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ABSTRACT

Xu, Chang. Ph.D., Purdue University, May 2014. Volume Estimation and Image Quality
Assessment with Application in Dietary Assessment and Evaluation. Major Professor:
Edward J. Delp.

Measuring accurate dietary intake is considered to be an open research problem in the

nutrition and health fields.

Our team at Purdue University and the University of Hawaii Cancer Center have been

developing an image analysis system to automatically estimate energy and nutrient intake

from food images acquired by mobile devices for the past six years with support from

the National Institutes of Health. This system known as the Technology Assisted Dietary

Assessment System (TADA) has developed a mobile telephone food record (mpFR) appli-

cation and deployed it on iOS and Android devices. The TADA system can automatically

identify and quantify foods and beverages consumed based on analyzing meal images cap-

tured with a mobile device. After food items are segmented and identified, accurately

reconstructing the volume of the food in the image is important for determining the nu-

trient content of the food. Once food portion size is estimated using volume and density

information of the food items, the energy and nutrient information of the meal are obtained.

In this thesis, we investigate the improvement of several aspects of the TADA system.

We describe methods for food volume estimation, image quality assessment, and color cor-

rection. We propose a novel food portion size estimation method with the use of the 3D

reconstruction and pose estimation methods based on a single image or multiple images.

The single-view method estimates food volume by using prior information - segmenta-

tion and food labels generated from food identification methods in TADA. A 3D object

model is reconstructed for each food item on the meal image using the prior shape in-

formation. Then, we determine the pose of the 3D model by projecting it onto the meal



xvii

image. Subsequently, the food volume is estimated by matching the projection image of

the transformed 3D model with the segment of the food item. We also implemented a

multi-view shape recovery method using “Shape from Silhouettes” methods. We evaluated

our single-view volume estimation models using food datasets from a 24 hour controlled

eating occasion study and a free-living study with 56 food types. Apart from food volume

estimation, we also investigate how to refine the volume estimate based on user adjustment

from TADA/mpFR system. With the user feedback, corrected labels and hand segments,

we obtained better food segmentation using active contours and consequentially improve

the volume estimation.

Food identification is a difficult problem since foods can dramatically vary in appear-

ance. Such variations may arise not only from non-rigid deformations and intra-class vari-

ability in shape, texture, color and other visual properties, but also from changes in illumi-

nation and viewpoint. Therefore, it is very important to assist the user in requiring a good

quality image by providing immediate feedback about the image quality. Low complexity

image quality measures which are deployed on mpFR are also investigated. Furthermore,

to address the color consistency problem, three color correction methods are proposed for

illumination quality assessment.



1

1. INTRODUCTION

The last several years have seen a growing interest in preventing and/or managing chronic

diseases related to diet, including obesity, cancer, diabetes, and heart disease. Among ten

major causes of death in the US, six of them are related to diet. Accurate food intake and di-

etary record provides helpful information in preventing the occurrences of chronic diseases.

Traditional dietary assessment methods [1, 2] have been developed to measure dietary in-

take. Unfortunately, fine grain assessment and proactive health management of diet does

not currently exist. The accuracy of these methods is debatable, especially in adolescents,

because the consistent under-reporting is found in these dietary measurement methods.

Therefore, accurate dietary assessment is still considered to be an open research prob-

lem, and dietary assessment methods that are less burdensome and less time-consuming

are highly demanded in the nutrition and health research community. A convenient and

portable dietary assessment method which could lead to tailored dietary goal setting by

adults in tandem with their healthcare providers would be a transformation tool in assist-

ing healthcare providers in this effort. The rapidly developed mobile technologies (e.g. a

mobile telephone or PDA-like device) in recent years have emerged in healthcare field to

provide unique mechanisms to monitor eating habits of users and improve the accuracy of

dietary and food intake assessment [3–12].

1.1 Traditional Methods for Dietary Assessment

Traditional dietary assessment is comprised of written and orally reported methods that

are time consuming and tedious, often require a nutrition professional to complete, and are

not widely acceptable or feasible for everyday monitoring [13]. The error inherent in these

methods is a barrier in developing care plans that actually match what people eat. Error

is introduced in several ways: underreporting, estimated to be as high as 50% [14]; the
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human inability to estimate food portion size accurately [3]; and as such, consumed energy

and nutrients are incorrectly estimated. Existing technology approaches are either digital

versions of traditional recording methods [15] [16] [17] or just provide ways to record food

images [18] [19]. The steps needed to identify the foods and determine the portion and

serving sizes were described as limited and lacking flexibility [20].

