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ABSTRACT

Choe, Jeehyun Ph.D., Purdue University, August 2019. Video-Bad Stando Health
Measurements. Major Professor: Edward J. Delp.

We addressed two interesting video-based health measurense First is video-
based Heart Rate (HR) estimation, known as video-based Photethysmography
(PPG) or videoplethysmography (VHR). We adapted an existing deo-based HR
estimation method to produce more robust and accurate ressll Speci cally, we re-
moved periodic signals from the recording environment by edtifying (and removing)
frequency clusters that are present the face region and bagckund. This adaptive
passband Iter generated more accurate HR estimates and alled other applied Iters
to work more e ectively. Measuring HR at the presence of motits is one of the most
challenging problems in recent VHR studies. We investigatechd described the mo-
tion e ects in VHR in terms of the angle change of the subjects sksurface in relation
to the light source. Based on this understanding, we discueskthe future work on how
we can compensate for the motion artifacts. Another importdrhealth information
addressed in this thesis is Videosomnography (VSG), a rangevaleo-based methods
used to record and assess sleep vs. wake states in humans.dili@al behavioral-
VSG (B-VSG) labeling requires visual inspection of the videoyta trained technician
to determine whether a subject is asleep or awake. We propdsean automated VSG
sleep detection system (auto-VSG) which employs motion aryais to determine sleep
vs. wake states in young children. The analyses revealed thestimates generated
from the proposed Long Short-term Memory (LSTM)-based metid with long-term

temporal dependency are suitable for automated sleep or dwalabeling.



1. INTRODUCTION
1.1 Video-Based Stando Health Measurements

There has been growing interests and needs in frequent andhibouous health
monitoring. Commonly monitored health information incluces Heart Rate (HR),
Blood Pressure (BP), and Respiration Rate (RR). To measurdese require dedicated
equipment and special devices. With the need for in-home H#gamonitoring or
telemedicine, using camera sensors for health-monitorifigis been in the limelight
in various health measurements. One of the greatest advages of using videos is
that the measurement is convenient. Nowadays cameras are @gvehere, and anyone
can easily record videos. Another advantage of using camesathat unlike most of
the medical sensors, video recording is not intrusive, anequires no contact to the
body. While lots of important health information is contained in human videos, the
information can be di cult to obtain because it is very labor intensive or impossible
to be observed by human eyes. In this thesis, we address twdenesting video-
based health measurements and propose methods that use vigeocessing, computer
vision, and machine learning techniques to obtain health formation hidden in the
videos.

First is video-based Heart Rate (HR) estimation. One of the mésmportant
health information is monitoring the perfusion of the circlation as cardiopulmonary
parameters such as blood pressure and blood ow [1]. Figurd lllustrates commonly
used HR measurement. Section 1.1.1 introduces the video-&&diR estimation.

Another important health information addressed in this thes is monitoring ac-
tivities during sleep. Pediatric sleep medicine is a eld tht focuses on typical and
atypical sleep patterns in children. Within this eld, physicians, interventionist, and

researchers record and label child sleep with particulartantion to sleep onset time,
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HR 86 bpm

HR 86 bpm

(a) (b)

Fig. 1.1. Examples of Heart Rate (HR) Measurement Settings: Xa
Finger Pulse Oximeter; The sensor is attached to the nger (jvideo-
based method.

total sleep duration, and the presence or absence of nightakenings. One notable
recording method is videosomngraphy (VSG) which includes ¢hlabeling of sleep-
/awake from video [2,3]. Traditional behavioral videosomwography (B-VSG) includes
manual labeling of awake and sleep states by a trained techi@in/researcher [3]. Fig-

ure 1.2 shows a simple description of video-based VSG. Settinl.2 introduces the

(&) An example of Traditional in-home (b) An example of auto-VSG.
VSG.

Fig. 1.2. Examples of VSG Settings: (a) Traditional method; e
sensor is attached to the ankle (b) Video-based method.



video-based sleep analysis.

1.1.1 Heart Rate (HR) Measurements

Heart Rate (HR) is the number of heart beats or cardiac contracins per minute,
often referred to as beats per minute (bpm). Normal HR varies dm person to
person such that children in younger age have faster HR and dttuwith higher
tness have slower HR (better cardiovascular tness). The nanal resting HR ranges
for newborns 0 to 1 months of age is 70 to 190 bpm, infants 1 to honths is 80
to 160 bpm, children 1 to 9 years is 70 to 130 bpm, children 10&as and older
and adults (including seniors) is 60 to 100 bpm and well-traed athletes is 40 to 60
bpm [4]. HR out of normal HR range can indicate health problemskFast HR may
signal an infection or dehydration [4]. A raise in your HR canlso indicate stressed,
anxious or \extraordinarily happy or sad"” emotions. HR is rotinely measured in
clinical practice [5]. HR can be measured at areas where aneagt passes close to the
skin [4]. Current measurements of HR involve attaching dewes/sensors to a patient's
ngers, arms, or chest. The two most commonly used technigsdor measuring HR
in clinical practice are Photoplethysmography (PPG) and elctrocardiography (ECG
or EKG).

The rst HR measuring technique to introduce is Photoplethymography (PPG).
PPG is an optical technique that indexes blood volume changén microvascular tis-
sue to measure the rate of blood ow (or HR) [6]. The blood volue changes are
represented as waveforms in PPG, called PPG waveform or PP{grsal, and it is syn-
chronized to each heart beat. The PPG waveform has been uséuce the 1930s [7,8].
It had been one of many methods for skin capillary blood ow nasurement which
include skin thermometry, thermal clearance, laser Doppleplethysmography, ra-
dioactive isotope clearance, electrical impedance metl®[®]. In the 1980s, the pulse

oximeter began to be used as routine clinical care and the ilmance of PPG wave-



form in clinical medicine greatly increased [7]. Using puls&imeter is a traditional
way of using PPG to measure HR.

The principle of traditional PPG is that when the light at a sutable part of the
spectrum (near infrared) is directed into the skin, detectin of the attenuated light
which passes out of the skin gives a measure of its blood catterhere more blood
present in the skin leads to greater attenuation of light [0 The PPG waveform
can be separated into an oscillating (ac) and a steady-stafedc) components and
applications such as pulse counters, using the ac componeand skin color and
hemoglobin saturation meters, using the dc component, arevadlable [8,9]. The
peak-to-peak intervals obtained from ac component of PPG weform represent heart
cycles [11].

Elgendi [11] addressed that the quality of the PPG signal demds on the location
and the properties of the subject's skin at measurement, iluding the individual
skin structure, the blood oxygen saturation, blood ow rate skin temperatures and
the measuring environment. Challenges in obtaining PPG sigl include poor contact
between the body site and the photo sensor, variations in tgrarature, irregular heart
beat caused by the premature venticular beats (PVCs), andgit interference from
the measuring environment [11, 12].

Another technology used for monitoring HR is electrocardiogphy (ECG or EKG).
ECG is a test that measures the electrical activity of the heabeat (i.e. the expan-
sion and contraction of heart chambers) from an electricaipulse traveling through
the heart [13]. ECG signals are acquired by placing Ag/AgCl eterodes on clearly
de ned anatomical positions and one lead (channel) of ECG eerding requires three
electrodes to produce the signal thus requiring three wirds be connected to the
subject [14]. Clinical ECG recordings commonly use 3 to 12algs [15], as opposed to
PPG recording typically use only one probe. [15] suggestedat PPG may prove a
practical alternative to ECG for HR Variability (HRV) analysis since PPG provides
accurate interpulse intervals from which HRV measures can laecurately derived in

healthy subjects under ideal conditions.



Pulse oximeters use PPG to estimate HR [6]. In the early 1990silpe oxime-
try became a mandated international standard for monitorig during anaesthesia [6].
Pulse oximeters are commonly used in clinical practice becse of their low cost,
high-accuracy, and relative ease of use. Pulse oximetersidtion on the principle
that hemoglobin (Hb) and oxyhemoglobin (HbQ) absorb red and infrared light dif-
ferently [12]. It measures the amount of red and infrared lig that passes through the
skin{as skin lls with blood or \blushes," the ratio of red to infrared light changes.
Commonly used body sites for placement of the pulse oximet@mobe are ngers and
earlobes but other sites such as toes, cheeks, nose, and tencan be used as well [12].

Recently there are many wearable PPG sensors used for daittigities. Wearing
PPG sensors on the ngers during daily activities is not webuited and di erent mea-
surement sites have been explored extensively, includirtgetring nger, wrist, brachia,
earlobe, external ear cartilage, the superior auricular geon, forehead, and glasses-
type system [1]. The wearable PPG has two di erent modes{tr@smission mode and
re ectance mode based on the placement of light-emitting dde (LED) and photode-
tector (PD) [1]. Tamura et al. [1] addressed that while IR or near-IR wavelengths
are better for measurement of deep-tissue blood ow, greerED has much greater
absorptivity for both hemoglobin (Hb) and oxyhemoglobin (HbQ) compared to in-
frared light that green-wavelength PPG devices are becongnncreasingly popular.
Poh et al. [16] estimated HR using modi ed earphones with a regular cetihone.
They obtained PPG signal through specially designed earphe where the earbuds
are embedded with re ective photosensor. Health monitoringased on PPG method
by using smartphone's videocamera is addressed in severapers [17,18]. Using a
smartphone requires a nger to be placed on the smartphonetamera in the way
that it covers both the camera lens and the LED (the ash) [1718]. This can not
be used during the activities but provides an easy access to Hieasurement since
it does not require any special equipment.

Other HR measurement methods include Ballistocardiographi8CG), a method

for obtaining a representation of the heart beat-induced petitive movements of the



human body, occurring due to acceleration of blood as it isegted and moved in
the large vessels [19]. BCG signal can be obtained by piesn#éiic force sensors [19].
Paalasmaaet al. [20] estimated beat-to-beat HR from ballistocardiograms gaired
with force sensors. Hernandeet al. [21] made use of a head-worn camera (Google
Glass) that captures the view of the wearer to monitor subtlperiodic BCG motions.

Bioimpedance measurements can be used to detect HR. Gonzdlandaetaet al.
[22] obtained heart-related impedance changes when stamgli by using four platform-
type aluminum electrodes, and compared the bioimpedancgsal to the ECG record-
ings.

All the methods explained above involve attaching devicestasors to the human
body. This can bring discomfort to many subjects/patients gpecially when they
need to measure the vital signs frequently. Baby/patients ith tactile sensitivities or
patients over long periods of monitoring may not tolerate aching sensors on their
skin. Researchers have been investigating methods to overe the drawback of HR
estimation involving contacts with the body.

Millimeter-wave sensors together with color and depth camas [23] have been
used to estimate HR. They estimated HRs using a 94-GHz sensor tatain the chest
displacement corresponding to heartbeats and compared thesult with ECG based
HRs. Adib et al. [24] described a system called Vital-Radio that monitors HR of
multiple people. They transmit a low-power wireless signand obtain the time it
takes for the signal to re ect back to the device where the waless signals operate
through walls. HR is estimated for each 10-second window arntdcaptures the skin
vibrations due to heartbeats which is BCG movements from théead, torso and
buttock [24]. Their system detects periods during which th@erson is quasi-static
and estimate HR only during such intervals since accurate HRt@mation cannot be
provided when the person walks or moves.

The video-based HR estimation, also known as videoplethysgraphy (VHR),
mostly uses PPG methods and assess facial/skin region \neblushing.” Basic as-

sumption in VHR methods is that small color variations, micraslushing, in the



face/skin region re ect PPG signals (i.e., heart-beats). Bmote, stand-o methods
for assessing HR have emerged in the past years [25{79].

Several video-based approaches have been proposed for HRnaetes using PPG.
One of the approaches used from the early VHR is using the meanglivalues of green
channel in the face region to obtain the PPG signal [26, 32,{86, 73]. Verkruysseet
al. [26] addressed that while all RGB channel in a simple consumkevel digital
camera contained PPG information, the green channel feaed the strongest PPG
signal. Kwon et al. [34] experimented with a smartphone camera and reported tha
the green channel trace contains a relatively strong PPG sigl more than other
channels. Kumaret al. [35] explained that the green channel performs better becsai
the absorption spectra of hemoglobin (Hb) and oxyhemoglobi(HbO,), two main
constituent chromophores in blood, peaks in the region arnd 520-580 nm, which is
essentially the passband range of the green lters in coloameras.

The PPG signal contained in the video is relatively small copared to various
environmental factors including illumination change, camra-related signals and sub-
jects’ movements. Blind Source Separation (BSS) is a teclynie for recovering a
set of signals of which only \blindly" processed linear mixires are observed [80].
Independent Component Analysis (ICA), one of BSS, is a techniq for uncovering
statistically independent source signals based on the assution that the indepen-
dent component must have nongaussian distributions [81].CA has been used in
many video-based HR estimation methods to uncover small PPGgeal from the
pixel intensity changes of skin/face in the video [27,28,337{42,44,62,72,82]. Poh
(and Picard) et al. [27, 28] obtained the mean pixel values of each RGB channet (i
the facial region) for each frame and used ICA on each RGB sgrio estimate the
underlying HR signal. Tsouriet al. [40] addressed that standard ICA techniques
su er from the sorting problem and used constrained ICA (cl@) to make use of
prior knowledge about the underlying sources in VHR. Monkarest al. [62] extended
the method proposed by Potet al. [27] by using k-nearest neighbor (KNN) Machine

Learning technique on the ICA outputs. Sahindrakaret al. [37] also used ICA for



obtaining PPG signal under limited motion of a subject. Suret al. [38,39] and Zhao
et al. [31] described a similar approach using ICA but only using @ngle channel. Es-
tepp et al. [41] captured raw format 120 fps videos from nine imagers wrdcontrolled
lightings and recovered PPG source component from 9-imagehtannel space based
on ICA method. Yu et al. [42] used a combination of ICA and mutual information to
compute the dynamic heart rate variation from short video sgience. They de ned
the mutual information between two sources such that it is ze if both sources are
totally independent of each other and unity if both sourcesra totally dependent on
each other. They used this information is used to ensure theliability of the ICA
sources being found [42].

Other approaches include replacing ICA with other linear dnensionality reduc-
tion methods such as Principal Component Analysis (PCA) and bear Discriminant
Analysis (LDA). PCA constructs a linear subspace that best eXpins the variation of
observed data from their mean [83]. LDA nds the directionsn the underlying vector
space that are maximally discriminating between the classdy simultaneously max-
imizing the between-class scatter and minimizing the withiclass scatter [84]. PCA
or LDA uncorrelate the source signals without taking care othe non-Gaussianity
between the source signals but some papers suggested thaytlgive similar result
to ICA-based method while requiring less computation. Lewalowskaet al. [45] esti-
mated pulse rate from web camera recordings and compared @A-based approach
with that of PCA-based approach. They suggested PCA requirdess computation
while giving similar accuracy when compared to ICA-based appach in their exper-
imental settings. Yu et al. [46] described that to estimate the instantaneous heart
rate that varies dynamically from short video sequences, FCis less computation-
ally intensive than ICA. Tran et al. [47] used LDA to obtain HR signals based on
the observation that the uctuations in RGB traces due to hea pulse have strong
correlation between each channel. Their RGB traces are olotad from the skin pix-
els within the face region. They suggested that LDA can be u$dor video-based

real-time HR estimation because LDA is computationally ligh



ICA, PCA and LDA are all based on the assumption that the obseed signals
are linear mixtures of underlying sources. Wast al. [48] claim that this assumption
is wrong because according to Beer-Lambert law, re ectedght intensity traveled
through facial tissue varies nonlinearly with distance. Tay present webcam-based
HR measurement using a nonlinearity method, Laplacian Eigamap (LE), addressing
neither ICA nor PCA could extract the pure BVP from collected dta, as both of
them are based on linear hypothesis.

Other approaches have used spatial decomposition and tenngloltering to mag-
nify the video and then nd subtle changes in the video [30]. fiis method can be used
to visualize the blood volume changes from the video. In [4Bllerian video magni-
cation [30] for HR estimation was further investigated and oncluded the method is
highly a ected by aggressive compression and motion. BalJpused a wavelet trans-
form based on a denoising method to obtain HR from video recad by the laptop
camera. Xu [64] derived the pulse heart rate signal as a pixelaient in log space
based on a model of light interaction with human skin.

Face/skin areas are used as region of interests (ROI) in mamMHR approaches but
other various regions including the sub-regions within thiace have been explored [25,
35,38,44,45,51{54,54,56,59,65{68,74]. In [69], they¢dd a nger between a camera
of 100 fps and a LED light where the distance between the cameand the LED is
from 20 cm to 1.5 meters. Hand palm area was used to obtain nontact PPG
signal in [68]. Lewandowskat al. [45] used a rectangular-shaped part of the forehead
area. They assumed the forehead areas are visibly \uniformhd took thermographic
images for all examined participants to support this assuntipn. Forehead/brow
area was also used in [43,44,51,53,63,67,75]. Several gapged cheek regions [25,
53, 54, 65]. [53] addressed that the \forehead" and \cheeksgle the most desirable
ROI due to their relatively robustness to facial expressianand head movement.
Rodriguez et al. [74] excluded the eye area to eliminate the artifacts proded by
blinking. The area below the eyes and above the upper lip ofédhmouth was used

in [56]. Tasliet al. [66] used adaptive ROI regions within the face by detectingdial
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landmark locations. Other ROIs include sub-dividing the fee region into multiple
sub-regions [35, 38,52,55,59,70]. The sub-regions witlgkintensity variations were
rejected and only the regions with small variations were uddéor HR estimation in [35].
They assumed that large variations are mostly due to illuirntdon change or motion
artifacts. Qi et al. [70] formed datasets of RGB traces from seven sub-regionsuand
cheek and nose and obtained latent source component of eacltadet using joint
BSS. [55] focused on improving the PPG signal quality in VHR tlough a dynamic
ROI approach.

Some papers use signals from both the face/skin regions arm tbackground re-
gions [32,36,52] to better estimate HR. Let al. [32] assumed that the signals observed
from the video were a ected by both the PPG signal and enviramental illumina-
tion. They used both the face mean green color and the backgr@l mean green
color of each frame to reduce the environmental illuminatiovariances. Tarassenko
et al. [52] used a background region of interest to minimize the ects of external
lighting sources such as uorescent lights using an Auto-Reggssive (AR) model and
a pole-cancellation algorithm. Leeet al. [73] assumed that the green channel trace
from the face region of the video contains both a PPG signal drenvironmental illu-
minance change. In their experimental setting, a subject isatching a video in front
of a 42-inches monitor in a dark room while the camera is recling the their face.
Instead of using the signal from the background region, thegstimated the environ-
mental illumination from the face region signal through regession. After estimating
the variation of the environmental illuminance, they subtacted it from the green
channel trace of the face region [73].

Most of the VHR methods make use of the fact that HR ranges in ceitafrequency
range and this involves the frequency-domain analysis ofdlobserved signal. The
most common way to do the frequency-domain analysis is usif@jscrete Fourier
Transform (DFT). Fouladi et al. [82] addressed that DFT is not accurate enough

to use on small number of samples (2-second length signal 8 fps case). They
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suggested to use the Multiple Signal Classi cation (MUSIC) mthod in case of small
number of samples.

