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ABSTRACT

Parra Pozo, Albert Ph.D., Purdue University, August 2014. Integrated mobile sys-
tems using image analysis with applications in public safety. Major Professor:
Edward J. Delp.

One of the roles of emergency first responders (e.g. police and fire departments) is

to prevent and protect against events that can jeopardize the safety and well being of

a community. Examples include criminal gang activity and the handling and trans-

portation of dangerous materials. In each of these cases first responders need tools

for finding, documenting, and taking the necessary actions to mitigate the problem

or issue.

The goal of this thesis is to develop integrated mobile-based systems capable

of using location-based-services, combined with image analysis, to provide accurate

and useful information to the first responders in real time. Two systems have been

developed.

The first is a system to track and analyze gang activity through the acquisition,

indexing and recognition of gang graffiti images. This approach uses image analysis

methods for color correction, color recognition, image segmentation, and image re-

trieval and classification. A database of gang graffiti images is described that includes

not only the images but also metadata related to the images, such as date and time,

geoposition, gang, gang member, colors, and symbols. The user can then query the

data in a useful manner.

The second is a system that can recognize and interpret hazardous material (haz-

mat) signs typically displayed by vehicles transporting dangerous materials. This ap-

proach uses image analysis methods for hazmat sign interpretation, including shape

location detection and color recognition. The detection results are used to query an
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electronic version of the Emergency Response Guidebook (ERG) and return informa-

tion and advice to help first responders. A database of hazmat sign and scene images

for forensic analysis is described that includes images and metadata.
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1. INTRODUCTION

1.1 Problem Formulation and Challenges

One of the roles of public safety is to prevent and protect against events that

can jeopardize the safety and well being of the community. These include criminal

gang activity and handling and transportation of dangerous materials. In each of

these cases first responders have the potential for finding and documenting evidence

in real time. However, the number of actions that can be taken while on the streets

are limited. If there is an incident and law enforcement officers need to compare

information, they have to communicate with the corresponding police department.

For example, if gang graffiti is spotted by a first responder in an area, the infor-

mation that can be obtained in situ is very limited. In the best case scenario, the

user has expertise with gang graffiti interpretation and carries a camera. The only

actions the user can take are reduced to taking an image and writing down some basic

context information.

In a different scenario, a truck hauling a hazardous substance must carry a placard

that helps identify the material and determine what specialty equipment, procedures

and precautions should be taken in the event of an emergency. This information

is contained in the Emergency Response Guidebook (ERG), published by the US

Department of Transportation (DOT) [1]. As one might expect, the guidebook is

large and requires precious time to search an index to determine the best way to

handle a particular hazardous material.

The goal of this thesis is to develop integrated mobile-based systems capable of

using location-based-services, combined with image analysis, to provide accurate and

useful information to the first responders in real time.
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1.2 Contributions of This Thesis

In this thesis two integrated mobile systems are described. First, a system for

gang graffiti image acquisition and recognition. We called this system Gang Graffiti

Automatic Recognition and Interpretation or GARI. GARI includes motion blur pre-

vention and detection, color correction based on light sensor, color recognition based

on touchscreen tracing, color image segmentation based on Gaussian thresholding,

and content-based gang graffiti image retrieval. We have also investigated the design

and deployment of an integrated image-based database system. Second, a system for

hazmat sign detection and recognition. We called this system Mobile Emergency Re-

sponse Guidebook or MERGE. MERGE includes segment detection using geometric

constraints, convex quadrilateral detection based on saliency map, and sign location

detection based on Fourier descriptors.

The main contributions of GARI and MERGE in the area of image analysis are

as follows:

• We presented a motion blur prevention and detection method based on mobile

device sensors.

• We presented a color correction method based on mobile device light sensor.

• We described a color recognition method based on touchscreen tracing.

• We presented a color image segmentation method based on Gaussian thresh-

olding, block-wise Gaussian segmentation enhancement, background stripe re-

moval, and connected component reconnection.

• We presented a feature extraction method based on local shape context descrip-

tors from SIFT keypoint locations.
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• We presented a gang graffiti content based image retrieval method based on

bag-of-words model.

• We presented a segment detection method based on geometric constraints.

• We presented a convex quadrilateral detection method based on saliency map.

• We presented a sign location detection based on Fourier descriptors.

The main contributions of GARI and MERGE in the design and deployment of

the integrated image-based database system are as follows:

• We developed an integrated image-based database system where data from users

and images is connected to gang graffiti information for analysis and tracking.

• We developed an integrated image-based database system where data from users

and images is connected to hazmat sign information for image analysis and

forensics.

• We created a web-based interface for first responders and researchers to upload

images and browse gang related information by location, date and time, using

interactive maps for better visualization. It is accessible from any device capable

of connecting to the Internet, including iPhone and Blackberry.

• We created a web-based interface for first responders and researchers to upload

images and browse hazardous material information by location, date and time

for forensic analysis. It is accessible from any device capable of connecting to

the Internet, including iPhone and Blackberry.

• We created Android and iOS applications for first responders on the field to

upload images to the server, use image analysis and conduct forensic tasks,

browse related information, and use location-based services to populate inter-

active maps.
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2. OVERVIEW OF GANG GRAFFITI AND HAZMAT

SIGN DETECTION SYSTEMS

2.1 Overview of Gang Graffiti Systems

There are several methods that have been described to identify gang graffiti using

feature matching as well as tracking gang graffiti using large databases. This section

overviews the current methods describing their advantages and disadvantages. 1 We

also compare some of the methods with GARI.

2.1.1 Graffiti Tracker

Graffiti Tracker is a web-based system that began in 2002 [3]. It was designed

to help first responders identify, track, prosecute and seek restitution from graffiti

vandals. It is primarily used by law enforcement and public works agencies. The

database contains more than 2 million manually analyzed graffiti images from 75

cities in two countries and nine states, mainly from the state of California.

The web-based services include graffiti analysis, interactive map browsing, graffiti

storing and organization, and graffiti report. Graffiti Tracker provides clients with

GPS-enabled digital cameras to generate reports of graffiti activity. The images can

then be uploaded through the web interface to the database, where they are manually

analyzed by trained analysts within 24 hours of submission.

The GPS coordinates of each image are used to build an interactive map where

the user can view activity from individual vandals or monikers to specific crews or

gangs. Gang trends or migration can be identified if the volume of graffiti for the same

gang or vandal is large. A part from the interactive map, the user can browse the

1This chapter is an updated version of a chapter that appeared in [2].
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stored graffiti by moniker, gang, type of incident, graffiti surface, or removal method.

The information can be used to generate reports based on gang or moniker activity,

such as total square feet of damage, locations of the incidents, or frequency of graffiti

vandalism over a specific period of time.

2.1.2 TAGRS

Tracking and Automated Graffiti Reporting System (TAGRS) is a system devel-

oped by 594 Graffiti, LLC in Irvine, CA in 2010 [4] in cooperation with the Orange

County Sheriff’s Department (OCSD)/Transit Police Services and Orange County

Transportation Authority.

Government employees can access TAGRS through an Internet portal using a

smartphone or PDA to input graffiti information including address, amount of dam-

age, images of the graffiti and the date and time it was discovered. Law enforcement

officers input their information through a secure intranet. After the graffiti data is

entered it is sent to the investigator or analyst designed to handle graffiti offenses.

Email support enables investigators to share information. TAGRS also reports on

cost analysis and graffiti trends. Training for TAGRS takes about two hours.

The TAGRS program has helped solve more than 300 graffiti cases in Orange

County since 2008.

The TAGRS application is provided at no cost, but any implementing agency

is responsible for purchasing the hardware and services responsible to utilize and

maintain the system. Once a client’s device is registered in the TAGRS database it

is a cross-mobile platform compatible with iOS, Blackberry and Android.

2.1.3 GRIP

Graffiti Reduction & Interception Program (GRIP) is a graffiti and crime database

developed by GRIP Systems in 1999 [5]. Graffiti experts, law enforcement and city

management and infrastructure groups designed it.



7

GRIP allows a contractor to take an image and fill out a form detailing the image,

and then send it to GRIP database for instant reading and analysis. An application

for GRIP has been created using both iOS and Android. GRIP allows residents to

send in images of graffiti from mobile devices or use their computers to email images

and graffiti locations. GRIP offers free unlimited use of its database for six months.

Users can do their own data entry with GRIP’s guidance, or can choose to use

GRIP systems for entry work and analysis. There are multiple access levels including

citizen, clerk, law enforcement agency, reader only or contractor.

2.1.4 GTS

The Graffiti Tracking System (GTS) is a system developed by Blue Archer in

Pittsburgh, PA in 2005 [6]. It is a centralized, web-based application that enables

multiple users to document instances of graffiti crime, manage investigations, track

graffiti removal requests and compile actionable intelligence through the Internet.

GTS is designed for use by any organization that is fighting graffiti crime including

law enforcement, prosecutors, public works departments, railways, and local and state

officials.

Features of the GTS include tracking an unlimited number of graffiti incidents,

uploading an unlimited number of photos per incident; intelligent searching of all

GTS records; automatic linking of similar incidents to develop actionable intelligence;

tracking of unlimited number of suspects, witnesses and contacts per incident; auto-

mated notification of new incidents based on user-defined filters; fully customizable

drop-down menus to record incident criteria.

2.1.5 GAT

Graffiti Abatement Tool (GAT) is a system developed by the Public Works, Po-

lice, and Information Technology departments in Riverside, CA in 2007. This system

is not currently commercially available. GAT was developed to coordinate inter-
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departmental efforts and address the problem of connecting instances of graffiti to

an individual vandal or tagger. It stores and manages images of graffiti with other

tabular data. It is claimed that GAT is useful in tracking, prosecuting and suing

taggers.

Public Works crews that remove graffiti take a picture of the tag using a GPS

camera and complete a customized digital form on the camera including basic infor-

mation about the incident. The images and data are uploaded onto a server that

automatically adds the data to an online database. Graffiti images can be matched

with other instances of graffiti by the same tagger.

GAT allows the total cost of graffiti to be estimated. When the Public Works

abatement crew removes the graffiti, the cleanup method and materials used as well

as how much time was required are entered. The cost associated with prosecuting and

suing a tagger in a civil lawsuit is entered by the city attorney. GAT allows for the

construction of a chain of evidence for the prosecution. There are more than 200,000

images and associated information in Riverside’s central police database, with the

number increasing by up to 500 per week. Nearly 83,000 instances of graffiti have

been removed since January 2009.

2.1.6 TAG-IMAGE

Tattoo and Graffiti Image-Matching and Graphic Evaluation (TAG-IMAGE) is a

system developed by the Federal Bureau of Investigation (FBI) Biometric Center of

Excellence (BCOE) in Clarksburg, WV in 2012. The system, which is not currently

commercially available, is a collaboration with the Cryptanalysis and Racketeering

Records Unit (CRRU) of the FBI’s Laboratory Division.

TAG-IMAGE is an image-comparison system designed to help the CRRU match

images within its database to determine the significance of tattoos, graffiti or other

cryptic symbols for FBI investigative programs dealing with foreign or domestic ter-

rorism, violent crime or gangs.
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TAG-IMAGE uses image-to-image technology to match symbols based on appear-

ances. A user emails an image to the CRRU where an analyst enters it into the system.

The system then compares the image against images stored in the CRRU database.

When the search is completed a CRRU analyst emails a response to the user, in-

cluding associated details and contact information. The submitted image becomes

available for future comparisons by other agencies.

TAG-IMAGE is currently in pilot phase and will become available to local, state,

tribal and federal law enforcement and correctional agencies when the pilot phase

ends. The BCOE also plans to conduct a small operational pilot program with the

National Gang Intelligence Center to determine the feasibility of image-based match-

ing and to gain user feedback.

2.1.7 Graffiti-ID

Graffiti-ID is an ongoing project (since 2009) at Michigan State University [7, 8].

The project is focused on matching and retrieval of graffiti images. There is similar

work from the same team on gang tattoo identification, called Tattoo-ID [9–14].

The goal of Graffiti-ID is to identify gang/moniker names related to a graffiti im-

age, based on visual and content similarities of graffiti images in a database. Figure

2.1 shows a block diagram of the system. There are two modules, one for populat-

ing the database (offline) and another for querying and obtaining results from the

database (online). The offline module includes two processes. First, automatic fea-

ture extraction using the Scale Invariant Feature Transform (SIFT) [15]. Second,

manual annotation of graffiti images by letters and numbers. This is done on images

taken from an external gallery of images with the information stored in a database.

The online modules includes manual annotation of input images to filter the database

and SIFT feature extraction to obtain keypoint matching.

The image database used is based on the Tracking Automated and Graffiti Re-

porting System (TAGRS) from the Orange County Sheriff Department in California.
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Fig. 2.1.: Block Diagram of the Graffiti-ID System.

The database consists of 64,000 graffiti images the main sources of the images are

the Orange County Transportation Authority and crime reports. A subset of 9,367

images were used for evaluation. Each of these images contains up to four information

parameters: moniker, gang, date and time, and address.

The Graffiti-ID system was tested using graffiti images from the original database

subset. The retrieval accuracy was evaluated using Cumulative Match Scores (CMS) [16].

The graffiti images were used as query for the manual annotation matching step, which

returns candidate images from the database that match the text description (presence

of letters and numbers). SIFT features from the input image and compared against

SIFT features from each of the candidate images. The candidates that best match

the SIFT features of the query, given the Cumulative Match Scores, are returned to

the user. Table 2.1 shows performance results of the output of the second step. The

rank-k accuracy refers to the percentage of queries for which the correctly matched

images are found within the k candidate images.
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Table 2.1: Accuracy and execution time for various numbers of candidate images from
the manual annotation matching step.

Candidate Images 300 500 1,000 9,367
Rank-30 accuracy 63.8 % 65.4 % 66.5 % 64.3 %

Retrieval Time (seconds/query) 12.4 s 20.1 s 39.8 s 415.7 s
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2.1.8 Other Work on Graffiti and Tattoos

There exist other methods in the literature that use image analysis techniques

on graffiti and tattoo images. In [17] methods for segmenting and retrieving graffiti

images are described using global thresholding and template matching. The system

consists of two main components: character detection and string recognition and

retrieval. The character detection process includes image preprocessing and bina-

rization, text detection and image refinement. The string recognition and retrieval

process is further subdivided into two modules: image-wise retrieval and semantic-

wise retrieval. The image-wise retrieval includes bounding-box extraction and interest

point matching. The semantic-wise retrieval includes bounding-box extraction, char-

acter recognition and string matching. The results of the image-wise retrieval and

semantic-wise retrieval modules are combined to produce the final output. The ex-

perimental results on a database of 194 graffiti images show a retrieval accuracy of

88% when using the proposed bounding box framework.

In [9–14] the authors describe image retrieval approaches for tattoo images, Tattoo-

ID. The goal of Tattoo-ID is to create a content based image retrieval system to find

images from a database that are related to the query image. The image analysis

methods used are very similar to those in Graffiti-ID, including SIFT keypoints and

the use of a matching technique to measure visual similarities. The system was tested

in a database of 100,000 tattoo images. The retrieval accuracy was 85.6%, with an

average retrieval time of 191 seconds on an Intel Core 2, 2.66GHz and 3GB RAM

processor.

In [18] the authors propose a tattoo retrieval system using a combination of exist-

ing image retrieval techniques. Figure 2.2 illustrates the system. The experimental

results on a dataset of more than 300,000 tattoo images show a retrieval accuracy of

85% in the best case. The running times depend on the database used, and range

from 145ms to 5 seconds on an Intel i7-930 using 4 cores with 2.8GHz and 8GB of

main memory.
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Fig. 2.2.: Block Diagram of The System in [18].

2.1.9 Comparison to GARI

Although our proposed system (GARI) shares some goals with the above systems,

our methodology is different. Table 2.2 summarizes a comparison between the features

of the various Gang Graffiti Systems described above.

We present a detailed comparison between the most similar systems to GARI:

Graffiti-ID and Graffiti Tracker. We then compare the image analysis methods used

in other work on graffiti and tattoos to the ones used in GARI.

GARI vs. Graffiti-ID vs. Graffiti Tracker

Both Graffiti-ID and GARI have goals of identifying gangs and gang members

based on the graffiti content. Graffiti-ID uses SIFT features between an input image

and images from the database. GARI currently uses color recognition techniques,

along with metadata information from an image to query the database. GARI uses

SIFT features to detect if an image of a same graffiti was already acquired at a specific

location. GARI also uses shape techniques to detect graffiti components. By graffiti
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Table 2.2: Comparison of features between different gang graffiti systems and GARI.

Feature GARI Graffiti-ID Graffiti Tracker TAGRS GRIP GTS GAT TAG-IMAGE

Used in field YES NO YES YES YES YES YES YES

Graffiti location IN, IL CA CA CA CA, CO CA, PA CA -

Images in database 1,000 6,000 +4 million - - - 200,000 -

Analysis (time) Seconds - 24h - - - - -

Analysis (method) Semiautomatic Automatic Manual Manual Manual Manual Manual Semiautomatic

Web version YES NO YES YES YES YES YES NO

Mobile version YES NO NO YES YES NO NO NO

Device Smartphone - GPS Camera Smartphone Smartphone - GPS Camera -

Interactive Map YES NO YES NO NO NO YES NO

Price $10,000 server - $6,000/year $15,000 server $987/year - - -
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components we mean the objects and shapes contained in a graffiti image, such as

stars, pitchforks, crowns, and arrows.

Both Graffiti Tracker and GARI keep track of gang activity based on GPS tags

from the images and the graffiti content. However, all the image analysis in Graffiti

Tracker is done manually, while the only user input on GARI is the touchscreen

tracing for color recognition.

Graffiti-ID does not exploit the first responders action in the field, such as capture

and upload images to a server or browse the database from a mobile device; the

analyzed images are on the server. Graffiti Tracker allows users to acquire images

only with GPS-enabled cameras they provide and the images have to be transferred

to a computer and sent to the server. GARI allows the users to take images with

any camera, and the GPS coordinates are automatically extracted from the EXIF

data of the image or inserted manually when uploaded to the server (i.e., by GPS

coordinates or by address through reverse geocoding [19]). Moreover, GARI has a

mobile application that allows the user to take an image with a smartphone and send

it to the server in situ. GARI also allows the first responder to browse the database

of graffiti. GARI allows the user to upload images to the server through a web-based

interface from any device capable of connecting to the Internet.

In Graffiti Tracker image analysis is done manually by trained analysts with the

results obtained within 24 hours of submission. GARI currently does the analysis in

the field, automatically and in real-time, either on the device or on the server. Graffiti-

ID uses, as GARI, SIFT features to match images on the server automatically, but

the analysis of the content of the graffiti is done manually, by labeling the image. It

just allows labels to be numbers (0-9) or letters (a-z), not symbols or other features

such as color.

Graffiti-ID does not provide any type of gang activity tracking, while both Graffiti

Tracker and GARI provide interactive maps that allow first responders to browse the

database and keep track of specific gangs or individuals. The advantage of GARI is

that it also provides additional methods for tracking gang activity, including browsing
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the database by radius from specific locations, or by graffiti color. One advantage of

Graffiti Tracker is that its database is currently dramatically larger than the GARI

database. Therefore, the results retrieved from the Graffiti Tracker database can

indicate more accurate gang activity.

In summary, our system combines features from both Graffiti-ID and Graffiti

Tracker, and adds more services and functionality. The advantages of our system

over Graffiti-ID and Graffiti Tracker are the following. We provide a mobile appli-

cation to be used by first responders in the field, where they can capture, upload

and browse graffiti images from the database. The image acquisition in our system

is device independent; virtually any image type from any camera make and model

can be uploaded using one of our supported platforms: Android, iOS, and web-based

interfaces.

GARI vs. Other Work on Graffiti and Tattoos

The work in [17] is the only method from our review that propose automatic seg-

mentation of the graffiti components from the background. However, while GARI

does color image segmentation based on touchscreen tracing, [17] uses local thresh-

olding techniques such as Niblack [20] as a preprocessing step to binarize the image.

Also, GARI uses SIFT features for graffiti component image retrieval (see Section 3.7),

while [17] uses a template matching method that just considers letters and numbers.

The GARI system uses a vocabulary tree based on a bag-of-words model for

content based image retrieval (see Section 3.7). The approaches described in [10, 11]

do not use the bag-of-words models and report slower matching and retrieval times

than we demonstrate in our experiments (see Section 5).

Finally, although [18] does use a bag-of-words model for image retrieval of gang

and gang-like tattoos, the system is not intended for real-time retrieval in mobile-

based environments.
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2.2 Overview of Hazmat Sign Detection Systems

Although there exist several mobile-based applications that provide easy access

to the Emergency Response Guidebook (ERG) guidebook [1, 21], they only provide

manually browsing functionality. Several methods in the literature deal with sign

location detection and recognition (see Section 4.1), but we are only aware of two

other published papers with application to hazmat signs [22, 23].

2.2.1 Hazmat Sign Detection Based on SURF and HBP

In [22] the hazmat sign detection is done using color histogram back-projection

(HBP) and Speeded Up Robust Feature (SURF) [24] matching. The method was

implemented and tested on an autonomous mobile robot for the 2008 RoboCup World

Championship. Histogram back-projection is used to detect regions of interest in the

image and remove the background of the scene. A background image without a sign,

h(x, y), is used as a ground-truth to isolate the hazmat sign when it appears on the

scene and an image of it is captured, f(x, y). This is done by determining the euclidean

distance of the color coordinates of each pixel within h(x, y) and the corresponding

pixel within f(x, y). A threshold K is used to create a binary mask of the hazmat

sign by the use of an indicator function δ(x, y) = {(x, y) s.t. |f(x, y)− h(x, y)| > K}.
Several color histograms are then estimated for the U and V channels on the YUV

color space, and summed up to create a single histogram Ho(U, V ) for every sign on

the image. A threshold θ(Ho, ǫ) is used for Ho(U, V ), resulting in a binary indicator

function πo(U, V ), which specifies which pixels form part of a sign. The value of ǫ is

manually set to 0.05. Finally, morphological filters are used to segment the masked

regions from the background and create one or more regions of interest to be used as

inputs to the matching process using SURF features.

SURF matching is used to find interest points and retrieve images from a database.

After the region of interest is determined from the image containing a hazmat signs,

multiple interest points are found using SURF. Interest points surrounding regions
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that overlap the region of interest are discarded, since the do not provide enough infor-

mation about the sign. For the remaining interest points, their corresponding feature

vectors are matched against all features of all images in a database corresponding to

the colors found on the first step.

The experiments were done using a stereo camera system consisting of two cameras

with a resolution of 1024 × 768 pixels. The tests consisted of detecting five different

hazmat signs in 240 images. The images were taken at 1, 1.5 and 2 meters, with a

maximum distortion of 30◦. The results show a detection accuracy of 92% from 1

meter, 52% from 1.5 meters, and less than 20% from 2 meters. The running time

ranges from 1 to 1.6 second on a 2.7GHz Intel CPU.