Real-time personal health monitoring is becoming accessible due to advances in tech-

nology. There has been an explosion of health-related applications developed on mobile

platforms. The use of meal images using mobile telephones with embedded cameras de-

signed to identify foods and beverages addresses the barriers indicated by individuals en-

gaged in diabetes self-management [21, 22].

1.2 Technology Assistant Dietary Assessment System

Our team at Purdue University and the University of Hawaii Cancer Center have been

developing an image analysis system to automatically estimate energy and nutrient intake

from food images acquired by mobile devices for the past six years with support from the

National Institutes of Health. This system is known as the Technology Assisted Dietary

Assessment System (TADA) (www.tadaproject.org). Our team has developed a mobile

telephone food record (mpFR) application and deployed it on iOS and Android devices

[3–9,12,23–25]. A mobile telephone with a built-in camera is used to acquire meal images

at each eating occasion to record dietary intake. Images of food taken before and after

eating allow for automatic labeling and volume estimation of consumed food using image

analysis methods [8, 25–27].

The TADA system is currently being used by dietitians and nutritionists in various

departments at Purdue University, the University of Hawaii Cancer Center, and the Curtin

University of Technology in Australia. This system has been tested with more than 300

users and we have collected more than 20,000 eating occasion images containing foods

and beverages. Figure 1.1 shows the TADA system.
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Fig. 1.1. The architecture of the TADA system.

The TADA system process starts with the user acquiring food images with the mpFR

and sending the images and various types of contextual data (e.g. date, time, and geolo-

cation) to the server (step 1). Automatic analysis (e.g. image segmentation, food identi-

fication, context processing and weight estimation) is done on the server (step 2 and step

3). The labeled images with food types are sent back to the user to confirm and/or ad-

just the image analysis results, if necessary (step 4 and step 5). Based on the feedback

information from users, the server refines image analysis results of food identification and

weight estimation in previous steps. An extended version of the USDA Food and Nutrient

Database for Dietary Studies (FNDDS) [5, 28, 29] is used for estimating the energy and

nutrient information given a food label and weight (step 6). The database contains the most

common foods in the US, their weights, nutrient values, and food densities [30,31]. Finally,
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these results are sent to the user and the healthcare community for presentation of dietary

recommendations and planning (step 7 and 8).

Since we are interested in knowing how much food is consumed we need to have a 3D

calibrated imaging system. In the current version of the TADA system, a user takes only one

image of the food and 3D models are used to construct the 3D object. Whatever approach

is used, we still need a calibrated imaging system that is calibrated both spatially and with

respect to the colors represented in the scene. We have chosen to use a checkerboard-

like design as a particular type of “fiducial marker” for our calibration information. The

fiducial marker is included in every image to provide a reference for the scale and pose

of the objects in the scene. After exploring and testing several designs, we decided to use

a compact checkerboard pattern. This is described in more detail in [4, 32]. The current

version of the checkerboard is a small (7 × 6 cm2) asymmetric color checkerboard (see

Figure 1.2) with 5 × 4 square dimensions, rigid mounting on foam board, and a high

contrast pattern. The colors of the checkerboard are chosen as uniform in the color space

as possible. Consequentially, this checkerboard is used to calibrate both geometry and the

color representation in the meal scene. Automatic detection of the checkerboard and color

correction using the checkerboard will be introduced in this thesis in Section 4.2.

Spatial calibration could also be accomplished by having a known object in the scene,

such as a coin, credit card, or a plate [33]. However, due to the variations in the size of some

of these objects, they may not be reliable. Several studies we conducted in the Department

of Nutrition Science at Purdue University indicate our credit-card-sized checkerboard is

convenient to carry around and incorporate into the participants’ lifestyle [34].

Color features play a crucial role in food identification and many food items have

closely related colors [5, 25, 35] while there is a wide range of illumination conditions

for different eating occasions. Thus, color correction plays a crucial role in dietary assess-

ment methods [8, 36, 37]. Most of these methods use some fiducial markers for estimating

unknown illumination conditions and subsequently color correction methods for mapping

the test image back to the reference illumination conditions. Similarly, the fiducial marker
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plays a key role in 3D reconstruction from 2D images for estimating the volumes of differ-

ent food items [27, 36].