Instead of using PPG, Balakrishnaret al. [33] estimated HR from subtle motion
changes captured in the stando video. The motion changes t@ined would re ect
BCG signal.

Each of the methods above have challenges. Patients haveymag skin tones, a
wide range of resting heart-rates, and are often prone to mawent. Similarly, envi-
ronmental lighting, undetermined noise, or camera-basewjsals can reduce the signal
to noise ratio (SNR). Low frequency rate, low video resolutig low video quality and
short video length can also cause di culties in VHR. Greater ditance between a
subject and the camera can cause lower resolution and qualibn the PPG ROI.
Shagholiet al. [72] experimented on two distances of 0.5 and 3 meters and gesgted
that increasing the distance to 3 meter led to a decrease indlaccuracy of the esti-
mated HR. Small temporal variation corresponding to PPG sigad might get corrupted
while compressing the video. Kirenket al. [85] described a video encoding/decoding
device, wherein during decoding PPG relevant informatiorsipreserved. Freitas [77]
used raw format in an AVI container le because a video comprs®n algorithm could
cause damage to the acquired PPG signal while maintainingdtperceived quality of
the compressed video. Several other VHR papers also used radewi formats in their
experiments along with turning o the automatic white balarce (AWB) control or
automatic gain control (AGC) of the camera settings. In addion to AWB or AGC,
other blocks in camera image signal processing (ISP) pipaithat involves temporal
smoothing can reduce the SNR of PPG signals contained in videscordings.

In this thesis, we improve an existing video-based HR estimah method and
compare it to an FDA-approved medical device (i.e., a nger dae oximeter). We
modify and extend an ICA-based method and improve its perforamce by (1) adapting
the passband of the bandpass lIter (BPF) or the temporal lta, (2) by removing

background noise from the signal by matching and removinggsials that occur in the
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o -target (background) and on-target areas (facial regio) (3) face tracking, and (4)
skin detection within the face region. Our system is desced in Chapter 2.

One of the biggest challenges in video-based HR estimatiordesaling with human
videos where the subject moves. For the same shooting enmimeent where we can
acquire strong HR signals from non-moving subjects, the HR sigl gets weaker or
even disappears when subjects start to move.

Even in contact PPG, the motion artifacts (MA) has been one oftte most chal-
lenging problems. Not all the reasons for MA in contact PPG wdd be the same
as VHR case. But there could be a common reason for motion e edgtsboth elds
since both contact PPG and VHR estimate the PPG signal from thekin re ectance
change using photo sensors. Ragtai al. [86] addressed in-band noise results when
the spectra of MA and that of the PPG signal overlap signi catly. They described
that adaptive Iters can e ectively deal with in-band noise but it needs a reference
signal that is strongly correlated with either (1) the artifact but uncorrelated with the
signal or (2) the signal but uncorrelated with the artifact. And the reference signal
representing MA can be obtained by employing additional hdware [86]. Wijsho et
al. [87] addressed that sensor motion relative to the skin can bsed as an artifact ref-
erence in a correlation canceller to reduce motion artifagt In their experiment, they
obtained sensor motion via self-mixing interferometry. leset al. [88] investigated the
use of red, green, and blue light PPG to discover which of thess the most suitable
for measuring HR during normal daily life, where motion is ligly to be a signi cant
issue. Based on their experimental results, they concludé&akat the green light PPG
might be more suitable for monitoring of HR in the daily life than either red or blue
light PPG. Zhang et al. [89] focused on HR monitoring using wrist-type PPG signals
when wearers do intensive physical activities. They notedh&t compared to ngertip
and earlobe, wrist can cause much stronger and complicatedAMue to large exibil-
ity of wrist and loose interface between pulse oximeter antia. Hayes [90] addressed
the motion model and suggested the multiplicative model is ane appropriate for the

e ect of MA than an additive model based on the experiments.
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While most of the MA reduction approaches in contact PPG makeise of the
reference signal that represent the noise, the approaches\V\HR have been more
focusing on choosing better ROI in the frame or manipulatinBGB traces to enhance
the SNR of PPG signal. Kumaret al. [35] proposed to track di erent non-rigid regions
of the face independently to compensate for motion-relateattifacts. From the fact
that blood volume change underneath the skin causes very dinehanges in the
intensity of re ected light signal, they identify the regions with large intensity changes
and reject those regions assuming that the large intensithanges have been caused
by motions. Fenget al. [54] proposed an adaptive color di erence method between
the green and red channels along with ROI tracking to remove ation artifacts.
Motion models used in above two papers [35, 54] will be detad in Section 3.1.
Wang et al. [59] rst nd temporally corresponding pixels by pixel-bad tracking
to obtain pixel-to-pixel RGB signal. Then they remove the mton-induced color
distortions based on the assumption that the transformatio between normalized
RGB for consecutive frames should ideally be the translanofor the pulse-induced
color change while it is not for the motion-induced color chige. Huanget al. [71] used
a similar approach to a MA removal method used in contact PPGThey obtained
(x;y) coordinate of the ROI as the reference signal of the motiomd used them as
inputs to adaptive Iter to reduce the interference relatedo motion [71]. While many
papers address the motion artifacts and give di erent solidns, there are not enough
explanations on how exactly this motion-related signal isemerated.

In Chapter 3 we describe the motion-related signal as the alge in relative posi-
tions between the subject's skin surface and the light sowwcWe show how the pixel
intensity changes are related to motions by showing its rdlan to the angle between
the light ray and the skin surface in case of moving subject. ifst we use a simple
model to understand the pixel intensity changes for movingbgects and we extend
our observation to the human videos. For the experiment on ¢hhuman videos, we
modeled the pixel intensity in terms of surface normal and #hlight direction. None

of the VHR papers we have seen so far [25{79] used illuminatiorfarmation that can
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be acquired from facial points. In our experiment, motionelated signal estimated
from the illumination information shows strong relation tothe actual intensity varia-

tions caused by motion. We extended the experiment to video$ human and showed
the motion e ects on the intensity change in terms of the skirsurface normal and
illumination. Our results show how the incident angle chargycaused by motion is
related to the pixel intensity changes. We showed that thelilmination change on
each surface point is one of the major factors causing motiamtifacts. Lastly, we

discussed how this understanding on motion e ects can be ws® reduce the motion
artifacts in VHR.

VHR involves recording videos and health information of the hman subjects.
Research involving human subjects requires an approval oftitutional Review Board
(IRB). All the videos that we used in this thesis were collecte under the approval
of the IRB of Purdue University. Publicly sharing the VHR data in the research
community is di cult because this might violate the IRB rule s in terms of protecting
the privacy of the human research subjects unless the humaurbgect consent on fully
disclosing their information public. Some recent VHR papers32, 36] used publicly
available dataset which included video recordings of adutiubjects and their ECG

signals.

1.1.2 Sleep Analysis

Pediatric sleep medicine is a eld that focuses on typical @hatypical sleep pat-
terns in children. Within this eld, physicians, interventionist, and researchers record
and label child sleep with particular attention to sleep oret time, total sleep dura-
tion, and the presence or absence of night awakenings. Ongafbe recording method
is videosomngraphy (VSG) which includes the labeling of asle vs. awake from
video [2,3]. This method is most commonly used for infantsdiddlers as their com-
pliance rates with other sleep recording methods can be lovitaditional behavioral

videosomnography (B-VSG) includes manual labeling of awalend sleep states by
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a trained technician/researcher [3]. B-VSG is time consungnand requires exten-
sive training which has limited its widespread use within ta pediatric sleep medicine
eld. Actigraphy is considered an alternative for estimatig sleep vs. awake states
and it is based on child movement as indexed by an acceleroeresensor commonly
attached to a child's ankle or wrist. Some validity issues Wi actigraphy compared
to human observations are estimating less time sleep and reciime awake [91] or
showing low speci city in detecting wakefulness within skp periods [92]. Actigraphy
requires a sensor to be constantly attached to the body whi¥SG and B-VSG do
not involve any contact with the body. Within the present study we develop and test
an automated VSG method (auto-VSG) to replace B-VSG and to progie physicians,
interventionist, and researchers with a sleep recordingabthat is more economic and
e cient than B-VSG, while maintaining high levels of labeling precision.

The development of auto-VSG is a growing area with prelimingrstudies utilizing
signal processing systems that index movement during slepsmall groups of chil-
dren with developmental concerns or adults [2,93{95]. Acreshese studies, motion
within the video is estimated by frame di erencing [93, 94] oby obtaining motion
vectors [2,95].

[93] devised a sleep evaluation technique for children bytiesating the amount
of motions from the dierence in two successive frames. Thegnalyzed the rela-
tion between the amount of movements obtained from video pressing and sleep
stage determined by PSG for ve children. Their method was tar on used in [96]
for characterizing the di erences in body movements duringleep for eleven typical
developing children and six children diagnosed with Attembn De cit/Hyperactivity
Disorder (ADHD). [96] suggested that the video-based methoday be used as a
marker in the diagnosis of ADHD. [94] used variation of image drence process-
ing in [93, 96] by focusing more on the gross body movementsM&). They used
their method to compare the movements during sleep of chilein with and without
ADHD. [2] used home-videosomnography for children with neudevelopmental con-

ditions where the movement analysis was done using the sadtw called Optical Flow
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Algorithm. [95] proposed sleep video motion estimation bas@n a spatio-temporal
prediction method. Their proposed method is to estimate nobnly the amount of
motion but also the direction of movement in order to estimag local motions.

However, each of these studies were completed within a cotlied setting and do
not account for the wide range of camera positions and lightj variations that are
common among in-home VSG recordings.

In this thesis, we present two di erent sleep video analysspproaches where both
uses simple motion information from in-home VSG recording®rf children. It is
important to note that our goal is to label each frame of a slg@evideo with the label
\sleep” or \awake." In this work we are not interested in labding sleep stages, such as
REM sleep. We assume that the child is the only source of the rement in the video.
Also, we assume that the camera is static. These were the conmuases for in-home
child sleep videos. While there are other complicated mettis for detecting motion in
videos, we focus on simple motion information obtained froframe di erence method.
There are three reasons for choosing simple motion inforn@t. First is to make the
operation e cient and simple. The amount of sleep videos is assive. For example,
one-night video of 8-hour duration recorded at 16 fps incled around 450,000 frames
(16 [fps] 60 [second/minute] 60 [minute/hour] 8 [hours] = 460,800 [frames]).
When it comes to multiple-night recording on many di erent ¢ildren, the processing
should be fast and e cient. Second, it is not practical to usecomplicated methods
on low-quality infrared videos. Sleep videos are recordenl ¢ither RGB or infrared
modes depending on whether the room light is on or not. When infrared mode,
they lack color information. Also, the videos are mostly lowguality where it is good
enough for human to identify the movement of the child in the ideo. The video
recordings used for VSG in sleep lab were typically 32@40 and 640 480 and the
images are not sharp. Lastly, the simple motion informationaptures relative amount
of motions within the video very well. While the simple motia information gives
useful information for sleep analysis, there are challerggéor using it in practical

auto-VSG applications. It does not account for “in the wild'dctors that are common
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in in-home VSG recordings. For example, the wide range of caragpositions and
lighting variations across di erent videos make the scalefdhe motion information
di erent across the videos.

In this thesis, we present two auto-VSG that adjust for thesan the wild' factors.
In Chapter 4, we develop and test an auto-VSG method that incties (1) preprocess-
ing the video frames using histogram equalization and resig, (2) detecting infant
movements using simple motion information, (3) estimatinghe size of the infant
by detecting their heads based on deep learning methods, affj scaling and limit-
ing the degree of motion based on a reference size so the mottan be normalized
to the size of the relative child in the frame. In Chapter 5, weropose automatic
sleep/awake states identi cation methods on RGB/infraredvideo recordings. It is
a binary classi cation problem for actions in sleep videosThe contributions of this
proposed method are: (1) we describe the key factors in sleageo classi cation (i.e.,
movements over long period of time) that are not addressed a@@mmonly used action
classi cation problems (Section 5.2) (2) we propose a sléawake classi cation sys-
tem with a recurrent neural network using simple motion infonation (Section 5.3)
(3) we experimentally show our system successfully learrmng-term dependencies
in sleep videos and outperform one of the recent method that& been successful
in public action dataset (Section 5.4). In Appendix A, we desityre web application
that deploys our sleep/awake classi cations method in Chaer 5 and we call it Sleep
Web App. The design philosophy of Sleep Web App is to provide saaccesses to
sleep researchers for running the sleep video analysis orittvideos. Speci cally, we
focused on (1) simple user experience, (2) multi-user suppiog and (3) providing

results for further analysis.

1.2 Image-Based Geographical Location Estimation Using We b Cameras

Thousands of sensors are connected to the Internet [97, 98The \Internet of

Things" will contain many \things" that are image sensors [9{101]. This vast net-
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work of distributed cameras (i.e. web cams) will continue texponentially grow. We
are interested in how these image sensors can be used to sémsie environment.

In our previous work, we investigated simple methods of welam image classi ca-
tion based on the support vector machine (SVM). We focused ofassifying an image
as indoor or outdoor and people or no people using a set of slempisual features.

We are also investigating how one would process imagery frotmousands of
ip-connected cameras. We have at Purdue University been de@ing the CAM?
system(Continuous Analysis of Many CAMeras) [102{105]. CARis a cloud-based
general-purpose computing platform for domain experts tocgact insightful informa-
tion by analyzing large amounts of visual data from distribted sources. CAM uses
cloud computing to manage the large amounts of data for bettescalability. CAM?2
currently has detected and has access to more than 70,000 eaas deployed world-
wide. These include cameras from departments of transpotian, national parks,
research institutions, universities, and individuals.

In particular in this thesis we investigate simple methodsof how one can deter-
mine metrics of a location (e.g. sunrise/sunset, length ofgl) and the location of the
web camera by observing the camera output.

The location of a point on the Earth is described by its latitae and longitude (and
perhaps by its altitude above sea level). Latitude is measenl in degrees north or south
of the Equator, 90 north latitude is the North Pole and 90 south latitude is the
South Pole. Longitude is measured in degrees east and wesGoéenwich, England.
180 east longitude and 180 west longitude meet and form the International Date
Line in the Paci c Ocean [106{108]. The de nition of sunriseand sunset is when the
geometric zenith distance of the center of the Sun is &P [109]. That is, the center
of the Sun is geometrically 50 arcminutes below a horizontplane. There are various
de nitions for sunrise/set and daylength [110].

Several approaches have been reported with respect to ndira location from
images using large database. Hays al. [111] described a method to estimate geo-

graphic information from a single image using a purely datdriven scene matching
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approach. They used a dataset of over 6 million GPS-tagged ages from the Inter-
net. The features they used for comparing the images are aolmage itself, color
histogram in CIE L*a*b* color space, texton histogram, linefeatures, Gist descriptor
together with color, and geometric context [111].

Sunkavalli et al. [112] model the temporal color changes in outdoor scenesnifro
time-lapse video to provide partial information of scene ahcamera geometry regard-
ing the orientation of scene surfaces relative to the movirgun. With assumptions
that re ectance at scene points is Lambertian, and that therradiance incident at
any scene point is entirely due to light from the sky and the sy they came up with
a model for temporal intensity change in terms of the angulavelocity of the sun
and the projection of the surface normal at a scene point ontbe plane spanned by
the sun directions (the solar plane) along with other fact@:. They estimated camera
geo-location, latitude and longitude, from the image seqoee of one building scene
captured over the course of one day with approximately 250@®ds between frames.
This method requires three scene points lying on three mutliy orthogonal planes
(two sides of a building and the ground plane for example) irhe image. Lalondeet
al. [113] used high-quality image sequence to estimate camerxgneters. In order
to do this, they analyze the sun position and the sky appearaa within the visible
portion of the sky region in the image. Then, from an equatioexpressing the sun
zenith and azimuth angles as a function of time, date, latitde and longitude, they
estimated the latitude and longitude of the camera.

Junejoet al. [114] geo-located the camera from shadow trajectories estited from
image sequence. Latitude was estimated based on the facttktze path of the sun, as
seen from the earth, is unique for each latitude [114]. Thewtamated the longitude
from the local time stamp of the image and shadow points. In #ir experiment,
they selected the shadow points of a lamp post and a tra c lighon the images.
Wu et al. [115] also described camera geo-location estimation basedtwo shadow
trajectories. They empolyed a semi-automatic approach toetkect the shadow point

for an input video.
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Sandnes [116] estimated approximate geographical locatsoof webcams from se-
guence of images taken at regular intervals. First, the suise and sunset were es-
timated by classifying images taken from a webcam and the latton was then esti-
mated [116]. For determining the sunrise and sunset, the ensity of the entire image
was used to classify day or night and then determine the midgdor local noon) time
to identify the longitude and latitude [116]. In this thesis we modify and extend
Sandnes's approach.

We used the the sky regions in the image to better classify thizay/Night images.
Several papers described methods for detecting sky regidhd7{119]. In [117] the
sky region is identi ed by using image data taken under variss weather conditions,
predicting the solar exposure using a standard sun path mddand then tracing the
rays from the sun through the images. In [118] vehicle detéah and tracking is used
to detect road conditions in both day and night images by usmimages and sonar
sensors. A method to retrieve the weather information from database of still images
was presented in [119]. The sky region of image was detectgdusing the di erence
of pixel values from successive image frames, morpholoymaerations were then used
to obtain a sky region mask. The weather condition was recoged by using features
such as color, shape, texture, and dynamics.

In this thesis we describe a method for estimating the locatn of an IP-connected
camera (a web cam) by analyzing a sequence of images obtaifiesin the camera.
First, we classify each image as Day/Night using the mean lumance of the sky
region. From the Day/Night images, we estimate the sunrise&, the length of the
day, and local noon. Finally, the geographical location (taude and longitude) of

the camera is estimated. The system is described in Chapter 6

1.3 Contributions of This Thesis

The main contributions of this thesis are listed as follows:
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We improved VHR for assessing resting HR in a controlled settinghere the
subject has no motion. We modi ed and extend an ICA-based metid and
improve its performance by (1) adapting the passband of theabdpass Iter
(BPF) or the temporal lter, (2) by removing background noise from the signal
by matching and removing signals that occur in the o -target{background) and
on-target areas (facial region), and (3) detect skin pixelsithin the facial region

to exclude pixels that does not contain HR signal.

We investigated and described the motion e ects in VHR in termsf the angle
change of the subject's skin surface in relation to the lighldource. We showed
that the illumination change on each surface point is one ohé major factors
causing motion artifacts by estimating the incident anglen each frame. Based
on this understanding, we discussed the future work on how wan compensate

for the motion artifacts.

We proposed auto-VSG method where we used child head size tomalize the
motion index and to provide an individual motion maximum foreach child. We
compared the proposed auto-VSG method to (1) traditional B-VS sleep-awake
labels and (2) actigraphy sleep vs. wake estimates acrossrfeleep parameters:
sleep onset time, sleep o set time, awake duration, and sfeduration. In sum,
analyses revealed that estimates generated from the propdsauto-VSG method

and B-VSG are comparable.

