual surveillance and
tracking,” Proceedings of the IEEE International Conference on Advanced Video
and Signal Based Surveillance, Sydney, Australia, November 2006.

[107] S. Srivastava and E. J. Delp, “Standoff video analysis for the detection of secu-
rity anomalies in vehicles,” Proceedings of the IEEE Applied Imagery Pattern
Recognition Workshop, Washington, DC, October 2010.

[108] L. Dlagnekov, “Video-based car surveillance: License plate, make and model
recognition,” Masters Thesis, University of California, San Diego, 2005.

[109] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance
of object motion and behaviors,” IEEE Transactions on Systems, Man, and
Cybernetics – Part C: Applications and Reviews, vol. 34, no. 3, pp. 334–352,
August 2004.

[110] B. T. Morris and M. M. Trivedi, “A survey of vision-based trajectory learning
and analysis for surveillance,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 18, no. 8, pp. 1114–1127, August 2008.

[111] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia, “Event detec-
tion and analysis from video streams,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, no. 8, pp. 873–889, August 2001.

[112] T. Zhang, H. Lu, and S. Li, “Learning semantic scene models by object clas-
sification and trajectory clustering,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Miami, Florida, June 2009, pp.
1940–1947.

[113] A. Basharat, A. Gritai, and M. Shah, “Learning object motion patterns for
anomaly detection and improved object detection,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska,
June 2008, pp. 1–8.

[114] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Real-time surveillance of peo-
ple and their activitis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 809–830, August 2000.

[115] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Com-
puting Surveys, vol. 38, no. 4, December 2006.

[116] S. Gupte, O. Masoud, R. F. K. Martin, and N. P. Panikolopoulos, “Detection
and classification of vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 3, no. 1, pp. 37–47, March 2002.

[117] K. K. Ng and D. Edward J, “Object tracking initialization using automatic
moving object detection,” Proceedings of IS&T/SPIE Electronic Imaging: Vi-
sual Information Processing and Communication, San Jose, California, January
2010.

149

[118] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle
filters for on-line non-linear/non-gaussian bayesian tracking,” IEEE Transac-
tions on Signal Processing, vol. 50, no. 2, pp. 174–188, February 2002.

[119] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
New York: Cambridge University Press, 2004.

[120] I. L. Dryden and K. V. Mardia, Statistical Shape Analysis. New Jersey: Wiley,
1998.

[121] J. C. Gower and G. B. Dijksterhuis, Procrustes Problems. Oxford, UK: Oxford
University Press, 2004.

[122] J. Harguess and J. K. Aggarwal, “Semantic labeling of track events using time
series segmentation and shape analysis,” Proceedings of the IEEE International
Conference on Image Processing, Cairo, Egypt, November 2009, pp. 4317 –
4320.

[123] L. M. Brown, “Example-based color vehicle retrieval for surveillance,” Proceed-
ings of the IEEE International Conference on Advanced Video and Signal-Based
Surveillance, Boston, Massachusettes, August-September 2010, pp. 91–96.

[124] F. Porikli, “Inter-camera color calibration by correlation model function,” Pro-
ceedings of the IEEE International Conference on Image Processing, Barcelona,
Spain, September 2003, pp. 133–136.

[125] A. Gilbert and R. Bowden, “Tracking objects across cameras by incrementally
learning inter-camera colour calibration and patterns of activity,” Proceedings
of the European Conference on Computer Vision, Graz, Austria, May 2006, pp.
125–136.

[126] Y. Choi, Y. Lee, and W. Cho, “Color correction for object identification
from imges with different color illumination,” Proceedings of the International
Conference on Networked Computing and Advanced Information Management,
Seoul, Korea, August 2009, pp. 1598–1603.

[127] B. Fraser, C. Murphy, and F. Bunting, Real World Color Management. Berke-
ley, California: Peachpit Press, 2004.

[128] F. M. Verdu, J. Pujol, and P. Capilla, “Characterization of a digital camera as
an absolute tristimulus colorimeter,” Journal of Imaging Science and Technol-
ogy, vol. 47, no. 4, pp. 279–295, July-August 2003.

[129] K. K. Ng and E. J. Delp, “New models for real-time tracking using particle
filtering,” Proceedings of SPIEIS&T Electronic Imaging: Visual Communica-
tions and Image Processing, vol. 7257, San Jose, California, January 2009, pp.
72 570B:1–12.

[130] K. Nummiaro, E. Koller-Meier, and L. V. Gool, “Color features for tracking
non-rigid objects,” Chinese Journal of Automation - Special Issue on Visual
Surveillance, vol. 29, no. 3, pp. 345–355, May 2003.

[131] S. Srivastava, T. H. Ha, J. P. Allebach, and E. J. Delp, “Color management
using optimal three dimensional look-up tables,” Journal of Imaging Science
and Technology, vol. 54, no. 3, pp. 402:1 – 402:14, May-June 2010.