One of our goals is to detect the “quality” of the image as the user acquires it with

the mpFR. For example, if we detect a poor quality image we can then ask the user to re-

take the image. Apart from the general notion of image quality such as sharpness, in the

context of dietary assessment, good quality images need to satisfy specific requirements

such as the presence of a fiducial marker and appropriate camera angle. Based on our user

studies the most significant reasons for poor quality images are: non-detectable fiducial

marker (forgetting to use the fiducial marker or overexposed/blurred images), spectral re-

flections, shadows, insufficient illumination, and blur. Doing image quality assessment on

the TADA backend server and sending back the response to the user is not feasible in most

circumstances due to associated network and computation delays. Mobile devices have

limited computation power and the image quality assessment needs to be performed before

the image is sent to the server for further processing. Therefore, these methods must use

low computation and memory resources. The methods described in this thesis have been

deployed on the mpFR without adding any perceptible delay in the “image capture step.”

Fig. 1.2. An example of the color fiducial marker used in the TADA system.

This thesis will first introduces several volume estimation methods for food portion

size measurement. After the food images are segmented and classified (the food item is

identified) the volume of the food is estimated. Several single-view and multi-view vol-

ume estimation methods are described in this thesis and some traditional methods for 3D

reconstruction are introduced in the following sections.
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Then, we will describe image color quality assessment methods using mobile devices

and post processing for color correction. While some of the correction steps can be done on

the mobile device, computationally intensive steps including color correction are done on

the server. We have found that a fast illumination check can be implemented on the mobile

device without adding any perceptible delay in the image capture process.

1.3 Segmentation and Identification in the TADA System

Full utilization of the side information provided by the use of a checkerboard and

other contextual information is very important for dealing with the challenges involved

in food classification and volume estimation from a single image. Previous work on the

TADA system has investigated methods for food classification and volume estimation.

Food identification is a difficult problem since foods can dramatically vary in appear-

ance [4, 5, 11, 12, 25, 35, 38, 39]. Such variations can be caused by changes in food ar-

rangement, inter-class variability, background clutter, cooking/food preparation variations,

and changes in illumination and viewpoint. Some of these problems have been addressed

by the TADA research team [11, 12, 40, 41].

After image acquisition, image segmentation techniques are used to locate the ob-

ject boundaries for food items. The segmented regions are then used for food label-

ing/identification and volume estimation. Earlier work in the TADA system has developed

a joint iterative segmentation and classification system, where the classifier’s feedback (i.e.

class label and confidence score) is used to obtain a final segmentation. We call this ap-

proach Multiple Hypothesis Segmentation and Classification (MHSC) [4, 8, 25]. Salient

regions are first detected (plates, bowls and glasses in the image). After salient region de-

tection, multi-scale segmentation [4, 8, 25] is done. As a result of this operation, we obtain

a pool of segmented regions for each image. Each segmented region is classified using a

multichannel feature classifier. We use a combination of global and local features including

color feature, texture feature, and local feature [5,25,29,42]. The final segmentation is ob-

tained by an iterative process for joint segmentation and classification [25, 29, 42]. At each
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iteration, each salient region is partitioned into a different number of segmented regions

that are automatically classified. Every pixel is assigned with the class label that has the

highest cumulative confidence score from the classifier up to the current iteration.

1.4 Traditional Methods for 3D Volume Reconstruction

3D reconstruction, also referred to as 3D modeling is the process of recovering the

shape and structure information of scenes or objects. Most of the recent image based 3D

reconstruction techniques can be mainly classified into two categories according to the

data acquisition devices: active sensors or passive method. The active methods rely on

active sensors (e.g. moving light sources, coded or structured light, time-of-flight lasers

to microwaves or ultrasound) and directly interfere with the reconstructed objects [43].

A specific example of the active method is the Microsoft Kinect sensor [43] which uses

an infrared laser projector and scanner to provide full-body 3D motion capture. The active

method can provide a highly accurate and complete 3D representation of small and medium

scale objects.