In the next proposed auto-VSG method, we described an autoneat VSG sleep
detection system which uses deep learning approaches todhfvames in a sleep
video as \sleep" or \awake" in young children. We examined 3[Zonvolutional
Networks (C3D) and Long Short-term Memory (LSTM) relative tomotion in-
formation from selected Groups of Pictures of a sleep videndatested temporal
window sizes for back propagation. We compared our proposé8G methods to
traditional B-VSG sleep-awake labels. C3D had an accuracy approximately

90% and the proposed LSTM method improved the accuracy to nethan 95%.
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The analyses revealed that estimates generated from the posed LSTM-based
method with long-term temporal dependency are suitable fautomated sleep

or awake labeling.

We created web application (Sleep Web App) that makes our sfeenalysis
methods accessible to run from web browsers regardless arasworking envi-
ronments. The design philosophy of Sleep Web App is to servesgaccesses to
sleep researchers for running the sleep video analysis oeithvideos. Speci -
cally, we focused on (1) simple user experience, (2) multer supporting and
(3) providing results for further analysis. For providing te results, we included

two csv format les for per-minute sleep analysis and sleepimmary results.

We also described a method for estimating the location of arPiconnected
camera (a web cam) by analyzing a sequence of images obtaifredh the cam-
era. First, we classi ed each image as Day/Night using the maduminance of
the sky region. From the Day/Night images, we estimated the suise/set, the
length of the day, and local noon. Finally, the geographicdbcation (latitude
and longitude) of the camera is estimated. The experiment salts show that

our approach achieves reasonable performance.
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2. PROPOSED APPROACH FOR
RESTING HEART RATE ESTIMATION

2.1 Overview of Proposed System

Figure 2.1 shows our proposed method and is similar to the ICl#ased method
described by Picard in [28,29]. The gray blocks denote modations/additions to
Picard's approach [28,29] described below. We will presenbrief overview of Picard's
method, more detail is available in [28,29]. The "Picard' I&-based method begins
by detecting the face region. For each face region, the mearGR pixel value is
obtained across each frame to form three 1D time series sithave call the RGB
traces. Trends in the RGB traces due signal drift and other ors are then removed
by using a high-pass like detrending technique [120]. Thetoufrequency of this Iter
is controlled by a parameter we denote as, where = 300 in our experiments. This
corresponds to a high pass cuto frequency of@L1 fs Hz wherefs is the sampling
rate wheref 3 = 30 Hz (the videos are acquired at 30 frames/s). The detrenddchces
are normalized with z-score normalization to produce zeroean and unit variance
signals. Independent Component Analysis (ICA) is used on theghree signals to
recover the target source signal [28, 29, 81].

The appropriate source signal is selected from the ICA outplby computing
the normalized Power Spectral Density (PSD)P [k] with k the frequency index and
choosing the component that has the highest peak of PSD withthe frequency range
f, =0:7 andf, = 3 Hz. Where f, and f,, are the xed cuto frequencies for the
range of all possible HR [28,29]. After a ve-point moving avage lter (M =5), the
signal is bandpass Itered with a 128-point Hamming window (ter order Ns = 127)
and with cuto frequency of f|-f, Hz. This is the same frequency range used in the

PSD/Highest Peak block. Next the signal is interpolated to thenew sampling rate of
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Fig. 2.1. The block diagram of the proposed system (after [Z8]).

f

obtained from the interpolated signal. IBI is the time intewals between the peaks in

srew = 256 Hz. To nd the HR in units of bpm, rst the Inter-Beat Interv al (IBl) is
units of seconds. The peaks are all the values that are the dgst inside the sliding
windows [28,29]. The window sizeTl,, [sec], is a parameter for the IBI and should
be smaller than the smallest peak interval thafl,, (1=f,,) wheref, is the upper
bound frequency for IBl. We usd , = f}, in our work. From the maximum value of
Tw and the sampling frequencys,., , we can obtain the number of points to examine

before and after the current point
T Snew (2.1)

to determine peaks. By using in Eq.(2.1) we can obtain IBI in units of seconds [28,
29]. The reciprocal of each IBI value is then the HR estimates unit of Hz. Finally,
the signal is Itered through the noncausal of variable threhold (NT-VC) lter [28,
29,121] with xed parametersu, = 0:4, andu, = 1:0 Hz. Unstable HR estimates
are removed in this nal process.

The performance of this method heavily depends on parametattings and record-
ing environments. Among the parameters, the passband frequoy range of the band-

pass lter plays a crucial role in estimating HR. In our proposd method we nd the
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passband frequency range and adapt by observing periodigreals that are generated
from the recording environment.

To estimate the HR from video we isolate the subtle changes dbbd ow in the
face region. There could be many signal sources that conuiie to color intensity
variations. Since what we want to obtain is the \HR signal,” a@pting the passband
frequency range is a key factor in HR estimation. The previousork uses a xed
passband frequency rangd,-f, Hz, for the band pass Iter (BPF). In our work we
estimate the HR signal by adapting the passband frequency rga for each participant.
We call this the adaptive frequency range (AFR) and denote it sf,-f5,. The
basic idea is to select the passband frequency range of theefaegion by excluding
the background signals. Our model follows several assungts. The heart rate
of an adult ranges from 42 bpm to 180 bpm (0.7 to 3.0 Hz) and doestrchange
dramatically over time. We assume that IBI will change no mar than 2.5 sec (24
bpm). While there are other periodic signals present due tdé scene illumination
or camera vibration, we assume one of the strongest periodignals that appears on
the face is microblushing (or the HR signal).

Our approach can be used for the BPF in ICA-based HR estimatio28, 29] and
for the temporal lIter in video magni cation [30,122]. Our approach begins by de-
tecting both face and background regions. Two sets of RGB tas (6 1D signals)
from both regions go through the Detrending/Normaliztion, ad then each set (3 1D
signals per a set) goes through ICA and PSD/Highest Peak pras In theory, ICA
nds the underlying sources that are statistically indepedent, or as independent as
possible from the observed signals [81]. If the output of ICBomponents are com-
pletely independent, we can take one of them to be the HR signdin practice, we
found that several strong periodic signals tend to appear gether in the higest peak
component. To nd only the periodic signal of our interest, w estimate the AFR
by using a background matching method and Iter out the backgund matching

frequency clusters we describe below.
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2.2 Frequency Clusters

After the PSD/Highest Peak block in Figure 2.1, we have PSDs bbtfrom the face
region and the background region. If several periodic sigaappear in the face region
PSD, we assume one of the periodic signals re ects blood owanges or an index
of HR. To separate the HR signal from the other periodic signailse assess clusters
in the frequency domain. A frequency cluster is a continuousinge of neighboring
frequencies that are generated by thresholding the PSB[k] as shown in Figure 2.2.
We denote a clusterc; by the frequency rangef[,; f;, ] wherei is an index of cluster

(Figure 2.2). The following three steps show how the clusteiare formed.

Pk

P T

t'r‘ ’ jj'm.rur

Cluster 1 Cluster 2

f1 | fl;,_ ._/‘2; /2 h

jl fh.

Fig. 2.2. An example of frequency clustersPna.x is the maximum
value of the PSD within ff;fy]. t; is a parameter used to determine
the weak signals as described in Section 212.is a parameter used to
determine the neighboring clusters as described in Sectiar®. If two
clusters formed by thresholding? [k] are with t,, Hz of one another we
considered them “neighbors' and merge them into one clust&luster
1 and Cluster 2 in this Figure are not "neighbors' becauge, fi] >
tn. N is the number of points in the positive frequency domain, and
k is the index in the frequency domainf s is the sampling rate.
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1. Suppress weak signals{weak signals are ignored when fignthe clusters. If
Plk] < t; Pmax then weak signal,t, is used to determine the weak signal
threshold. We empirically choose, = 0:15 (15%).

2. Form clusters{repeatedly merge the clusters if two clusts are neighbors.t,
[Hz] is used to determine the neighboring clusters whetg = 0:1 Hz (6 bpm)

is emprically chosen (see Figure 2.2).

3. Obtain the energy of each cluster (the sum d¥ [k] within the cluster).

2.3 AFR Estimation by Background Removal

Background removal was achieved by observing both PSDs frdiace and back-
ground regions, we can eliminate frequency clusters in theck region that are similar
to the frequency clusters in the background. We measure théape similarity be-
tween two clusters by computing the Sum of Absolute Di erence(SAD) between the
two normalized PSDs. x 1

d= jPik] P[K]] (2.2)
k=0
whereP; is the PSD of cluster 1 where the energy is normalized to 1 aRd is the PSD

of cluster 2 with the energy normalized to 1. The clusters amormalized; therefore,
0O PJk] 1and 0 d 2. If the SAD between two normalized clusters is small,
d <t, for a parametert,,, we deemed that two clusters are similar. The method for
AFR estimation is shown below. The estimated AFR is used for thewer and upper

bound of the BPF.

1. Go through the rst 5 blocks shown in Figure 2.1 to get PSD<f a face and a

background region (Section 2.1).
2. Form frequency clusters on each component (Section 2.2).

3. Sort the face frequency clusters based on the energy.
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4. Starting from the highest energy cluster of the face sighaelect one cluster;
that does not match with any background cluster: we choosg only if d >t

holds betweenc, and all the background clusters.

5. Obtain AFR from the clusterc selected in the previous stepf ,, = max(fiI 1)

andf, = min(fih;fh).

PSD of the face region signal
80 T T T U T

Plk] s} Detected as g ! ]
40 HR signal

20t T~ i A E\ J
0 L L WU LA ! !

0 0.5 1 15 2 25 3 35

PSD of the background region signal Matched as
80 . : : e ‘ .
o ! §/> background
< I | {3 | signals
FIF |5 g
=T | 1 A-‘_E
0 . . i bl ‘ . N

0 0.5 1 1.5 2 25 3 35

Fig. 2.3. An example of matching clusters from the face signébp)
and the background signal (bottom).P[Kk] is the PSD of the signals
and k is the index in the frequency domain.

There can be a corner case where the only frequency clustertchas to the back-
ground frequency cluster. This happens when the HR signal frothe facial region
is not strong enough to form a frequency cluster. In this casae choose AFR by
excluding the background signal to at least get rid of the nse from the background.
If there are two di erent frequency ranges outside of the faquency range for the

background signal, we choose the one with the broader range.

2.4 Face Tracking and Skin Detection

For tracking, we derived a reference color model from the @l bounding box
obtained from the face detection [123] in the rst frame. Fothe color model, each

RGB color space is quantized from the original 256 bins to 16ns and is mapped
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into 1D 16%-bin histogram. The sum of this histogram is then normalizedo one.
Particle Iter tracking is used to nd the corresponding fae region in each frame [124].
Denoting the hidden state and the data at timet by x; and y; respectively, the

probabilistic model we use for tracking is
Z

P(Xt+1)Yor+1) I P(Yes1 JXe+1) P(Xt+1 ]Xt) P(Xt]Yo:r) X (2.3)

Xt
wherep(yi+1 jXt+1 ) IS the likelihood model of data, andd(X;+1 jX;) is transition model of
second-order auto-regressive dynamics [124]. We de ne state at time t as location
in 2D image represented as pixel coordinates. For obtainirige likelihood p(yjxt),
we use the distance metri@(y) = P 1 (y) where (y) is the sample estimate of
the Bhattacharyya coe cient between the reference color mael and the candidate
color model of each particle at positiory [125].

For each pixel within the tracking region, we use skin deteicin method to exclude
non-skin pixels that represent hair, eye or part of the backgund that do not re ect
HR signal. We use the skin classi ers based on Bayes theorer@gllwith some varia-
tions. [126] made generic skin color model from skin dataseging simple histogram

learning technique. The particular RGB value is classi ed @ skin if

P (rghjskin) _
P (rghjnonskin) ’ 2.4)
where 0 1 is a threshold and can be written as
P (nonskin)
P (skin) (2:5)

whereC is the application-dependent parameter [126]. The apprapte value for this
parameter di er for various skin tones or lighting conditims. In our system, the user
selects the parametelC from the rst frame by moving the track bar and then the
selected value is used for the rest of the frames in the video.

[126] suggested to use the linear quantization on each higtam since too many
color bins lead to over- tting while too few bins results in por accuracy. In their
study, they showed that the histogram of size 32 bins/chanhgave the best perfor-

mance when compared to the size 256 or 16. This linear quaation on histograms



31

for making the skin and non-skin probability models may progce many empty bins in
the output histograms. The skin classi cations on empty calr bins have meaningless
results that if we can reduce the number of empty color bins ithe quantization step
we can obtain better classi cation performance. In our skirdetection method, we
create a color-mapping look-up table by adaptively quantiag the histogram using
histogram equalization. The goal of histogram equalizatiois to obtain a uniform
histogram [127]. By using the histogram equalization on RGRistograms for skin
pixels of training dataset, we map the original RGB color lesls to color levels that
best represents the skin colors in the training dataset.

Figure 2.4 shows the quatization results for color histognatrained on skin pixles

of the publicly available skin dataset [128]. Table 2.1 sh@the number of non-empty

2000000 2000000

1500000

1500000

£
e
5‘ 1000000

£
e
g‘ 1000000

T T

500000 500000

(a) Linear quantization to 32 bins on Red (b) Histogram equalized quantization to

channel. 32 bins on Red channel.

Fig. 2.4. Comparison of two di erent quantizations on skin jxels.

bins for two di erent quatizations. The number of empty bin reduced after applying
histogram equalization in the quatization step.

Since pixel-based classi er can introduce some falsely sdaed pixels, we need
to re ne the result by applying Morphological Itering. Figure 2.5 shows the block

diagram of the proposed skin detection system.



32

Table 2.1.
Number of non-empty bins for 32 color bins in UCSB dataset.
Skin [bins] | Non-skin [bins]
Linear quantization 8638 24484
(26.36%) (74.72%)
Histogram-equalized| 19428 30823
quantization (59.29%) (94.06%)
Training ——{  Quantization with COI.OI‘ Modeling f.or
Images Histogram Equalization Skin:and Non:skin
P\rgbnonskin), P\rgb|skin
— rapinonskin). etk
Table (LUT) P(nonskin), P(skin)
Y
Test o _ Pixel-based Skin

Image Quantization with LUT Classification

!

Morphological
Oll:-?“;i?}gglca —> Skin Mask
T
User Input

Fig. 2.5. The block diagram of the proposed skin detection sem.

2.5 Experimental Results

In our experiments we acquired videos of various participeswith spatial res-
olution of 1920 1080 and 29.97 fps. There were 22 participants (12 femalesdan
10 males) in Dataset 1 and 18 participants (9 females and 9 rag) in Dataset 2
with ages ranging from 20 to 50 years of age. The total numbef @i erent people
in the entire Dataset is 26 with 14 overlapping participantdetween Dataset 1 and

Dataset 2. The participant numbering for Dataset 1 and 2 areat consistent to each
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other. Within the Dataset 2, the participant numbering is casistent for each dif-
ferent task. The data collection methods were approved by ¢hinstitutional Review
Board of Purdue University. The distance between the partipant and the camera
was approximately 1.8 m. In Dataset 1, the zoom was manuallypsted to focus on
the upper torso and face and Dataset 2 was more zoomed out tashentire upper
body as shown in Figure 2.7. Dataset 1 only included no-motiovideos that the
participants were seated with their arms on the table and werasked to sit still and
look toward the camera. Dataset 2 included both no-motion @hnon-random mo-
tion videos. For the non-random motion tasks, the participats were asked to move
their head from left to right repeatedly while facing towardthe camera. The room
had windows with semi-transparent blinds and lighting on tkb ceiling as shown in
Figure 2.6. The ground truth HR was measured using a Noni@O, Achieve Finger
Pulse Oximeter for Dataset 1 and CE & FDA approved Handheld Pake Oximeter
(model name CMS60D) for Dataset 2. For both cases, the probesvattached to a
nger tip of the participant. The output of the pulse oximeter was simultaneously
recorded with the face and the two video streams were mergesishown in Figure 2.7.
The pulse oximeter HR estimates were manually recorded frorng combined video
once per second. During the data collection, each participawas asked to select one
of the colors in the PANTONE SkinTone Guide [129] that best matabs with the skin
tone. The PANTONE SkinTone Guide Lightness Scale ranges from & 15 where the
scale 1 is the brightest. Within this study, participant skn tones ranged from 1 to
10.

The videos were analyzed o ine and from the rst frame of eaclvideo, the facial
region was detected using the OpenCYV library [123] with thegsameter of minimum
face size set to 120 120. With the initial face box in the rst frame, tracking
box was obtained for rest of the frames in the video. For the &ard's method,
we used the center 60% width and full height of the face/trachg box. For our
proposed method, we detected skin pixels within the entireols. The average number

of pixels detected as skin within the face region for each p@ipant ranged from
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Fig. 2.6. Data Collection Environment.

(a) Dataset 1. (b) Dataset 2.

Fig. 2.7. Examples of Video Settings.

29,436 to 87,624 for Dataset 1 and ranged from 5,867 to 21,9Gi7 Dataset 2. Our
background region requirements were as follow: (1) the area not contain skin or
micro-blushing, (2) the area was not out-of-focus and (3) thsize was selected as the
20% width and 50% height of the detected face. We used the vidlength of 59 seconds
for Dataset 1 and 1 minute for Dataset 2. The Joint approximag diagonalization
of eigenmatrices (JADE) method [130] was used for the ICA imgnentation. For
the background removal, we used the parameterd; = 0:15,t, = 0:1 [Hz], t,, =

0:4. Selecting appropriatet, and t,, values is crucial. We would like to note that
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we used dierentt, value for AFR in our previous work [131] where the di erence
between our current work were smaller amount of dataset andonskin detection
being used.t, is a threshold for determining the matching between the fogeound
and background signals. If the value df,, is too low, the background removal process
will fail. For this study, SAD ranged from O to 2,t,, = 0:4; therefore, we determine
two frequency clusters were the same if they only di ered by(®6. In our recent
work [132], we obtained cuto frequencies by Color FrequencSearch (CFS). The
advantage of using CFS is that there are less parameters caangd to that of AFR
and gives tighter cuto frequencies for the dominant HR value Disadvantage of CFS
is that it has a possibility to miss some of the HR frequency rge if HR variance is
not low enough to form a dominant peak in the frequency domainFeng et al. [54]
used Adaptive Bandpass Filter (ABF) by always setting the cutofrequency ranges
of 0:15 Hz ( 9 bpm) around the most dominant peak. Their work only require
one parameter ( 0:15 Hz) in terms of setting the adaptive cuto frequencies butti
gives xed frequency range regardless of the variance of th&R and cannot take care
of the background noise.

The initial frequency range to acquire AFR was set td, = 0:7 and f, = 3:0
[Hz]. Resting HR for 95% of healthy adults falls within 48 to 10@pm (equivalent
to [0.8, 1.67] Hz) [5]. We did not have health information on auparticipantsthat we
expanded our initial frequency range to [0.7, 3.0] Hz. Picasdmethods [27,28] used
[0.75,4.0] Hz or [0.7,4.0] Hz.

Figure 2.8 show the Adaptive Frequency Ranges (AFR) for the 22¢t cases in
Dataset 1. From the gure, we can see that for all participarg, the obtained AFR
range around their ground truth HR giving much narrower HR rang compared to
the Fixed HR range. Only Test 13 shows some deviation from GTHR IAFR.