2.2.2 Hazmat Sign Detection Based on HOG

In [23] hazmat sign detection using sliding windows and Histogram of Oriented

Gradients (HOG) [25] is described. The method was implemented and tested on a

wheeled USAR robot for the 2010 RoboCup World Championship.

The authors use the sliding window approach to exhaustively scan every pixel

over a range of positions and scales, with steps of 8 pixels and relative scale factors

of 1.05. For each position and scale a discriminative Support Vector Machine (SVM)

classifier is used to make binary decisions about the presence or absence of an object.

In order to describe the contents of the image at each particular location a HOG

descriptor is used along with color histograms in the Lab color space to distinguish

between multiple hazmat signs. For each hazmat sign hypothesis of the HOG based

detector, the color histogram is used to do the final classification by applying a k-

nearest neighbor approach in combination with χ2-distance.

The experimental results show a recognition rate of 37.5% using histograms based

on entire sliding windows and a recognition rate of 58.3% using sub-region based

histograms. Region-based histograms provide better representation of the image since
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they are capable of capturing the spatial distribution of colors within the detection

window.

2.2.3 Comparison to MERGE

Although all methods above are deployed on mobile environments, MERGE is

intended for real-time use by first responders, while [22] and [23] were intended for

use in a very specific context. The sign detection method proposed in [22] uses a

ground-truth image of the background to aid in detection when the hazmat sign

appears. This is not a feasible assumption in MERGE, since the first responders are

expected to take images of hazmat signs in a large variety of scenarios. In [23] a

dataset of 1,480 daylight images is used for both people and hazmat sign recognition.

However, the authors do not specify how many images contain hazmat signs, or

at what distances the signs are located. They do not provide information about

the resolution of the images or the cameras used for acquisition. In MERGE no

assumptions on the background are made in order to detect the sign. Instead, color

information is used to detect candidate regions using a saliency map model.

Once the hazmat sign is detected [22] uses image matching based on SURF fea-

tures, and [23] uses HOG and color histogram descriptors, both being very time

consuming task. This step is not done in MERGE. Currently, the color of the hazmat

sign is considered to be uniform, and the detection is made at different color channels.

The recognition of non-uniformly-colored placards is presented as part of the future

work (see Section 6).

The goal of MERGE is to be able to detect hazmat signs at long distances (up to

500 feet). Our experimental results show successful detections in some cases at more

than 100 feet. However, the experiments in [22] can only be considered successful at

1.5 meters, and the accuracy reported by [23] is very low. Finally, the execution time

of the sign detection method in MERGE is 0.84 seconds on average, faster than the

sign detection method in [22]. No execution time is reported in [23].
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2.3 Proposed Systems

Two systems have been developed. First, a system to track and analyze gang

activity through the acquisition and recognition of gang graffiti images. This approach

uses image analysis methods for color recognition, image segmentation, and image

retrieval and classification. A database of gang graffiti images is maintained on a

server, and includes not only the images, but metadata related to them, such as date

and time, geoposition, gang, gang member, colors, or symbols. The user can then

query the data in a useful manner. We call this system Gang Graffiti Automatic

Recognition and Interpretation or GARI [26] 2.

Second, a system to recognize and interpret hazardous material (hazmat) signs

typically displayed by vehicles transporting dangerous materials. This approach uses

image analysis methods for hazmat sign interpretation, including shape detection

based on saliency maps, color recognition and sign interpretation. The detection

results are used to query an electronic version of the ERG and return information

and advice to help first responders. We call this system Mobile Emergency Response

Guidebook or MERGE [27].

2.3.1 GARI

Gangs are a serious threat to public safety throughout the United States. Gang

members are continuously migrating from urban cities to suburban areas. They are

responsible for an increasing percentage of crime and violence in many communi-

ties. According to the National Gang Threat Assessment, approximately one million

gang members belonging to more than 33,000 gangs were criminally active within

the United States as of April 2011 [28], an increase of 13,000 since April 2008 [29].

Criminal gangs commit as much as 80% of the crime in many communities according

to law enforcement officials. Gang graffiti is their most common way to communicate

2Parts of the work on GARI was done with my Purdue colleagues Andrew Haddad and Professor
Mireille Boutin.
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messages, including challenges, warnings and intimidation to rival gangs. It is an ex-

cellent way to track gang affiliation and growth or to obtain membership information.

Our goal is to develop a system, based on a mobile device such as a mobile

telephone, capable of using location-based-services, combined with image analysis,

to automatically populate a database of graffiti images with information that can

be used by law enforcement to identify, track, and mitigate gang activity. The first

step towards this goal was to create a system that includes the ability to acquire

images in the field using the camera in a mobile telephone and a networked back-end

database system that uses the metadata available at the time the image is acquired

(geoposition, date and time) along with some basic image analysis functions (e.g.

color features) [2].

The next step is to extend the image analysis to include segmentation, matching,

retrieval and classification of gang graffiti images and gang graffiti components. By

gang graffiti components we mean the objects and shapes contained in a gang graffiti

image, such as stars, pitchforks, crowns, and arrows.

Apart from being able to send and retrieve multimedia data to the database, the

first responder can take advantage of location-based-services. The information in the

database of gang graffiti can be queried to extract information based on parameters

such as date and time of capture, upload or modification of the graffiti image, or radius

from a given location. The data includes not only the images, but information related

to it, such as date and time, geoposition, gang, gang member, colors, or symbols.

We have implemented these features both as applications for Android and iOS 3

hand-held devices and as a web-based interface for any device capable of connecting

to the Internet (e.g., desktop/laptop computer, Blackberry).

GARI also includes features for gang tattoo analysis [30]. By providing first

responders with this capability, the process of identifying and tracking gang activity

can be more efficient.

3The iOS application was developed with my Purdue colleague Joonsoo Kim.
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System Overview

Figure 2.3 illustrates a block diagram of the GARI system. It shows the various

services available, both on the device (no network connection required) and on the

server (network connection required). These services include capturing images of

gang graffiti, automatic analysis and labeling (such as geoposition, date/time, and

other EXIF (Exchangeable Image File Format) [31] data obtained from the image),

uploading images to the database of gang graffiti, and querying the database to filter

and browse its contents.

Figure 2.4 illustrates the modules of our image analysis system. Note that the

modules in bold are currently implemented on the server.

When a first responder uses the mobile device to capture an image we use a

customized camera with blur motion prevention (Section 3.2). The image is color

corrected on the device using data from the light sensor (Section 3.3) and the user

is given several options. The image can be uploaded to the server and added to

the database of gang graffiti. If so, we extract EXIF data from the image, such as

geoposition and date and time, in order to identify the image and its location. The

color recognition module allows the user to detect the color of a graffiti component

by tracing a path using their finger on the device’s touchscreen (Section 3.4). The

color recognition is done entirely on the device and extra data is obtained for color

image segmentation from the server (Section 3.5). The content-based image retrieval

module finds matches for each segmented graffiti component (Sections 3.7 and 3.6).

The captured image can be used to find similar images in the database using the

scene recognition module (Section 3.7). The results from the scene recognition and

the graffiti component retrieval are sent back to the user. All the data from the

different modules can be sent to the server along with the graffiti image, and added

to the database to be browsed or analyzed in the future.
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Fig. 2.3.: Block Diagram of the GARI System.

Fig. 2.4.: Modular Components of the GARI System.

Interpretation of Gang Graffiti

Gangs have used street graffiti to communicate with each other for a long time [32,

33]. It is their most common way to communicate messages, including challenges,



24

warnings or intimidation to rival gangs. If graffiti are correctly interpreted, they are

a great source of information that can be used to track gang affiliation and growth,

or to obtain membership information.

It is worth noting the differences between “graffiti” terms that we use throughout

this thesis.

• Gang: We use the word gang to refer to a street gang, defined by [34] as a

“self-formed association of peers, united by mutual interests, with identifiable

leadership and internal organization, who act collectively or as individuals to

achieve specific purposes, including the conduct of illegal activity and control

of a particular territory, facility, or enterprise”.

• Gang member: To be distinguished from a tagger. Gang members paint

graffiti to mark territory, threaten other gangs or honor other gang members.

In contrast, taggers paint graffiti to defy authority, or to obtain recognition or

notoriety.

• Gang graffiti: To be distinguished from tagging. Gang graffiti are simple and

usually monochromatic. In contrast, tags are artistic and colorful.

• Component: Any of the separable elements in a graffiti, such as symbols,

acronyms, or numbers.

• Blob: Area of the graffiti containing only one component. Useful to identify

relative positions of components to each other in the same graffiti.

• Clique: Subset of a larger gang with their own name, which may have con-

nection to the gang’s neighborhood (e.g., street name, geographic location).

Cliques are local, while gangs extend nationally or internationally. Also known

as factions or crews.

• Turf : Slang for territory, or area of influence, specific in this thesis to gangs.

Term used when talking about a fight between gangs for territory or power, also
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known as a turf war, usually with the objective to gain control over the drug

market in a specific area.

In the following subsections we describe how to interpret gang graffiti from its

contents, including colors, shapes and structure. We also describe how gangs and

gang members can be tracked from the graffiti contents and their location. Finally,

we illustrate some examples on how a first responder can do the interpretation and

tracking easier and faster. Note we are not claiming in this thesis to be an expert in

the interpretation of gang graffiti. Our knowledge is limited. We are relying on law

enforcement experts for the GARI project. 4

Some Examples of Interpretation

Gang graffiti can be considered a low-level language used by gangs to communicate

with each other. The alphabet of this “language” consists not only of letters (Aa-

Zz) and numbers (0-9) but also of symbols (e.g., stars, crowns, arrows) and colors.

The contents of gang graffiti are simple and straightforward. Gangs usually paint

handwritten graffiti using a single color (perhaps two at most). Gang graffiti do not

contain complete sentences, but words, short phrases, abbreviations and acronyms

(e.g., gang and gang member names, street names and numbers). As is the syntax in a

regular language, the relative position and alignment of each component is important

in the general structure of the graffiti. The syntax in gang graffiti is two-dimensional.

For example, the meaning of a symbol is different if it is painted at the top right of a

graffiti or if the symbol appears upright or upside down. Figures 2.5 and 2.6 illustrate

some examples of gang graffiti alphabet, syntax, and color.

4The images shown in this thesis were obtained in cooperation with the Indianapolis Metropoli-
tan Police Department (IMPD). We gratefully acknowledge their cooperation in GARI.
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(a) Shape (b) Numbers

(c) Symbols (d) Colors

(e) Letters (f) Position and Alignment

Fig. 2.5.: Examples of Graffiti Elements.

We will use Figure 2.5 as examples for interpreting gang graffiti. Figure 2.5a is

a black gang graffiti. This particular color does not eliminate any gang from being

the author of the painting. The 6-point star refers to the Folk Nation, one of the two

“nations” to which most gangs belong. Each point means: love, life, loyalty, wisdom,

knowledge, understanding. The numbers on both the left and the right of the star, 7
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(a) Mexicanos Malditos Sureños 13

(b) 18th Street Gang (black) VS Sureños 13 (red)

Fig. 2.6.: Examples of Graffiti Color Recognition.

and 4, refer the 7th and 4th letters of the alphabet, G and D, respectively. That is,

the Gangster Disciples gang. The three-pointed pitchfork is another sign of the Folk

Nation. In this particular case, two upright three-pointed pitchforks make a total of

six points, making reference to the 6-pointed star. Moreover, the inscription below

the star makes reference to the clique with the street name, 2-8th st or 28th street,

and the nickname of the gang member who painted the graffiti, Ruthless.

Figure 2.5b is a black gang graffiti containing the name of a clique, as usual taking

its name is taken from the street where they operate. In this case, it refers to the 42nd

Street Gang from Indianapolis. The color itself does not indicate anything concerning

which gang this clique may belong to.

Figure 2.5c is a blue gang graffiti with a 6-point star similar to the one in Figure

2.5a. The blue color is used by the Gangster Disciples (and others). The numbers on

the sides of the star, along with the additional letters at its bottom make it clear that
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this graffiti makes reference to the Gangster Disciples. The number 6 in the center

of the star is also an extra remainder of the Folk Nation.

Figure 2.5d is a red and black gang graffiti containing the name of a gang/clique in

red, Goon Squad (also spelled Goon Sqaud or Goun Sqoud). This gang/clique name

is very common, since it originally refers to a group of thugs or mercenaries associated

with violent acts. With the little information from this graffiti it is not possible to

determine which gang they belong to or if they are a gang themselves. However, the

use of the red color seems to be related to the People Nation, although there are

gangs from the Folk Nation that also use the same color. Below the gang name we

find the name of the neighborhood where the gang operates (i.e., Brightwood 2-5st or

Brightwood 25th Street, Indianapolis) in black. The two down arrows at each side

of the gang name express turf dominance. The inscription at the very bottom, also

in black, appears to be the nickname of the gang member who painted the graffiti,

7MOB, also known as “Brightwood 7 M.O.B. Bitch.” There is an additional down

arrow, again expressing turf dominance of this particular gang member.

Figure 2.5d is a simple black gang graffiti containing the acronym ESG, referring

to the East Street Gang in Indianapolis.

Figure 2.5f is a multicolor gang graffiti. It seems the blue graffiti was painted

over the black graffiti. The black graffiti is very similar to the one in Figure 2.5c,

belonging to the Gangster Disciples. The 28th Street clique name, along with the

nickname Ruthless, are also painted next to the 6-point star. The blue graffiti contains

the name of a different clique, the 25th Hillside, from Hillside Avenue in Indianapolis.

The inscription at the very bottom, in blue, could make reference to an insult to the

gang or gang member who painted the black graffiti originally, however the upside-

down 5-point star indicates disrespect for the People Nation. Therefore, both the

black and the blue graffiti have been painted by gang members of Folk Nation’s

gangs, and the blue inscription to the left of the upside-down 5-point star is the

nickname of a gang member of the 25th Hillside clique, from the Folk Nation.
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2.3.2 MERGE

Hazardous materials can react differently to environmental stimuli and cause prob-

lems in accidents and emergency situations and therefore makes these materials par-

ticularly dangerous to civilians and first responders. A federal law in the US requires

vehicles transporting hazardous materials be marked with a standard sign (i.e., a

“hazmat sign”) identifying the type of material the vehicles is carrying [35]. These

signs have identifying information described by the sign shape, color, symbols, and

numbers.

Our goal is to develop a system, based on a mobile device such as mobile tele-

phone, capable of using location-based-services, combined with image analysis, to

automatically detect and interpret hazmat signs from an image taken by a first re-

sponder5.

This system includes the ability to acquire images in the field using the camera in

a mobile telephone and a networked system that uses the metadata available at the

time the image is acquired (geoposition, date and time) along with image analysis

functions to interpret one or multiple hazmat sign on the same image.

The interpretation of the signs includes the association of the sign contents to a

guide page on the ERG [1,21]. The information in the book determines what specialty

equipment, procedures and precautions should be taken in the event of an emergency

related with such chemical component.

Apart from being able to send and retrieve multimedia data to the server, the first

responder can take advantage of location-based-services. The location information

acquired through the mobile phone can be used along with the interpretation of the

hazmat sign to provide the first responder with the best way to handle a particular

hazardous material. This is done by projecting an action radius on a multimedia map

on the hand-held device, so that the first responder can take the necessary actions to

evacuate the affected area. The action radius takes into account real-time weather

5Parts of this work was done with my Purdue colleagues Bin Zhao, Andrew Haddad, He Li,
Kharittha Thongkor and Professor Mireille Boutin.
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information (i.e. wind speed and direction) to provide more accurate evacuation

information.

We have implemented these features both as an application for Android hand-

held devices and as a web-based interface for any device capable of connecting to the

Internet (e.g., desktop/laptop computer, iPhone, Blackberry).

By providing first responders with this capability, the process of identifying and

protecting citizens against hazardous materials can be faster and more efficient.

System Overview

Figure 2.7 illustrates a block diagram of the MERGE system. It illustrates the

various services available, both on the device (no network connection required) and

on the server (network connection required). These services include capturing images

of hazmat signs, uploading images to the server for automatic analysis, and querying

an internal database containing a digitized version of the ERG [1,21].

There are two basic operation modes: analysis of a new image and internal

database browsing. The first mode includes capturing or browsing for an existing

image on the hand-held device, uploading the image to the server and using sign de-

tection and interpretation methods (Section 4). The results sent back to the user in-

clude the detected hazmat signs and a link to a guide page from the internal database

containing the necessary information in case of an emergency. The second mode in-

cludes browsing an internal database to obtain information about the hazmat sign.

The internal database can be browsed by UN number, class, symbol, or color (Section

4.5).
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Fig. 2.7.: Block Diagram of the MERGE System.

Interpretation of Hazmat Signs

Hazmat signs are characterized both by their shape and contents. Figure 2.8

illustrates possible shapes for hazmat signs, from which we only consider the diamond-

shaped signs, or placards. Inside the placard there are four elements that uniquely

identify the chemicals inside the container. Figure 2.9 illustrates three of the elements.

• UNID: The United Nations Identification number (UNID) consists of a four-

digit number used world-wide in international commerce and transportation to

identify hazardous chemicals or classes of hazardous materials. UNID numbers

range from 0001 to about 3500 and are assigned by the United Nations Com-

mittee of Experts on the Transport of Dangerous Goods. the UNID provides

the user a direct link to the ERG guide page containing information on the

placard of interest.

• Symbol: The graphics and text in the placards representing the dangerous

goods safety marks are derived from the UN-based system of identifying dan-
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gerous goods. A comparison of symbols in the database will inform the user

which guide page is associated with the symbol in the image. The possible

symbols (shown in Figure 2.10) are: Corrosive, Explosive, Flammable, Gases,

Infectious, Oxidizing, Pollutant, Radioactive, Toxic.

• Class number: Following the UNModel, the Department of Transportation di-

vides regulated hazardous materials into nine classes, some of which are further

subdivided. The class number on the placard provides the user a number of pos-

sible ERG guide pages. The possible classes are: Explosives, Gases, Flammable

Liquids, Flammable Solids, Oxidizing Substances, Toxic Substances, Corrosive

Substances, Miscellaneous Hazardous Materials.

• Color: The color of the hazmat also gives information about the chemical

being hauled. The hazmat colors are red, blue, yellow and white. Red is for

flammability, blue indicates health hazards, yellow is for reactivity and white is

for personal protection. Figure 2.11 shows some possible combinations of colors

on hazmat signs.

Fig. 2.8.: Possible Shapes of Hazmat Signs.
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Fig. 2.9.: Elements That Uniquely Identify a Hazmat Sign. From Left to Right:
UNID, Symbol, and Class Number.

Fig. 2.10.: Possible Symbols On a Placard.
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Fig. 2.11.: Possible Colors On a Placard.
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3. GANG GRAFFITI AUTOMATIC RECOGNITION AND

INTERPRETATION (GARI)

3.1 Review of Existing Methods

In this section we review some relevant literature in the areas of blur detection,

color correction, color recognition, color image segmentation, graffiti content analysis,

image feature extraction, and image retrieval and classification.

3.1.1 Blur Detection

Image blur is one the most quality degrading distortions in images [36]. It may

be caused by out-of-focus, relative motion between the camera and the objects, or

inaccurate acquisition settings [37]. In particular, motion blur is one of the main

source of blurriness in digital images [38]. Motion blur is caused by camera shake and

other movements, and it can cause serious image degradation that can compromise

the recognition of objects in the image. Since cheap camera modules in mobile device

cameras are not robust to handshaking or low light conditions both hardware and

software approaches have been proposed to overcome this problem [39].

Hardware approaches include stabilized lens [40] or Shift-CCD/CMOS used to

compensate camera motion [41,42]. However, this approaches require the use of spe-

cial equipment, which makes them less suitable for general use. Software approaches

can be divided into two categories: frequency domain methods (e.g., computing a

transform) and spatial domain methods (e.g., analyzing edges) [43, 44].

In [45] the authors propose a method to measure the global blur using the Discrete

Cosine Transform (DCT) [46] information in the image. In order to be as independent
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as possible from the image content, their method looks at the distribution of null

coefficients instead of the values themselves. This is based on the fact that blurred

images tend to have a large number of their high frequency coefficients set to zero.

The quality measure is obtained by using a weighting grid that gives more importance

to the coefficients on the central diagonal of the DCT matrix, since they better

characterize global (circular, non-directional) blur. This method is very sensitive

to uniform background and over-illuminated images. Also, its design was aimed at

detecting and quantifying only out-of-focus blur.

In [47] the authors propose a blur detection and quantification method based on

edge type and sharpness analysis using the Haar-Wavelet Transform (HWT) [48].

The method takes advantage of the ability of the HWT in discriminating edge types,

and can detect both out-of-focus and linear-motion blur. Edges are classified into

four types: Dirac-Structure, Roof-Structure, Astep-Structure, and Gstep-Structure,

the last two being derived from the Step-Structure type. A HWT with three levels

of decomposition is first determined, an edge map is then constructed in each scale.

After that, this edge map is partitioned, and local maxima in each window are found.

If the number of Dirac and Astep structures occurrences are above a threshold, the

image is considered blurred.

In [49] a no-reference blur metric based on edge length is proposed. First, a Sobel

operator [50] is used to detect edge locations on the luminance component of the

image. Then, the edge lengths corresponding to the distance between the starting

and ending positions of the edge are computed. The global blur measure is obtained

by averaging the lengths over all edges found. This method only considers Gaussian

blur. In [44,51] a low complexity blur metric based on Cumulative Probability of Blur

Detection (CPBD) which utilizes probability distribution of edge widths is described.

Generally, spatial domain methods are more efficient than frequency domain meth-

ods for blur detection, as they do not require an additional transformation to another
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domain.

A third category may be added to consider methods that use software approaches

based on data obtained from hardware. In [52] inertial sensors (i.e., accelerometers

and gyroscopes) built into the mobile device is used to detect motion trajectory of

the camera during exposure and then estimate and remove blur from the resulting

image. In [53] a “shake metric” technique for detecting camera shake using the mobile

device built-in accelerometer to alert blind users in real-time to hold the camera more

steadily is described. They do not propose any blur detection method to deal with

out-of-focus or low light conditions.

3.1.2 Color Correction

One of the main properties of gang graffiti is its color. If the graffiti contents

do not provide any useful information we can use color to filter gang cliques in the

area and narrow the possibilities. When color correcting an image we alter its color

intensities to match a reference color under a reference illumination [54,55].

A common approach is to first estimate the scene illumination and then create a

mapping between the estimate and the reference [56]. The concept is that both the

intrinsic properties of a surface and the color of the illuminant have to be estimated,

while only the product of the two (i.e. the actual image) is known. Current ap-

proaches can be divided into three categories: static methods, gamut-based methods,

and learning-based methods [56, 57].