Passive methods of 3D reconstruction only use an image sensor to obtain the radiance

reflected from the object’s surface and the output of the image sensor. A set of images

(one, two, three or more) or a video clip, will need further processing to infer the 3D

structure. Figure 1.3 illustrates an overview of various types of approaches designed for 3D

reconstruction: single view reconstruction and multi-view/video reconstruction [44–48].

However, many of these methods are targeted for large scale geometric scenes where the

details of the small scale object reconstruction are not considered.

1.5 Contributions Of This Thesis

In this thesis, we focus on developing methods for image quality assessment, color cor-

rection and 3D volume reconstruction for use in the TADA system. The main contributions

in this thesis are as follows:
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Fig. 1.3. Overview of approaches used for image based 3D reconstruction.

• We propose a novel food portion size estimation method using a single image. The

single view volume estimate is implemented using a model-driven system for creat-

ing 3D reconstructions of specific food items. A pre-built or defined 3D model of a

food item is projected back to the image plane. Subsequently, the portion size and

degrees-of-freedom (DOFs) for the final pose is estimated by an image similarity

measure.

• We describe a multi-view volume estimation method to automatically estimate the

food portion size. We demonstrate the use of stereo vision in order to improve the

accuracy of food segmentation and volume estimation. Also, the multi-view shape

recovery method is implemented using a combination of shape from silhouettes and

shape from correspondence techniques.

• We propose an approach to automatically detect the presence of the fiducial marker.

The method is based on region search, which is less sensitive to illumination changes
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and noise than the corner or line based methods. We compare this method with

these traditional methods. The proposed approach reduces the computational time

for locating the corners, speeds up the image pre-processing, and adapts to automatic

image quality assessment on mobile devices.

• We developed a low complexity blur metric by suitably modifying a well known

method known as cumulative probability of blur detection (CPBD) which utilizes

probability distribution (CPBD) of edge widths. The average computational runtime

of the original CPBD method is reduced from 9 seconds to 1 second on a mobile

device for 2048× 1536 sized images.

• We propose three chromatic adaptation models that use more perceptually uniform

color space models: a linear RGB to RGB transform, a nonlinear RGB to RGB

transform, and a linear model in CIELAB color space. From experimental results,

our proposed methods offer better color consistency in various illumination tests than

the other well known techniques.

• We devised an intuitive method for a user to specify veridical color descriptors for

color patches in a scene. This is facilitated by the availability of graphical interfaces

on many mobile devices such as smartphones. A scheme to synthesize the white

point descriptor using a weighted combination of the colors provided by the user is

also introduced.
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2. SINGLE VIEW AND MULTI-VIEW VOLUME ESTIMATION

2.1 Introduction

Accurately measuring dietary intake is considered to be an open research problem in the

nutrition and health fields. Traditional dietary assessment is composed of written and orally

reported methods that are time-consuming and tedious, which makes them not widely ac-

ceptable or feasible for everyday monitoring. Besides the TADA system [8, 24, 34, 39, 49],

a number of other dietary assessment systems utilizing images/videos of eating occasions

have been proposed [50], [51]. These systems provide unique mechanisms for improv-

ing the accuracy and reliability of dietary assessment. Most of these approaches involve

manual or automatic food identification. Portion size of the food items is then estimated

through volume estimation. Once food portion size is estimated, the energy and nutrient

information of food eaten can be obtained using the methods discussed in Section 3.3.

Portion size estimation is extremely difficult since many foods have large variations in

shape and appearance due to eating or food preparation conditions [34, 52]. Most image-

based dietary assessment systems use a single image [26, 53], multiple images [54], video

[55], or 3D rangefinding [56]. For example, “DietCam” [51] is a mobile application where

food intake assessment is based on images acquired from multiple views. It requires users

to acquire three images separated by about 120◦ which increases user burden.

A mobile structured light system (SLS) to measure daily food intake is being developed

by Sheng et al. [56]. A laser device which attaches to a mobile telephone is used to capture

depth images of the food objects. This system seems burdensome and requires extra hard-

ware which is not suitable for daily use. Jia et al. [33] developed a wearable camera device

to collect eating occasion information. It makes use of a known-size plate as the geometric

reference. They define several simple geometric shapes to model food shapes and manual

adjustment is required. Chen et al. [53] proposed a 3D/2D model-based image registration