The results using Picard's approach and using our method as@own in Table 2.2.
To evaluate the performance, we used the \percentage of aptance" in NC-VT
Iter. This is shown in \AccRate" column in the table. Higher acceptance ratios

were indicative of more reliable estimates for the obtainedstimation. Our second
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Fig. 2.8. AFR obtained by the Proposed method for Dataset 1.

metric for evaluating the performance was average HR error ®hn in the \Error"
column of the table. HR error is de ned as
1 X .
= N jhin9  glnYj (2.6)

where h[nY is the estimated HR in units of bpm,g[nY is manually recorded HR at
every \second" from the pulse oximetern®is the time domain index for accepted
HR estimate andN °is the number of accepted HR estimates. The \Average GTHR"
column is the average value af[n9. Our approach has an averageg 3.47 bpm wich
is notably lower than the 18.76 bpm of the Picard approach. Falatset 1, our HR
estimation tends to give less errors for participants withighter skin tones. For 8
participants with skin tone level 1, the average of g is 2.86 bpm and for the rest of
the participants with skin tone level ranging from 3 to 8, theavergae of g is 3.83
bpm. Figure 2.9 illustrates the advantages of the AFR for tegparticipant 18.

Figure 2.10 shows the AFR for 18 dierent test cases in Datasét, No-motion
videos. The obtained AFR range around their ground truth in mst test cases. Test
11 and 13 were the corner cases described in section 2.3 whieeee is no frequency

cluster formed around the ground truth due to weak HR signals-or Motion videos
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Fig. 2.9. Estimated HRs and Ground Truth HR for Test 18 in Datasel.
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Fig. 2.10. AFR obtained by the Proposed method for Dataset 2, Nmotion videos.

in Dataset 2 in Figure 2.11, only half of the test cases have ABRiround their ground

truth. Table 2.3 and 2.4 show the results for Dataset 2. For Norotion videos shown

in table 2.3, our approach has an averages 4.87 bpm which is much lower than

the 18.04 bpm of the Picard approach. For test 11 and 13, the ARate is far below

80% and the g is high. For these cases, the signal corresponding to the HRsnaot
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Fig. 2.11. AFR obtained by the Proposed method for Dataset 2, dion videos.

strong enough compared to other unknown noises. The skin ®s1did not seem to
have strong relationship with the HR estimation error ratesri Dataset 2.

For non-random motion videos shown in table 2.4, neither Pacd's approach nor
our proposed method gave good HR estimations. For the propdsmethod, only
4 out of 18 tests showed reasonable HR estimates{AccRate highban 85% and

e < 5. Lots of strong signals are generated for motion videos thaur proposed
method failed to correctly estimate HR for those motion viden

In sum, we improved video-based methods for assessing megtHR in a controlled
setting where there is no motion in the video. We demonstratethat our method
can estimate HR with 3.55 bpm for Dataset 1 and 4.87 bpm for Dagat 2 (smaller
facial region than Dataset 1) of errors on average across pepants with varying

skin tones. We will discuss about these motion-generatedysals in Chapter 3.



A Comparison of Two Methods for Dataset 1

Table 2.2.

Test | Skin | Picard's approach [28, 29] Proposed Method
Tones | AccRate [%]| ¢ [bpm] | AccRate [%]| g [bpm]
1 6 30 14.03 97 1.25
2 7 37 6.92 100 2.38
3 1 13 46.97 96 3.28
4 1 52 7.29 98 1.97
5 1 3 7.18 100 1.92
6 5 26 12.81 98 411
7 1 8 27.35 100 2.77
8 1 26 9.87 97 2.57
9 3 12 7.13 97 2.23
10 5 48 25.05 98 2.63
11 1 1 0.84 100 1.88
12 3 14 16.73 100 3.93
13 5 16 34.85 85 13.63
14 7 15 23.83 100 3.00
15 4 11 34.42 97 5.19
16 6 20 46.19 94 6.29
17 1 35 10.57 100 2.64
18 3 79 3.56 97 1.51
19 8 32 10.32 98 1.83
20 5 19 10.45 98 2.08
21 1 28 19.88 97 5.83
22 6 6 36.37 100 3.51
Avg. 18.76 3.47
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Table 2.3.
A Comparison of Two Methods for Dataset 2, No-motion videos.

Test | Skin | Picard's approach [28, 29| Proposed Method
Tones | AccRate [%]| g [bpm] | AccRate [%]| g [bpm]
1 2 12 12.80 97 5.68
2 8 17 17.26 96 6.90
3 3 24 12.54 100 4.50
4 9 24 27.96 97 3.37
5 6 23 18.37 98 4.13
6 7 23 46.47 97 3.70
7 7 16 20.72 98 2.85
8 8 13 25.69 97 5.62
9 4 34 7.86 100 5.34
10 7 18 13.48 100 3.39
11 10 27 24.19 24 17.74
12 3 20 20.55 100 3.21
13 1 24 22.58 41 11.16
14 3 12 18.35 100 3.83
15 3 38 5.41 100 4.14
16 2 44 7.02 100 3.36
17 1 26 31.66 96 3.21
18 9 17 14.99 97 1.62
Avg. 19.33 5.21




Table 2.4.
A Comparison of Two Methods for Dataset 2, Non-random motionideos.

Test | Skin | Picard's approach [28, 29| Proposed Method
Tones | AccRate [%]| g [bpm] | AccRate [%]| g [bpm]
1 2 7 34.30 95 3.96
2 8 31 18.20 95 10.26
3 3 20 9.07 73 14.95
4 9 16 11.87 96 26.84
5 6 9 20.75 100 25.14
6 7 15 19.85 95 15.96
7 7 20 18.21 85 49.79
8 8 23 14.34 100 8.77
9 4 34 13.70 86 18.70
10 7 20 22.87 100 3.32
11 10 14 19.51 87 39.26
12 3 32 13.47 100 2.44
13 1 31 17.02 97 25.85
14 3 17 11.90 94 7.15
15 3 23 21.67 100 11.44
16 2 37 12.88 100 30.36
17 1 17 13.04 100 3.35
18 9 29 16.50 100 9.62
Avg. 17.17 17.07
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3. UNDERSTANDING MOTION EFFECTS
IN VIDEOPLETHYSMOGRAPHY (VHR)

3.1 Motion and lllumination in VHR

Our system described in Chapter 2 assumes that the RGB tradbg average inten-
sity of RGB channels over time, composed of linear mixtures BPG signal and other
unknown noises. This assumption on linearity fails when the is subject motions in
the video. In this Chapter, we investigate the relationshigpetween the motion and
the corresponding traces acquired from the video to undesstd the motion e ects.

One of the major cause of the pixel intensity changes when tieeis motion is the
change of the illuminationl on the skin surface caused by motion. Mocet al. [61]
provided experiments showing that orthogonal illuminatia minimizes the motion
artifact in video-based PPG. For a single point light sourgewe can obtain the image
intensity L in terms of the incident angle , illumination |, and re ectanceR of the
surface where is the angle between the incident light and the surface norrfL33].

L=IR

(3.1)
| = Ig+ 1 cos

wherel g is the uniform di use illumination, I is the illumination from a point source.
In case of video pixel intensityL (n) wheren is the frame index, Equation 3.1 can be
rewitten as

L(n) = IsR(n)cog (n)]+ 1oR(N) (3.2)

where (n) would be the motion-related term andR(n) is a linear mixture of PPG
signal h(n) and other signals [35,57]. (n) in Equation 3.2 would be constant over
frames when there is no motion. For this no motion casé,(n) is approximately the

linear mixture of h(n) and other signals that we can use ICA and linear lters to
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recover the underlying source signals as in our system in GQiter 2. When there
is motion, L(n) is no longer a linear mixture ofh(n) and noises but it includes the
multiplicative motion term R(n)coqd (n)].

Several recent VHR papers address the motion e ects with multiicative models.
Feng et al. [54] describes a multiplicative motion model for video intesities L (n) in
terms of PPG signalh(n). They claim that when the subject is moving, the motion

will modulate all three PPG signals in the RGB channels in thsame way, as
L(n)=  ( So h(n)+ So+ Ro)M(n) (3-3)

whereM (n) is the motion modulation, is the power of the light in the normalized
practical illumination spectrum (corresponding tol de ned in Equation 3.1), isthe
power of the light in the normalized di use re ection spectum of the skin, is the
ac/dc ratio of PPG signal, S is the average scattered light intensity from skin andR,
is the di use re ection light intensity from the surface of the skin. Kumar et al. [35]
describedL (n) as the multiplicative model of the intensity of illumination | and the
re ectance of the skin surfaceR. Combining this with the camera noiseg(n), they

proposed the following model.
L(n)=1(a h(n)+ b)+ qg(n) (3.4)

wherea is the strength of blood perfusion, and is the surface re ectance from the
skin. They addressed that change in can corrupt the PPG estimate and small
light direction changes caused by motion can lead to large aiges in skin surface

re actance b. Haan et al. [57] proposed a similar model
L(n) = I(c+ h(n)) (3.5)

where c is the stationary part of the re ection coe cient of the skin. Their recent
work [58{60] speci cally address solutions to motion prokims.

While Equations 3.3, 3.4 and 3.5 have di erent approaches dmotations in mod-
eling L(n), they all assumes thatL (n) includes the multiplication between the il-

lumination and re ection. And in all three models, the terms or re ectance R(n),
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denoted in boldface in each equation, are represented as thmear mixture of h(n)
and other (constant or varying) terms. In this thesis, we ta& this idea that R(n) is
a linear mixture of h(n) and other signals where the other signals would not change

over time in short video scripts for a speci ¢ skin surface pat.

3.2 Simple Modeling: Intensity Change of Moving Object

In this section, we analyze how motions a ect intensity of apeci ¢ object surface
point in moving object video. For a video taken from a camera ith a single light
source where the positions of both the camera and the light soe are xed, the
motions inside the video play a signi cant role in the pixelntensity changes in the
video. This is because each surface point has a correspogdincident angle and
motion in the video changes throughout frames as described in Equation 3.1.

These intensity changes caused by motion are often times dhand barely noti-
cible in human eyes. In VHR, the PPG signal that re ects heart bat is even smaller
and is not even noticible in human eyes. In our no-motion dasat described in Chap-
ter 2, the average intensity variation of green channel with the face skin region for
10-second duration was approximately 2% on averagen(n =Lmax = 0:98 on average
whereL i, and L are minimum and maximum intensities of green channel respec
tively). Figure 3.1 shows an example of the average intengiof green channel, we call
green trace, within face skin region for 10-second duratiomhese small variations in
the average green trace would contain PPG signal togetherttviall the other noises.
The motion-related signals have severe e ect on VHR and makegli cult to obtain
the HR related signal in the video.

In order to see how much intensity change is caused by motionse assume a
simple motion model in a constrained shooting environmentLet's assume we are
observing the intensity at a speci c point of a sphere in a vigo. Figure 3.2 shows
the top view of this shooting environment with light rays faling on speci ¢ points of

a sphere. The sphere only moves in left and right (LR) direains and there is a one
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Fig. 3.1. Average green trace within face skin region for 1@eond
duration for subject 17, Dataset 1. The range of intensity. for all
color channels in Dataset 1 isL 2 [0; 255]. The average HR obtained
from pulse oximeter for this 10-second duration is 64 bpm (raring
about 10.7 beats for 10 second).Lnin = 67:4, Lmhax = 68:3 and
L min =Lmax = 98:7%.

point light source with a xed location. The sphere is an appximate modeling of a
human head. Camera viewing the head is not shown in Figure 38d it is assumed
to be somewhere between the head and the light source.

For the center point of the head denoted with blue points in Fjure 3.2-(a), the
intensity L of the center point reaches maximum when = 0 (d = 0) following from
Equation 3.1. This is when the surface point is right in froniof the light source. L
decreases as the head moves away from the center. In this restd motion scenario,
we can obtain the minimum and maximum intensities of a singlsurface point based
on Equation 3.1 wherel, = 0 assuming that there is only a point light source.

Equation 3.6 showd. ,,ox and L, for center point ( =0 ).

Lmax = IsR

Lmin = LmaxCOJ jmax] (36)

JJmaX—tan ﬁ
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(a) Center point ( =0 ) analysis. (b) Side point ( > 0 ) analysis.

Fig. 3.2. Point analysis for a simple motion model. is the incident
angle,r is the radius of the head when viewed from the tog is the
moved distance,D is the distance between the source light and the
line of movement, is the angle from the head direction to the line
connecting center of head and the light, is the angle between specic
face point and head direction from the center of the head, andis
the angle between speci ¢ face point and the center of heaain the
light source. is zero when the head direction is toward the light and
aligned with the line between the source light and the centesf the
head. is positive when in counterclock-wise direction. is zero when
the face point is on the line between the light source and thewter of
the head. is positive when in counterclock-wise direction. In both
gure(a) and (b), the leftmost circle denotes the farmost psition to
the left and the rightmost circle denotes the farmost posibin to the
right.

Equation 3.6 can be extended to a side point case & 0 ) by introducing three

additional variables , and as denoted in Figure 3.2-(b).

= - (3.7)
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wheredand 2 [ tan (jdjmax=D);tan (jdjmax=D)] is a motion related variable,
is an angle that denotes the speci c point of a face. is constant for each point on

a face. When 6 , the value for satis es the following equation.
r

1 : g (D=r)2+(d=r)2 coq )
. 1= — .
sin? jsin( )]

(3.8)

From eq. 3.7 and eq. 3.8, we can obtain the correspondiogs for a moved distance

d. This shows the relation between the intensity. o« c0S and a moved distancel.

Fig. 3.3. Relation between moved distance and cos for various > O.

If the angle is small (the point is close to the center of the face), thers inot
much intensity change ford within [  0:46; 0:46] [ft] range. For large , the L min =Lmax
ratio increases. As shown in Table 3.1, for a facial point at ¢hside of the face with

=80 , the ratio L yjn =Lmax drops to 0.495.

We made test videos to see if we can observe this relationshoptween and
Lmin =Lmax ratio. Figure 3.4 shows the data collection environment. Weried to
mimic the simple modeling in Figure 3.2 but used the at surfee box instead of the

sphere in order to reliably obtain the intensityL (n) of a speci c surface plane. We
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Table 3.1.
r. = Lmin =Lmax Whenj2dj 11=12,D =11, andr =7=12.

[1] r

0 |0.999
10 | 0.984
20 | 0.967
30 | 0.949
40 | 0.926
50 | 0.896
60 | 0.850
70 | 0.762
80 | 0.495

Fig. 3.4. The data collection environment. The distanc® between
the object's moving plane and the light is 11 ft. The range of oving
distanced along the moving plane ig2dj < 11 inch. The height of the
light h, and height of the objecth, are similar (h; = 47 and h, = 43
inches). The object surface facing the camera is a paper ifdidaolor
of light pink.

shoot the videos with Logitech Webcam ¢920 in lossless fornvaith both the auto
white balance and auto gain control options set to OFF. The dieos were 1920 1080
in 30 fps. The room had no windows and all the room lights on theeilings were o
when the videos were taken. Only one light source shown in Big 3.4 was turned

on. While keeping all the other conditions the same, we madaree di erent surface
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angles to make incident angles of 0, 30 and 60 degrees. Theecbmoved through
the same moving plane which is perpendicular to the incidetight ray. A researcher
manually moved the object and maintained the surface angld the object by xing

the object on a paper where the protractor is printed on. Eackideos were 50-
second length (25-second length for No-motion and the otheb-8econd for Motion).

Figure 3.5 shows the video captures for three di erent testases.

(@ =0 . The number of ROI pixels was(b) =30 . The number of ROI pixels was
6077 for all frames. 5525 for all frames.
(c) =60 . The number of ROI pixels was

4053 for all frames.

Fig. 3.5. Camera views of test videos in di erent angles. Thaverage
L (n) is obtained from the ROI pixels within the green circle{theadius
of the circle is the diagonal distance between two red pointivided
by 6.5. Four corner points in red are manaully selected in thest

frame and obtained by feature tracker [134] in the rest of thisames.

Figure 3.6 shows the Average of ROI in R channel. For all test cases, there is a
notable di erence between No-motion and Motion in terms of aragelL. While the
averageL does not change throughout time for No-motion case, the aveaL varies
in Motion resulting up to r. = Lmin =Lmax = 0:937 for =60 . In this scenario, the
light source is approximately a point source and th&(n) = R is constant over time.

Therefore, Equation 3.2 can be simpli ed to

L(n) = IsRcog (n)]: (3.9)



50

This means that the averagd.(n) shown in Figure 3.6 is thecod (n)] scaled byl sR.
Table 3.2 shows | obtained from each RGB channel along with the \Simulated

r." shown in Table 3.1. The average obtained from RGB traces does not exactly

Table 3.2.
re = Lmin =Lmax [%0].
[ ]| Simulated r. re re Average| Std. of
r inBch. | inGch.|inRch. r re
0 99.9 97.82 | 98.18 | 98.59 | 98.20 0.4
30 94.9 95.23 | 93.80 | 94.94 | 94.66 0.8
60 85.0 95.20 | 93.42 | 92.38 | 93.66 1.4

match to the simulatedr, but the tendency that for higher , r_ gets lower holds
for both simulated r, and RGB trace-based|. We have not considered the camera
guantization or other camera processes and this could be treason for the mismatch
between two dierentr, .

In conclusion, the motion e ects vary a lot for di erent point of the face due
to their surface angle di erences. Most of current VHR methodbegin with taking
an averagelL (n) of each RGB channel over the entire face/face skin/sub-rem of
face (cheek, forehead) in order to obtaim(n). As observed from our experiment,
motion-generated signal (n) for each dierent point on face could be completely
di erent signals depending on what kind of motion there is. e trace obtained by
taking the average over multiple surface points with variasisurface angles will result
in both non-linear and linear mixtures ofh(n) and other noises including motion-

related signal.
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3.3 Intensity Model in Human Video with Motion

In section 3.2, we considered a constrained model where ohlg movements are
possible and the head of a complete sphere always maintaihe tsame direction. In
real human video, LR movements involve head rotations in uplown or left/right
directions as well. Those variations make changes to the ident angles. In this
section, we obtained an incident angle of a speci ¢ facial g throughout frames to
see the motion e ects described in section 3.2 in real humaideos.

By introducing the surface normal to Equation 3.2, the imag@ntensity in terms
of the surface normal, illumination, and re ectance of thewface can be rewritten as
follows. " #

X
L«(n) = Rk(n) lik Tk (n) m(n)+ 1o (3.10)

j
k is an index for speci ¢ point on facial skin; is an index denoting each point light
source,lj is the amplitude of the light from light sourcej to the skin surface point
K, Iik (n) is the unit vector for the light ray from point k to light sourcej, r(n) is the
unit vector for the surface normal at skin surface poink, R¢(n) is the re ectance at

skin surface pointk, and n is an index for frame number.

For point light sources coming from the same lighting, we calnave approximate

light ray on point k.