Static methods use a fixed parameter setting. In [58] using the gray-world as-

sumption [59]: “the average reflectance in a scene under a neutral light source is

achromatic” is described. Therefore, any deviation from achromaticity in the average

scene color is caused by the effects of the illuminant. The color of the light source is

estimated by segmenting the image and computing the average color of all segments.
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In [60] a framework known as “gray edge” that uses higher order image statistics

such as first and second image derivatives is presented. This method archives the

same results as [58] by realizing that the gray-world methods are special instantia-

tions of the L∞ Minkowski norm. In [61] a fiducial marker with 12 color patches that

they place in the image to estimate the illumination parameters is described. In [62]

the use of a mobile device touchscreen to obtain the user input by displaying a cap-

tured image alongside a color grid of commonly occurring colors is investigated. The

user specifies color pairs (i.e. patches in the scene and veridical colors on the grid),

which are used to estimate the white point. The estimated white point is then used

to construct a diagonal transform to determine the camera output under a desired

illuminant.

Gamut-based methods are based on the assumption that in real-world images, for

a given illuminant, one observes only a limited number of colors [63]. This limited

set of colors that can occur under a specific illuminant is known as the canonical

gamut and is determined in a training phase by observing as many surfaces, under

one known light source (known as the canonical illuminant), as possible.

In [64,65] a gamut mapping method that takes as input an image taken under an

unknown light source along with the precomputed canonical gamut and estimates the

gamut of the unknown light source by assuming that the colors in the input image are

representative for the gamut of the unknown light source is presented. In [66,67] the

gamut mapping approach by adding dependence on the diagonal modelmis extended.

Under the assumption of the diagonal model, a unique mapping exists that converts

the gamut of the unknown light source to the canonical gamut. However, if the diag-

onal model does not fit the input data accurately, then it is possible that no feasible

mapping can be found. This situation is avoided by incrementally augmenting the

input gamut until a nonempty feasible set is found.
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Learning-based methods estimate the illuminate using a model that is learned on

training data.

In [68] a color-by-correlation method that replaces the canonical gamut with a cor-

relation matrix is discussed. One correlation matrix is obtained for every considered

illuminant and then used to obtain a probability for every considered light source.

Using these probabilities a light source is selected using maximum likelihood [68] or

Kullback-Leibler divergence [69]. Other methods use low-level statistics based on the

Bayesian formulation [70, 71] and conditional random fields [72]. They model the

variability of reflectance and light source as random variables. The illuminant is then

estimated from the posterior distribution conditioned on the image intensity data.

Note that all the methods mentioned above use a single image from a regular digi-

tal camera to estimate the illuminant. There exist other methods that use additional

images [73], specially designed devices [74] or video sequences [75].

3.1.3 Color Recognition

Gang graffiti are often sprayed in non-uniform surfaces, which makes them diffi-

cult to distinguish from the background. Since our system is deployed on a mobile

telephone, we take advantage of the touchscreen capabilities of modern mobile devices

to aid the recognition of color in gang graffiti images.

Since the first capacitive touchscreen was introduced in 1965 [76] multiple ap-

plications have been developed for the use of this device. Some examples include

interactive surfaces such as sensitive walls [77], cooperative sharing and exchange of

media [78], and freehand manipulation [79]. Most modern mobile devices use touch-

screens with tactile feedback to interact with the user. This is used to control the

device behavior with gestures [80]. The most common application is the virtual key-

board, which is known to be able to improve the performance of text entry with
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respect to physical keyboards [81]. The touchscreen can be used to detect a path

drawn with the finger on the screen for image analysis such as color recognition. This

technique has been previously used to aid the acquisition of morphometric data from

pulmonary tissues [82].

Color recognition techniques using tactile feedback use thresholds based on percep-

tual attributes of specific color spaces [83]. The perceptual thresholds (also known

as discrimination thresholds) have been widely studied for human observers [84].

However, some methods do use thresholds based on human perceptibility, but use

application-based thresholds. For example, some skin detection methods use an adap-

tive skin color filter to detect color regions, by setting thresholds in both RGB and

HSV color spaces [85, 86].

3.1.4 Color Image Segmentation

In order to interpret the contents of a gang graffiti, we first need to segment the

gang graffiti components from the background. By graffiti components we mean the

objects and shapes contained in a graffiti image, such as stars, pitchforks, crowns,

and arrows. Gang graffiti components are sprayed in different colors to catch the

attention of rival gangs. Therefore, we can use color image segmentation techniques

to identify the graffiti components for future analysis.

Since the advent of color imaging most of the image segmentation techniques were

proposed for gray-level images [87–90] due to the fact that working with the color

channels substantially increases the computational complexity of the method [91].

There has been a remarkable growth on color image segmentation approaches [92–96],

which can be divided into three categories [97]: physics based, feature-space based,

and image-domain based.
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Methods based on physics include dichromatic reflection models [98] and unichro-

matic reflection models [99] for single illumination sources, and a more general model

of image formation [100] for multiple illuminations.

In [98] a method that does not require explicit color segmentation. They separate

diffuse and specular reflection components by comparing the intensity logarithmic

differentiation of specular-free images and input images iteratively is described. The

specular-free image is a set of diffuse components that can be generated by shifting

a pixel’s intensity and chromaticity nonlinearly while retaining its hue.

Methods based on feature spaces can be sub-categorized into three groups: clus-

tering of regions given patterns with specific properties, including methods such as

k-means clustering [101] or Iterative Self-Organizing Data Analysis Technique (ISO-

DATA) [102]; adaptive k-means clustering, including methods based on maximum

a posteriori (MAP) estimation [103] or split-and-merge strategies [104]; and his-

togram thresholding, including methods based on RGB thresholding and hue infor-

mation [105], specific skin color domains [106], or entropy thresholding [107].

Methods based on the image-domain can be subcategorized into four groups: split-

and-merge, including methods such as region smoothing by Markov Random Fields

(MRF) [108] or splitting by either watershed transform [109] or quad-tree image

representation for segmentation of skin cancers [110], among others; region grow-

ing, including methods such as RGB color distribution growing, HSV morphological

open-close growing, or color quantization growing [111]; classification based, including

methods such as minimization of Hopfield networks [112], or background extraction

using two three-layered neural network [113]; edge based techniques, including meth-

ods such as combination of HSI gradients [114], active contours, or the Mumford-Shah

variation model [115].

In [116, 117] a color histogram for each color channel in the RGB color space is

used to detect the most frequently occurring color and segment the background in
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food images. Snakes, or active contours, are then used to locate object boundaries

and segment images by iteratively minimizing the segmentation energy [118].

In a separate category we can include methods that use external help for segmen-

tation, such as tactile feedback from touchscreens on mobile devices. For example,

in [119] a method to extract and segment text from from subway signboard images via

touchscreen tracing is presented. The text location is guided by the user selecting the

region of interest, and the color information is then used to segment the connected

components and use Optical Character Recognition (OCR).

3.1.5 Graffiti Content Analysis

Once the graffiti is segmented from the background we need to analyze its con-

tents. This is done in multiple steps, including image enhancement and reconstruc-

tion, straight line removal, and connected component reconnection.

Image enhancement and reconstruction methods can be divided in three cate-

gories: spatial filters, neural networks, and fuzzy filters [120].

Spacial filters methods operate directly on the image pixels. In [121] an overview

of super-resolution (SR) image reconstruction methods used to increase spatial resolu-

tion to overcome the limitations of the sensors and optics is presented. This includes

nonuniform interpolation [122, 123], projection onto convex sets (POCS) [124, 125],

adaptive filtering [126–128], motionless SR reconstruction [129–131], and blind SR

reconstruction [132–134].

Neural network methods try to overcome two main disadvantages of spatial filters:

1) they treat all the pixels in the same way and 2) they operate in single pixels, thus

not accounting for characteristics of the neighborhood. In [135] a human visual system

(HVS)-directed neural-network-based adaptive interpolation scheme for natural image

that produces a higher visual quality for the interpolated image is described. The
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pixels pixels of the input image are classified into human perception nonsensitive class

and sensitive class, and a neural network interpolates the sensitive regions along edge

directions. High-resolution digital images along with supervised learning techniques

are used to automatically train the proposed neural network. A supervised method

for blood vessel detection and enhancement in digital retinal images is presented

in [136]. Vessel enhancement is useful for further extraction of moment invariants-

based features. A neural network scheme is used for pixel classification, and a 7-D

vector composed of gray-level and moment invariants-based features is used for pixel

representation.

Fuzzy filters are less sensitive to local variations and are used when images are

corrupted with additive noise [137]. In [138] a method to reduce impulse noise known

an “Fuzzy Impulse Noise Detection and Reduction Method (FIDRM)” is described.

Based on the concept of fuzzy gradient values, the detection method constructs a

fuzzy set impulse noise represented by a membership function that is used by the

filtering method, which is a fuzzy averaging of neighboring pixels. The fuzzy set is

then used to filter the input image in an iterative fashion. However, FIDRM does not

outperform the Median based filters for random impulse noise. In [139] a fingerprint

image enhancement method by using fuzzy-based filtering technique and adaptive

thresholding is investigated. A process called de-fuzzification, used to produce a

quantifiable result in fuzzy logic given fuzzy sets and corresponding membership de-

grees, is used to improve the contrast of the noisy image.

Straight line removal is the process of deleting lines or segments that do not belong

to relevant contents of an image. Since lines have a very similar pattern to charac-

ter strokes in graffiti images they cannot be eliminated during their initial character

extraction stages [17]. Therefore a Hough Transform (HT) is used to detect straight

lines in binary images after segmentation and then delete all pixels connected along

the lines. After that one reconnects the components originally belonging to graffiti

components that intersected with the lines. In [140–142] scratch line detection, re-
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moval and restoration on aged films is described. The methods are based on Canny

operators, but pixel patches are also used for inpainting [143]. The scratch line de-

tection is based on two general strategies: subdivision of video bands and progressive

detection/inpainting. In [144] a method based on energy density and a shear transfor-

mation to separate lines from background presented. The shear transform overcomes

the disadvantage that linear information loss would happen if the separation method

is used only in one direction. Then templates in the horizontal and vertical directions

are built to separate lines from background given the fact that the energy concen-

tration of the lines usually reaches a higher level than that of the background in the

negative image.

Connected component reconnection is used to merge components that belong to

the same object but have been detached during the segmentation or the line re-

moval steps. Contour reconnection methods are widely used in topographic map

reconstruction [145]. In [146, 147] the authors propose a method to fill the gaps in

contour lines by introducing properties based on geometrical and topological infor-

mation such as parabolic and opposite directions and differences of y-ordinate of end

points. In [148, 149] a method for restoration of degraded digits is presented. The

proposed method uses a circular path detection and character stroke analysis based

on inertial and centripetal forces. The method then artificially re-creates the stroke

segments in order to reconstruct the digit.

3.1.6 Image Features

In order to retrieve similar graffiti images from our database and classify the au-

tomatically segmented graffiti components we need to find features that represent

images as uniquely as possible. There are four major types of features we can use:

color features, texture features, shape features, and local features [150–156]. Given

the nature of gang graffiti if we are only interested in describing the segmented graf-
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fiti components features like graffiti color or surface texture will not provide useful

information. In that case only shape features will be necessary. However, if we want

to use information not only from the graffiti components but also from the graffiti

background (for image matching and retrieval) we can use color and texture features.

Table 3.1 summarizes some of the state-of-the-art feature types.

Table 3.1: Image feature types and sizes.

Feature Type Dimension Notes
GCH color NC Nc: Num. colors in quantized space
CCV color 2×NC

CM color 2×NMO
NMO

: Num. moments
CW-HSV color 63 bits
TBD texture 12 bits
HTD texture 2×NS ×NK NS: Num. scales, NK : Num. orientations
EHD texture 2×NS ×NBQ

NBQ
: Num. borders quantization

Gabor texture 2×NS (or 2×NK)
FD shape NFD NFD: Num. Fourier Descriptors

CSSD shape NP bytes NP : Num. peaks on contour map
GMD shape NMO

ZMD shape NMO

SIFT local 128
SURF local 64
PHOW local 128
SC local Nθ ×Nr Nθ: Num. angles, Nr: Num. of radius

Color features are the most used visual feature in Content-Based Image Retrieval

(CBIR) systems and the most explored features in the literature [157,158]. The main

reason is because humans tend to differentiate images mostly by means of color fea-

tures. The Global Color Histogram (GCH) [159] analyzes the entire color information

of the image. Usually, a quantization step is required to reduce the number of distinct

colors.

The Color Coherence Vector (CCV) descriptor [160] classifies each pixel in either

coherent or incoherent, based on whether or not it is part of a large similarly-colored

region. The CCV first blurs the image and the color space is discretized to eliminate
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small variations between neighbor pixels. Next, the connected components of the

image are found in order to classify the pixels in coherent or incoherent.

The Chromaticity Moment (CM) descriptor [161] characterizes images by chro-

maticity in the CIE XYZ color space. A chromaticity histogram and a chromaticity

trace is generated. The trace indicates the presence of a value (x, y) in the image.

The trace and histogram are used to define the chromaticity moments. The reasons

for us to choose CM are its compact feature vector generation and its fast distance

function, which estimates the modular difference between corresponding moments.

The Color Wavelet HSV (CW-HSV) descriptor [162] computes color features in

the wavelet domain [163]. First the image global color histogram in HSV color space

is found. Then the Haar transform coefficients of the histogram are determined hi-

erarchically by using Haar wavelet functions. In the end, 63 binary values compose

the feature vector. The distance between two feature vectors is calculated by the

Hamming distance. The reasons for us to choose CW-HSV are its compact feature

vector generation (only 63 bits) and its fast distance function.

Texture features, like color features, create powerful low-level descriptors for image

search and retrieval applications [164].

The Texture Browsing Descriptor (TBD) [165] relates to the perceptual character-

ization of texture, in terms of regularity, directionality and coarseness. The coarseness

is related to image scale or resolution. This descriptor is useful for browsing type ap-

plications and coarse classification of textures. The Homogeneous Texture Descriptor

(HTD) [164] provides a quantitative characterization of homogeneous texture regions

for similarity retrieval. It is determined by first filtering the image with a bank of ori-

entation and scale sensitive filters, and computing the mean and standard deviation

of the filtered outputs in the frequency domain.

The local Edge Histogram Descriptor (EHD) [164] is useful when the underlying

region is not homogeneous in texture properties. It is computed by first sub-dividing

the image and computing local edge histograms. Edges are broadly grouped into five
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categories: vertical, horizontal, 45 diagonal, 135 diagonal, and isotropic. Thus, each

local histogram has five bins, and with the image partitioned into 16 sub-images re-

sults in 80 bins. The Gabor-based descriptor [166] is computed by passing the image

through a bank of Gabor filters [167]. Filters in a Gabor filter bank can be considered

as edge detectors with tunable orientation and scale so that information on texture

can be derived from statistics of the outputs of those filters. The descriptor is then

formed as a vector of means and standard deviations of filter responses.

Shape features are one of the primary low level image features exploited in content-

based image retrieval [168]. They can represent images by their contours or regions.

The Fourier Descriptor (FD) [169–171] is a spectral descriptor obtained from a

Fourier transform on a shape signature. The shape signature is a one-dimensional

function, which is derived from shape boundary coordinates. The set of normalized

Fourier transformed coefficients is known as the Fourier descriptor of the shape. The

Curvature Scale Space Descriptor (CSSD) [172, 173] treats shape boundary as a 1D

signal, and analyzes this 1D signal in scale space. By examining zero crossings of

curvature at different scales, the concavities/convexities of shape contour are found.

These concavities/convexities are useful for shape description because they represent

the perceptual features of shape contour.

The Geometric Moment Descriptor (GMD) [174,175] is based on moment invari-

ants for shape representation and similarity measure. Moment invariants are derived

from moments of shapes, and are invariant to 2D geometric transformations of shapes.

The Zernike Moment Descriptor (ZMD) [176,177] uses orthogonal moments to recover

the image from moments based on the theory of orthogonal polynomials (Zernike poly-

nomials). It allows independent moment invariants to be constructed to an arbitrarily

high order.
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Local features rely on the concept that objects in images consist of parts that can

be modeled with varying degrees of independence [178, 179]. They are used in many

applications, such as object detection, symbol spotting, or image registration.

The Scale Invariant Feature Transform (SIFT) descriptor [15] combines a scale

invariant region detector and a descriptor based on the gradient distribution in the

detected regions. The descriptor is represented by a 3 dimensional histogram of gra-

dient locations and orientations. The contribution to the location and orientation

bins is weighted by the gradient magnitude. The quantization of gradient locations

and orientations makes the descriptor robust to small geometric distortions and small

errors in the region detection. The Speed Up Robust Feature (SURF) descriptor [24]

is based on similar properties as SIFT, but relies on integral images for image convo-

lutions. First, it fixes a reproducible orientation based on information from a circular

region around the interest point. Then, it constructs a square region aligned to the

selected orientation, and extract the SURF descriptor from it.

The Pyramid Histogram Of visual Words (PHOW) descriptor [180, 181] is com-

puted using SIFT on a dense gird at a fixed scale, which can be directly clustered

using k-means [182] to form a “bag of words” feature. The Shape Context (SC) de-

scriptor [183–185] is similar to the SIFT descriptor, but is based on edges. It is a 3

dimensional histogram of edge point locations and orientations. The edge locations

are quantized into a log-polar coordinate system and the orientations are quantized

into an angular coordinate system.

3.1.7 Image Retrieval

Retrieval of gang graffiti images is very useful for the first responder in the field.

It can provide information about related graffiti in the area based on the contents of

the image. For example, a user can check if someone else has taken an image of the

same gang graffiti in the past, and pull all the related information without having to
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do any further image analysis.

Content-Based Image Retrieval (CBIR) can be used for finding images from large

and unannotated image databases. There are four core techniques for CBIR: visual

signature, similarity measures, classification and clustering, and search paradigms [186–

188]. Visual signature usually involves three steps: 1) segmenting images using

methods such as k-means clustering [182], normalized cuts [189], or salient region

detection [190]; 2) using features such as color, texture, or shape [191]; 3) construct-

ing the signatures (or feature vectors) using distributions [192] or adaptivity [193].

Similarity measure methods include manifold embedding [194], and vector quantiza-

tion [195]. Classification and clustering methods include hierarchical k-means [196],

support vector machine [197], or Bayesian classifiers [198]. Search paradigms methods

include learning-based [199], probabilistic [200], region-based [201], feedback specifi-

cation [202], or user-driven [203].

In [204] a method for image-based retrieval using a mobile device is presented.

Features are measured after detecting salient regions and then quantified to form a

vector using a clustering-based bag-of-words model and sparse matrix methods. In-

vert document methods are used to speed up real-time queries. In [11] a CBIR system

tattoo image retrieval is proposed. The system automatically uses SIFT features and

additional information (i.e., body location of tattoos and tattoo classes) to improve

the retrieval time and retrieval accuracy. Geometrical constraints are also introduced

in SIFT keypoint matching to reduce false retrievals.

Sketch-Based Image Retrieval (SBIR) uses a line-based hand-drawing (a “sketch”)

as a query. In some scenarios outline sketches are typically easier and faster to

generate than a complete color description of the scene [205,206].

In [207] a method based on elastic matching of sketched templates over the shapes

in the images to evaluate similarity ranks is described. The degree of matching

achieved and the elastic deformation energy spent by the sketch to achieve such a
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match are used to derive a measure of similarity between the sketch and the images

in the database and to rank images to be displayed. The elastic matching is inte-

grated with arrangements to provide scale invariance and take into account spatial

relationships between objects in multi-object queries.

In [208] a technique that deals with images containing several complex objects

in an inhomogeneous background is presented. Two abstract images are obtained

using strong edges of the model image and the morphologically thinned outline of the

sketched image. The angular-spatial distribution of pixels in the abstract images is

then employed to extract new compact and effective features using the Fourier trans-

form. The features are rotation and scale invariant and robust against translation.

The image retrieval method used in GARI fall into the feature-space category in

CBIR. However, our approach differs from the methods mentioned above. Although

there are some techniques in the literature that use only hue or luma information,

either circular histogram thresholding [209] or one-dimensional histogram threshold-

ing [210], we do not obtain the descriptors of the probability distribution from the

color histogram of the image. Instead, the median and the variance obtained from

the tracing-bases color recognition process are used for segmentation. Our segmenta-

tion approach does not produce binarized images, but grayscale images weighed by

a Gaussian distribution, thus creating a probability map for a specific luma or hue.

These types of probability maps are used for increased accuracy and robustness in

some clustering techniques [211, 212]. Our content based image retrieval approach

uses hierarchical k-means to build a vocabulary tree based on the method in [196].

3.2 Mobile-Based Motion Blur Prevention and Detection

In order to analyze gang graffiti we need to preserve the details in the image ac-

quired with a mobile device. Instead of doing blur detection after taking the image

we propose a mobile-based method to prevent the user from producing blurred im-
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ages. To that end we use a customized camera function on the mobile that detects

shake events (i.e. motion blur). When the camera function is launched through the

GARI application we start a three second countdown and listen for changes from the

accelerometer sensor in the mobile device. A sensor of this type measures the acceler-

ation of the device (Ad) in SI units (m/s2). Conceptually, this is done by measuring

forces applied to the sensor itself (Fs) using the relation:

Ad = −
∑

Fs

mass
. (3.1)

In particular, the force of gravity is always influencing the measured acceleration:

Ad = −g −
∑

Fs

mass
. (3.2)

For this reason when the device is sitting on a table the accelerometer reads a

magnitude of g = 9.81m/s2. Similarly, when the device is in free-fall its accelerometer

reads a magnitude of 0m/s2. We compute the total movement M as

M = ∆Ax +∆Ay +∆Az − (Ax + Ax + Az), (3.3)

where (∆x, ∆y, ∆z) are the acceleration force changes along the (x, y, z) axes

respectively, and (Ax, Ay, Az) are the most recent acceleration values along the (x, y,

z) axes respectively. If ∆A and A occur in a time difference of Tt = 400 milliseconds

and M is above a threshold TM = 3m/s2 we report a shake event. In that case the

countdown is reset to three seconds and no image is taken. If no significant change

on M is perceived when the countdown reaches zero, we trigger the auto-focus and

an image is acquired.