150

[132] C. Yang-Ho, I. M. Hye-Bong, and H. A. Yeong-Ho, “Inverse characterization
method of alternate gain-offset-gamma model for accurate color reproduction
in display devices,” Journal of Imaging Science and Technology, vol. 50, no. 2,
pp. 139–148, March-April 2006.

[133] LPROF project team, “LPROF ICC profiler,” http://lprof.sourceforge.
net/, Accessed April 2009.

[134] Committee for Graphics Arts Technologies Standards, “Graphic technology -
color transmission target for input scanner calibration,” ANSI Technical stan-
dard IT8.7/1-1993, Reston, Virginia, 2008.

[135] K. M. Lam, “Metamerism and colour constancy,” Doctoral dissertation, Uni-
versity of Bradford, Bradford, UK, 1985.

[136] M. R. Luo and R. W. G. Hunt, “The structure of the CIE 1997 colour appear-
ance model (CIECAM97s),” Color Research and Applications, vol. 23, no. 3,
pp. 138–146, December 1998.

[137] The Next Generation Simulation (NGSIM) Community, “Data sets,” Web
archive: http://ngsim-community.org/, Accessed: May 2010.

[138] “Google maps,” Online: http://maps.google.com, Accessed: August 2010.

VITA

151

VITA

Satyam Srivastava was born in Rai Bareilly, Uttar Pradesh, India. He obtained

his Bachelor of Engineering (Honors) degree in Electrical and Electronics Engineering

(EEE) at Birla Institute of Technology and Science, Pilani, India in 2006. He was

recognized as the Best Out-Going Student in the EEE Class of 2006.

Satyam joined the Direct PhD program at Purdue university, West Lafayette,

Indiana in 2007. Since then, he has served as Teaching Assistant for the School of

Electrical and Computer Engineering and as Research Assistant at the Video and Im-

age Processing Laboratory (VIPER). His major advisor Professor Edward J. Delp is

the Charles William Harrison Distinguished Professor of Electrical and Computer En-

gineering. While in the graduate program, Satyam has worked on projects sponsored

by the Indiana 21st Century Research and Technology Fund, the United State De-

partment of Homeland Security, and the United States Naval Research Laboratory.

His current research interests include image and video processing, image analysis,

color science, human and machine vision, and information theory.

Satyam is a student member of the IEEE and the IEEE Signal Processing Society.

152

Satyam Srivastava’s publications from this research work include:

Journal Articles:

1. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Color Management Using Optimal Three Dimensional Look-Up Tables,” Jour-

nal of Imaging Science and Technology, vol. 54, no. 3, May-June 2010, pp.

030402 (1-14).

2. Satyam Srivastava and Edward J. Delp, “Autonomous Visual Surveillance

of Vehicles for the Detection of Anomalies,” IEEE Transactions on Intelligent

Transport Systems, submitted.

Conference Papers

1. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Co-Ordinate Mapping

and Analysis of Vehicle Trajectory for Anomaly Detection,” Proceedings of the

IEEE International Conference on Multimedia and Expo, Barcelona, Spain, July

2011 (to appear).

2. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Color Correction for Ob-

ject Tracking Across Multiple Cameras,” Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic,

May 2011 (to appear).

3. Satyam Srivastava and Edward J. Delp, “Standoff Video Analysis for the

Detection of Security Anomalies in Vehicles,” Proceedings of the IEEE Applied

Imagery Pattern Recognition Workshop, Washington DC, October 2010.

4. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp, “Gen-

erating Optimal Look-Up Tables to Achieve Complex Color Space Transforma-

tions,” Proceedings of the IEEE International Conference on Image Processing,

Cairo, Egypt, November 2009, pp. 1641-1644.

5. Thanh H. Ha, Satyam Srivastava, Edward J. Delp, and Jan P. Allebach,

“Model Based Methods for Developing Color Transformation Between Two Dis-

153

play Devices,” Proceedings of the IEEE International Conference on Image Pro-

cessing, Cairo, Egypt, November 2009, pp. 3793-3796.

6. Thanh H. Ha, Satyam Srivastava, Edward J. Delp, and Jan P. Allebach,

“Monitor Characterization Model Using Multiple Non-Square Matrices for Bet-

ter Accuracy,” Proceedings of the IS&T Color Imaging Conference, Albuquerque,

New Mexico, USA, November 2009, pp. 117-122.

7. Satyam Srivastava, Thanh H. Ha, Jan P. Allebach, and Edward J. Delp,

“Color Management Using Device Models and Look-Up Tables,” Proceedings of

the Gjøvik Color Imaging Symposium, Gjøvik, Norway, June 2009, pp. 54-61.

8. Satyam Srivastava, Ka Ki Ng, and Edward J. Delp, “Crowd Flow Estimation

Using Multiple Visual Features for Scenes with Changing Crowd Densities,”

Proceedings of the IEEE International Conference on Advanced Video and Signal

based Surveillance, Klagenfurt, Austria, 2011, submitted.

	srivastava_satyam_etd_form_9[1]
	srivastava_satyam_form_20[1]
	Final_Thesis