X

ik Tic(n) Tk T(n) (3.11)
j

Lk(n) = Rk(n)lk(n) (3.12)
l(n) = Tk Tk(n) A(n) (3.13)

L«(n) is what we can observed from videdRk(n) is the re ectance that contains

HR signal, 1 (n) is the illumination that varies with incident angle.

h [
Lk(n) = Rk(n) Tkf(n) m(n)+ lo (3.14)
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Equation 3.14 still involves ve di erent unknown variables or constants. By letting
f(n) = A(n) + dx(n) wheren(n) is face direction normal to the arbitrary global face
plane anddi(n) is a vector denoting the di erence betweemy(n) and f(n), we can
have further approximations. For those skin surface pointahere the surface angle
relative to the face direction is almost xed{the skin surf@e where the facial muscle
movements are negligibledik(n) dx and if the distance between the light and the
head is much longer than the head movementk, Ik(n) | T.
h i

Lk(n) = Re(n) #A(n) IT+ a 1T+ Iy (3.15)
In Equation 3.15, the rst term is not related to the specic «kin surfacef{it is a
common term related to the head movements. The second and ttierd term are
constants that does not involve the frame index and can be replaced with the
constant c. h i

Lk(n) = Rk(n) #(n) IT+ ¢ (3.16)

If we let Rx(n) axh(n) + b whereay is the strength of blood perfusionfy is the
surface re ectance from thekth skin point [35] and h(n) is the PPG signal from the

heart beat, we have

Lk(n) = axh(n)n(n) 1T+ ba(n) 1T+ accch(n) + becg: (3.17)

Equation 3.17 shows that the intensity change on skin poirk observed from the
video is linear mixture of four di erent terms. What this model means is that if
there is no head motion) ¢ (n) would be the linear mixture ofh(n) and constants not
depending om. If there are head motions, it is di cult to directly observe the signal
h(n) through L(n). For periodic head motionsm,(n) = A(n) IT, the rst term in

Equation 3.17 is modulation of two periodic signala(n) and my(n).

Lk(n) = ach(n)mn(n) + bcmn(n) + accch(n) + b (3.18)

The modulation e ect will cause several peaks in the PSD afy(n).
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3.4 Filters

Adaptive Iter can be used to remove the motion artifact if we lave a reference
signal that has the strong correlation to the motion artifat but uncorrelated to the
PPG signal. Huanget al. [71] described the signal of skin color changes as three com-
ponents of the blood volume variation, human motion and therabient light change.
Along with RGB traces of skin pixels within the face region, tey also obtained the
trace of (x;y) coordinates of the ROI and used them as inputs to cascade adiae
Iter to alleviate the interference related to motion [71]. They experiment with one
long video of only one subject during exercising on treadmilTheir assumption (lin-
ear mixtures) on motion e ects is di erent from ours (multiplicative e ect) but the
idea of using the motion information, k;y) coordinates in their case, as a reference
signal in adaptive lIter to reduce the motion e ects in the RGB traces is the same
with what we are going to pursue next.

Based on our model in Equation 3.18, homomorphic lter [13%36] might be used
together with other linear lIters to reduce the motion artifact. Homomorphic lter is
used for signals combined in a nonlinear way. It rst transfons nonlinearly related
signals to additive signals. Then, the signal is processeg bnear lters such as
bandpass Iter (BPF) and it is transformed backward by the irverse nonlinearity. An
example of transforming and inverse transforming nonlinég related signals is taking
the logarithm and exponential to the signal. Two multipliedsignals become additive
when logarithm is taken. Figure 3.7 shows an example of blodkagram for using
homomorphic lter in video-based HR measurement. This methbis left for future
work and it require both facial landmark detection and facikadirection estimation

accurately done on each frame of the video along with directi of the light source.
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3.5 Region Selection and Face Direction

Given three points in 3D space, a unique plane is determine@he surface normal
at point k, m(n), can be obtained if we know three points on the surface thatea
not aligned on one line.

Human head is not a perfect sphere that it is di cult to know the skin surface
normal for each pointk. We can get an approximate surface normals through detect-
ing three speci ¢ points that form a surface that we want. As wat we want to obtain
is the direction of the surface but not the absolute 3D locatin of the surface, we can
use the relative three points to form the surface. First we s&vo points as the center
of the left and right eyes. Then, we nd the 2D point of the tip d the noise from the
frame. In our experiment, the head movement is restricted tthe image plane. And
from our observations, we assume that the subject rotate theead to left direction
when moving to the left side and rotate to right direction wha moving to the right
side. If two eye points are on the image plane, the tip of the rs@ point shown on the
image is what is being projected from the 3D point to the imagplane. We assume
that the sign of z coordinate of the tip of the nose does not change throughoute
video since the subject was asked to look toward the camerahd (x;y) coordinates
of the three points can be determined from the tracking poistin the image plane and
the z coordinate for the tip of the noise can be determined by thergth of the noise
obtained from the image and the length of the noise obtainedoin the side view.

Let m(n) be [ny(n);ny(n);n,(n)]. Let M = [X;A;B;C] whereX is a general
point on a plane andA, B, and C are three selected points of the face. Eack can

be expressed as a linear combination of the other three thdet(M ) = 0 [137]. By
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using this property, we can attain the plane normalrc(n) [84,137]. LetMr denote

the 4 3 submatrix formed by the known last three column vectors d¥l .
2 3
A; B; C;

=gz Bz G (3.19)

A3 Bg C3

1 1 1
where X1, X,, and X3 denotex, y and z coordinates of pointX respectively. Let
Djx stand for the determinant obtained from theiy,, the jy,, and the ky, rows of Nr.

Then, we have [84,137] 2 3

D234
A (n) = E D13‘é : (3.20)
D124
With these three estimated points on each frame and the appdmate light source
direction, we can estimate the motion-caused variation df(n). We denote theL (n)
estimated from the tracking points asL(\n). L(\n) would not involve PPG signal
because it is estimated solely from illumination and motiomvithout using pixel in-
tensities. L(n) was obtained from the pixels within the circle where the ceer of
the circle is center of the noise point obtained in every fraenthrough feature track-
ing and the radius of the circle is set to 3 pixels (number of xels inside the cir-
cle: 28). For the unit vector from ceiling light to the pointk on the skin, we used
lk(n)=[ 0:2576 0:8013 0:5446] obtained from measurements in the shooting en-
vironment. This I, would slightly vary as the person moves but we used the xed
values as an approximation. We assigned xed values for undwn scaling factor
Rk(n) I = C in a way such that the mean of Average (n) and the mean ofL(\n)
are equal.
L{n)= C K(n) m(n) (3.21)
Figure 3.8 shows an example of facial points and ROIs. FiguBed shows the Average
L(n) and L(\n). The L(\n) is obtained from rc(n) estimated from three points A, B,

C which were obtained from each frame of the video.
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Limitations of our experiment is that we used approximatioa and assumptions
such aslg = 0, Iy is constant andlx(n) is xed. And we used very small region
for obtaining the trace which would not contain a reliable P& signal due to its
small size. Despite the limitations, Figure 3.9 shows thahe AveragelL (n) and L(\n)
estimated only from the motion information are similar bothin time-domain. The
small variations (uctuations) are only shown inL(n). In the frequency domain,
motion peaks appeared around 0.17 Hz in the PSD plots for bothe AverageL (n)
and L(\n) in both subjects (not shown in the plot). L(\n) contains a periodic signal
with frequency of 0.17 Hz and from Equation 3.21,(n) also contains a periodic signal
with frequency of 0.17 Hz.L(n) and L(\n) share the samd (n). From the fact that
the peak around 0.17 Hz is observed both in(n) and L(n), we expect that Rx(n)
would contain the constant termRg that does not change over time. Equation 3.22
is an updated equation of Equation 3.12 rewritten to includeonstant term within
Rk(n).

Li(n) =[Rn(n) + Ro]l«(n) (3.22)

where R, (n) is a linear mixture of PPG signalh(n) and other re ectance terms.
Rh(n) is modulated by I(n) unlessliy(n) is constant over time. As expected, no
strong peak appeared around the GTHR within the frequency raye of our interest
(Figure 3.9). Our experiment shows strong relationship betenl(n) and the cosine
of the incident angle, estimated withli(n) r«(n). Further understanding only(n)

may compensate the modulation e ect inL(n) for di erent facial point k.

3.6 Conclusion and Future Work

We showed the relationship between the motion and the inteityg change by simple
modeling for moving object with constant re ectance. We exdinded the experiment
to human video and showed the motion e ects on the intensityhange in terms of
the skin surface normal and illumination. Our results show dw the incident angle

change caused by motion is related to the pixel intensity chges. We showed that the
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illumination change on each surface point is one of the majéactors causing motion
artifacts.

Following are suggested for future work: (1) estimating (\n) could be done more
accurately by improving the tracking performance of threeatial points, (2) instead
of using xed values for all the frames, the light source diction for each frame could
be estimated using the location and shadow information and) a method to nd
sub-region (surface) that share the same surface normak (n)) could be investigated
so that more surface normal estimation can be done more acataly.

There are several related work to note regarding future work

Lin et al. [75] addressed that the success of face-based HR estimatitorgly
depends on the measurement of facial illumination. They sggsted to have various
assumptions and simpli cations about illuminance and re etance because separating
the re ectance and the illuminance elds from real images jsn general, a poorly-
posed problem. Their assumption was not clearly denoted imé paper, but they
usedx and y direction edge Iters to give dierent weighting at each piel. We
also think that there should be di erent compensations for derent regions since the
illumination variations on each pixel di ers due to di erent surface angles.

Kumar et al. [35] divided the facial regions into smaller regions do thestcking sep-
arately from the assumption that di erent part of the face catain di erent strength
in of the PPG. The idea of having sub-regions makes sense hesathe illumination
change on di erent sub-regions can be di erent. But the samseized grid of 20 20
pixel blocks used in their paper does not necessarily mearetpixels within each block
would share the same intensity change.

In Section 3.5, we manually selected the facial points in thest frame and used
feature tracker [134] in the rest of the frames. This works rfeshort period of time
but the tracking error is accumulated as the duration of the ieo gets longer. Facial
point detection methods for single image are described in38,139]. Several work on

nding facial landmarks in video frames both for detection ad tracking are described
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in some recent work [140{142]. facial landmark localizatiotechniques should be
further investigated.

In Section 3.5, we only experimented on videos with limited ation patterns. We
were able to estimate the direction of the surface formed frothree speci ¢ points (the
centers of two eyes and the tip of the nose) just by estimatintipe distance between
the eyes and the distance of the nose because of many resimits in the motion
patterns. To extend our approach to random motions, methodfor estimating the

face directions in the video [143{147] can be further invegated.
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(@ =0 .Lmax =214:7, Lmin =211:7 andr_ = 98:6%.

(b) =30 . Lmax =201:8, Lmin =191:6 andr = 94:9%.

(c) =60 . Lmax =164:1, Lyin =151:6 andr_ =92:4%.

Fig. 3.6. AveragelL of ROI in R channel in three di erent surface an-
gles: No-motion vs. Motion.L is 8bits/pixel/channel and L 2[0,255].
The PSD of each trace (the averagke(n)) within the frequency range
of our interest in VHR, f; = 0:7 andf, = 3:0 Hz, is plotted in blue
below the each trace.



Fig. 3.7. Block Diagram.

Fig. 3.8. An example captured from Dataset 2. Facial points deted
in red. ROI regions denoted in green{only the ROI in the midd of
the nose was used.
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(a) Subject 3

(b) Subject 14

Fig. 3.9. Experimental result on Dataset 2 of non-random main
videos: Averagd.(n) and L(\n). L(\n) is denoted as \Estimated L" in
the plot label. The red patches in PSD plots denote the GTHR rage
for each subject. The frequency range in PSD plot i5 = 0:7 and

f, = 2:0 Hz. Both subject 3 and 14 showed strong peak around 0.17
Hz corresponding to motion (Not shown on the plot).

61



62

4. SLEEP ANALYSIS USING
MOTION AND HEAD DETECTION

Pediatric sleep medicine is a eld that focuses on typical @hatypical sleep patterns
in children. Within this eld, physicians, interventionist, and researchers record and
label child sleep with particular attention to sleep onsetiime, total sleep duration,
and the presence or absence of night awakenings. One notaf@eording method is
videosomngraphy (VSG) which includes the labeling of sleepi video [2,3]. This
method is most commonly used for infants/toddlers as theirampliance rates with
other sleep recording methods can be low. Traditional behaval videosomnography
(B-VSG) labeling includes manual labeling of awake and slespates by trained tech-
nicians/researchers. B-VSG is time consuming and requirestensive training which
has limited its widespread use within the pediatric sleep rdecine eld. Within the
present study we develop and test an automated VSG method (a#t/SG) to re-
place B-VSG and to provide physicians, interventionist, andesearchers with a sleep
recording tool that is more economic and e cient than B-VSG, vhile maintaining
high levels of labeling precision.

The development of auto-VSG is a growing area with prelimingrstudies utilizing
signal processing systems that index movement during slepsmall groups of chil-
dren with developmental concerns or adults [2,93{95]. Acreshese studies, motion
within the video is estimated by frame di erencing [93, 94] oby obtaining motion
vectors [2,95]. However, each of these studies were commletédthin a controlled
setting and do not account for the wide range of camera positis and lighting vari-
ations that are common among in-home VSG recordings. Withirhe present study,
the proposed system adjusts for these “in the wild' factorsd uses two sleep eld

stands as comparison measures of sleep. The rst is actighgpwhich estimates sleep
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Fig. 4.1. Proposed Sleep Detection System.

vs. awake states based on child movement as indexed by an anlorn accelerome-
ter. Second, trained technicians/researchers provideceslp vs. awake estimates using
traditional B-VSG labeling methods.

In this chapter, we develop and test an auto-VSG method that tludes (1) pre-
processing the video frames using histogram equalizationcaresizing, (2) detecting
infant movements using background subtraction, (3) estinteng the size of the infant
by detecting their heads based on deep learning methods, a@d scaling and limiting
the degree of motion based on a reference size so the motion ba normalized to
the size of the relative child in the frame. The generated @states are then catego-
rized as awake or sleep for each minute of video by applying established sleep eld
algorithm [148]. Finally, all auto-VSG estimates were compad with those provided

by actigraphy and B-VSG.

4.1 Sleep Detection

4.1.1 Motion Detection

We assume that there is less motion during sleep than awakeatds [149] and
that the child is the only source of motion in the video. Backgund subtraction is
widely used for detecting moving objects from static camesg150]. Moving objects

(foreground objects) are detected by taking the di erences@ibtraction) between the
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background model and the current frame. While some backgnod subtraction meth-
ods aim to detect moving objects as foregrounds, our systenma to detect moving
regions as foreground. As shown in Figure 4.1, the system begby converting the
RGB video frame to a gray scale frame and resizing it @, h, wherew, and h, are
width and height of the resized frame. Preprocessing incles histogram equalization
to enhance gray scale contrasts. This helps adjust the ovéiramage intensity range
across various room lighting schemes. Next the background d®b is obtained from

history of h[i] previous frames as in (4.1)
1 X!
Bilx;yl = = L[X;y] (4.1)
hii]
k=i h
where i is the video frame index,h[i] = | f5 is the number of previous frames
(history) used for the background model in frame, | is the history in secondsfs is
the frame rate of the video,li[x;y] is a pixel in framei and B;j[x;y] is a pixel in the
background model at framd. The di erence between the background modds;[x;y]
and I[x; y] indicates whether each pixel in the frame is classi ed as \aved" or \not

moved". A pixel is classi ed as \moved" if (5.1) holds.
iyl Bilsyli>T (4.2)

whereT is a threshold for determining movement for one pixel and faur experiments
the value of T is empirically determined. We quantify the amount of movem# as
the number of pixels classi ed as \moved." Note that if the hitory h[i] in (4.1) is set
to a small value such as 1, the background modB| would be almost identical to the
current frame |; and that the system will not properly detect the motion. We olain

the average number of moved pixels for time segmentas
1 X4

m; = ra B Nm[K] (4.3)

wherek is frame index within one time segmentn,[k] is number of moved pixels in
framek, K is number of frames for one time segmert, s fsc where ¢ is duration of
each time segment [seconds]. For our work all videos have anbedded time stamp

in the bottom-right corner of the frame. We excluded the timestamp region to avoid



65

misclassifying changes in time as child motion. An example ofir motion detection

is shown in Figure 4.2.

Fig. 4.2. Example of motion detection: Preprocessed imagkeff),
background model (middle), and moved pixels denoted in wiait

(right).

4.1.2 Reference Size Using Head Detection

The number of moved pixelan; for time segment;j is dependent on the distance
between the camera and the child. A camera closer to a childlliesult in more
moved pixels than a camera farther away because the child igntained in a region
that has more pixels. To address this \scaling" issue, we ded and limited m; based
on the size of the child. Obtaining the child body size is cHahging compared to
detecting the head region. The body pose can produce di etteshapes compared to
the head and often the body is fully or partially covered witha blanket or other bed
clothing. We detect the head size instead of the entire bodyze assuming that the
two are roughly proportional. We will do this using deep leaning.

Object detection performance has been signi cantly impr@d using deep learning
approaches such as the Region-based Convolutional Neural Wetk (R-CNN) [151],
the Fast R-CNN [152], and the Faster R-CNN [153]. Recent work rfaletecting hu-
man heads [154] is based on a R-CNN object detector [151] tdgatwith contextual
information. We used the Faster R-CNN since it is one of the mbe ective object
detectors [153]. The network is composed of three main parta feature extractor,

a region proposal network (RPN), and a softmax classi er. Théeature extractor
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consists of a set of convolutional Iters followed by non4tiear layers that extract vi-
sual information such as color or edges. The Zeiler and Fesy(ZF) [155] network
is selected as a feature extractor because it has a small nientof parameters (5
convolutional layers). The RPN uses the information provied by the feature extrac-
tor to detect regions of interest where a head might be locate Then, the classi er
outputs con dence values for detected regions. The con dee value ranges from 0
to 1 where a con dence of 1 represents that the network is almsibcertain that the
region contains a head.

We trained the network using the Casablanca dataset [154] Ehdataset consist
of 1,466 grayscale images with head annotations. Each anaidn is a bounding box
capturing the head location. We selected this dataset becsai it contains multiple
heads in di erent poses and lighting conditions.

To nd a head size for each child, rst we detect heads from vigb frames captured
every minute. Then we re ne the detection results by discaidg the objects that
are above the upper bound limit ratio {,) or below the lower bound limit ratio
() relative to the image width and height. To obtain detectiors when the child is
sleeping, detection results with no motionr,, = 0) are selected. Among the re ned
head detections, the one with the highest con dence scoresslected. We use the size

of this selected head detection to obtailN.x per night.
I\Imax =C [Whhh:(Wihi)] thp (44)

where c is the scale parameter, Wy; hy) is width and height of the head bounding
box, (w;; hi) is width and height of the image, and ,; hp) is width and height of the

preprocessed image. Fig. 4.3 shows the example of head daies.