Even though we try to prevent motion blur, if there is a shake event during auto-

focus or image acquisition we can obtain a blurred image. For this reason motion
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blur detection is done on a reduced size version of the image of width Wt = 400

pixels. A reduced size version is enough to detect excessive motion blur produced in

this particular case. We use a modification of the method proposed in [44] because

of its simplicity and speed. In [44] a modification to a well known method known

as cumulative probability of blur detection (CPBD) is presented. This utilizes the

probability distribution of edge widths [51]. The blur metric estimation starts by

creating an edge binary map using a Sobel operator in the vertical direction of the

grayscale image. Then, the image is divided into blocks of size 64 × 64. A block is

considered an edge block of it contains a number of edge pixels greater than a fixed

threshold. For each edge block the probability of blur detection PBLUR at each edge

pixel ei is computed as

PBLUR(ei) = 1− e
−

∣∣∣ w(ei)

wJNB(ei)

∣∣∣
β

, (3.4)

where w(ei) is the edge width [49], wJNB(ei) is the “just noticeable blur” (JNB)

width with value of either 5 or 3 [51], and β is a parameter whose value is obtained

from least squares fitting. The CPBD is estimated as:

CPBD = P (PBLUR ≤ PJNB) =

PBLUR=PJNB∑

PBLUR=0

P (PBLUR), (3.5)

where P (PBLUR) denotes the value of the probability distribution function at a

given PBLUR. This metric is based on the fact that, at the JNB, w(ei) = wJNB(ei),

which corresponds to the probability of blur detection PBLUR = PJNB = 63%. There-

fore, for a given edge ei, when PBLUR ≤ PJNB the edge is considered not to be blurred.

Hence, a higher metric value represents a sharper image. The modification proposed

by [44] relies on the fact that the CPBD can be expressed by the ratio
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CPBD = P (PBLUR ≤ PJNB) =
|S1|
|Se|

, (3.6)

where |S1| is the set of edge pixels with PBLUR ≤ PJNB and |Se| is the set of all

edge pixels. Since

1− e
−

∣∣∣ w(ei)

wJNB(ei)

∣∣∣
β

≤ 0.63 ⇒ w(ei) ≤ wJNB(ei)(−ln(0.37))1/β (3.7)

the CPBD becomes

CPBD =

∑
wJNB={3,5}

∑wJNB−1
w=2 H(wJNB, w)

|Se|
, (3.8)

where H(wJNB, w) is the number of edge pixels with JNB width wJNB and edge

width w. By using this approach we avoid using exponentials for gradient estimations,

thus reducing the computational complexity.

We can further increase the complexity by approximating the CPBD as

BM =

∑
x,y |Gx(x, y)|+

∑
x,y |Gy(x, y)|

wIhI

, (3.9)

where (Gx, Gy) are the Sobel derivatives in the x and y directions respectively,

and (wI , hI) are the dimensions of the image. That is, BM is the ratio of edge pixels

over the size of the image. Note that by doing this we cannot call the metric CPBD,

since it is not based on cumulative probability.

By using BM as our blur metric we can set a threshold TBM so that if BM < TBM

we consider the image to be blurred, and we ask the user to retake the image by

reseting the countdown back to three. Our experiments with more than 1,000 images
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from our dataset and different mobile devices showed that TBM = 0.1 produces the

best results.

Note that since the proposed blur detection metric is solely based on the number of

edge pixels, the method will also reject images with large uniform patches or images

taken under low light conditions. In fact this properties are not a drawback, but

rather desired in the context of gang graffiti recognition and interpretation. Also

note that all the processing is done on the mobile device.

Figure 3.1 shows an example of the blur metric results.

(a) Original Image (b) Sobel Gradients. BM = 0.21

(c) Original Image (d) Sobel Gradients. BM = 0.07

Fig. 3.1.: Example of Blur Metric Results.

Table 3.2 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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Table 3.2: Parameters and thresholds used in Mobile-Based Motion Blur Prevention.

Parameter Description Value
Tt Time between acceleration changes 400 ms
TM Threshold to consider shake event 3m/s2

Wt Width of resized image for blur detection 400 px
TBM Threshold for Blur Metric (BM) ratio 0.1
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3.3 Color Correction Based on Mobile Light Sensor1

First responders are out in the field when using the mobile application to take

images of gang graffiti. Since gang graffiti are usually found in dangerous neighbor-

hoods we want to minimize the use of intrusive methods to do color correction. The

use of fiducial markers may be suspicious to gang members in the surroundings. The

use of face detection for white balancing [213] make first responders concerned about

their privacy.

One way to do color correction is to first obtain information about the scene

illumination. This can be done by using the light sensor on the mobile device. For

example, the light sensor in an Android smartphone returns the ambient light level

in SI lux units (lumens per square meter). Unlike human perception of light, lux

readings are directly proportional to the energy per square meter that is absorbed

per second [214,215]. However, human perception can be simplified by creating several

ranges of interest with known upper and lower thresholds. Table 3.3 shows an example

of several thresholds for common lighting conditions and the corresponding lighting

steps obtained from the light sensor on a Samsung Galaxy Nexus smartphone. Each

lighting step represents a change in lighting environment. Figure 3.2 illustrates the

relationship between the lighting step and the lux values. Figure 3.3 illustrates the

same relationship when using a logarithmic scale on the lux values to see how the

relationship becomes linear.

Once we obtain a lux LX from the mobile device we want to associate a color

correction matrix to it. A color correction matrix is a mapping between and image

illuminated with reference lighting and and image acquired with unknown lighting

condition.

The idea is to generate color correction matrices from ground-truth data to pop-

ulate a database. The database acts as a look up table where a lux value maps to a

color correction matrix. Later, when first responders use the application in the field

1The work presented in this section is partly based on the work by my Purdue colleague Dr.
Chang Xu [44].
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Table 3.3: Thresholds for common lighting conditions and corresponding lighting
steps.

Condition Lux (start) Lux (end) Lighting step
Pitch Black 0 10 1
Very Dark 11 50 2

Dark Indoors 51 200 3
Dim Indoors 201 400 4

Normal Indoors 401 1000 5
Bright Indoors 1001 5000 6
Dim Outdoors 5001 10,000 7

Cloudy Outdoors 10,001 30,000 8
Direct Sunlight 30,001 100,000 9

Fig. 3.2.: Lighting Step vs. Luminance (lux).
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Fig. 3.3.: Lighting Step vs. Luminance (log(lux)).
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we will only need a lux value to retrieve the corresponding color correction matrix

and use it to correct the acquired image.

Figure 3.4 illustrates the process to populate the database with color correction

matrices and lux values. Note that the computation of the color correction matrix

MGT→D65 is done on the mobile device. A ground-truth image is an image acquired

with a mobile device under a specific scene illumination. Figure 3.5 shows an example

of a ground-truth image with a lux value of 5,116. The image contains a checkerboard-

like design known as a “fiducial marker” used as a reference of known dimensions and

color patches [44, 61, 216].

Fig. 3.4.: Color Correction Based on Mobile Light Sensor.
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Fig. 3.5.: Example of ground-truth image with a lux value of 5,116.
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We start by detecting the corners of the fiducial marker in the ground-truth image

using the method described in [217]. The image is first converted to grayscale and

binarized according to

Iout(x, y) =





255 if I(x, y) > T (x, y)

0 else
, (3.10)

where T (x, y) is a threshold calculated individually for each pixel using a Gaussian

kernel. The kernel is a matrix of Gaussian filter coefficients:

Gi = α exp
−

i−

(
k−1
2

)2

(2σ)2 , (3.11)

where k is the aperture size (odd and positive), σ is the Gaussian standard devia-

tion computed as σ = 0.3((k−1)1/2−1)+0.8, i = 0, ..., k−1 and α is the scale factor

chosen so that
∑

i Gi = 1. The binary image is eroded to separate the checkerboard

at the corners and obtain a set of quadrangles. Finally, a quadrangle linking step

checks the position of the fiducial marker patches to confirm the board pattern.

Once we have detected the location of the checkerboard corners we estimate the

location of each of the 11 color patches and extract their mean RGB value. These

color patches are used to generate a 3D linear mapping between the scene illumination

(ground-truth image) and the reference fiducial marker colors [218]. We used the

linear model in LAB color space from [44] for color correction, as it produced the

best results in our experiments (Section 5.1.2). We convert each of the RGB color

patches to CIE Lab using the standard RGB to CIE Lab transformation [219,220] as

follows:

RGB to XYZ:
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


X

Y

Z


 =




0.412453 0.357580 0.180423

0.212671 0.715160 0.072169

0.019334 0.119193 0.950227







R

G

B


 (3.12)

XYZ to CIE Lab:

L = 116(Y/Yn)
1/3 − 16 (3.13)

a = 500((X/Xn)
1/3 − (Y/Yn)

1/3) (3.14)

b = 200((Y/Yn)
1/3 − (Z/Zn)

1/3) (3.15)

Xn, Yn and Zn are the values of X, Y and Z for the illuminant (reference white

point). The L coordinate in CIE Lab is correlated to perceived lightness. The a and

b coordinates are the red-green and yellow-blue of the color-opponent respectively.

We followed the ITU-R Recommendation BT.709 and used illuminant D65, where

[Xn, Yn, Zn] = [0.950456, 1, 1.088754] [221]. To obtain the optimal 3-dimensional

linear transformation MGT→D65, a 3 × 3 matrix that converts the Lab color patches

from the ground-truth to the Lab color patches from the D65 reference, we need to

solve

MGT→D65 = argmin
M3×3

11∑

i=1

∥∥∥(Labi)TD65 −M3×3(Labi)
T
GT

∥∥∥ (3.16)

by linear regression by using ordinary least-squares estimates of the regression

coefficients [222]. We follow this procedure for each ground-truth image to populate

the database with mappings between lux values LX and color correction matrices

MGT→D65.
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Every time a user acquires an image Iq using the mobile device we sent it to the

server along with the lux value LXq. Then, we use the MGT→D65 associated to the

closest LX in the database to correct Iq.

Figures 3.6 and 3.7 show example outputs of our proposed color correction method.

Details about the number of ground-truth images used and the efficiency of the

method are described in Section 5.1.2.

Fig. 3.6.: Example of color correction when LX = 35, 611. Left: before correction;
right: after correction.

Fig. 3.7.: Example of color correction when LX = 41, 980. Left: before correction;
right: after correction.
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3.4 Color Recognition Based on Touchscreen Tracing

In this method the user acquires an image of a gang graffiti and traces a path

along a colored region using the touchscreen display. Then we recognize the color

along the path and provide a list of gangs related to the color by querying an internal

database on the mobile phone. For this method we use an RGB to Y’CH color space

conversion. Figure 3.8 shows an overview of our color recognition method. Again

note that this technique is done on the hand-held device.

Fig. 3.8.: Color Recognition Based on Touch Screen Tracing.

First, the user captures an image or browses the internal gallery for an image on the

device and draws a path with the finger on the touchscreen. The path is drawn along

a graffiti component on the image assumed to be sprayed in uniform color. The RGB

color channels of each pixel on the path are converted to a new luma/chroma/hue

color space that we call the Y’CH color space. The Y’CH color space is used because

color changes are more intuitive and perceptually relevant to represent in luma or

hue than in RGB triplets, in order to obtain the median and the variance of the

color along the traced path. Equation 3.17 shows the mapping between RGB and
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Y’CH. Note that we use luma (Y’) as opposed to luminance (Y) [223]. Appendix A

describes in detail the RGB to Y’CH color space conversion using both an arithmetic

approach and a trigonometric approach. We compute three medians on the pixel

array that forms the path, namely the luma median (Ỹ ), the chroma median (C̃) and

the hue median (H̃). We then define two disjoint regions in our Y’CH color space

(luma region and hue region, labeled 3a and 3b in Figure 3.8 respectively), delimited

by manually set thresholds based on luma (TYw
= 0.12, TYb

= 0.85) and chroma

(TC = 0.06). These thresholds were empirically obtained from our database of gang

graffiti, consisting of more than 700 gang graffiti images. Depending on the region

where the medians are located, we do color recognition based on luma (3a) or hue

(3b).

Y ′ = 0.299R + 0.587G+ 0.114B.

C = max(R,G,B)−min(R,G,B) = M −m

H =





G−B
C

if M = R

B−R
C

+ 2 if M = G

R−G
C

+ 4 if M = B

0 if C = 0

(3.17)

Once we have the median, either based on luma or hue, we need to decide which

color is associated with it. From all the images in our database, the possible colors

used on graffiti are black, white, red, blue, green, gold and purple. If the median is

based on luma, the color detected is either black (Ỹ ≤ TỸ ) or white (Ỹ > TỸ ), where

TỸ = 0.5. If the median is based on hue, the color detected is Hd = min
i
(θ(H̃,HAi

)),

where θ(H̃,HAi
) is the angular distance between the computed hue (H̃) and the i-th

component of a set of average hues (HA), empirically obtained from analyzing 100

color calibrated images taken from our database. These colors are specified in Table

3.4. Figure 3.9 illustrates the separation between them in a hue slice of the Y’CH
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color space. Once the color is detected, we provide a list of gangs related to that color

by querying our database of gang graffiti from the mobile phone.

Finally, we also estimate the variance σ2
X̃

near the median X̃ = {Ỹ or H̃}. This

variance is used as an input to the color image segmentation method described next.

Note that this method can be used with multi-colored graffiti by using it on each

trace on the touchscreen.

Table 3.4 shows all the parameters/thresholds we used including empirically de-

rived parameters.

Table 3.4: Parameters and thresholds used in Color Recognition Based on Touch-
screen Tracing.

Parameter Description Value
TYw

Low luma threshold 0.12
TYb

High luma threshold 0.85
TC Low chroma threshold 0.05
TỸ Luma threshold for black/white 0.5
Hred

A Average hue (red) 6.10 rad
Hblue

A Average hue (blue) 4.00 rad
Hgreen

A Average hue (green) 2.20 rad

Hgold
A Average hue (gold) 0.69 rad

Hpurple
A Average hue (purple) 5.15 rad
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Fig. 3.9.: Separation Between Hue Averages.
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3.5 Automatic Graffiti Component Segmentation

In this section we propose methods for automatic segmentation of graffiti com-

ponents. We assume that the graffiti takes at least 50% of the image. With this

assumption we resize all input images to WX = 500 pixels in width to reduce the

computational complexity while maintaining the performance.

3.5.1 Color Image Segmentation Based on Gaussian Thresholding

For the segmentation we use a Gaussian threshold near a specific luma or hue

value in the Y’CH color space, in order to produce a segmented image where each

pixel is given a weight depending on its distance from a median. Figure 3.10 shows an

overview of our color segmentation method divided in 5 steps. Note that we currently

use this method on the server in our system and do not use it on the hand-held device.

We assume that, given a graffiti image X, we have the median X̃ and the variance,

σ2
X̃
, of a traced path (step 1b). We then transform the entire RGB image to the our

Y’CH color space (steps 1a and 2). Finally, we segment the image using Gaussian

thresholding (steps 3 to 5). The segmentation works as follows. We first ignore

all pixels in the image X that fall outside the region established during touchscreen

tracing (luma or hue), using the same thresholds used for the color recognition process.

This creates the thresholded grayscale image Xt (step 3). We weight the rest of the

pixels using a normal distribution centered at X̃ and a confidence interval of 2σX̃

(step 4), as shown in Equation 3.18, to obtain Xg. The output Xg is a grayscale

image where each pixel is given a probability based on a normal distribution (step

5). This probability is higher as the pixel value gets closer to X̃. The image is then

scaled to [0, 255].

Xg(i, j) =





1√
2πσ2

X̃

e
−

(Xt(i,j)−X̃)2

2σ2
X̃ |Xt(i, j)| < 2σX̃

0 else

(3.18)
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Fig. 3.10.: Color Image Segmentation Using Gaussian Thresholding.
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Figure 3.11 shows an example where the color recognition is done by tracing a

path along the blue numbers “2” and “5”. Figure 3.12 shows the effect of the Gaus-

sian thresholding process on the letters “Hill”. Note that this method produces a

probability map, where the values in a graffiti component decrease as the spray paint

fades. This indicates how the graffiti was traced, and it may be useful in future re-

search for shape analysis (Section 6). Appendix B illustrates more examples of our

color segmentation method.

(a) Input Image (b) Segmented Image

Fig. 3.11.: Gaussian Thresholding on Blue. (H̃, σ2
H̃
) = (4.19, 0.05).

Table 3.5 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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Fig. 3.12.: Probability Map Created By The Gaussian Thresholding.

Table 3.5: Parameters and thresholds used in Color Image Segmentation Based on
Gaussian Thresholding. WX and HX are the width and height of X respectively.

Parameter Description Value
WX Width of resized image for image segmentation 500 px
TYw

Low luma threshold 0.12
TYb

High luma threshold 0.85
TC Low chroma threshold 0.05
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3.5.2 Block-Wise Gaussian Segmentation Enhancement

Since the median and variance for Gaussian thresholding are obtained from a small

sample of the graffiti the resulting probability map Xg can contain broken or fainted

graffiti components and noise. These can be caused by either non-uniform scene

illumination (Figure 3.13) or foreground-background hue similarity (Figure 3.14).

(a) Original Image. The traced path is marked in
green.

(b) Gaussian Thresholding

Fig. 3.13.: Gaussian Thresholding results with non-uniform scene illumination.
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(a) Original Image. The traced path is marked in
green.

(b) Hue Channel

(c) Gaussian Thresholding

Fig. 3.14.: Gaussian Thresholding results with foreground-background hue similarity.
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Therefore, we need to enhance Xg before finding the graffiti components. This can

be done by using a block-wise median filter on the luma, chroma and hue channels

of the original image X separately and merging the results. Figure 3.15 shows the

process.

Fig. 3.15.: Block-Wise Gaussian Segmentation Enhancement.

First, we filter each channel on X with a binary mask created from Xg, so that

Y f(x, y) =





Y (x, y) if Xg(x, y) > 0

0 else
(3.19)

Cf(x, y) =





C(x, y) if Xg(x, y) > 0

0 else
(3.20)

Hf(x, y) =





H(x, y) if Xg(x, y) > 0

0 else
(3.21)

Then, we divide Y f in blocks of size ws ×ws, where ws = 0.03max(WX , HX) and

(WX , HX) are the width and height of X respectively. We only consider blocks b ∈ B,

where B is the set of blocks containing at least one non-zero valued pixel. For each

block b ∈ B we compute the luma median of the foreground pixels Ỹ f
F

b and the luma
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median of the background pixels Ỹ f
B

b . Then, we generate the binary image XY
e by

evaluating each individual pixel:

XY
e (x, y) =





1 if b ∈ B and |Y (x, y)− Ỹ f
F

b | < |Y (x, y)− Ỹ f
B

b |
0 else

, (3.22)

where b is the block associated with the coordinates (x, y). We use the chroma

channel for enhancement if
∑

b∈B |C̃f
F

b −C̃f
B

b |

n(B)
> TC

e (condition C1 in Figure 3.15), where

n(B) is the cardinality of B. A value of TC
e = 0.06 produced the best results after

running experiments on more than 700 gang graffiti images. In that case,

XC
e (x, y) =





1 if b ∈ B and |C(x, y)− C̃f
F

b | < |C(x, y)− C̃f
B

b |
0 else

, (3.23)

If
∑

b∈B |C̃f
F

b −C̃f
B

b |

n(B)
≤ TC

e we can still use the hue channel for enhancement. If Xg

was obtained using the hue channel during the Gaussian Thresholding (i.e. X̃ = H̃)

(condition C2 in Figure 3.15) we apply an additional threshold to each pixel. In

this case we keep pixels where the hue angular distances satisfy θ(H(x, y), H̃f
F

b ) <

θ(H(x, y), H̃f
B

b ), where θ(a, b) = |mod(a− b, 2π)− π|. That is,

XH
e (x, y) =





1 if b ∈ B and θ(H(x, y), H̃f
F

b ) < θ(H(x, y), H̃f
B

b )

0 else
. (3.24)

Therefore,

Xe =





XY
e ∧XC

e if
∑

b∈B |C̃f
F

b −C̃f
B

b |

n(B)
> TC

e

XY
e ∧XH

e if X̃ = H̃

XY
e else

, (3.25)
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Table 3.6: Parameters and thresholds used in Block-Wise Gaussian Segmentation
Enhancement. WX and HX are the width and height of X respectively.

Parameter Description Value
ws Block size for segmentation enhancement 0.03max(WX , HX)
TC
e Chroma threshold for channel enhancement 0.06

where ∧ is the logical conjunction, also known as logical operator and. In the

block diagram of Figure 3.15 the last module implements Equation 3.25 by doing

Xe = XY
e ∧ XC

e ∧ XH
e , where XC

e and XH
e are set to an all-ones matrix 1 of the

same size as XY
e if one or more of the conditions (C1, C2) are not satisfied. That

is, if C1 is satisfied XH
e = 1; if C1 is not satisfied and C2 is satisfied XC

e = 1; if

both C1 and C2 are not satisfied XC
e = XH

e = 1. Note that if we use the chroma

channel enhancement we ignore the hue channel enhancement. This is because our

experiments showed that if the condition for hue enhancement is satisfied the chroma

enhancement does not improve the output. Also note how when Xe = XY
e ∧ XC

e

the chrome enhancement can introduce some noise, which is removed using luma en-

hancement. Figures 3.16 and 3.17 show an example of the entire process. Note how

Xe removes noise and enhances the graffiti, but also enhances some non-graffiti areas

at the bottom. However, this areas will not be connected to graffiti components and

we will be able to discard them in future steps.

Table 3.6 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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(a) Original Image X (b) Gaussian Thresholding Xg

(c) Y (d) C (e) H

(f) Y f (g) Cf (h) Hf

Fig. 3.16.: Example of Block-Wise Gaussian Segmentation Enhancement.
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(a) Ỹ f
F

b (b) C̃f
F

b (c) H̃f
F

b

(d) XY
e (e) XC

e

(f) Xg (g) Xe

Fig. 3.17.: Example of Block-Wise Gaussian Segmentation Enhancement (continued).
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3.5.3 Background Stripe Removal

Gang graffiti are sprayed in all kinds of surfaces, including brick walls, garage doors

and fences. All these surfaces contain stripes than can affect the graffiti component

extraction. Figure 3.18 shows an example of a gang graffiti image after applying

Block-Wise Gaussian Segmentation Enhancement. These stripes interfere with the

segmentation by linking multiple gang graffiti components. Figure 3.19 shows the

process to remove the background stripes. Note that sometimes the color of the

background stripes is different from the graffiti itself, and the Color Image Segmen-

tation Based on Gaussian Thresholding step already removes the stripes. Figure 3.20

shows an example.

(a) Original Image X (b) Block-Wise Gaussian Segmentation En-
hancement Xe

Fig. 3.18.: Background stripes affecting gang graffiti component segmentation.

Fig. 3.19.: Background Stripe Removal.
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(a) Original Image X (b) Color Image Segmentation Based on Gaus-
sian Thresholding Xg

Fig. 3.20.: Example of Background Stripes Removal During the Gaussian Threshold-
ing Step.

First, we compute the skeleton Xsk
e of the input image Xe, the result of the

Block-Wise Gaussian Segmentation Enhancement, which is binary. The skeleton is

obtained using parallel thinning [224, 225] as follows. We define the set S as the

set of all 1-valued pixels (ones) of Xsk
e representing objects (connected components)

to be thinned. We define the set S̄ as the set of all 0-values pixels (zeros) of Xsk
e

representing either the background of or holes in S. The connectivities for S and S̄

are set to 8-connectivity and 4-connectivity respectively. Figure 3.21 illustrates the

meaning of 8-connectivity and 4-connectivity in a 3× 3 support around a pixel p.