4.1.3 Sleep Scoring

The Sadeh Sleep Scoring method is commonly used for scorihg tActigraphy

motion index [148]. The actigraphy motion index ranges frorfd to 400. In order to
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Fig. 4.3. Examples of head detections of two di erent infarst

have our video-based motion inder[j ] be in the same range, we limit and scale each
m;.
m[j] =400 (min (mM;; Nmax)) =Nmax (4.5)

wherem[j ] is the motion index for time segmenjf, and m; and N, are described in
Section 4.1.2. The motion index from actigraphy and video arsimilar measurements
in the sense that more motion produces a higher motion indexalue. The motion
index obtained from the actigraphy is based on a \zero-craag method" which counts
the number of times per each time interval that the activity ggnal level crosses zero
(or very near zero) [149]. This indicates the amount of motipas how frequent the
activity is within each time interval. The video-based motbn index is obtained from
the number of moved pixels as in (4.5). Due to this di erencewe need to limit
and scale the data to use the Sadeh's method to the motion indebtained from
auto-VSG .

We then label each time segment as sleep/awake by using thed8h Sleep Scoring
method tom[j]. We de ned the sleep onset time as the start of sleep duratiavhich is
the rst consecutive sleep segments longer or equal to 5 mies. We de ned the sleep
o set time as the end of sleep duration which is the last consetive sleep segments
longer or equal to 5 minutes. Duration of sleep is the time dation [minutes] between

sleep onset and sleep o set. Duration of awake is the awakeng [minutes] within the
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duration of sleep. Since Sadeh's method uses 11-minute vondfor each data point,

we did not use the rst and the last 5-minute data of each nighfor obtaining the

sleep onset/o set.

Table 4.1.

Auto-VSG (c=5) vs. B-VSG Labeling.

Sleep onset time Sleep o set time | Awake duration | Sleep duration
Sleep Mean (SD) Mean (SD) Mean (SD) Mean (SD)
estimate [HH:MM] [HH:MM] [minutes] [minutes]
B-VSG Labeling| 21:01 (1:16) 7:32 (0:55) 19.07 (24.23) | 617.86 (54.07)
Auto-VSG 20:54 (1:11) 7:32 (0:51) 18.14 (16.77) | 624.43 (51.02)
Paired t test t(13)=1.01 t(14)=0.01 t(13)=0.14 t(13)=-0.59
" TOST(+30) t(13)=-1.92 t(14)=-2.28* | t(13)=-6.90** | t(13)=-1.72
# TOST(-30) t(13)=1.23 t(14)=2.27* t(13)=6.49** t(13)=2.69*
Table 4.2.
Auto-VSG (c=1) vs. Actigraphy.
Sleep onset timeg Sleep o set time | Awake duration | Sleep duration
Sleep Mean (SD) Mean (SD) Mean (SD) Mean (SD)
estimate [HH:MM] [HH:MM] [minutes] [minutes]
Actigraphy 21:03 (1:02) 7:06 (0:54) 128.40 (54.27) | 474.13 (47.2)
Auto-VSG 20:57 (1:10) 7:20 (0:46) 140.00 (89.46) | 482.27 (101.12)
Paired t test t(14)=1.27 t(14)=-1.58 t(14)=-0.60 t(14)=-0.32
" TOST(+30) t(14)=-1.99 t(14)=-1.37 t(14)=-0.80 t(14)=-0.83
# TOST(-30) t(14)=1.34 t(14)=3.69** t(14)=1.80 t(14)=1.46
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4.2 Experimental Results

Our sleep dataset consists of 30 di erent nights from 30 padipants. The videos
recordings are for children from 9 to 30 months. The sleep @athat we used is
approved by the Purdue University Institutional Review Boad. The data includes
RGB / Infrared videos with spatial resolutions of 320 240 pixels at 13-16 fps or
640 480 pixels at 7-10 fps. The entire night is recorded as a segae of videos with
time stamps embedded in the video and the length of each video10 minutes and
14 seconds. The motion index recorded by the ankle actigrapland B-VSG labels
which includes Sleep Onset/O set Time are also provided. Térecording duration
for three di erent methods di er{usually the video data was available only during
the bed time and the actigraphy data was available for both daand night. We only
used the recordings with all three methods available.

The parameters of our method (Section 4.1.1) are chosen engally: w, = 160,
h, = 120 [pixels], =5 [seconds],T = 30 [levels] (11.76 % of the color intensity) and

s = 60 [seconds]. For head detection (Section 4.1.2), we uded& 0:1, |, =0:3 and
c=5o0r c=1. We did not have head annotations for our test videos so wéecked
the head detection result for each night through visual ingzxtions to select the ones
with correct bounding box. Among 30 nights, the head detectivand re nement gave
no detection for 5 nights, detected completely wrong obje&tr 6 nights, detected near
the head but with wrong size or slightly o the location for 4 nghts, and gave good
detection result for the rest of 15 nights. The main reason fgpoor head detection
performance is due to the gap between the training videos atftk test videos. Among
the publicly available dataset that includes head annotatins, we have chosen the one
that is close to ours but still there were big di erences{adli videos with day time
scenes versus sleeping kids. For future work, having tramg dataset that better
match the test set will improve the head detection performare. Since our focus of
study is sleep detection but not the head detection itself, @vused result for those

15 nights with correct head detection for our statistical aalysis. The average head
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region ratio w,h,=(w;h;) in (4.4) for 15 heads was 0.03 with standard deviation 0.01.
It ranged from 0.01 to 0.06.

Our \B-VSG labeling" includes sleep onset/o set time and aw&enings. To assess
similarities among B-VSG labeling, actigraphy, and auto-VS@ethods, we did paired
t tests and the two one-sided tests (TOST) for four sleep estimates: sleep onset time,
sleep o set time, awake duration, and sleep duration [156]n Table 5.2 and 5.3," is
the upper bound,# is the lower bound, * indicatesp < 0:05 and ** indicatesp < 0:01.
Upper and lower TOST were completed only if the paired-sample test did not
indicate a signi cant di erence between the measurement niieods. When upper- and
lower-bound TOST are signi cant, it demonstrates that 90% bthe di erence between
the sleep recording methods are within the speci ed range of30 minutes, thus
implying equivalence [156]. As shown in Table 5.2, auto-VSG @mB-VSG Labeling
estimates have comparable agreement for all four estimate$he TOST approach
indicated that the sleep onset and sleep duration estimategere not equivalent. One
large outlier in sleep onset appeared to have atypical sleagchitecture{a long delayed
sleep. Another large outlier both in sleep o set and sleep dation was the case the
baby barely moves in awake states with eyes open. Actigraphytd is sensitive to
small motions during the sleep that it tends to detect more aakenings compared to
B-VSG Labeling. By adjusting ¢ to smaller value{making auto-VSG method more
sensitive to motions, auto-VSG and Actigraphy estimates haveomparable agreement
for all estimates and is shown in Table 5.3. The TOST approadhdicated that none

of the estimates are equivalent in this case.

4.3 Conclusions

Auto-VSG has the potential to serve physicians, interventiast, and researchers
in the sleep eld. Auto-VSG is a minimally evasive tool that canprovide sleep and
awake estimates comparable to those of B-VSG. Comparisondghwactigraphy were

not as promising and head detection only succeeded for 50%nafhts; therefore, fur-
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ther auto-VSG system development is recommended before direlinical application.
However, the present study provides preliminary evidencerfthe use of auto-VSG in

a home setting.
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5. CLASSIFICATION OF SLEEP VIDEOS
USING DEEP LEARNING

5.1 Introduction

Videosomnography (VSG) is a sleep analysis method which indks the labeling
of sleep vs. awake intervals from video [2, 3,157, 158]. VSGc@mmonly used for
infants/toddlers or children with sensory sensitivities lecause their compliance rates
with other (more invasive) sleep analysis methods can be I¢%;157,158]. Traditional
behavioral videosomnography (B-VSG) includes manual laled of video segments
as \sleep" or \awake" by a trained technician [3]. B-VSG is notused to label sleep
stages (e.g., slow wave or REM sleep), rather it solely lalselvhether a subject is
asleep or awake during a particular segment. B-VSG labeling iime consuming and
expensive, because of this it has had limited use within thesdiatric sleep medicine
eld. Polysomnography (PSG), which monitors many body funions including brain
(EEG), eye movements (EOG), and heart rhythm (ECG) is the gal standard for
sleep analysis but it does not capture typical sleep well [25.59]. It is expensive and
pediatric use can have low compliance. For this reason, PS§&not the most common
sleep method used in homes or research.

In this chapter we describe an automated VSG method, also knovas auto-VSG,
to replace or assist B-VSG , while maintaining high levels otauracy. It is important
to note that our goal is to label each frame of a sleep video Wwithe label \sleep" or
\awake." In this work we are not interested in labeling sleestages, such as REM
sleep.

Auto-VSG is a growing area in sleep analysis with preliminarytgdies using
signal/image processing systems that use motion during sfe for sleep/awake la-

beling [2,93{95, 160]. In these studies, motion is estimateusing frame di erenc-
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ing [93,94] or motion vectors [2,95,160]. However, each of#le studies were conducted
in a controlled setting and do not account for the wide rangef@amera positions and
lighting variations that are common among in-home VSG reconags. In our work,
we use deep learning approaches to classify in home sleepoglas sleep vs. awake
that adjust for these "in the wild' factors.

In this chapter, we propose a new approach for sleep video &sis. The contri-
butions in this chapter are: (1) we describe the key factora sleep video classi cation
(i.e., movements over long period of time) that are not addssed in commonly used
action classi cation problems (Section 5.2) (2) we proposesleep/awake classi cation
system with a recurrent neural network using simple motionehtures (Section 5.3)
(3) we experimentally show our system successfully learmmg-term dependencies in
sleep videos and outperform one of the recent method that hdgen successful in

public action dataset (Section 5.4).

5.2 Related Work
5.2.1 Motion and Long Term Dependencies in VSG

We assume that there is less motion of the subject during steehan when
awake [149]. One simple way to classify sleep vs. awake is &b a static thresh-
old based on the assumption that more motion in a frame is analkand less motion
is sleep. However, sleep and awake patterns are not that simpl

Typically in VSG, sleep onset is established based on infortran from more than
20 minutes of observed video and awakenings must include paseful movements
and be more than one minute in duration. Similarly, actigrapy methods use both a
motion index (the amount of motion within a time segment [14] and information
about the duration before and after the target minute [148].Both movement and

temporal information are needed to accurately capture slpeend awake states.



74

5.2.2 Long Short- Term Memory Networks (LSTM)

A Recurrent Neural Network (RNN) is a deep learning network use@f processing
sequential data by forming a memory through recurrent conaéons from the previous
inputs to the current output [161, 162]. Similar to Convoluional Neural Network
(CNN) spatially sharing parameters, a RNN temporally shares pameters assuming
that the same parameter can be used for di erent time increnms (i.e., the conditional
probability distribution over the variables at time t+1 given the variables at timet
is stationary) [163].

For a standard RNN, the range of input sequence that can be acsed is quite lim-
ited in practice because of the \vanishing gradient” e ect YGE) [162,164]. VGE is
a problem that gradients propagated over many recurrent corections tend to vanish
mainly due to the exponentially smaller weights given to lag+rterm interactions (in-
volving multiplication of many Jacobians) compared to sha#term ones [163]. Long
Short-Term Memory Networks (LSTM) [164, 165] is a special tyg of RNN which
enables long-range learning by reducing VGE. LSTM uses awstture known as gates
that can regulate the removal or addition of information. Itis based on the idea of cre-
ating paths through time that have derivatives that neithervanish nor explode [163].
While the repeating module in a standard RNN contains a singlayer, the one in
LSTM contains four interacting layers{forget gate layer, mput gate layer, update
layer, and output layer. LSTM has been widely used for procgisg various sequen-
tial data and has been successful in language processinghsas speech recognition,

text recognition, and machine translation.

5.2.3 Video Classi cation Using Deep Learning

Image classi cation using deep learning began in 2012 witlheé ImageNet chal-
lenge [166], video classi cation using deep learning islkin the early stages with
several recent studies focused on speci ¢ public datasei$7{170]. These methods

make use of the basic idea in Convolutional Neural Networks (CNNjlassi cation
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approaches in still images to solve video classi cation pgotems. Karpathy et al. [167]
presented slow fusion methods for large scale video clasation using CNNs. This
was one of the early works on deep learning video classi aati to extend the connec-
tivity of the CNN in the time dimension to learn spatio-tempoal features. Another
approach incorporating temporal information is the Long€¢rm Recurrent Convolu-
tional Networks (LRCN) proposed by Donahueet al. [168,169]. They rst obtained
visual features from each frame using a conventional CNN antién used the fea-

tures as inputs to the recurrent models (see Figure 5.1). Asahin in Figure 5.1,

ﬁ ——> | CNN | —> [LSTM|—>
b
oP{ i P

' i
ﬁ — | CNN| ——> |[LSTM|—»

G Avg —> Sleep / Awak

Fig. 5.1. LRCN [168,169]. GoP is a Group of Pictures.

LRCN [168, 169] combines visual features (output from eachNBl) with sequence
learning (LSTM). The advantage of having this structure is lhat it can learn unique
appearance in video while also learning temporal patternd gariable lengths. In
LRCN, the spatial and temporal information is processed in to separate steps{ rst
each frame (spatial information) goes into CNN and outputs #&ure vectors, then
series of feature vectors (temporal information) go througLSTM. Due to these
separated steps, there is a limit to learning spatial changever time (i.e. motion).
Another approach for human action recognition is spatio-teporal CNN Iters (C3D)
proposed by Tranet al. [170]. C3D extends the conventional CNN with an additional
temporal dimension by using 3-dimensional CNN kernels in atbnvolutional layers
(see Figure 5.2). C3D [170] in Figure 5.2 uses one network &atn both spatial and
temporal information at the same time by using 3-dimensiohaonvolution kernels
that include the temporal dimension. This network can learrmotion changes over

time, but with limited temporal range (e.g. the length is xed to 16 consecutive
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g C3D
oP : :

: : (CNN with 3-dimensional | Sleep / Awake

convolution kernals)
Fig. 5.2. C3D [170]. The C3D convolution kernel includes tgmoral
depth in addition to 2-dimensional CNN kernel of width and hejht.

G

frames at a time). It was reported in [170] that C3D performedimilar or better
compared to other methods including deep networks [167] ahdRCN [168] on an
action recognition public dataset UCF101 [171]. While therkas been improvements
for speci ¢ action recognition datasets, whether these mebdds can be generalized for
use in other types of video classi cation problems is an opeguestion. Public ac-
tion recognition datasets used in all of the above mentionedudies were short video
sequences with repetitive and unique action in each classgethe action classes in
UCF101 dataset includeapply eye makeup, baby crawling, brushing teeth, horse race,
knitting, etc.). Sleep videos are much longer in length (up to 8-9 h&rand tend to
have relatively few actions. Also, the appearances (e.g. hamor objects appearing

in the scene) change only slightly between the sleep/awakates.

5.3 Proposed Method

In this section we describe our proposed method for labelifigames of a sleep
video as \sleep" or \awake" from RGB/infrared videos using rotion information.
Figure 5.3 shows our system. First, we de ne consecutive &d frames in small
groups as Group of Pictures (GoP). The proposed system useanfie di erencing
within GoP to obtain motion information (described in detal in Section 5.3.1) and

two-layer LSTM architecture to incorporate information from previous video GoPs.
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Fig. 5.3. Proposed Sleep Detection System: Sleep/Awake Usiag
Motion Index and LSTM.

5.3.1 Motion Detection/Motion Index

We shall assume that the child is the only source of motion irhe sleep video.
Background subtraction is widely used for detecting movemts from static cam-
eras [150]. One of the simple background subtraction meth®ds frame di erencing
which detects motion in frame by taking the di erence (subtaction) between the cur-
rent frame and the previous frame (the background model). Fa sequence of gray
scale images in GoP at constant frame rate and size, we takestframe di erence in
each consecutive pair. This di erence indicates whether €a pixel in the frame is
classi ed as \moved" or \not moved." A pixel is classi ed as \moved" if Equation

(5.1) is true
jliabgyl Lyl >T (5.1)

whereli[x;y] is a pixel in framei, and T is a threshold for determining movement
for one pixel. For our experiments the value of is empirically determined and the
value we use is described in Section 5.4.2. We quantify the aomt of motion as the
number of pixels classi ed as \moved." We de ne the motion idex for a GoP as the

average the amount of motion for each frame pair in the GoP. Ehred box shown in
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Figure 5.3 is the motion detection block and the output of ths block is the motion
index for each GoP.

We minimize the use of the empirically driven parameters (dypusing one param-
eter T) by using deep learning methods that learn the sleep vs. aveapatterns based

on the motion index.

5.3.2 Loss Function

For an imbalanced dataset where one class has much larger nenof samples than
the other class, the trained model can be biased toward theask in the majority. A
typical sleep video dataset is imbalanced where the numbersdeep labels dominates
awake labels. To compensate for this data imbalance, classe weights can be set

in the loss function. We de ne the weightw; for the class (sleep or awakg) as

w=1 PN (5.2)
i

wheren; is the number of samples in clags The idea is that when there is more data

for classj, a smaller weight is assigned. Using these weights, the weégh softmax

cross entropy loss function for sequence dataf o), , (Xirvi), , (Xn;Yn) is
de ned as !
X efyi
L = Wy, Iong (5.3)

wherey; is the actual class index for the sample;, andf; is the predicted probability
of x; belonging to clasg . With uniform weights across classes = =w =),
the loss functionL becomes the regular softmax cross entropy.

5.4 Experiments

5.4.1 Dataset

Our sleep dataset consists of in home sleep videos of 30 deer nights from 30

children. The sleep videos are for children from 9 to 30 morglof age. Each night
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is a di erent sleep video sequence of a di erent child. Our tal data set consists of
30 children for 30 nights. The camera used for recording is &wm ADW-400 Digital
Guardian Camera & Recorder. It records in color mode duringhe day and switches
to black and white/infrared mode at night. This project was @proved by the Purdue
University Institutional Review Board (IRB). The sleep videos have spatial resolutions
of 320 240 pixels at 13-16 frames/s (fps) or 640480 pixels at 7-10 fps. The entire
night is recorded as a sequence of videos with time stamps erdted in the video
frame and the length of each video is 10 minutes and 14 secanddong with the
sleep videos, B-VSG labels for sleep onset, o set, and awakegs were used in the
analyses. This information was obtained as ground truth fra trained observers. We
did not use the audio due to too much noise in the signal.

For preprocessing, videos were sub-sampled at 4 fps. Thelme tGoP (16 frames)
were obtained. While the B-VSG labels are in units of minutes, GoP in our settings
corresponds to a 4-second duration. GoPs that do not fully mng to sleep or awake
(i.e., partly Sleep and partly Awake GoPs), were not used in #hexperiment. How

we divided the sleep dataset into training and testing sets ishown in Table 5.1. As

Table 5.1.
Training/Test Set Division of Sleep Dataset.

Sleep Dataset | # GoPs | # GoPs | # GoPs
for Sleep| for Awake | in total

Train (20 children) | 179,108 | 13,691 | 192,799
Test (10 children) | 88,234 7,781 96,015
Total (30 children) | 267,342 | 21,472 | 288,814

we can see from Table 5.1, there is an imbalance between thetaelasses of \Sleep”
and \Awake". For the training set of 20 children, the number ofcontinuous sequences
were 33 and the length ranged from 378 to 11,352 GoPs. In cadeere a child had
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some \out of bed" time, the corresponding GoPs were excludémm our training/test

sets hence resulting in multiple sequences for one child.