(a) 4-Connectivity (b) 8-Connectivity

Fig. 3.21.: Connectivity of p. Pixels are connected to p if they have the same value
as p. Only pixel locations in red are considered in each connectivity.
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We define C(p) as the number of distinct 8-connected components of ones in p’s

8-neighborhood. C(p) = 1 implies p is 8-simple when p is a boundary pixel [89]. We

define N(p) as

N(p) = min(N1(p), N2(p)), (3.26)

where

N1(p) = (p1 ∨ p2) + (p3 ∨ p4) + (p5 ∨ p6) + (p7 ∨ p8) (3.27)

and

N2(p) = (p2 ∨ p3) + (p4 ∨ p5) + (p6 ∨ p7) + (p8 ∨ p1). (3.28)

The symbols ∨ and + are logical OR and arithmetic addition respectively. Note

that N1(p) and N2(p) divide the ordered set of neighbors of p into four pairs of

adjoining pixels and count the number of pairs that contain one or two ones. The

thinning process is applied to each pixel p ∈ S. p is deleted (i.e. changing one to

zero) if all the following conditions are met:

1. C(p) = 1

2. TL
N(p) ≤ N(p) ≤ TH

N(p)

3. Either

(a) (p2 ∨ p3 ∨ p̄5) ∨ p4 = 0 in odd iterations

(b) (p6 ∨ p7 ∨ p̄1) ∧ p8 = 0 in even iterations

where TL
N(p) = 2, TH

N(p) = 3, and p̄ and ∧ are logical complement and logical AND

respectively. The thinning stops when no further deletions are possible. Figure 3.22

shows an example of skeletonization via parallel thinning to obtain Xsk
e .
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(a) Binary Image Xe

(b) Parallel Thinning Xsk
e

Fig. 3.22.: Skeletonization via Parallel Thinning [225].
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The next step is to find straight lines using the Standard Hough Transform

(SHT) [226,227]. The method uses the parametric representations of a line to popu-

late a 2-dimensional matrix MH called accumulator array, where its rows and columns

correspond to ρ and θ values of ρ = x cos(θ) + y sin(θ) respectively. Figure 3.23 illus-

trates the parametric representation of a line.

Fig. 3.23.: Parametric Representation of a Line.

First, each cell in MH is initialized to zero. For each non-zero pixel in Xsk
e the

accumulator cells are updated so that MH(i, j) keeps a count of the number of pixels

in the XY plane represented by ρ(i) and θ(j). Peak values in MH represent potential

lines inXsk
e . We Figure 3.24 shows the Hough accumulator arrayMH with highlighted

peaks. There are 13 potential lines divided in two sets of θ around π and −π, which

actually correspond to the same set.

Given the nature of the background stripes in gang graffiti images we limit the

number of peaks to Npeaks = 15. For each peak we find the location of all nonzero

pixels in the image that contributed to that peak and determine the line segments

based on those pixels. Each segment is now represented by a set (θ, ρ, pi, pf ), where

(pi, pf ) are the initial and final points of the segment. We discard segments of length

less than TW
minlen = 0.4WX if the segment is closer to the horizontal plane and less

than TH
minlen = 0.6HX if the segment is closer to the vertical plane. WX and HX are

the width and the height of the image, respectively. If we have less than Nseg = 4
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(a) Skeleton Xsk
e

(b) MH

Fig. 3.24.: Standard Hough Transform accumulator array. Peaks corresponding to
potential lines are marked with green squares.
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segments remaining we consider them not to be background stripes, and there is

nothing to be done. Else, we need to remove the segments without affecting the

graffiti components they may intersect with.

To do that we propose a modification of the Bresenham’s technique [228]. The

original method retrieves a set of pixels locations S(x,y) from a given line represented

by a set of initial and final points (pi, pf ). Figure 3.25 illustrates the conversion from

(pi, pf ) to S(x,y). The pixels in S(x,y) are marked in gray. Figure 3.26 shows a step of

the process when a pixel location (shown in yellow at (x, y)) has been already added

to S(x,y). Since the line does not fall into the actual pixel grid the next sampled

location (shown in yellow at (x + 1, y + 1)) will have an error ǫ on the y direction.

Note that this error ranges between −0.5 to 0.5. The next point to be added to S(x,y)

can either be (x+ 1, y) or (x+ 1, y + 1). We choose (x+ 1, y) if y + ǫ+m < y + 0.5,

and we choose (x+ 1, y) otherwise. By doing so we minimize the total error between

the mathematical line segment and what we actually add to S(x,y).

Fig. 3.25.: Bresenham’s Technique: mathematical line (red) and elements of S(x,y)

(gray).

Our modification to the original method includes an estimation of the segment

width at each new location added to S(x,y). For this purpose we need to use the binary

image Xe instead of its skeleton Xsk
e . At each new location (x, y) we create a window

of radius 1 around it and compute the ratio R as

R =
# ones inside window

# pixels inside window
(3.29)
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Fig. 3.26.: Step of Bresenham’s Technique.
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If R > TH
rad we increase the window size by one and recompute R. We repeat the

process until R ≤ TH
rad. We choose TH

rad = 0.6 as it gave us the best results in our

experiments. Figure 3.27 illustrates the final size of the window at different locations.

Note that even though the segment can have an arbitrary orientation the window is

always aligned with the XY axes. This is because we just need an estimate of the

segment width.

Fig. 3.27.: Final window sizes at different locations using our modified Bresenham’s
Technique.

Once we have all the segment width estimates for all the pixel locations in S(x,y)

we set the segment width to the most frequent estimated width (i.e. the width mode).

The pixel locations with width larger than the mode are considered to be intersections

with graffiti components, and they are left untouched. The rest of the pixel locations

are removed from the binary image. After all the line segments are processed we

obtain the binary image Xb. Figure 3.28 shows an example of our proposed modified

Bresenham’s Technique. The green areas correspond to removed line segments, and

the blue areas correspond to ignored line segments. Figure 3.29 shows an example of

the entire Background Stripe Removal process. Note how some of the line segments

actually corresponding to background stripes are not removed. However, we have

removed the segments that connect different graffiti components, and they can now
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Table 3.7: Parameters and thresholds used in Background Stripe Removal. WX and
HX are the width and height of X respectively.

Parameter Description Value
TL
N(p) Low threshold for thinning 2

TH
N(p) High threshold for thinning 3

Npeaks Number of Hough peaks 15
TW
minlen Threshold to discard horizontal segments 0.4WX

TH
minlen Threshold to discard vertical segments 0.6HX

Nseg Number of segments to keep 4
TH
rad High threshold for line width 0.6

be separated.

Fig. 3.28.: Modified Bresenham Technique. Green areas correspond to removed line
segments; blue areas correspond to ignored line segments.

Table 3.7 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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(a) Input: Xe

(b) Output: Xb

Fig. 3.29.: Example of Background Stripe Removal.
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3.5.4 Graffiti Component Reconnection

Even after Block-Wise Gaussian Segmentation Enhancement and Background

Stripe Removal there are still broken gang graffiti components that need to be recon-

nected for efficient segmentation. For this purpose we consider a line reconstruction

method used in topographic map enhancement [147, 229]. Figure 3.30 shows the

process to reconnect graffiti components.

Fig. 3.30.: Graffiti Component Reconnection.

First, we compute the skeleton Xsk
b of the input image Xb, the result of the

Background Stripe Removal, which is already binary. The skeleton is obtained using

the method already described in Section 3.5.3. We then detect the endpoints of Xsk
b .

An endpoint is defined to have exactly one neighbor pixel. Figure 3.31 illustrates all

the possible 3×3 templates of an endpoint. Figure 3.32 shows an example of detected

endpoints.

Fig. 3.31.: 3 × 3 templates to detect an endpoint. The endpoint is at the center of
the template.
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For each endpoint e0 we create a h × h search window around it and build the

set Sep = {e1, e2, ..., en} with the n endpoints within the search window. We selected

h = 20 as proposed in [147]. Note that we ignore any endpoints that are 8-neighbor

connected to e0 (i.e. part of the same connected component). For each endpoint

ei ∈ Sep we detect its direction by constructing a chain code as shown in Figure 3.33.

We backtrace N bt
px = 5 pixels and assign a zone based on the possible directions 0− 7

according to Table 3.8.

Table 3.8: Relationship Between Directions and Zones in the Chain Code.

Directions Zone

1, 2 Zone 1

3, 4 Zone 2

5, 7 Zone 3

7, 8 Zone 4
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(a) Original Image X

(b) Xb

(c) Endpoints on Xsk
b

Fig. 3.32.: Endpoint Detection.
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Fig. 3.33.: Chain Code For Endpoint Direction Detection.
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We remove from Sep all the endpoints that do not satisfy the following conditions

with respect to e0:

• For opposite directions:

– Zone 1 opposite to Zone 3

– Zone 2 opposite to Zone 4

• For parabolic directions:

– Zone 1 parabolic with Zone 4

– Zone 4 parabolic with Zone 3

– Zone 3 parabolic with Zone 2

– Zone 2 parabolic with Zone 1

If there are more than one remaining endpoints in Sep we chose the one closest

to e0, ed. The method presented in [147] does reconnection between e0 and ed with

Cubic Spline Interpolation or Newton Interpolation Method [230]. Since we are just

interested in combining disconnected components for classification and not recon-

structing them we reconnect e0 and ed with a straight line. After all the endpoints

are processed we obtain the binary image Xr. Figure 3.34 shows an example of the

Graffiti Component Reconnection process.

At this point each individual graffiti component corresponds to an 8-neighbor

connected component. Figure 3.35 shows an example of the connected component

extraction before and after the Automatic Graffiti Component Segmentation. Note

that currently we do not try to connect different letters on the same word. Given the

handwritten nature of the graffiti (e.g. “y” in Figure 3.35b) it is difficult to discern

between words and symbols.

Note that this method can also be used to reconstruct graffiti components that

are broken because of being crossed-out by other graffiti component sprayed using
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(a) Xb

(b) Reconnected Components.

(c) Xr

Fig. 3.34.: Example of Graffiti Component Reconnection.
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(a) Connected Components of Xg (Output of Gaussian Thresholding)

(b) Connected Components of Xr (Output of Graffiti Component Reconnection)

Fig. 3.35.: Example of connected components after Gaussian Thresholding and after
Graffiti Component Reconnection.
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Table 3.9: Parameters and thresholds used in Graffiti Component Reconnection.

Parameter Description Value
h Endpoint search window size 20

N bt
px Number of backtracing pixels 5

different color.

Table 3.9 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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3.6 Gang Graffiti Features

The GARI system provides gang graffiti image retrieval in two scenarios: 1) rec-

ognize scenes containing graffiti and 2) classify individual graffiti components. We

explain both scenarios in detail in Section 3.7.

For scene recognition we find SIFT features from the entire image, similar to

the work done in [7, 8, 10–12, 18] for graffiti and tattoo images. SIFT is invariant to

location, scale and rotation, and it is robust to affine transformations and illumination

changes and viewpoint. The process to create SIFT descriptors from an image can

be summarized as follows.

First, we find all the local extrema in the Difference of Gaussian (DoG) pyra-

mid [15, 231]. A Gaussian pyramid for an image is generated by smoothing it with

successively larger Gaussian functions

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(3.30)

and arranging the sequence of smoothed images in the form of a stack. Each level

of the Gaussian pyramid is one octave above the level below (i.e. doubling the value

of σ). A DoG image D(x, y, σ) at scale σ is defined as

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ), (3.31)

where L(x, y, kσ) is the convolution of the original image with G(x, y, kσ). Figure

3.36 illustrates how the DoG pyramid is generated.

The local extrema (keypoints) are detected from the subpixel minima/maxima in

the DoG pyramid by comparing neighboring pixels across scales, as shown in Figure
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Fig. 3.36.: DoG Pyramid.
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3.37. The subpixel accuracy is interpolated using the quadratic Taylor expansion of

D(x, y, σ) with the candidate keypoint x = (x, y, σ) as the origin:

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2DT

∂x2
x (3.32)

Weak extrema are discarded by rejecting keypoints that satisfy |D(x)| < 0.03.

Fig. 3.37.: Neighboring Pixels (green) For Keypoint Extraction (red).

We then associate a dominant local orientation to a keypoint by constructing a

histogram of gradient orientations using 36 bins spanning 360◦. The bin with where

the histogram peak occurs decides the dominant local orientation. By representing the

keypoint relative to its orientation the SIFT descriptor achieves rotation invariance.

Finally, the SIFT descriptor is created by surrounding each keypoint with a 16×16

descriptor window divided into 4×4 cells. The gradient magnitudes in the descriptor

window are weighted by a Gaussian function with σ equal to half the width of the

neighborhood. For each of the 16 cells an 8-bin orientation histogram is determined,

thus creating a 128-dimensional descriptor with its length normalized to make it

robust to changes in illumination. Figure 3.38 shows a graphical representation of

the keypoint descriptor generation. Figure 3.39 shows some examples of extracted

SIFT keypoints overlapped on the input images.
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(a) Gradient Magnitudes Around Descrip-
tor Window

(b) 16 8-Bin Orientation Histograms (128-
dimensional)

Fig. 3.38.: Keypoint Descriptor Generation. The red dot represents the location of
the keypoint.
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(a) SIFT Descriptors

(b) Gradient Magnitude Histograms

Fig. 3.39.: 25 SIFT descriptors selected at random. Each keypoint is represented by a
set of gradient magnitude histograms (green) rotated to its dominant local orientation
(yellow). The size of the green grid represents the scale of the descriptor.
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For individual gang graffiti component classification we do not use SIFT descrip-

tors directly, but the spatial locations of the SIFT keypoints to create Local Shape

Context (LSC) descriptors similar to the work proposed in [30, 183]. We do this be-

cause graffiti components are handwritten shapes with intra-class inconsistencies and

small shape distortions that are not fully captured with SIFT descriptors. Also, SIFT

descriptors accommodate for illumination changes and complex textures, which are

not present in binarized graffiti components.

First, we find the gang graffiti components as individual connected components

from the output of the Automatic Graffiti Component Segmentation in Section 3.5.

For each graffiti component we then findNf SIFT keypoint locations. Each location fi

needs to be compared against the other Nf − 1 locations to create a LSC descriptor.

This is done by binning the locations into a histogram, where its bins are broad

enough to allow for small shape distortions and orientation variation. Our proposed

histogram is defined with nr = 3 concentric circumferences representing log-radial

distance bins and nθ = 16 equally spaced sectors representing angles. We use a log-

radial increment because we want to give more importance to the neighbor features

than the rest. A histogram is centered at fi and its bins are populated by calculating

the distances

rji =
||fi − fj||2

r̄i
(3.33)

and the angles

θ̄ji = θji − θi, (3.34)
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Table 3.10: Parameters and thresholds used for the Gang Graffiti Features.

Parameter Description Value
nr Number of log-radial distance bins 6
nθ Number of angular bins 19

for all j ∈ [1, Nf ] and j 6= i, where r̄i is the average distance between fi and

the rest of locations, θji is the angle between fi and fj, and θi is the dominant local

orientation already described. Note that θji can be determined by

arctan
fiy − fjy
fix − fjx

, (3.35)

where fkx and fky are the x and y components of the kth location. By normalizing

rji by r̄i and subtracting θi from θ̄ji we achieve scale invariance and rotation invari-

ance in the LSC descriptor respectively. Each LSC histogram is then represented a

normalized nr × nθ matrix, which can be flattened to a nrnθ-dimensional descriptor.

Figure 3.40 illustrates the histogram and the distributions of the bins overlaid on a

gang graffiti component.

Table 3.10 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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(a) LSC Log-Radial Histogram

(b) LSC Normalized Matrix

Fig. 3.40.: Local Shape Descriptor histogram for a specific keypoint and its matrix
representation. The matrix holds the count distribution of SIFT keypoint locations
relative the specific keypoint.
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3.7 Content Based Gang Graffiti Image Retrieval

We describe a method to recognize gang graffiti by matching image features from

query images against our database of gang graffiti. The method is currently used in

two scenarios: 1) “Gang Graffiti Scene Recognition” to recognize scenes containing

graffiti (Figure 3.41) and 2) “Gang Graffiti Component Classification” to classify indi-

vidual graffiti components (Figure 3.42). In both cases we use a vocabulary tree [196]

to retrieve input images.

Fig. 3.41.: Gang Graffiti Scene Recognition.

The vocabulary tree is obtained as follows. First, we find features from a set

of database images to get N D-dimensional vectors (i.e. descriptors), where D will

depend on the type of feature [15, 24, 232, 233]. All the N D-dimensional descrip-

tors populate the RD space, which we then recursively divide into sub-clusters using

hierarchical k-means clustering [234].
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Fig. 3.42.: Gang Graffiti Component Classification.
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At each recursion level k-means is used in four steps. First, k initial “means” are

randomly chosen among all the data in the cluster. Second, k clusters are created

by associating every data sample to its nearest mean. Third, each cluster is given a

new mean computed as the centroid of all the data points associated with it. Finally,

the second and third steps are repeated until convergence is reached (no data sample

moves from one cluster to another). Figure 3.43 illustrates the entire process. Since

k-means is greedy for minimizing the sum of squared errors (SSE) it may not converge

to the global optimum. Its performance strongly depends on the initial guess of the

partition. To escape from getting stuck at a local minimum we can use r random

starts. Specifically, we can repeat the process r times and select the final clustering

with the minimum SSE from the r runs [235,236].

We keep clustering until we have a total of nw sub-clusters, each of which contains

the set of descriptors closest to its center. We call each of these sub-clusters a word.

This clustering can be interpreted as a vocabulary tree, where k corresponds to the

branching factor at each level, and each word corresponds to a path from root to

leaf. Figure 3.44 illustrates this equivalence. Note that we keep track of the image

corresponding to each descriptor.

At the end of the process each image i can be represented as an nw dimensional

vector di, where nw is the total number of words in the tree. At each index j ∈ [1, nw]

in di an entropy weighting [196] is applied so that

di[j] =
N i

j ln
M
Mj

Ni

, (3.36)

where N i
j is the the number of descriptors of the i-th database image associated

with the j-th word, M is the total number of database images, Mj is the number of

database images with at least one descriptor belonging to the j-th word, and Ni is

the total number of descriptors found on the i-th image. Based on the results of [196]

we chose k = 3 and nw = 10, 000 to create our vocabulary tree.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 3.43.: Four Main Steps in k-Means.
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Fig. 3.44.: Vocabulary Tree Built From Hierarchical k-Means. Each black dot corre-
sponds to a descriptor from a database image.
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In order to match an input image I against an image in our database we first

extract descriptors from I. Each of the input descriptors is pushed down the vocabu-

lary tree to find its closest word and an nw dimensional vector q is created following

the same criteria explained above, such that

q[j] =
N q

j ln
M
Mj

Nq

, (3.37)

The method in [196] proposes a scoring method to find the closest match to I

based on normalized differences, such that the closest match CM is

CM = argmin
i

||q − di||22 (3.38)

However, in high-dimensional spaces (e.g. nw = 10, 000) the Euclidean distance

exhibits properties of the phenomenon known as curse of dimensionality [237, 238].

The estimate of CM can be very poor if “boundary effects” are not taken into ac-

count. The boundary effect shows how the query region (i.e. a sphere whose center

is the query point) is mainly outside the hyper-cubic data space. One way of illus-

trating this effect is to compare the volume ratio between a hypersphere with and a

hypercube [239,240]. The volume of a hypersphere with radius r and dimension d is

Vhs =
2rdπd/2

Γ(d/2)
, (3.39)

where Γ() is the Gamma function defined as

Γ(m) = 2

∫ ∞

0

e−r2r2m−1dr. (3.40)



112

The volume of a hypercube with radius r and dimension d is

Vhc = (2r)d. (3.41)

Therefore, it can be seen that

lim
d→∞

Vhs

Vhc

= lim
d→∞

πd/2

2d−1dΓ(d/2)
= 0. (3.42)

This shows how nearly all the high-dimensional space is contained in the “corners”

of the hypercube.

Note that most average-case analyses of nearest neighbor searching techniques

are made under the simplifying assumption that d is fixed and that the number of

descriptors is so large relative to d that the boundary effects can be ignored. In Gang

Graffiti Scene Recognition we find hundreds of high-dimensional descriptors from an

input image, so we can use this assumption. However, in Gang Graffiti Component

Classification we only extract dozens of high-dimensional descriptors, and making

this assumption can be dangerous. Instead, we propose a majority voting matching

approach, where CM is computed as

CM = argmax
i

nw∑

j=1

(N q
j )

i, (3.43)

where (N q
j )

i is the number of descriptors from q associated with the j-th leaf that

match the i-th database image. Figure 3.46 illustrates the majority voting matching

approach. Note that a drawback of the basic majority voting classification occurs

when the class distribution is skewed. That is, samples of a more frequent class (i.e.

graffiti component) tend to dominate the prediction of the query [241]. Therefore we

need to make sure that the training data for Gang Graffiti Component Classification

contains the same number of samples for each class.

The main advantage of using a vocabulary tree for image retrieval is that its leaves

define the quantization, thus making the comparison dramatically less expensive than
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Table 3.11: Parameters and thresholds used in Content Based Gang Graffiti Image
Retrieval.

Parameter Description Value
k Branching factor 3
nw Number of leaves 10,000

previous methods in the literature [196, 242, 243]. Also, once the vocabulary tree is

built, new images can be added by just pushing down its descriptors.

The scalability of the vocabulary tree can be inferred from the results of [196],

shown in Figure 3.45. The retrieval performance increases significantly with the

number of leaf nodes, the branch factor, and the amount of training data.

Fig. 3.45.: Scalability Results of Vocabulary Tree tested on a 6,376 ground-truth
image dataset [196]. From left to right: Performance vs number of leaf nodes with
branch factor k = 8, 10 and 16. Performance vs k for one million leaves. Performance
vs training data volume in 720× 480 frames, run with 20 training cycles and k = 10.
Performance vs number of training cycles run on 7K frames of training data and
k = 10. The image belongs to [196].

Currently, SIFT features are used for both Gang Graffiti Scene Recognition and

Gang Graffiti Component Classification. However, note that the k-means clustering

approach accepts any type multi-dimensional vector.

Table 3.11 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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Fig. 3.46.: Majority Voting Matching.
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3.8 System Implementation

3.8.1 System Architecture

We implemented the “mobile” part of the GARI system as an application for

Android and iOS devices. We also have a web-based interface accessible from any

web browser. Figure 3.47 illustrates the GARI system, which is divided in two groups:

1. Client-side: Implemented operations on the mobile device and communicate

with the database (server) of gang graffiti through either WiFi or 4G/3G net-

works.

2. Server-side: Implemented operations on the database of gang graffiti and

communicate with the client.