5.4.2 Implementation Details

For the motion index thresholdT we usedT = 30 (11:7% di erence in gray scale
intensity levels) and image size of 320240 in gray scale for obtaining the motion index
for all the GoPs. The value of parameteil was empirically determined. For training
on very di erent dataset, such as videos with lower contrastT can be set to lower
values. Our Long Short-Term Memory Network (LSTM) describedn Section 5.2.2
was implemented using Python and TensorFlow. For the LSTM, svused a hidden
unit size of 128 and 2 layers of cells with dropout layers witprobability of 0.5. The
softmax cross entropy loss was used as the cost function foaihing. The Adagrad
(Adaptive Gradient) method [172] was used for gradient desaeoptimization. To
reduce computational complexity, we organized all the traing set as a sequence of
GoPs and put them in mini-batches of size 30. Since the numbef training GoPs is
192,799 and is not dividable by our batch size 30, the remang last 19 GoPs were
discarded hence resulting in a 306,426 matrix. The GoPs in the rst column (the
rst batch) were assumed to be the start of each sequence abiigh it would not
exactly match with the actual start of the sequence for eacthitdd. The size of each
mini-batch was 30 (back propagation window size). The network is initializedvith
a vector of zeros and gets updated after reading each GoP. Timember of epochs we
used for training is 10.

For training and testing the spatio-temporal CNN Iters (C3D), we used the

implementation provided in Ca e [170].

5.4.3 Results

To assess the performance , we used ve metrics, which are Ay, ACC =

TP+TN i — TP — TP P A
TN EPTEN: Precision, PRE = 5 %5, Recalll REC = 5 &, Specicity,
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SPEC = X and Cohen's kappa (). The test dataset is shown in Table 5.1.
Table 5.2 and Table 5.3 show the results for di erent classtation models of on the
same test set. Table 5.2 is the result using uniform weighterfthe loss function. In
this table, C3D-f is C3D pre-trained on Sports-1M dataset B7] and netuned on our
sleep dataset. C3D-t is C3D trained on our sleep dataset froseratch. Our proposed
models are denoted as LSTM; where the numberk refers to the size of the back
propagation window in the unit of number of GoPs that is used wring training the
model. The duration of one GoP in unit of seconds is 16 franwsfps = 4 seconds

(i.e., 5 GoPs are 20 seconds, and 30 GoPs are 2 minutes). Tah shows the result

Table 5.2.
Results [%] for the number of test GoPs = 96;015. Models trained
using loss with uniform weights.

Model | ACC | PRE | REC | SPEC
C3D-f 84.25| 93.52 | 89.03| 30.07 | 0.15
C3D-t 89.54 | 93.29 | 95.49 | 22.05 | 0.20
LSTM-5 | 95.60 | 96.43 | 98.87 | 58.55 | 0.66
LSTM-15 | 92.89 | 92.87 | 99.93| 12.98 | 0.21
LSTM-30 | 94.31 | 94.83| 99.23 | 38.62 | 0.50
LSTM-50 | 92.77 | 92.71| 99.99| 10.90 | 0.18
LSTM-75| 93.51 | 93.61| 99.74| 22.85 | 0.34
LSTM-85 | 92.53 | 93.56 | 98.66 | 22.95 | 0.30

for models trained with regular softmax cross entropy lossifiction. Compared to us-
ing one GoP at a time for classi cation (i.e., C3D-f and C3D3Jt using multiple GoPs
(i.e., LSTM-k) improved accuracy while maintaining high recall. LSTM-5mproved
the performance across all four metrics. However, the spedity is low due to the
data imbalance. Since the model is trained to minimize the evall loss including both

sleep and awake GoPs, the speci city that involves only awakGoPs is not giving
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consistent results. Next, Table 5.3 shows the result for molddrained using weighted

loss as described in Section 5.3.2. We can see that the spetes are improved.

Table 5.3.
Results [%] for the number of test GoP#s = 96;015. Models trained
using weighted loss.

Model | ACC | PRE | REC | SPEC
LSTM-5 | 93.33| 97.81| 94.87| 75.88 | 0.61
LSTM-15 | 93.46| 97.75| 95.06| 75.22 | 0.62
LSTM-30 | 95.47| 96.70| 98.44| 61.88 | 0.67
LSTM-50 | 95.58| 95.79| 99.57| 50.31 | 0.63
LSTM-75 | 20.48| 98.62| 13.66| 97.83 | 0.02
LSTM-85 | 92.69| 93.85| 98.51| 26.74 | 0.34

There are good agreements between traditional B-VSG and ourgposed methods
(LSTM-5 on loss with uniform weights, = 0:66; LSTM-5/15/30/50 on weighted
loss, > 0:6) and fair to poor agreements (< 0:4) on the rest of the methods
including C3D.

Figure 5.4 and 5.5 are the ROCs [173]. Unlike accuracy and pieon, ROCs are
insensitive to changes in class distribution since it is bad upon True Positive rate
and False Positive rate. Note that in Table 5.2 and Table 5.3 call and speci city
are obtained based on the discrete outputs generated with areshold of 0.5{we take
the predicted class as the one with the higher probability. ¢ the ROCs, we used
the monotonicity of thresholded classi cations [173]. Figre 5.4 shows that all the
proposed methods (LSTMk) have higher Area Under the ROC (AUC) than the C3D
models. Except for the AUC drop atk = 85 due to the long back propagation stages
in the training, the rest of all the LSTM-k models have AUC higher than 0.85. C3D-t
and C3D-f have AUC of 0.62 and 0.65 respectively both giving roa lower perfor-
mance compared to the proposed methods. LSTM-75 where 75 Gafdrresponds to
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Fig. 5.4. ROCs. Models trained using loss with uniform weigh GoP
is Group of Pictures.

5-minute duration gave the highest performance (AUC=0.95)Figure 5.5 shows the
result for the models trained using the weighted loss dedoed in section 5.3.2. The
classi er fails for k=85 more severely compared to the uniform weight cases of the
samek value. For the models trained using the weighted loss, LSTBEO (duration of
3 minutes and 20 seconds) gave the highest performance (AUCE8). The overall
results show how much the long-term temporal motion informen plays a signi -
cant role in sleep vs. awake classi cation. This is surprisj given the fact that the
proposed method used minimal visual information of only onmotion index for each
GoP. The proposed methods outperforms the general video s$acation method by
modeling the long-term motion patterns in sleep videos.

As described in Section 5.2, C3D is good for classifying ungjappearance and

short action in each class by learning spatio-temporal faates in videos but due to
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Fig. 5.5. ROC curve. Models trained using weighted loss. GoR
Group of Pictures.

the limited temporal range it takes, C3D did not work well forclassifying sleep videos
that have long temporal dependencies. Also, due to the sligbhanges in appearance
between the sleep/awake states and few actions in sleep idelearning appearance
pattern in C3D did not contribute well on improving the overdl performance. Our

proposed method enabled capturing the temporal history of ation changes by using

LSTM on sequence of GoPs and simple motion feature for eachRo0

5.5 Conclusions

In this chapter, we described a system for sleep vs. wake eclasation based
on our observation that long temporal information is imporant. From the prior
knowledge that motion is the key factor for determining slgeversus awake in B-

VSG, we described a motion index to summarize the motion infmation for each
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GoP and then combined this with the recurrent model to labelaeh GoP as asleep or
wake. Our experiment demonstrated interesting results thaising LSTM with simple
motion feature for GoP outperformed one of the latest gendraideo classi cation
methods for sleep vs. awake video classi cation. We also sfeal how weighting the
loss function can a ect various performance metrics for inddanced sleep dataset (i.e.
the increase in speci city).

The design of our system is based on the prior knowledge inegfemedicine (i.e.
the motion changes over long duration is the key factor in detmining sleep vs. wake)
and in signal processing (i.e. methods for simple motion feee in video). For future
work, more general video classi cation methods that requer less prior knowledge

should be further investigated.
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6. IMAGE-BASED GEOGRAPHICAL LOCATION
ESTIMATION USING WEB CAMERAS

6.1 Sunrise/Sunset Estimation

Sunrise and sunset can be obtained by classifying each imdgan the camera
with the label \Day" or \Night."

One of the factors that can be used for detecting Day/Night isthte brightness of
the image. In [116], the mean of the combined RBG componentem used to detect
Day. In our work, we used the luminance to estimate the brighess of the image.
We rst convert from the RGB to Y CbCr color space and use th& component to
obtain the average luminance. We assume that an image withr¢gge luminance tends
to be Day. We have ignored camera AGC e ects. We recognize ththis introduces
error in our estimates for sunrise and sunset due the fact théhe images will be
"brighter” than normal. In our operational scenario we haveno control of this in
that we cannot turn o the camera AGC.

The color of the sky is mostly sensitive to whether it is Day oNight while other
objects in the scene can have various colors. To make use a$ttact in determining
Day/Night, we can de ne into two spatial regions{the sky regon and the non-sky
region. We are assuming that some part of the eld of view of thcamera \sees" the
sky. The set of pixels in an image belonging to the sky is de deas the sky region,
and the rest of the pixels which do not belong to the sky are deed as the non-sky
region. Day/Night detection based on the luminance of the eme image could be
incorrect due to factors in the non-sky region, e.g. lightsdm a building at night, the
dark objects or shadows that appears during the day. Theref it is more accurate

to focus on the sky region for Day/Night detection. In [116] te entire RBG image
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was used and in [118] the sky regions were detected using a eeanwith a eld of
view from the dash of a vehicle using the road information.
Our method is a variation of the above in that we focus on the gkregion and

nd the mean of Y in the sky region:

Ysky,i = Ysky _iij (6.1)

where Ygy ; is the mean sky luminance of they, image andYsy i; is the luminance
of the jy, pixel in the sky region of theiy, image. M is the number of pixels in the sky
region. Here we assume that the camera is static and the sky i@y for the camera
remains the same for all the images. Our approach to sky detien is discussed in
Section 6.2.

We will estimate sunrise and sunset by detecting transitiafrom Night to Day
and Day to Night. To detect Day/Night transitions from the luminance of the sky
region, a threshold must be determined. If we assume the inezgare obtained over a
24-hour period, we know that approximately a quarter of thennages are either Day
images or Night images if the camera is located in the latitudeinge between 60S
and 60 N. SinceYgy ; has large value for Day and small value for Night, we can nd
a threshold forYgy, ; to label the image as Day or Night. Two di erent thresholds for

classifying Day/Night can be used:
D( 1

Ysky,i ; (6 . 2)
i=0

1
N

th mean

max f Ysky,i g+ min f Ysky,i g.
> :

whereN is the number of images. In [116] théh,,y was used for the threshold but

thmig =

(6.3)

when we used it to our experimental workth nean provided better results. If the mean
luminance of the sky region of an image is larger than the thgbold, we classify it as
Day, otherwise we classify it as Night.

From the sequence of images denoted as either Day or Night, vanaenote the

times where the transitions between Day and Night labeled ingas occur. If the
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labels change from Night to Day, we can estimate that the surse occurs within
the time interval between those consecutive images, if thaldels change from Day to
Night, we can estimate that the sunset occurs within the timenterval between those
consecutive images.

We then estimate the sunrise as the time of the start of Day. Ithis case, the
accuracy of the sunrise estimation depends on the samplingdrval of images. If
the images are sampled every minutes, the error of sunrise would be less thas
minutes. Likewise, we can approximate the sunset as the tinoé the start of Night.
The error of sunset would also be withirs minutes. If the estimated Day/Night labels
are accurate, exactly one start of Day and one start of Night sluld occur during the
image sequence of 24-hour period. Due to the dynamic weatlmmnditions, some
images can be falsely labeled as Night during the day. One way ¢liminate these
outlier images would be taking the earliest start of Day as swise and taking the

latest start of Night as sunset.

6.2 Sky Region Detection

There are many methods for detecting the sky region in an imag In [118] sky
detection is only considered for the special case where tineages are the front view
from dash cameras in vehicles. In [117] edge detection of s&gion is used to predict
the solar exposure. They describe a general approach to sgpa the sky from the
rest of the image by determining the edge of the sky region. €rccumulative frame
di erence between an image and the successive image is usedltain the sky region
in [119]. The sky is assumed to be at the top of image and the gtts are dynamic.
Using this method requires several sample images to detecetbky region. Also, it
is valid only when the sample images are Day images since thethod is based on

the fact that the sky is dynamic compared to the foreground gbcts.
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We propose a di erent approach to detect the sky region by usg one image of a
clear sky. By clear sky we mean no clouds in the sky and in ourntial experiments

this image was manually chosen. The sky detection approacte wsed is then:

1. Obtain an image from the blue channel of the camera.

2. Use the Canny edge operator to nd edges. This will create anary image or

edge mask where edge pixels are set to 1.

3. Use morphological Itering (dilation) to close gaps in théooundaries of the edge

mask.

4. Invert the dilated binary image (edge mask) where the boudlary pixels are

inverted from 1 to 0 and the surface pixels are inverted from @ 1.
5. Find the largest connected region at the top of the binarymage:

(a) Find all the connected components in the binary image.

(b) Sort the connected components with respect to the numbef pixels con-

tained in descending order.

(c) For each of the connected components check the locatioheach connected
component to determine whether it is at the top part of the imge. If the
connected component is at the top part of the image, selectdts the sky
region and if not, go to the next largest connected componentRepeat

until the sky region is found.

The results of using the the above sky detection techniqueeashown in Figure 6.1.

6.3 Estimating Location from Sunrise/Sunset

Once the sunrise/sunset is estimated as described above e ose it to determine
the camera location. In [110] they proposed what they callethe CBM model to

estimate the length of the day for a at surface for a given latude and day of the year.



90

Fig. 6.1. A collection of pairs of test images and their skynsé&.

They also described a daylength model to allow for various mditions of daylength
and twilight for a full range of latitudes. Using the CBM daylength model [110] we

estimate latitude by:

=0:2163108 + 2tan 1 [0:9671396 tan[@0860 (J  186)]]; (6.4)
=sin *[0:39795cos]; ) (6.5)

24 sin2_ +sin L_sin
D=24 ~—cos!? 180 180 : (6.6)

COS155 COS
where is the revolution angle,J is the day of the year, is the sun's declination
angle,D is the daylength, andL is the latitude. By numerically solving Eq. 6.6, we
can estimate latitude (L) from daylength (D) and the day of tke year (J). In this
paper, the daylength coe cient (p) was set to 6.0 to correspad to the daylength
de nition which includes civil twilight. D is the time di er ence between the sunrise
and sunset.

Longitude can be estimated from local noon [174]. If we know WCT(Coordinated
Universal Time) when the sun is at its highest point in the sky taa location on the

Earth (local noon), then we can determine the time di erencéetween the local noon
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and the noon in UTC. The time di erence can be converted to lontude () since we

know that the Earth approximately rotates 15 degrees per hou
8
(12 n+u) 15 u 12

“(n+u 12) 15 u> 12

| (6.7)

wheren is the local noon andu is the UTC o set for the local area. All the variables
[, n and u are in unit of hours. The local noon can be approximately estiated from

sunrise and sunset.

n= tsunset + tsunrise (6.8)
2

wheretsunset and tsunise are the local time of sunset and sunrise in hours. Since the

earth rotation is nearly constant, we assume that at the mide of the sunrise and

sunset, the sun is at its highest point is the sky.

6.4 Experimental Results

We evaluated our methods using 10 static IP-connected webnearas. For each
camera images were downloaded every 5 minutes and storedwattimestamp based
on UTC-5. The images were obtained during 21-27 December 2qL3 C-5).

The process begins by detecting the sky region for an imagerfr each camera
as described in the Section 6.2. The output of this processtlse sky mask of each
camera. Next all images are converted from thRGB to Y CbCr color space and
the Y component of each image is obtained (see Section 6.1). Thg shask is then
used for determining the mean sky luminanceY(, ;) for each image. Next images
are classi ed as Day or Night by using the threshold. After the By or Night images
are obtained, they are used to estimate the sunrise and sutsEinally, the latitude
and longitude are obtained using the estimated sunrise andrset (see Section 6.3).

In Figure 6.2, thpean and thy,q described in the previous section are denoted.
Figure 6.2 also shows that the luminance of the sky region septes Day/Night
images while the luminance of the entire image poorly sep&ea between Day and

Night images.
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(@) Y for cam05 (b) Ysky for cam05

(c) Y for cam06 (d) Ysky for cam06

Fig. 6.2. The mean luminance of the entire image vs. the skygien.

The mean estimated sunrise/sunset is shown in Table 6.1 fatroera0l1. We know
the exact location of this camera and can nd the ground truthsunrise and sunset
from [175] using the latitude and longitude information of his camera (North 40
degree, 26 minutes, West 86 degree, 55 minutes). The \estsa? and the \est. set"
columns are the estimated sunrise and sunset in hh:mm. The YGrise" and \GT
set" columns are the ground truth sunrise and sunset in hh:mnounded to the closest
minute. For the ground truth, the sunrise and sunset civil twlight were used. The
mean error for 7 days was -7.8 [minutes] with standard deviah of 6.7 [minutes] for
the sunrise and 9.9 [minutes] with standard deviation of 5.#ninutes] for the sunset.

In Tables 6.2 and 6.3, the \mean" and \std" columns refers tolte mean and the
standard deviation of latitudes for 7 days. The \GT" column eefers to the ground

truth. In general we do not know the exact location of some ohe cameras used in



Table 6.1.
Sunrise/sunset detection for cameraO1l for using mean -

The result for latitude for using thyean -

Date | est. | est. | GT | GT | rise | set

rise | set | rise | set | error | error
Dec 21| 07:55| 17:35| 07:37| 17:55| -18.4| 20.3
Dec 22| 07:45| 17:45| 07:37| 17:56| -7.9 | 10.8
Dec 23| 07:50| 17:50| 07:38| 17:56| -12.5| 6.4
Dec 24| 07:40| 17:50| 07:38| 17:57| -2.0 | 7.0
Dec 25| 07:50| 17:45| 07:38| 17:58| -11.6| 12.6
Dec 26| 07:40| 17:50| 07:39| 17:58| -1.3 | 8.2
Dec 27| 07:40| 17:55| 07:39| 17:59| -0.9 | 3.9

Table 6.2.

Camera| mean[] | std[ ] | GT[ ] | eL [%0]
1 43.6 20 | 404 1.8
2 32.7 24.3 | 41.8 5.0
3 43.7 3.7 41.8 11
4 41.3 3.5 | 404 0.5
5 36.3 3.4 | 380 0.9
6 36.2 49 | 38.8 1.4
7 31.5 21 | 36.1 2.6
8 32.0 15 | 36.1 2.3
9 35.1 254 | 424 4.1
10 26.7 12 | 344 4.3

93

our study. The \ground truth" locations we used here were olatined from their IP ad-

dresses or using Google maps. This approach is somewhat peotatic but it re ects
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Table 6.3.
The result for longitude for usingthnean -

Camera| mean[] | std[] | GT[ ] | & [%]
1 -86.6 05 | -86.9| 0.2
2 -919 | 119 | -876 | 24
3 -88.2 | 0.8 | -876| 0.3
4 -88.0 | 1.2 | -869 | 0.6
5 -776 | 0.8 | -785| 0.5
6 -76.2 14 | -769 | 04
7 -715.4 14 | -75.7| 0.2
8 -76.8 1.0 | -75.7| 0.6
9 -73.1 6.8 | -725| 0.3
10 -119.0 | 0.3 | -119.8| 0.5

the nature of the problem we are trying to address. To evaluatthe performance, we

de ned the error metrics for latitude (e_) and longitude (g) as:

g = jLestlS(L)GTj 100 [%]

o (6.9)
Q= Jest36OGTJ 100 [%]

whereLest and Lt both in units of degree () are estimated and the ground truth
latitudes and les; and Igt both in units of degree () are estimated and the ground
truth longitudes. In these tables, we see that the amount ofrer e in latitude is
larger compared with the errorg in longitude. We discovered that for each case
for Cameras 2 and 9, there is erroneous estimation of the sig®r and sunset that
increases the overall error. These incorrect estimationseacaused by lights in the
camera eld of view during the night that result in a sudden rse of luminance after
the sunset hence leading to the wrong estimation of sunset.

In conclusion, we estimated the approximate location of a Wwecam by analyzing

its images. We showed that we could e ectively estimate lotans with less than
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2.4% error for the longitude and less than 5% error for the latide. In future work
we will investigate how we can compensate for camera AGC eteand ne grained

temporal measurements.
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7. CONCLUSION
7.1 Summary

In this thesis we addressed two interesting video-based tbameasurements. First
is video-based Heart Rate (HR) estimation, known as video-bes Photoplethysmog-
raphy (PPG) or videoplethysmography (VHR). We adapted an exithg video-based
HR estimation method to produce more robust and accurate relgst Speci cally,
we removed periodic signals from the recording environmeby identifying (and re-
moving) frequency clusters that are present the face regiaand background. We
investigated and described the motion e ects in VHR in terms athe angle change of
the subjects skin surface in relation to the light source. B&d on this understanding,
we discussed the future work on how we can compensate for thetion artifacts.
Another is Videosomnography (VSG), a range of video-based metls used to record
and assess sleep vs. wake states in humans. We describedraated VSG sleep
detection system (auto-VSG) which employs motion analysi©tdetermine sleep vs.
wake states in young children. The analyses revealed thatiesates generated from
the proposed Long Short-term Memory (LSTM)-based method Wi long-term tem-
poral dependency are suitable for automated sleep or awakbéé¢ling. We created web
application ( Sleep Web App) that deploys our sleep/awake cdai cations method to
serve easy accesses to sleep researchers for running thepsleleo analysis on their
videos.

We considered the problem of estimating the approximate latton of a web cam
by analyzing its images. We showed that we could e ectivelysémate locations with
less than 2.4% error for the longitude and less than 5% errarfthe latitude.

The main contributions of this thesis are listed as follows:
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We improved VHR for assessing resting HR in a controlled settinghere the
subject has no motion. We modi ed and extend an ICA-based metid and
improve its performance by (1) adapting the passband of theabdpass Iter
(BPF) or the temporal lter, (2) by removing background noise from the signal
by matching and removing signals that occur in the o -target{background) and
on-target areas (facial region), and (3) detect skin pixelsithin the facial region

to exclude pixels that does not contain HR signal.

We investigated and described the motion e ects in VHR in termsf the angle
change of the subject's skin surface in relation to the lighldource. We showed
that the illumination change on each surface point is one ohé major factors
causing motion artifacts by estimating the incident anglen each frame. Based
on this understanding, we discussed the future work on how wan compensate

for the motion artifacts.

We proposed auto-VSG method where we used child head size tomalize the
motion index and to provide an individual motion maximum foreach child. We
compared the proposed auto-VSG method to (1) traditional B-VS sleep-awake
labels and (2) actigraphy sleep vs. wake estimates acrossrfeleep parameters:
sleep onset time, sleep o set time, awake duration, and sfeduration. In sum,
analyses revealed that estimates generated from the propdsauto-VSG method

and B-VSG are comparable.

In the next proposed auto-VSG method, we described an autoneat VSG sleep
detection system which uses deep learning approaches todhfvames in a sleep
video as \sleep" or \awake" in young children. We examined 3[Zonvolutional
Networks (C3D) and Long Short-term Memory (LSTM) relative tomotion in-
formation from selected Groups of Pictures of a sleep videndatested temporal
window sizes for back propagation. We compared our proposé8G methods to
traditional B-VSG sleep-awake labels. C3D had an accuracy approximately

90% and the proposed LSTM method improved the accuracy to nethan 95%.
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The analyses revealed that estimates generated from the posed LSTM-based
method with long-term temporal dependency are suitable fautomated sleep

or awake labeling.

We created web application (Sleep Web App) that makes our sjgenalysis
methods accessible to run from web browsers regardless arasworking envi-
ronments. The design philosophy of Sleep Web App is to servesgaccesses to
sleep researchers for running the sleep video analysis oeithvideos. Speci -
cally, we focused on (1) simple user experience, (2) multer supporting and
(3) providing results for further analysis. For providing te results, we included

two csv format les for per-minute sleep analysis and sleepimmary results.

We also described a method for estimating the location of arPiconnected
camera (a web cam) by analyzing a sequence of images obtaifredh the cam-
era. First, we classi ed each image as Day/Night using the maduminance of
the sky region. From the Day/Night images, we estimated the suise/set, the
length of the day, and local noon. Finally, the geographicdbcation (latitude
and longitude) of the camera is estimated. The experiment salts show that

our approach achieves reasonable performance.

7.2 Future Work

To extend our work on video-based HR estimation, known as vidplethysmogra-

phy (VHR), to more general cases that can cover various recongi scenarios, there

are some future work to be done. In Chapter 2, we adapted an sting video-based

HR estimation method to produce more robust and accurate relést However, the

method works poor when the subject is moving during the reating. In Chapter 3.1,

we showed that the linearity assumption used in conventioh&R estimation methods

no longer hold when there is subject motions in the video. Tonderstand this mo-

tion e ects in VHR, we showed the relationship between the matn and the intensity

change by setting up two experiments. Our experiments showdow the incident
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angle change caused by motion is related to the pixel intetsichanges. We showed
that the illumination change on each surface point is one ohé major factors causing
motion artifacts. In Chapter 3.5, we provided initial work @ how motion e ects

could be estimated at (\n) using the facial landmark tracking and approximate light-
ing directions on some test videos. To extend thits(\n) estimation to more general

scenarios, following are suggested:
1. improving the tracking performance of three facial poist

2. instead of using xed values for all the frames, the light@irce direction for

each frame could be estimated using the location and shadawarmation and

3. amethod to nd sub-region (surface) that share the same gace normal (r(n),
described in Chapter 3.5) could be investigated so that momrface normal

estimation can be done more accurately.

Once we have method foL(\n) estimation, another future work to be done for
motion-robust VHR is non-linear Itering method. A method to Iter out PPG signal
from the actual intensity changelL (n), that includes both motion e ects and PPG
signal, should be further investigated. Details are desbed in Chapter 3.4.

Our study includes VHR experiments for speci c motion, periodally moving
from side to side. With more work on estimating motion e ectsfrom videos and

devising lItering methods, the work can be extended to VHR for arious di erent

motions.

7.3 Publications Resulting From This Thesis

1. J.Choe, A.J. Schwichtenberg, E. J. Delp, \Classi cation of Sleep Vidos Using
Deep Learning," Proceedings of the IEEE Multimedia Information Processing

and Retrieval pp. 115{120, March 2019, San Jose, CA.
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A. J. Schwichtenberg,J. Choe, A. Kellerman, E. Abel and E. J. Delp, \Pe-
diatric Videosomnography: Can signal/video processing disguish sleep and

wake states?,"Frontiers in Pediatrics, vol. 6, num. 158, pp. 1-11, May 2018.

J. Choe, D. Mas Montserrat, A. J. Schwichtenberg and E. J. Delp, \Slge
Analysis Using Motion and Head Detection,'Proceedings of the IEEE Southwest
Symposium on Image Analysis and Interpretatignpp. 29{32, April 2018, Las
Vegas, NV.

D. Chung,J. Choe , M. OHaire, A. J. Schwichtenberg and E. J. Delp, \Improv-
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A. SLEEP WEB APPLICATION

A.1 Introduction

The sleep project is collaboration work with Dr. Schwichtdperg's Sleep and
Development Lab. To share sleep analysis methods descrite@hapter 5 with sleep
researchers, we created a web application that makes ouregleanalysis methods
accessible to run from web browsers regardless of users'kvenvironment. We call
this application Sleep Web App.

Sleep Web App lets users classify their videos using the sléepake classi cation
method described in Chapter 5.

The design purpose of Sleep Web App is to provide easy accedsessleep re-
searchers to apply auto-VSG to existing videos. Speci callye focused on following
three things.

First is simple user experience. After uploading videos in &zarchive, the server
automatically runs sleep/awake classi cation. When the prcessing is done, the result
table is displayed in the web browser. Users do not need to doyanstallation. Since
the program runs in the server, speci cations of the user'somputers do not matter
as long as they can access web browsers. Additionally, usecsrit need to worry
about the maintenance of the program.

Second is multi-user supporting. Sleep Web App is designed goocess multiple
inputs simultaneously so it is available to several users #te same time. Each upload
has unique ID (timestamps in miliseconds) and is processedthin its dedicated
directory.

Third is providing results for further analysis. The Sleep \&b App provides links
to download the results. Users can do further statistical amgsis using the tabular

data stored in comma-separated values (CSV) format.
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This Appendix A is organized as follows. Section A.2 describkew the Sleep Web
App works. Next, the user manual is in Section A.3. The last Seot A.4 describes

the server-sidse installation process of the Sleep Web App.

A.2 Sleep/Awake Classi cation in Sleep Web App

The Sleep Web App uses the sleep/awake classi cation methodstribed in Chap-

ter 5. It includes three steps. Figure A.1 is the block diagram

Fig. A.1. Block diagram for Sleep/Awake classi cation in Slge Web App.

First, the sleep videos are converted into a sequence of fragnat a constant
subsampling rate, and the list of GoPs (Group of Pictures) ar created from the
frame sequences. The rst step is implemented using Pythonity OpenCV (Open
Source Computer Vision) Library [176].

Second, motion information is obtained through frame di eencing within GoP as
described in detail in Chapter 5. This step is implemented i€++ with OpenCV
library.

Third, each GoP is classi ed as either sleep or awake by usidgep learning model
that was trained to learn sleep vs. awake patterns based onethmotion index (de-
scribed in detail in Chapter 5). The model used in Sleep Web App LSTM-15 trained
with weigthed loss where the number of GoPs=15 had the besti@mance as shown
in Table 5.3 in Chapter 5. This step is implemented in Python wh TensorFlow [177]
library.

Each steps requires speci ¢ environments to run. Without te Sleep Web App,
supporting di erent user environments to run di erent setsof programming languages

and libraries with speci c versions would be extremely tedus work. By using a web
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application, it is possible to provide the users with sleepivake classi cation methods
without asking them to install all the compilers and librares that are used in the
program.

By using a web-based application, it is possible to providé¢ sleep/awake clas-
si cation to more researchers. Since the program deals witarge data{sleep videos
recorded all night, it requires lots of compute and processg power. Without web

application, it is di cult to predict how much time it takes t o run the program.

A.3 User Manual

The Sleep Web Application provides Sleep/Awake labeling foregliatric sleep

videos. To access the web app, please follow the link
https://buddy-boy3.ecn.purdue.edu/ sleep/.

This manual provides how to use the Sleep Web Application. Thagrocedures in

this manual are based on following conditions:

One-night sleep videos recorded by Swann ADW-400 Digital Gighan Camera

& Recorder
Chrome browser

Windows 7

A.3.1 File Preparation

This section explains how to prepare the video les to be updmled to the server.

Naming the Directories and Video Files

The directories and les should be named in specic format. iGure A.2 is an

example.
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Fig. A.2. Sleep Web App Manual: File Compressing.



119

The top directory is the SubjectiD_Age Night (e.g. \23006.24M_1"). The subjec-
tID is the 5-digit number, the Age is two-digit number in months and the Night is a
number (any number of digits) for Night index. For SubjectID 3006, Age 24M, and
the Night index 1, the directory name should be \2300@4M_1"

The second directory is the Date. There should be two Date dictories for one-
night sleep videos. The Date is 6-digit number, YYMMDD, where YYis year, MM
is month, and DD is date. For one-night videos that were recded from night in
November 18, 2013 to the next morning in November 19, 2013, thea directories
should be \131118" and \131119".

Each Date directory contains sequence of AVI videos named witimestamps.
The video lename is 6-digit timestamp followed by undersae and number 1, \ 1"
The 6-digit timestamp is HHMMSS, where HH is hour, MM is minute, ad SS is
second. A video that was recorded from 23 hrs 50 min 28 sec wilve a lename
of \2350281.AVI". Videos recorded by Swann ADW-400 Digital Guardian Cam&
& Recorder automatically saves the videos with this lenam@attern so there is no
need to change the video names.

Here is the summary of how the directories and le names are sttured:

/SubjectID _Age_Night

/Date
HHMMSS_ 1.AVI
HHMMSS_ 1.AVI
/Date
HHMMSS 1.AVI
HHMMSS_ 1.AVI
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Fig. A.3. Sleep Web App Manual: File Compressing.

File Compressing

The Sleep Web Application only accepts zip les. This sectiodescribes how to
create zip le in Windows.

From the top directory named \SubjectID_Age_Night", right click on the directory,
select \Send to", and select \Compressed (zipped) folder"sashown in Figure A.3

If it asks for what name to use for the \Compressed (zipped) ker", write the

name of the top directory, SubjectiDAge_Night.

A.3.2 File Uploading

The compressed (zipped) folder, basically the zip le, shtdibe uploaded to the
website, https://buddy-boy3.ecn.purdue.edu/ sleep/
Figure A.4 is an example of le uploading. First the user cliclon the \Browse"

button, and then select the compressed (zipped) folder.
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Fig. A.4. Sleep Web App Manual: File Upload.
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Fig. A.5. Sleep Web App Manual: File Upload.

Fig. A.6. Sleep Web App Manual: File Upload.

Once the user click on the \Upload" button, the process beginsAs shown in
Figure A.5, the uploading progress is shown in the bottom-ktorner of the browser.

Once the uploading is done, the video processing begins irtherver and the page
shown in Figure A.6 will show up.

Users can refresh the web browser to see the status of the pssieg or close the
browser and check the results later on. Once the processinggins, it will run in the

server regardless of whether the user closes the browser ot. n

A.3.3 Results

The results are listed on the \Results" menu as in Figure A.7.
The result for each upload can be viewed by clicking on the cesponding upload

time. Figure A.8 is an example of the result.
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Fig. A.7. Sleep Web App Manual: Results.

Fig. A.8. Sleep Web App Manual: Final result page. Download
buttons for per-minute sleep analysis result and sleep surany results
are provided.
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A.4 Environments

The Sleep Web App is implemented in one of the servers in Videodtmage
Processing Laboratory. The server uses Apache Web serverg[l@n Linux (Ubuntu
14.04.5 LTS). The Sleep Web App uses a python-based web depetent framework,
Flask [179].

A.4.1 Installations (system level)

This section describes how to deploy Anaconda-based web apgiion to Apache
Server.

Install Apache and Anaconda

sudo apt-get install apache2 apache2-bin apache2-dev
wget (url for Anaconda) & check md5sum

sudo bash Anaconda2-5.2.0-Linux-x86_64.sh -bfp /opt/ana  conda2

Install conda packages and Web Server Gateway Interface (\8§. WSGI enables

python modules to be used in Apache server.

sudo su ## Login as superuser

export PATH=/opt/anaconda2/bin\$PATH ## Add conda to you r path

pip install mod_wsgi

mod_wsgi-express install-module ## check the outputs to th is commands
(used for Apache configuration in the next step)

conda install -c anaconda flask

sudo apt-get install libapache2-mod-wsgi python-dev

Three les, wsgi.conf , wsgiload , and 000-default.conf , need to be updated
to update Apache Con gurations. After making changes to eachle, don't forget to
restart Apache using the commandudo service apache2 restart to see if it reports

any error.
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First, open the le /etc/apache2/mods-available/wsgi.conf and add the follow-

ing

<IfModule mod_wsgi.c>

WSGIPythonHome /opt/anaconda2

WSGIPythonPath /opt/anaconda2/lib/python2.7/site-pac kages
</IfModule>

Second, open the le/etc/apache2/mods-available/wsgi.load and add the fol-

lowing

LoadModule wsgi_module /usr/lib/apache2/modules/mod_w sgi-py27.so

Note: This is the output from ‘mod_wsgi-express install-module ' so yours could
be di erent.

If the LoadModule wsgi_module /usr/lib/apache2/modules/mod_w sgi.so already
exists in the le, comment it out. Otherwise, the apache seer will run the default
python instead of the python within Anaconda.

Enable the wsgi mod:

sudo a2enmod wsgi

It will output * Module wsgi already enabled '
Third, open the le /etc/apache2/sites-available/000-default.conf and add

the following

WSGIDaemonProcess sleepapp python-home=/opt/anaconda2
python-path=/var/www/flask/sleep
WSGIScriptAlias /~sleep /variwwwi/flask/sleep/sleepapp Wsgi
<Directory /var/www/flask/sleep>
WSGIProcessGroup sleepapp
WSGIApplicationGroup %{GLOBAL}
WSGIScriptReloading On

Order allow,deny
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Allow from all
Require all granted

</Directory>

With the above con gurations, the Apache server will runsleepapp.wsgi in
Ivarlwww/flask/sleep . In order to link this path in the root directory of an apache
server, /lvar/www, with a directory in another location, project_directory , you can
use symlink named sleep under /var/wwwi/flask/  and create symlink to the other

directory

# In -s [project_directory=/publ/jeehyun/LSTM/sleep_we bsite/server]
[symlink_name=sleep]

In -s /publ/jeehyun/LSTM/sleep_website /var/wwwi/flask/ sleep

To have Apache server run the project, need to set the group oenship of both

the symlink and the linked directory to www-data

chown -h :www-data /var/www/flask/sleep

chown :www-data /var/www/flask/sleep/*

If the website is not loading, check followings to make surdl dhe settings are

correct.
See if Anaconda env is properly loading (e.g. python versiosystem path)

the error logs stored in/var/log/apache2/error.log

A.4.2 Installations (for sleep/awake classi cation)

The sleep/awake classi cation is implemented in the same rser as the Web
server.

The libraries used for this method are TensorFlow [177] and p@nCV [176].
OpenCV is used with both C++ and Python 2.7. The libraries canbe installed

either in the server or in Anaconda environment.
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B. SOURCE CODE

The source code used in this thesis can be downloaded from @ipository of Video
and Image Processing Laboratory (VIPER) or Purdue ECN servestargate:ecn:purdue:edu

The VHR-related source code is in the Blush project in VIPER Git @pository:

https://lorenz.ecn.purdue.edu:3000/Blush

Source code related to Sleep studies are in the Sleep projecVIPER Git repos-
itory:

https://lorenz.ecn.purdue.edu:3000/sleep

Source code used in Chapter 6 can be found in Purdue ECN sepwargate:ecn:purdue:edy

in following path directory:

/home/stargate/a/sig/choell/softwares/softwares_SSI Al2014