The client-side includes the device and methods available to the users, either to

operate without the use of a network connection (offline services) or to make queries

to the database (online services). The offline services are only available from Android

devices (Section 3.8.3). The online services are available from both Android devices

or any web browser (e.g., Internet Explorer, Mozilla Firefox, Google Chrome). This

includes desktop and laptop computers as well as Blackberry smartphones (Section

3.8.4). The server-side includes all operations done on the server, including image

analysis and queries to the database from both the Android application and the

web-based interface. The database comprises gang graffiti images and metadata in-

formation for each entry, such as EXIF data, image geolocation and the results of the

image analysis on each image whether it was done on the server or client.

3.8.2 GARI Databases

In this section we describe how the image database is organized. We will first

describe the database schema and then show by an example how the information
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Fig. 3.47.: Overview of The GARI System - Client-Side Components (green) and
Server-Side Components (blue).

GARI acquires is added to the database. The database of gang graffiti was deployed

for three uses:

1. To collect and organize graffiti images acquired by first responders. This in-

cludes the images, metadata, and any interpretation or other information pro-

vided by the first responder.

2. To store the results of the image analysis.

3. To manage first responders’ credentials, allowing them to access the services

available through the Android/iOS applications and the web based interface.
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Our database is implemented in PostgreSQL [244] on a Linux server. It consists of

eight tables structured as shown in Figure 3.48. Note that the schema does not show

all the fields in all the tables but just the relevant fields to indicate the association

between the tables. Also the various IDs mentioned below (e.g. image ID) will be

discussed in more detail after the tables are described in the following list.

1. images: Stores EXIF data from the images along with image location and

general image information and the results from the image analysis. The fields

related to this table are shown in Tables D.1, D.2, D.3 and D.4 in Appendix D.

2. imageColors: Stores all color IDs related to each image ID. This table is

especially useful when more than one color is found in the same graffiti image.

3. colors: stores the relationship between color IDs and color names.

4. imageBlobs: Stores the number of blobs in each graffiti, the ID of each graffiti

component for each blob, and the color ID of each graffiti component. This also

stores special attributes of graffiti components. These attributes may include

a specific graffiti component being crossed-out, upside-down, etc. Table D.6 in

Appendix D describes the fields of this table.

5. blobComponents: stores the relationship between graffiti component IDs and

graffiti component names, as well as the type ID for each graffiti component.

Each graffiti component belongs to any of the following types: symbol, charac-

ter, number, acronym, nickname, string.

6. componentTypes: stores the relationship between type IDs and type names.

7. gangComponents: stores the relationship between gang IDs and gang names,

as well as the graffiti component ID (or multiple graffiti component IDs) associ-

ated with each gang. This table is especially useful when more that one graffiti

component is associated with the same gang name.
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8. users: Stores users’ credentials to access to the system services as well as infor-

mation concerning administrative privileges, email addresses, and registration

and login status. Table D.5 in Appendix D describes the fields of this table.

Note that currently we only populate the tables images and users. The database

relationships between all the tables are implemented and are ready to be used in the

future (see Section 6).

Fig. 3.48.: Database Schema Showing The Associations Between the Tables in the
Database.
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Adding Images to the Database

The following example illustrates the process of adding a graffiti image to the

database. The image analysis is assumed to have been completed. Figure 3.49 shows

the example image that has been manually labeled to facilitate the explanation. Each

labeled circle represents a blob and each blob contains a distinguishable graffiti com-

ponent. The blob labeling of the image corresponds with the field blobID from table

imageBlobs in the database.

First, we fill table imageColors with the colors found in the graffiti. This is, black,

green, and blue. Second, we analyze the blobs separately:

1. Color: black. Graffiti component: X3.

2. Color: green. Graffiti component: SPV.

3. Color: blue. Graffiti component: X3.

4. Color: blue. Graffiti component: LK. Crossed-out in green.

5. Color: blue. Graffiti component: ES. Crossed-out in green.

Note that the meaning of the acronyms and the type of the graffiti components is

not addressed here. This information is assumed to already exist in the database.

Once the image analysis is complete the image, along with the blob information, is

added to the database. Figure 3.50 shows the database fields filled with the informa-

tion obtained from the graffiti in Figure 3.49. First, the user ID of the first responder

who captured the image and the image ID are added to the images table. The image

ID is a unique identifier of the graffiti image and it is automatically updated every

time an image is uploaded to the server. Although it is not shown in Figure 3.50,

some additional image information (i.e., EXIF data, GPS coordinates) is extracted

from the uploaded image and added to the images table. Second, the color IDs for the

three colors found in the graffiti, which are obtained by checking the color description

field, (labeled colorName in Figure 3.50), are added to the imageColors table, and
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linked to the graffiti ID. At the same time, the five blobs are added to the imageBlobs

table. Each blob has a corresponding graffiti component ID, which is obtained by

checking the graffiti component description field, (labeled compName in Figure 3.50),

of the blobComponents table. Each graffiti component has a color associated with it

and can activate one or many attributes in the same table (see Table D.6 for all the

attributes). In this example, blobs one to three do not have any additional attribute.

Blobs four and five have activated the crossed-out attribute.

Note that this process is totally objective. That is, the information uploaded

to the database does not require any interpretation from the first responder. With

all the objective information available in the tables and the associations between the

data one can produce an informed graffiti interpretation. For example, we have added

graffiti components with IDs 27 (SPV ) and 29 (LK ). These IDs are associated with

specific gang names in the gangComponents table. The same reasoning could be used

if the graffiti did not contain any specific content with just the graffiti color being

identified. Additional tables can relate gang IDs with color IDs effectively providing

the results of gangs matching the specific color or colors.

Fig. 3.49.: Example of Graffiti (Manually Labeled).
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Fig. 3.50.: Database Fields With Information From The Graffiti in Figure 3.49.

3.8.3 Android/iOS Implementation

We implemented the GARI system on Android and iOS devices as summarized

in Figure 3.51. We called this application Mobile GARI. In this section we describe

how the application works and describe its user interface.

Overview

A user takes an image of the gang graffiti using the embedded camera on the device

via the Graphical User Interface (GUI). The EXIF data of the image, including GPS

location and date and time of capture, is automatically added to the image header.
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The user can then choose to upload the image to the server to be included in the

database of gang graffiti, find similar images in the database of gang graffiti, or do

color recognition. The first option, uploading to the server, allows the user to send

the image and the EXIF data to the server creating a new entry in the database. The

second option, find similar images, allows the user to send the image to the server

and find gang graffiti images that match part or all of the contents of the image. The

third option, color recognition, allows the user to trace a path in the current image

using the device’s touchscreen. The color in the path is then automatically detected

(Section 3.4) and the result is shown to the user. The database of gang graffiti can

then be queried to retrieve graffiti images of the same color.

Another option is to browse the database of gang graffiti given various parameters

such as the distance from current location or date and time. The thumbnail images

that match the query are downloaded from the server and shown to the user on the

mobile telephone. The user can then browse the results to obtain more information

about the specific graffiti. Note that in order to browse the database of gang graffiti

a network connection is required.

We implemented the system on different smartphones makes and models, but

always targeting version 3.2 of the Android operating system (OS). We chose Android

OS version 3.2 to cover as much user market as possible while still being able to include

the necessary features. Since Android applications are generally forward-compatible

with new versions of the Android platform, by choosing OS version 3.2 we cover 78.7%

of the market (as of March 2014) [245].
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Fig. 3.51.: Overview of the GARI System.

User Interface

Our Android application does not require the use of a network connection. How-

ever it is mandatory if the user wants to browse the graffiti database or upload

images to the graffiti database. The application automatically checks for updates

when launched, notifying the user if a new version is available (Figure 4.25). A user

must be assigned a User ID (equivalent to a First Responder ID) and a unique pass-

word in order to use GARI. Once the User ID and password has been entered, the

main screen is presented. The menu options are displayed on the main screen (Fig-

ure 4.26a/3.53c) and on the secondary screen (Figure 4.26b/4.26b) when an image is

captured or browsed. In Android devices, the menu button brings additional options

when available. Note that the menu button can be a hardware key (Figure 3.54a)

or a software key (Figure 3.54b) depending on the device used. In iOS devices, the
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additional options are presented on the screen as buttons. The main screen includes

the following options:

• Browse Image

• Browse Database

• Capture Image

• Send to Server (available after browsing or capturing an image)

• Analyze Image (available after browsing or capturing an image)

• Settings

• About

(a) Android (b) iPhone

Fig. 3.52.: Automatic updates.

Browse Image

The user has the option to browse images stored on the Android device, to later

upload them to the server or analyze them. Note that the entire phone image gallery

is browsed, including images that have not been taken using the Mobile GARI appli-

cation. When the option “Browse Image” is tapped, a directory browsing window is
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(a) (b) (c) (d)

Fig. 3.53.: User options screens for Android (4.26a, 4.26b) and iPhone (3.53c, 3.53d).

(a) Hardware key (b) Software key

Fig. 3.54.: Examples of location of the menu button (red square) on Android devices.



126

(a) (b)

Fig. 3.55.: Example of image browsing.
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opened, and the user can search and select the desired image. Figure 3.62 shows an

example of browsing.

Browse Database

The menu option “Browse Database” allows the user to browse the database by

radius. That is, it extracts from the database all the images in a given radius from

the current location. Figure 3.56 shows the dialog where the user can select a radius

between 1 mile and 20 miles.

(a) (b)

Fig. 3.56.: Browse by radius screen for Android (left) and iPhone (right).

When a specific radius is chosen, the application checks for the device location

automatically, in order to add the GPS coordinates to the image. Depending on the

system used (Network (3G/4G or WiFi) or GPS), it can take up to 30 seconds to

acquire the location. The user is notified during the period, as shown in Figure 3.57.

In Android devices, if the location system is not enabled on the device, the user is

notified and taken to the location settings (Figure 3.58), where the location systems

can be enabled.

Once the location is locked, the application contacts the image database and

checks how many thumbnails have to be downloaded (Figure 3.59a/3.59c). If the user

accepts, the information that matches the query is retrieved (Figure 3.59b/3.59d).

Figure 3.60 shows an example of the results, where each line contains a thumbnail of
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(a) (b)

Fig. 3.57.: Progress dialog notifying the user of a location retrieval, for Android (left)
and iPhone (right).

(a) (b)

Fig. 3.58.: 3.58a Dialog notifying the user that no Network or GPS systems are
enabled, and 3.58b location settings of the device, for Android.
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a graffiti or tattoo and basic information about it, including the date and time the

image was taken, and its GPS latitude and longitude.

(a) (b) (c) (d)

Fig. 3.59.: Screen notifications during database browsing for Anroid (3.59a, 3.59b)
and iPhone (3.59c, 3.59d).

(a) (b)

Fig. 3.60.: Results after querying the image database for Android (left)) and iPhone
(right).

To obtain more information about a particular graffiti or tattoo, the user can

tap on either the thumbnail or the text field, and the application will contact the

server, extracting a larger image and the information available. Figure 3.61 shows

an example of the extended results. The text field includes information about the
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(a) (b)

Fig. 3.61.: Extended results after querying the image database for Android (left) and
iPhone (right).



131

graffiti or tattoo taken from the database tables. The available fields are detailed in

Appendix D.

Whether the user is in the results view or in the extended results view, the menu

key will have the option “Show in map.” It allows the user to display the position

of multiple graffiti or tattoo or focus on a single image (green marker on Figure

3.62a/3.62b), depending on the current layout. In Android phones the user can

choose to display his/her current location via the “My Location” option, and switch

between normal and hybrid maps via the “Hybrid” option. In iOS devices the user

can switch between normal and hybrid using the buttons on the map.

(a) (b)

Fig. 3.62.: Graffiti locations displayed on a map for Android (left) and iPhone (right)

Similar to the “Show in map” option, the menu key will have to option “Show

in map (AR).” AR stands for Augmented Reality. It allows the user to display the

position of graffiti and tattoo locations on top of the camera feed on the mobile

phone. Figure 3.63 shows an example. As the user moves the mobile phone around,

the screen gets updated and shows graffiti and tattoo locations in the camera range

as pins. When tapping on a pin, a dialog appears at the bottom displaying the

address, city and distance of the graffiti/tattoo from the mobile phone. Also, the

image thumbnail is shown in the bottom right. When tapped, the user is redirected

to the extended results page (Figure 3.61).
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(a) (b) (c)

Fig. 3.63.: Graffiti locations displayed on an Augmented Reality feed for Android
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Capture Image

The menu option “Capture Image” starts the image acquisition. The user just has

to point to the graffiti or tattoo and wait for the three second countdown followed by

automatic image acquisition. The countdown is shown in the center of the screen, as

illustrated in Figure 3.64. The countdown is automatically restarted if the smartphone

registers a considerable amount of shaking, in order to minimize the risk of taking

blurred images. After the image is automatically captured the application checks for

motion blur and lack of illumination, and restarts the counter to take a new image

if necessary. The application automatically checks the user’s current location after

acquiring an image.

Fig. 3.64.: Camera Activity.

Send to Server

The menu option “Send to Server” allows the user to send the current image to the

server. First, the user will be prompted to select the source of the image, either

graffiti or tattoo (Figures 3.65a/3.65c and 3.65b/3.65d). After tapping on “Send”

the image is uploaded to the server on the background. While an image is being

uploaded, the user can keep using the application and send more images. A queue

will be automatically created and the images will be sent sequentially. If the Internet

connection is lost, the application will wait until the connectivity is restored to restart

the uploading process. If the application is closed or the mobile device is shut down

during an upload, the file will be automatically uploaded next time the user launches

the application. Figure 3.66 illustrates the process. An icon on the notification bar

(top of the screen) shows the status of the upload. By dragging down the notification
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bar the user can see more information about the upload progress. If the image is

successfully added to the database, the application will also extract the information

uploaded, and will display it to the user (Figure 3.67).

(a) (b) (c) (d)

Fig. 3.65.: Result of uploading an image to the server for Android (3.65a and 3.65b)
and iPhone (3.65c and 3.65d).

Find Similar Images

The menu option “Find Similar Images” allows the user to find similar images to

the current image being displayed on the secondary screen. The image is sent to

the server and analyzed. When the analysis is done, the server sends back a list of

matching candidates. Figure 3.68 shows the process. The options for this list are the

same as the ones described for the results from browsing the database. Note that the

matching candidates in the list are sorted by score, where the first entry corresponds

to the most similar image to the query.

Analyze Image

The menu option “Analyze Image” allows the user to aid the application in detecting

the gang graffiti components. This option is only enabled once an image has been

captured or browsed. First, the user has to select a region of the image containing the

graffiti color, as shown in Figure 3.69a/3.69c. When the desired area is selected and

“Save” is tapped, the user can create a path on the image using their finger, as shown
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 3.66.: Image uploading on the background on Android (top) and iPhone (bot-
tom). From left to right (Android): Uploading image (icon), waiting for Internet
connection, uploading 3 images, image successfully uploaded. From left to right
(iPhone): Messages on the notification bar, Uploading image (message), image suc-
cessfully uploaded (message).
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(a) (b)

Fig. 3.67.: Image upload successfully (3.67a) and image already uploaded to database
(3.67b).

(a) (b)

Fig. 3.68.: Screen notifications when finding similar images (Android).
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in Figure 3.69b/3.69d. There is no need to trace the entire content of the area with

the same color. Just a significant sample is enough to determine the color. Figure

3.69b/3.69d also shows the available options. In Android devices the “Undo” option

removes the last path created; the “Clear” option clears all the paths created; and

the “Analyze” option obtains the current path and analyzes the color. In iOS devices

the “Analysis” option obtains the current path and analyzes the color. The image

and the recognized color are then sent to the server for analysis, and the results are

given back to the user as a list of thumbnails, classification results and gang graffiti

colors, as shown in Figure 3.70.

(a) (b)

(c) (d)

Fig. 3.69.: Steps to follow when selecting the region to analyze the color for Android
(top) and iPhone (bottom).

Figure 3.71 shows the result of the color tracing. The application then extracts

from the database all the gangs that match the detected color. There is also the

option “Browse database by color”, which queries the database and extracts all the

images in the database that match the traced color. Figure 3.71b shows an example.

After color recognition the user can send the image to the server for automatic graffiti

analysis.



138

Fig. 3.70.: Image Analysis Results.
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(a) (b) (c) (d)

Fig. 3.71.: Gangs related to the traced color and images in the database that match
the traced color for Android (3.71a, 3.71b) and iPhone (3.71c, 3.71d).

Security

Our Android application is used by first responders from multiple agencies. There-

fore, it is mandatory to ensure that only authorized users can access and use the

application. The connections to the server must be secure and all the information

transmitted to and from the server must be encrypted (using the SSL/TLS protocol).

The user credentials are sent every time the application contacts the server to make

sure the connection is made by an authorized user. In the Android version we use

ProGuard [246], a code optimizer and obfuscator for the Android SDK. It reduces

the application size up to 70% and makes the source code more difficult to reverse

engineer. It also improves the battery life by removing verbose logging code in a

background service. An additional level of security includes the creation of two types

of users:

• Regular users: Can switch between users, change their password, delete specific

images only taken by themselves, and send crashlogs to the server.
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• Administrative users: Can modify the server domain name/IP address, change

user IDs, change passwords, delete specific images from any user, delete all

images of any specific user, and send crashlogs to the server.

When launching the GARI application a dialog box automatically prompts the

user for login credentials (Figure 4.33). The user is required to input a user ID and

a password.

Fig. 3.72.: User ID Prompt.

The first time a user logs in the credentials are checked with the server and once

they are validated they are stored in the device in an encrypted file. This allows

the user to use the application without needing a network connection. Note that

passwords are never stored as plaintext, neither on the device or the server. They are

hashed using an MD5 cryptographic hash function [247]. We also use a login system

in which the application creates a session for an authorized user that lasts 24 hours.

After that period of time the user is required to login again.

All authorized users can access the “Settings” option from the main screen of

the application. Figure 3.73 shows the various options. Note that no one can delete

images from the server. At this time no one can edit the attributes of images retrieved

from the server.

• Server domain/IP: the the address of the server to be changed by domain name

or IP address (only available to administrative users).
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• Switch user: allows one to open sessions for other users. Note that switching to

another user ends the session for the current user.

• Change password: allows one to change the password used to access the ap-

plication. Note that the password is changed for both the Android application

and the web-based application.

• Send crashlog: allows system crash feedback to be sent to the server.

Fig. 3.73.: “Settings” Dialog, Showing the Various Options.

3.8.4 Web Interface

System Overview

We also implemented our system as a web interface that gives a user access to the

graffiti in the database and provides the ability to upload, modify and browse most

database contents as summarized in Figure 3.74. We called this application Desktop

GARI. The user logs in into the “Archive” using authorized credentials. Note that

the credentials are the same for both the Android application and the web services.

The user can then either browse the database of gang graffiti or upload an image.

If the choice is to browse the database, the user can check the graffiti images and

their attributes or filter the database using parameters such as radius from a specific



142

location or address, capture data, upload data, or modified date. The results are

shown as a list of thumbnail images with basic information that identifies the graffiti

image. The user can then browse specific images and place them on a map, so to

visually track gang activity. If the choice is to upload an image, the user can select

a graffiti image from their local system (i.e., any device with a web browser). Some

attributes can be adjusted through guided steps before adding the information to the

database, such as location, gang information, or additional comments.

Fig. 3.74.: Overview of the Web Interface of the GARI System.

The web interface is available from any device with a web browser. This includes

all desktop and laptop machines and all mobile telephones capable of browsing the

web (e.g., iOS, Blackberry, Android devices). In some cases, the current location of

the user is required in order to retrieve results from the database of gang graffiti such

as when using the “radius” function to display graffiti on a map. Geolocation was

introduced with HTML5 and it is widely implemented by many modern browsers.
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However, only the latest browsers support this service. Table 3.12 lists the browsers

and their support level for Geolocation.

Table 3.12: Web Browsers Supporting HTML5 Geolocation Service.

Browser Version

Firefox 3.5+

Internet Explorer 9+

Google Chrome 5+

Safari 5+

iPhone Safari +3.0 OS

Android Through Gears API

Opera 10.6+

User Interface

As of March 2014 the GARI website is located at www.gang-graffiti.org. The main

page contains information about the GARI project, its principal investigators, and

the graduate students involved. Figure 3.75 shows a snapshot.

The “Archive” page (Figure 3.76) displays the options available a user. These

include:

• Browse database

• Upload image

• Upload multiple images

• Create database report

A username and password is required to access the database contents. A user can

use the same username and password used for the mobile application.
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Browse database

The “Browse database” page (Figure 3.77) allows the user to either browse the entire

database or to do a specific search. This includes:

• Browse all database/graffiti/tattoo: Retrieves from the database either

images, only graffiti images, or tattoo images.

• Search by radius: Retrieves from the database all the graffiti and tattoos

in a specific radius, from a specified location from the list. The locations in

the list include the user’s current location, the Video and Image Processing

Laboratory (VIPER) at Purdue University, and the Indianapolis Metropolitan

Police Department (IMPD). The “Current location” option requires the user to

share their current location, as shown in Figure 3.78.

• Search by Date: Retrieves from the database the graffiti and tattoo images

captured, uploaded or modified in a specific period of time.

• Search by address: Retrieves from the database the graffiti and tattoo images

in a specific radius, from a specified address. Provides more flexibility than the

“Search by radius” option.

The search results are shown in Figure 3.79. At first, only a small-scale image

and basic information is displayed. Depending on the search various parameters are

shown,including:

• Date/Time captured (uploaded, modified): date and time the image was ac-

quired, uploaded or modified, depending on the search.

• Address: address where the image was acquired. A map showing the graffiti or

tattoo location when clicked is available.

• More information: link to show additional information about the graffiti or

tattoo.
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• Image ID: image identifier in the database.

• Distance: distance from the user’s current location to the graffiti or tattoo.

Only available when searching by radius or address.

Each image or group of images can be displayed on an interactive map. Figure

3.80 shows an example of the interactive map when a single image is displayed. The

image is placed on a map, and a balloon pops out, showing a thumbnail and some

information about the image, including the date and time it was acquired, and its

location in GPS coordinates. Figures 3.81 and 3.82 show an example of the interactive

map when multiple images are displayed. Each marker represents the location of a

graffiti or tattoo from the search results. From this map the user can click on any of

the markers to see a thumbnail of the graffiti or tattoo, its location in GPS coordinates,

and a link to obtain more information about the graffiti or tattoo. Figure 3.83 shows

an example.

In the “More information” section, the user can see the information available in

the database for a specific graffiti or tattoo. Figure 3.84 shows an example. The

image can be clicked to enlarge it in a new window. Also, there are two additional

options: “Show in map”, and “Edit image details”.

Upload Image

The “Upload image” feature (Figures 3.85 and 3.86) allows a user to upload an image

to the database.

Once the image is uploaded, fields can be filled in by the user. These include:

• Assign GPS coordinates

– By known address

– By clicking on map

• User information

– First responder name
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– First responder ID

• Graffiti/Tattoo information

– Image Type

– Surface type (if graffiti)

– Body part (if tattoo)

– Prison (if tattoo)

• Additional information

– Gang name: from drop-down menu of known gangs or user’s input

– Gang member: gang member involved in the graffiti

– Comments

Figures 3.87 and 3.88 show examples of filled fields adding information to the

graffiti.

Clicking on “Submit Image” completes the editing and shows the user the final

output of the image uploading session. Figure 3.84 is an example of this (the same

information as clicking on “More information” when browsing the graffiti database).
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Upload Multiple Images

The “Upload multiple images” feature (Figure 3.89) allows a user to upload multiple

images to the database at the same time. By clicking on “Select files” the user can

browse the computer to select one or multiple images to upload to the server (Figure

3.90). Multiple images can be selected using the SHIFT or CTRL buttons on the

keyboard. By holding SHIFT when clicking on two files, it will select everything in

between them. By holding CONTROL when clicking on files, it will select individual

images. Once the images are selected a list of files to upload will be created as shown

in Figure 3.91. By clicking on “Upload selected files” the images are uploaded to the

server. As the images are being uploaded, the progress is shown to the user (Figure

3.92). Once all the images are uploaded, a preview screen is shown to the user,

where basic information is automatically populated for each image (Figure 3.93). For

each image, the user can populate the same fields as when using the feature “Upload

image”. After populating all the necessary fields, the user can click on “Submit

images” located below the last image to update the information on the server. The

results of the submission are shown as seen on Figure 3.79. Note that until the user

clicks on “Submit images” no images are added to the database.
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Fig. 3.75.: Main Page of the Web Interface of GARI.
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Fig. 3.76.: “Archive” Section of Desktop GARI.

Fig. 3.77.: “Browse database” section of the web-based interface for GARI.

Fig. 3.78.: The current location of the user is only acquired upon request.
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Fig. 3.79.: Results of browsing the database.

Fig. 3.80.: Example of the interactive map when a single image is displayed.
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Fig. 3.81.: Example of the interactive map when multiple images are displayed.

Fig. 3.82.: If “Open in a new window” is clicked, the interactive map expands to a
full screen to make navigation easier.
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Fig. 3.83.: Example of a popped out balloon on the interactive map when a marker
is clicked.



153

Fig. 3.84.: Example of “More information” result for a specific search in the database.
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Fig. 3.85.: “Upload Image” Section of Desktop GARI.

Fig. 3.86.: Preview of an Image Before Uploading It to the Graffiti Database.
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Fig. 3.87.: After uploading the image to the database, the user can select where the
image was taken using an interactive map.

Fig. 3.88.: After uploading the image to the database, information can still be added.
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Fig. 3.89.: Upload multiple images: Main screen.

Fig. 3.90.: Upload multiple images: Select multiple files. Note that the appearance
of this screen may vary depending on the operating system used.
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Fig. 3.91.: Upload multiple images: List of images to upload.

Fig. 3.92.: Upload multiple images: Upload progress.

Fig. 3.93.: Upload multiple images: Review screen.
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Create Database Report

The “Create database report” feature (Figure 3.94) allows a user to download a

spreadsheet containing information from the database.

The available fields are:

• Image ID

• Path to the image file

• First responder name

• First responder ID

• Upload date and time

• Image size

• Image height

• Image width

• Camera make

• Camera model

• GPS longitude

• GPS latitude

• Address

• City

• County

• State

• ZIP code
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• Country

• Comments

Multiple fields can be selected using the SHIFT or CTRL buttons on the keyboard.

By holding SHIFT when clicking on two fields, it will select everything in between

them. By holding CONTROL when clicking on fields, it will select individual fields.

The number of entries to be downloaded range from 200 to all the entries on the

database (i.e. all images on server). The entries to be downloaded can also be sorted

by date and time. After clicking on “Submit” a spreadsheet is automatically created,

and a link to the download is provided to the user, as shown in Figure 3.95.

Fig. 3.94.: Create database report.

Fig. 3.95.: Create database report: download screen.
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Security

Access and navigation to the web interface are established and managed using

encrypted Secure Sockets Layer (SSL) sessions. SSL encrypts information both during

the transmission. The user must log in using authorized credentials before entering the

archive. Figure 3.96 shows the login page. Once successfully logged in an SSL session

is created and maintained for the current user. The user account can be managed by

clicking on the “User Settings” link on the left sidebar. Note that currently the only

option available is password change.

Fig. 3.96.: Login Page for Accessing the Gang Graffiti Archive.
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4. MOBILE EMERGENCY RESPONSE GUIDE (MERGE)

4.1 Review of Existing Methods

In this section we review some relevant literature in the areas of sign location

detection and sign recognition.

4.1.1 Sign location detection

Sign location detection methods can be classified into three main categories:

shape-based [248], color-based [249] and saliency-based [250].

Shape-based approaches first generate an edge map and then use shape informa-

tion to find objects. For example, in [251] triangular, square and octagonal road

signs are detected exploiting properties of symmetry and edge orientations exhibited

by equiangular polygons. In [252] a road-sign detection system is based on support

vector machines (SVM). It uses shape classification using linear and Gaussian-kernel

SVMs. In most cases, the methods are invariant to translation, rotation, scale, and,

in many situations, to partial occlusions. In [253] the authors present a system for

detection and recognition of road signs with red boundaries and black symbols inside.

Pictograms are extracted from the black regions and then matched against templates

in a database. They propose a fuzzy shape detector and a recognition approach

that uses template matching to recognize rotated and affine transformed road signs.

In [254] the authors propose a system for automatic detection and recognition of

traffic signs based on maximally stable extremal regions (MSERs) and a cascade of

support vector machine (SVM) classifiers trained using histogram of oriented gradi-

ent (HOG) features. The MSER offers robustness to variations in lighting conditions.

The system works on images taken from vehicles, operates under a range of weather
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conditions, runs at an average speed of 20 frames per second, and recognizes all classes

of ideogram-based (nontext) traffic symbols from an online road sign database.

Other shape-based approaches use “shape descriptors”, which can be generally

classified into two methods: contour-based methods and region-based methods [255,

256]. Contour-based methods only exploit the boundary information while region-

based methods exploit all the pixels within a region. Contour-based methods are

widely used in many applications because of their simplicity [168]. Although shape

signatures obtained through contour-based methods are not generally robust to noise

[168] the Fourier descriptor (FD) overcomes noise sensitivity by usually using only

the first few low frequency coefficients to describe shape. The FD is also compact and

easy to normalize. Because of its properties the FD is one of the most used shape

descriptors [255–259]. In addition, it has been shown that the FD outperforms many

other shape descriptors [168,260].

Previous work on FDs includes methods for generating descriptors invariant to

geometric transformations and matching methods for shape similarity and image re-

trieval. For example, in [261] a new Fourier descriptor is proposed for image retrieval

by exploiting the benefits of both the wavelet and Fourier transforms. A complex

wavelet transform is first used on the shape boundary, and then the Fourier trans-

form of the wavelet coefficients at multiple scales is examined. Since FDs are used at

multiple scales, the shape retrieval accuracy improves with respect to using ordinary

FDs. FDs are analyzed as feature vectors in [262] for pedestrian shape representa-

tion and recognition. The results showed that only ten descriptors of both low and

high frequency components of pedestrian and vehicle shapes are enough for accurate

recognition. Shape context from [185] is used in [263] to generate descriptors and

proposed a matching method that uses correspondences between two shapes based

on ant colony optimization. In [264] the authors describe simple shapes using FDs

based on chain codes and the Fourier transform. The first ten coefficients are used

to approximate the shapes. In [257] the authors use the Fourier transform of local

regions on the output of a MSER detector. They propose a FD matching method that
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uses the phase information to extract the orientation of the shape and used the FDs

for recognizing road signs. However, this method fails when signs have low resolution.

Color-based approaches overcome the problems of shape variation, partial occlu-

sion, and perspective distortion. However, colors are sensitive to lightning conditions

and illumination changes. To deal with these disadvantages, some color spaces that

keep sign color almost invariant are used in existing methods. For example, in [265]

sign detection is done using a color-based segmentation method as a preprocess-

ing step for shape detection. Color-based segmentation is used to achieve real time

execution, since color-based segmentation is faster than shape-based segmentation.

In [266] several color components are used to segment traffic signs under different

weather conditions. Various color spaces are analyzed to detect traffic prohibitive

signs, alert signs and guide signs.

Saliency-based approaches utilize selective visual attention models, which imitate

human early visual processing in order to overcome the above problems in complex

scenes. This paper makes use of the saliency-based visual attention models to con-

struct a hazmat sign saliency map as a sign localization method. Visual saliency is

closely related to how we perceive and process visual stimuli and it is often charac-

terized by variant object features, like color, contrast, gradient, edge, and contour.

Theories of human visual attention hypothesize that the human vision system only

processes parts of an image in detail while leaving others nearly unprocessed [267].

A saliency-based visual attention (SBVA) model was presented in [250] using images

features with a Gaussian pyramid. A graph-based visual saliency (GBVS) method

was proposed in [268], to highlight conspicuous regions. This method allows combi-

nations with other visual attention maps. A dynamic visual attention (DVA) model

based on the rarity of features is proposed in [269]. A histogram-based contract (HC)

method and a region-based contract (RC) method were introduced in [270] to con-

struct saliency maps. HC-maps produce better performance over RC-maps but at
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the expense of increasing the computation time. A multi-scale dissimilarity aggrega-

tion (MSDA) method is used to estimate the saliency of regions in [271]. A saliency

map generation method was described in [272] using image signature (IS) to highlight

sparse salient regions based on RGB or Lab color spaces. An saliency detector based

on hypercomplex Fourier transform (HFT) is presented in [273] using the convolution

of the image amplitude spectrum with a low-pass Gaussian kernel.

4.1.2 Sign recognition

Sign recognition methods can be classified into: geometric constraint methods,

boosted cascades of features, and statistical moments [274–276].

Methods based on geometric constraints include the use of Hough-like meth-

ods [277,278], contour fitting [279,280], or radial symmetry detectors [281,282]. These

approaches apply constraints on the object to be detected, such as little or no affine

transformations, uniform contours, or uniform lightning conditions. Although these

conditions are usually met, they cannot be generalized. For example, [278] presents

an analysis of Hough-like methods and confirms that the detection of signs under real-

world conditions is still unstable. A novel Hough-like technique for detecting circular

and triangular shapes is also proposed, in order to overcome some of the limitations

exposed.

Methods based on the boosted cascades of features commonly use the Viola-Jones

framework [283–285]. These approaches often use object detectors with Haar-like

wavelets of different shapes, and produce better results when the feature set is large.

For example, in [284] a system for detection, tracking, and classification of U.S. speed

signs is presented. A classifier similar to the Viola-Jones detector is used to discard

objects other than speed signs in a dataset of more than 100,000 images. In [285]

the detection is based on a boosted detectors cascade, trained with a version of Ad-
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aboost, which allows the use of large feature spaces. The system is robust to noise,

affine deformation, partial occlusions, and reduced illumination.

Methods based on statistical moments [286–288] use the central moments of the

projections of the object to be detected. They can be used to check the orientation of

the object, or to distinguish between different shapes such as circles, squares, triangles,

or octagons. These methods are not robust to projective distortions or non-uniform

lightning conditions. For example, in [288] a mobile-based sign interpretation system

uses detection of shapes with an approximate rotational symmetry, such as squares

or equilateral triangles. It is based on comparing the magnitude of the coefficients of

the Fourier series of the centralized moments of the Radon transform of the image

after segmentation. The experimental results show that the method is not robust to

projective distortions.

4.2 Segment Detection Using Geometric Constraints

Figure 4.1 shows the block diagram of the proposed method. We find edges in the

image using the Canny edge detector. Since hazmat signs can be present at various

distances, we use median auto-thresholding. To deal with non-uniform illumination

changes in the scene, we also grayscale histogram equalize the image. We assume: 1)

any sign in the image has to be approximately upright with its major axes aligned

with the XY axis; and 2) the projective distortion has to be small. (i.e., edges have

to be approximately at ±90◦ with respect to each other).

Given these assumptions, we use morphological filters to eliminate edges not be-

longing to a hazmat sign. We create flat linear structuring elements of length Lse = 10

pixels at θse = ±45◦ and use them separately to erode the Canny edge map. Figure

4.2 shows the structuring elements used for erosion.

The resulting edge map is the superposition of the two erosions. We then find

line segments using the Standard Hough Transform [226, 227] (already explained in
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Fig. 4.1.: Segment Detection Using Geometric Constraints.

(a) Linear Structuring Element at +45◦ (b) Linear Structuring Element at −45◦

Fig. 4.2.: Structuring Elements Used for Erosion.
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Section 3.5.3). We set the minimum gap allowed between points on the same line to

NL
gap = 5 pixels and the maximum gap to NH

gap = 0.05max(WX , HX), where (WX , HX)

are the width and height of the image respectively.

We next proceed to group the segments into candidates. Each candidate consists

of a set of segments having one reference segment, at least one parallel segment,

and two orthogonal segments (one to the left and one to the right of the reference

segment). The reference segment is chosen at random from the list of segments that

have not been grouped yet. Parallel segments need to have similar slope and length

relative to the reference segment. The thresholds are set so that |mp − mr| < Tm

and |lp − lr| < Tl, where mp and mr are the slopes of the parallel and reference

segments respectively, lp and lr are the lengths of the parallel and reference segments

respectively, Tm = 0.1, Tl = 0.75e and e = max(lp, lr). The distance d between the

reference and the parallel segments has to be in the range TL
d < d < TH

d , where

TL
d = 0.5e and TH

d = 2.5e. This distance is defined between the middle points of the

parallel and the reference segments. Also, the angle between the reference and the

parallel segments has to be less than θRP = 20◦. This angle is defined by the normal

of the parallel segment at its middle point and the vector joining the middle points of

the parallel and the reference segments. Orthogonal segments need to have opposite

slope and similar length to the reference segment, that is, |mo + 1/mr| < Tm and

|lo− lr| < Tl, where mo and lo are the slope and the length of the orthogonal segment.

The distance d between the reference and the orthogonal segments has to be in the

range TL
d < d < TH

d . The angle between the reference and the orthogonal segments

is defined as positive when the orthogonal segment is to the right of the reference

segment, and defined as negative when the orthogonal segment is to the left of the

reference segment.

For each candidate set satisfying the geometric constraints we compute its minimal

bounding box. We then discard any candidate with a bounding box aspect ratio

smaller than TBB = 1.3.
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Finally, we check the remaining candidates and remove those that correspond to

the same sign. This can be done by first dividing all bounding boxes that overlap

more than Toverlap = 50% into groups, and then finding the optimal bounding box

for each group. We consider the optimal bounding box to be the one with its nodes

closest to its centroid (i.e. closest to a square).

Figure 4.3 illustrates an example of the complete process. Once a hazmat sign is

segmented, its color is set to the average hue inside the optimal bounding box and

the color is used to identify the sign. We also do basic text recognition inside the

detected region using the open source Optical Character Recognition (OCR) engine

OCRAD [289]. Although the accuracy of OCRAD is far below other state-of-the-art

OCR engines, it was chosen for its speed [290]. Note that the text recognition step is

applied just for testing purposes. Other text recognition methods will be investigated

in the future (see Section 6).

Fig. 4.3.: First method (left to right): original image, segments at ±45◦, grouped
segments, optimal bounding box.

Table 4.1 shows all the parameters/thresholds we used including empirically de-

rived parameters.

4.3 Convex Quadrilateral Detection Based on Saliency Map1

Our first method described above has some drawbacks:

1The work presented in this section was done by the author jointly with Bin Zhao.
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Table 4.1: Parameters and thresholds used in Segment Detection Using Geometric
Constraints. WX and HX are the width and height of X respectively. e = max(lp, lr)

Parameter Description Value
Lse Length of structuring elements for erosion 10 px
θse Orientation of structuring elements for erosion ±45◦

NL
gap Maximum gap for Standard Hough Transform 5 px

NH
gap Minimum gap for Standard Hough Transform 0.05max(WX , HX)

Tm Slope threshold 0.1
Tl Length threshold 0.75e
TL
d Low distance threshold between segments 0.5e

TH
d High distance threshold between segments 2.5e

θRP Angular threshold between segments 20◦

TBB Bounding box ratio threshold 1.3
Toverlap Bounding box overlap threshold 50%
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• Grayscale: By converting the original RGB image to grayscale we loose color

information. This can cause the hazmat sign to have similar intensity values

as the background given specific illumination conditions. Figure 4.4 illustrates

an example. The edge detection process cannot separate the top corner of the

sign from the background, thus loosing the necessary edges to continue the

recognition process.

• Low resolution/Blurry: With low resolution or blurry images, the resulting

edge map will not contain straight edges at ±45◦ and the erosion process will

then delete most of them. Figure 4.5 shows an example.

• Distortion: Hazmat signs not satisfying the two assumptions of the first

method will be removed during the erosion process. Figure 4.6 shows an exam-

ple.

• Line overlap: The gap threshold of the Standard Hough Transform may cause

the segment grouping process to merge two segments from two close signs, as

shown in Figure 4.7.

• Shade: The image contains shade that can alter the color of the sign. Figure

4.8 illustrates an example. The result is an unsuccessful color recognition once

the hazmat sign is detected.

Our second technique replaces the initial edge detection with a saliency map to

detect regions potentially containing hazmat signs2. The block diagram in Figure 4.9

shows the block diagram of the proposed method. Figures 4.10 and 4.11 illustrate

examples of the saliency maps obtained on the Lab and RGB color spaces. Note how

the saliency map applied on the RGB color space does better on black or white signs

(low chroma region), while the Lab color space does better on the rest of the signs.

We apply visual saliency models to the input images represented in both RGB

and Lab color spaces. In each color space, two saliency maps are constructed using

2This work was done by Bin Zhao.
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Fig. 4.4.: Issue With First Method: Grayscale. Sign Is Lost On Line Detection
Process.

Fig. 4.5.: Issue With First Method: Low Resolution. Sign Is Lost On Erosion Process.

Fig. 4.6.: Issue With First Method: Sign Distortion. Sign Is Lost On Erosion Process.
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Fig. 4.7.: Issue With First Method: Segment Merging. Sign Is Lost On Segment
Grouping Process.

Fig. 4.8.: Issue With First Method: Shade. Sign Color Is Not Recognized Properly.
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Fig. 4.9.: Proposed Hazmat Sign Detection and Recognition Method.

Fig. 4.10.: Saliency Map Method Obtained On Lab (Middle) and RGB (Right) Color
Spaces.
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Fig. 4.11.: Saliency Map Method Obtained On Lab (Middle) and RGB (Right) Color
Spaces.
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two visual saliency models separately, i.e. IS [291] and HFT [273]. The saliency maps

assign higher saliency value to more visually attractive regions. Note that the original

HFT method uses the I-RG-BY opponent color space. We modified this method to

use RGB and Lab color components with different weights (WRGB = [1
3
, 1
3
, 1
3
] for

RGB and WLab =[1
2
, 1
4
, 1
4
] for Lab). The combined saliency map method, denoted as

IS+HFT(RGB+Lab), generates four saliency maps (two for RGB and two for Lab)

and produces the best results in the experiments (see Section 5.2.2). We threshold

each saliency map to create a binary mask to segment the salient regions from the

original image. The threshold T1 is determined as k times the average saliency value

of a given saliency map. That is, T1 =
k

W×H

∑W
x=1

∑H
y=1 S(x, y), where W and H are

the width and height of the saliency map, S(x, y) is the saliency value at position

(x, y) and k is empirically determined for the combined saliency map method (k = 4.5

for IS and k = 3.5 for HFT).

For each salient region found, we detect signs using specific color channels. Hazmat

signs in our datasets contain either one or two of the following colors: black, white,

red, blue, green, yellow. We then divide the input image into six color channels and

we process them as separate images. The red, green and blue channels are obtained

from the RGB color space. The yellow channel is obtained from the CMYK color

space. The black and white channels are obtained by thresholding the Y channel.

This allows us to do both sign detection and color recognition at the same time,

since we will assume that the color of any hazmat sign found in the region will

correspond to the color channel associated to it. Note that although our dataset does

not contain orange hazmat signs, they exist and can appear in the future. We would

then be able to extract a seventh channel by transforming the image from RGB to a

hue-based color space and then segment the hue channel.

The grayscale and the color channels are thresholded to account for highly chro-

matic areas using an empirically determined threshold T2 (85 for black, 170 for white,

and 127 for color). Note that this last threshold can be avoided by working with a

hue-based color space. Each of the thresholded images is binarized, and morpholog-
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ically opened to remove small objects containing less than NO
px = 0.05%WH. We

also use dilation with a flat, disk-shaped structuring element of size Sse = 7 to merge

areas that may belong to the same object. Figure 4.12 shows the structuring element

used for dilation.

Fig. 4.12.: Structuring Element Used for Dilation.

We then retrieve the contours from the resulting binary image [292]. For each

contour, we use the Standard Hough Transform [226, 227] to find straight lines that

approximate the contour as a polygon. The intersections of these lines give us the

corners of the polygon, which can be used to discard non-quadrilateral shapes. If

the contour is approximated by four vertices, we find its convex hull [293]. If the

convex hull still has four vertices, we check the angles formed by the intersection of

its points. If each of these angles is in the range T v
θ = 90◦ ± 1.5◦, and the ratio of the

sides formed by the convex hull is in the range T e
r = 1± 0.5, we can assume that we

have found a convex quadrilateral.

Finally, we use the same technique as in the first method to remove quadrilaterals

that correspond to the same hazmat sign. Figure 4.13 illustrates a successful detection

of two signs, one is affected by rotation and perspective distortion. Figure 4.14

illustrates a successful detection of one sign and also a false positive. In this particular
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case the issue could be addressed by using an optical character recognition to detect

the text inside the sign candidate.

Fig. 4.13.: Second Method: True Positives.

Fig. 4.14.: Second Method: True Positive/False Positive.

Our second method offers multiple advantages. First, it is robust to rotation,

since there is no erosion at ±45◦. Second, it is robust to perspective distortion, since

convex quadrilaterals can be skewed. Third, it is able to detect signs close to each

other, since there is no overlapping of line segments caused by the Standard Hough

Transform. Fourth, it is more robust to blurred and low resolution images, since

there is no edge detection is on the sign recognition step. Lastly, it is more robust
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Table 4.2: Parameters and thresholds used in Convex Quadrilateral Detection Based
on Saliency Map. W and H are the width and height of the saliency map. S(x, y) is
the saliency value at (x, y)

Parameter Description Value
WRGB RGB weights for saliency model [1

3
, 1
3
, 1
3
]

WLab Lab weights for saliency model [1
2
, 1
4
, 1
4
]

T1 Saliency map threshold k
W×H

∑W
x=1

∑H
y=1 S(x, y)

k Weight included in T1 (IS) 4.5
k Weight included in T1 (HFT) 3.5
T2 Color channel threshold (black) 85
T2 Color channel threshold (white) 170
T2 Color channel threshold (color) 127
NO

px Number of pixels for opening 0.05%WH

Sse Size of structuring elements for dilation 7
T v
θ Angular threshold between convex hull vertices 90◦ ± 1.5◦

Tr Ratio threshold between convex hull edges 1± 0.5

to color recognition, since it detects signs already in specific color channels. The

only disadvantage is its execution time. The first method uses basic geometry to find

potential candidates, while the second method needs to compute a saliency map as a

preprocessing step, which takes more time than the first process itself.

Table 4.2 shows all the parameters/thresholds we used including empirically de-

rived parameters.

4.4 Sign Location Detection Based on Fourier Descriptors3

The second method is robust to geometric distortions and illumination changes.

However, it relies on the detection of straight edges and the relationship between their

lengths and angles. This causes the process fails on low resolution images, signs with

partial occlusions and deteriorated signs. We propose a third method to overcome the

drawbacks caused by detections based on geometric constraints. Figure 4.15 shows

the block diagram of the proposed method. We use contour shape representation and

3The work presented in this section was done by Kharittha Thongkor jointly with the author
and Bin Zhao.
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matching based on Fourier descriptors. Note that we do not use a saliency map to

get an initial sign location estimation. Instead we use the original image as input to

our system.

Contour Extraction

Fourier Descriptors 
Generation

Fourier Descriptors 
Matcher

Input Image

Detected Shape

Contours

Contour Extraction

Fourier Descriptors 
Generation

Shape Template

Contours

FDsFDs

Fig. 4.15.: Sign Location Detection Based on Fourier Descriptors.

In this method we also detect hazmat sign locations in specific color channels,

so no further color recognition is not required after detecting the location of the

sign. As opposed to our second method, each of the six images extracted from each

color channel is binarized separately. For this purpose we propose the use of color

channel thresholding followed by Otsu’s thresholding technique [294] to obtain the

final binary image. For each of the six color channel images, Ii, i ∈ [1, 6], we first

select two parameters for channel thresholding, Ti1 and Ti2 . The reason why we need

Ti1 and Ti2 is that directly using Otsu’s thresholding method on a channel does not

produce accurate results when images contain variable illumination [295]. Histogram

of each color channel can be analyzed for minima/valleys which can then be used to

determine two thresholds as follows. Ti1 is set to

Ti1 = min
(255

4
, hi1

)
, (4.1)

whereHi1 is the location of the first valley of the histogram of the ith color channel.

The first valley is the minimum point between the first two significant peaks. The
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set of significant peaks P1 of a histogram h is defined as the set of points with a

histogram value greater than their local maximum neighbors [296]. That is,

P1 = {(pi, h(pi))|h(pi) > {h(pi−1), h(pi+1)}, pi ∈ P0}, (4.2)

where

P0 = {(i, h(i))|h(i) > {h(i− 1), h(i+ 1)}, 0 ≤ i ≤ 255}, (4.3)

Ti2 is set to

Ti2 = max
(
3
255

4
, Hi2

)
, (4.4)

where Hi2 is the location of the last valley of the histogram of the ith color channel.

The color channel image Ii is then thresholded by:

I ′i(x, y) =





0 Ii(x, y) ≤ Ti1 or Ii(x, y) ≥ Ti2

Ii(x, y) otherwise
(4.5)

Each image I ′i is then used as input for Otsu’s thresholding method to auto-

matically generate a threshold Tib . Finally, each original color channel image Ii is

then binarized using Tib . Figure 4.16 illustrates a comparison using Otsu’s method

with and without our proposed color channel thresholding method. Note how Otsu’s

method fails to find the optimal threshold because of the high density of pixels in the

sky region having high intensity values in the red channel.

As we mentioned above we use morphological techniques to merge areas in the

binary image found above that may belong to the same hazmat sign. First, we use a

flood-fill operation to fill holes in the binary image [297]. A hole is a set of background

pixels surrounded by foreground pixels. Next, we use morphological dilation with a

flat, diamond shape structuring element of size Sd = 5 pixels to enlarge the boundaries

of foreground areas [256,298]. Then, we remove small objects by using morphological

opening with a flat, diamond-shaped structuring element of size So = 20 pixels. We
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(a) Original image (b) Red channel (c) Red channel histogram

(d) Otsu’s method (e) Proposed method

Fig. 4.16.: Example of image binarization using our proposed color channel thresh-
olding method comparing with Ostu’s method.



182

also remove objects containing less than Tc = 0.03% of the total number of pixels in

the image. We chose 0.03% because it is the minimum number of pixels contained in

a hazmat sign in our image test set. Finally, we obtain closed contours by tracing the

exterior boundaries of objects in the resulting binary image [299, 300]. Figure 4.17

shows some examples of extracted contours from input images. Note that the size of

the structuring elements are empirically obtained from the ground-truth data in our

dataset. They came from searching the best values that give the maximum number

of signs before tracing the exterior boundaries of objects.

(a) (b)

(c) (d)

Fig. 4.17.: Examples of input images (left) and their contours (right).

Each contour found from the previous step is used to generate a Fourier Descrip-

tor (FD). The FD describes the shape of an object through the use of the Fourier

transform of the object’s contour. Assuming the contour of a shape has N pixels,
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numbered from 0 to N − 1, a set of coordinates describing the contour can be defined

as

b(k) = (x(k), y(k)) = x(k) + iy(k), (4.6)

where k = 0, 1, 2, . . . , N −1. The Fourier transform of the contour function, A(v),

is the FD:

A(v) = F (b(k)) =
1

N

N/2−1∑

k=−N/2

b(k)exp−
j2πvk

N , (4.7)

where v = 0, . . . , N − 1. To describe the shape of a boundary the Fourier coef-

ficients have to be normalized to make them invariant to translation and scale [169,

257,261,262,264].

If the 2D shape is translated by a distance z0 = x0 + jy0:

b′(k) = b(k) + z0 (4.8)

its FD becomes

A′(v) =
1

N

N−1∑

k=0

(b(k) + z0)exp
− j2πvk

N (4.9)

=
1

N

N−1∑

k=0

b(k)exp−
j2πvk

N +
1

N

N−1∑

k=0

z0exp
− j2πvk

N (4.10)

= A(v) + z0δ(v). (4.11)

This means the translation only affects the DC component A(0) of the FD. There-

fore, by setting the first coefficient, A(0), to zero we make the FD invariant to trans-

lation.

If the 2D shape is scaled (with respect to origin) by a factor S:

b′(k) = Sb(k) (4.12)
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its FD is scaled by the same factor:

A′(v) = SA(v). (4.13)

Therefore, by normalizing the energy of the remaining coefficients to 1 we make

the FD invariant to scale. The normalized FD A′(v) then becomes:

A′(v) =
A(v)√∑∞
v=1 |A(v)|2

, A′(0) = 0. (4.14)

The low frequency components of A′(v) contain information about the general

shape and the high frequency components contain finer details. Therefore, the first

P Fourier descriptor coefficients can be used to create an approximate reconstruction

of the contour b(k),

b̂(k) =
1

P

P−1∑

v=0

A′(v)exp
j2πvk

N , k = 0, 1, 2, . . . , N − 1. (4.15)

In order to determine if a contour obtained from an image belongs to a hazmat sign

we need to compare its FD against the FD of a predefined shape template or shape

contour in a process called contour matching. In this paper the shape template is a

diamond shaped binary image resembling a hazmat sign (see Figure 4.18). Contour

matching can be done in the spatial or frequency domain. We use matching in the

frequency domain for two reasons. First, matching in the frequency domain is scale

independent, as opposed to spatial domain matching. Second, matching in the spatial

domain involves scanning an image multiple times modifying the scale and rotation

of the shape template. Since the normalized FDs are invariant to scale and the

correlation matching in frequency domain is invariant to rotation the matching is less

computationally expensive. The frequency domain matching has also been shown to

be more efficient [301, 302] and allows easy recognition for rotated and scaled noisy

sign images [170].
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Fig. 4.18.: A diamond shaped binary image is used as a shape template.



186

FD matching is usually done by using only the magnitude and ignoring the phase

information. By discarding the phase information we achieve rotation and starting

point invariance [303]. This is because a rotation of the 2D shape by an angle φ about

the origin only introduces a phase shift in the FD:

b′(k) = b(k)ejφ ⇒ A′(v) = A(v)ejφ, (4.16)

and a shift of the 2D shape from 0 to m0 only introduces a phase shift in the FD:

b′(k) = b(k −m0) ⇒ A′(v) = A(v)e
j2πm0v

N . (4.17)

However, different shapes can have similar magnitude but completely different

phase information, thus making magnitude-based matching less accurate [257]. There-

fore, we use a correlation-based matching cost function that uses both magnitude and

phase information [257]. The cross-correlation between the shape template contour

T and the image contour I, rTI(l) is

rTI(l) = (T ∗ I)(l) =
∫ K

0

T(k)I(l + k) dk

=
∞∑

v=0

A′
T (v)A

′
I(v)exp

− j2πvl

K

= F−1{A′
TA

′
I}(v).

(4.18)

A′
T (v) and A′

I(v) are the normalized FDs of the template and the input contours,

respectively.

By using normalized contours and complex FD matching we approximately com-

pensate for scaling, rotation, translation and starting point. We say “approximately”

because we are only using the first few Fourier coefficients to describe the shape of the

contour. To find the appropriate number of Fourier coefficients needed for matching

we examined the effect of varying the number of low-frequency coefficients we used
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from our shape template. Figure 4.19 illustrates the effect of using the first 2, 5,

8, 16, 30, 50, 80 and 100 coefficients from our shape template. Using more Fourier

coefficients than necessary leads to increasing computation time with no additional

benefit. Adding too many coefficients does not significantly improve the matching

performance [168]. Thus, only the first eight Fourier coefficients were used in our

experiments.

To decide if a contour extracted from an image corresponds to a hazmat sign

we need some way of matching the normalized FD of our shape template and the

normalized FD of the extracted contour. Correlation-based matching estimates the

cost between two normalized FDs. The cost is defined as

e = 2− 2max
l

|rTI(l)|, (4.19)

where | · | denotes the complex modulus. Thus we check if the correlation-based

matching cost e between the normalized FD of our shape template and the normalized

FD of the extracted contour is below a threshold Te. To obtain the value of Te we

calculate the correlation-based matching cost e between our shape contour (Figure

4.18) and each of the shape template contours shown in Figure 4.20. Since the cost

of matching our shape template against a diamond shape (including rotation) is not

greater than 1.75 we set Te = 1.75. Note that the shape templates in Figure 4.20 are

only used to decide the value of Te.

Table 4.3 shows all the parameters/thresholds we used including empirically de-

rived parameters.
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(a) 2 (b) 5 (c) 8 (d) 16

(e) 30 (f) 50 (g) 80 (h) 100

Fig. 4.19.: Reconstruction of the shape template using the first 2, 5, 8, 16, 30, 50, 80
and 100 Fourier coefficients.

1.69 1.75 1.94 1.94 1.95

1.97 1.97 1.97 1.94 1.91

Fig. 4.20.: Comparison of our shape template contour against different shape tem-
plates and their matching costs e.
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Table 4.3: Parameters and thresholds used in our proposed method. Automatically
determined values are denoted by *. W and H are the width and height of the image.

Parameter Description Value
Ti1 Low threshold for channel thresholding *
Ti2 High threshold for channel thresholding *
Tib Otsu’s threshold for binarization *
Sd Size of structuring element for dilation 5 px
So Size of structuring element for opening 20 px
Tc Connected components threshold 0.03WH
Te Correlation-based matching cost threshold 1.75
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4.5 System Implementation4

4.5.1 System Overview

We implemented a prototype of the MERGE system as an application for Android

and iOS devices and as a web-based interface accessible from any web browser. Figure

4.21 illustrates the MERGE system, which is divided in two groups:

1. Client-side: Browse an internal database on the Android device, consisting of

the contents of the ERG 2012 Guidebook5. Figure 4.22 illustrates the client-side

system.

2. Server-side: Use image analysis on the server and communicate the results

back to the client. Figure 4.23 illustrates the server-side system.

The client-side includes the device and methods available to the users, operating

without the use of a network connection. The offline services are only available from

Android devices (Section 4.5.3). The online services are available from both Android

devices or any web browser (e.g., Internet Explorer, Mozilla Firefox, Google Chrome).

This includes desktop and laptop computers as well as Blackberry smartphones (Sec-

tion 4.5.4). The server-side includes the image analysis process to detect and interpret

the hazmat signs.

4The work presented in this section was done by the author jointly with Andrew W. Haddad.
5The internal database was initially created by Andrew W. Haddad and later updated by the

author.
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Fig. 4.21.: Mobile-Based Hazmat Sign Detection and Recognition.
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Fig. 4.22.: Overview of the MERGE Client-Side Components.

4.5.2 MERGE Databases

In this section we describe how the image database is organized. We will first

describe the database schema and then show by an example how the information

GARI acquires is added to the database. The database of hazmat signs was deployed

for three reasons:

1. To collect and organize images acquired by first responders. This includes im-

ages of hazmat signs, images of scenes for forensic analysis, and metadata.

2. To store the results of the image analysis.

3. To manage first responders’ credentials, allowing them to access the services

available through the Android/iOS applications and the web based interface.
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Fig. 4.23.: Overview of the MERGE Server-Side Components.

The MERGE database is implemented in PostgreSQL on a Linux server. It con-

sists of 15 tables, all of them detailed in Appendix E. Figure 3.48 illustrates the

structure of the 11 main tables. Note that the schema does not show all the fields

in all the tables but just the relevant fields to indicate the association between the

tables.

1. images: Stores EXIF data from the images along with image location and

general image information and the results from the image analysis. The fields

related to this table are shown in Tables E.1, E.2 and E.3 in Appendix E.

2. vw 01 orange page: Stores the relationships between guide page numbers,

guide pages, categories and details.

3. vw 03 yellow page: Stores the relationships between guide page numbers and

UNIDs.
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4. vw 05 water reactive materials: Stores relationships between UNIDs, dan-

gerous goods and guide page numbers.

5. placard: Stores the relationships between UNIDs, placards, symbols and classes.

6. unids: Stores the relationships between guide pages, UNIDs and hazardous

materials.

7. class: Stores information about classes.

8. colorPages: Stores the relationships between guide pages and placard colors.

9. textPages: Stores information about the text contained in the guide pages.

10. symbols: Stores information about the symbols that can appear in hazmat

signs.

11. users: Stores users’ credentials to access to the system services as well as infor-

mation concerning administrative privileges, email addresses, and registration

and login status. Table E.4 in Appendix E describes the fields of this table.

Note that currently we only populate the tables images and users.
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Fig. 4.24.: Database Schema Showing The Associations Between the Tables in the
Database.

4.5.3 Android/iOS Implementation

We implemented the MERGE system on Android and iOS devices as summarized

in Figures 4.22 and 4.23. We called this application Mobile MERGE. In this section

we describe how the application works and describe its user interface.

Overview

A user takes an image of the scene containing one or multiple hazmat signs using

the embedded camera on the device via the Graphical User Interface (GUI). The

EXIF data of the image, including GPS location and date and time of capture, is

automatically added to the image header. The image is then automatically sent to

the server for analysis. The results are sent back to the user, and links to an internal

database are provided. The internal database is a digitized version of the 2012 ERG.
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Another option is to browse the internal database. The user can search for infor-

mation about hazmat signs by UNID, symbol, class, or color. Each of the options

provide links to the guide pages containing information to determine what specialty

equipment, procedures and precautions should be taken in the event of an emergency.

We implemented the system on different smartphones makes and models, but

always targeting version 3.0 of the Android operating system (OS).

User Interface6

Our Android application does not require the use of a network connection. How-

ever it is mandatory if the user wants to update the application or analyze an image.

The application automatically checks for updates when launched, notifying the user

if a new version is available (Figure 4.25). A user must be assigned a User ID and

a unique password in order to use MERGE. Once the User ID and password has

been entered, the main screen is shown (Figure 4.26). The main screen includes the

following options, which are described below:

• Browse Image

• Browse Guide Pages

• Capture Image

• Settings

• About

Note that the “About” option appears when the user presses the menu button.

Browse Image

The user has the option to browse images stored on the Android device, instead of

taking an image using the “Capture Image” option. Note that the entire phone im-

age gallery is browsed, including images that have not been taken using the Mobile

6The user interface was initially created by AndrewW. Haddad, and later updated by the author.
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(a) Android (b) iPhone

Fig. 4.25.: Automatic updates.

(a) Android (b) iPhone

Fig. 4.26.: Main Screen.
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MERGE application. When the option “Browse Image” is tapped, a directory brows-

ing window is opened, and the user can search and select the desired image. Figure

4.27 shows an example of browsing. Once the image is selected, it is automatically

sent to the server for analysis.

(a) Android (b) iPhone

Fig. 4.27.: Screens for browsing images.

Browse Guide Pages

When the user chooses to search for a guide page, they are presented with a dialog

containing four different ways to search the database, depending on what information

is available to the user. The four options are shown in Figure 4.28:

1. UNID

The four-digit UNID number should be one of the UNIDs found in the 2012

emergency response guidebook. The valid range for guide pages is 1001-9279.

Numbers outside this range will produce an error indicating the proper range.

2. Class

Each class produces a list of pages or a single guide page pertaining to the par-

ticular class selected. In many cases, the list cannot be narrowed automatically

and the decision is left to the user. The possible classes are: Explosives, Gases,

Flammable Liquids, Flammable Solids, Oxidizing Substances, Toxic Substances,

Corrosive Substances, and Miscellaneous Hazardous Materials.
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(a) Browse ERG (b) By UNID (c) By Class (d) By Symbol (e) By Color

(f) Browse ERG (g) By UNID (h) By Class (i) By Symbol (j) By Color

Fig. 4.28.: Methods for browsing. Android (top) and iPhone (bottom).
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3. Symbol

Though symbols are often related to the guide pages similarly to the classes, they

do not always match. Often we have multiple symbols per class and multiple

classes per symbol. Similarly to classes, each symbol produces a list of pages or

a single guide page pertaining to the particular symbol selected. In many cases,

the list cannot be narrowed automatically and the decision is left to the user.

The possible symbols are: Corrosive, Explosive, Flammable, Gases, Infectious,

Oxidizing, Pollutant, Radioactive, and Toxic.

4. Color

Each color or combination of colors represents a number of guide pages. Simi-

larly to classes and symbols, each color produces a list of pages or a single guide

page pertaining to the particular color or combination of colors selected. In

many cases, the list cannot be narrowed automatically and the decision is left

to the user. The possible colors and combinations of colors are: Red, Orange,

Yellow, Green, Blue, White, White and Black, Red and Yellow, White and Red,

Yellow and White, White and Black Stripes, White and Red Stripes.

5. Guide Page

The ERG contains a section where the general hazards of the dangerous goods

are covered (orange-bordered pages, also known as guides). Each guide is di-

vided into three main sections: potential hazards, public safety, and emergency

response (Figure 4.29a). The guides in Mobile MERGE are organized in the

same fashion as in the ERG, but using expandable lists. That is, the user can

search for a specific guide page and tap on any of the three sections to read all

the information available (Figure 4.29c).

(a) Page Number

The first thing the user will notice, at the top most of the orange header,

is the Guide Page number. This is made available so the user can cross-
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(a) 2012 ERG (b) Android MERGE (c) iPhone MERGE

Fig. 4.29.: Guide page in the ERG 2012 and corresponding guide page in Mobile
MERGE for Android (middle) and iPhone (right).
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reference the information provided by MERGE with the Emergency Re-

sponse Guidebook (ERG) 2012 if necessary.

(b) Substance

Next, also in the header, the user will see the substance name/category.

E.g. Oxidizers.

(c) Categories

As previously stated, the page is separated into categories, subcategories,

and details. The headers for possible categories are: Potential Hazards,

Public Safety, Emergency Response, Supplemental Information.

(d) Map

If a green table entry is available for a given guide page, the user will

be presented with the option of displaying a map with a recommended

evacuation region defined according to the current location of the user and

the chemical chosen. Figure 4.30) shows the steps followed to obtain the

evacuation region. The user will be asked up to three questions to better

define the evacuation region: “Large of Small Spill?”, “Initial Isolation or

Protective Action?” and “Is it Day or Night?”. After the user answers

these questions, a map is displayed. The map will always contain a circle

shape indicating the evacuation region, and for some available chemicals

it will also contain a plume model, as seen in Figure 4.30h. The plume

shape is obtained by querying database of real-time weather information,

which provides more accurate evacuation information using wind speed

and direction at the current location.

Capture Image

If the user taps the “Capture Image” button from the main screen an image can be

acquired. The camera interface, shown in Figure 4.31, allows the user to take an

image of a hazmat sign to be analyzed (“SIGN”) or an image of the scene for future

forensic analysis (“SCENE”).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.30.: Evacuation region for Android (top) and iPhone (bottom). From left to
right, questions asked to refine evacuation region, and general evacuation circle and
weather-based plume model.
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The image is automatically sent to the server, where it is be stored and analyzed.

The user is notified through a dialog that the image upload and analysis is taking

place. The analysis is done only when the image is captured using the “SIGN” option.

After the analysis, the user will be presented with options to determine correctness

and the closest matching guide page associated with the captured placard.

Fig. 4.31.: Camera Interface with “SIGN” and “SCENE” options.

When the image analysis is completed, the results are shown to the user. There

are two possible scenarios.

1. If no placard has been found a dialog informs the user (Figure 4.32d).

2. If the system has successfully determined which placard the image corresponds

to, it will show a list with the results (Figure 4.32e). If more than one result is

possible for a particular placard (e.g., if the placard color is found but not the

text) a list of all the associated guide pages are shown (Figure 4.32f); otherwise,

a single guide page is shown (Figure 4.29c).

Security

Our Android application is used by first responders from multiple agencies. There-

fore, it is mandatory to ensure that only authorized users can access and use the
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(a) No Placard Found (b) Results of Analysis (c) Possible Guide
Pages

(d) No Placard Found (e) Results of Analysis (f) Possible Guide
Pages

Fig. 4.32.: Results of the Image Analysis Process. Android (top) and iPhone (bottom)
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application. The connections to the server must be secure and all the information

transmitted to and from the server must be encrypted (using the SSL/TLS protocol).

The user credentials are sent every time the application contacts the server to make

sure the connection is made by an authorized user. In the Android version we use

ProGuard [246], a code optimizer and obfuscator for the Android SDK. It reduces

the application size up to 70% and makes the source code more difficult to reverse

engineer. It also improves the battery life by removing verbose logging code in a

background service. An additional level of security includes the creation of two types

of users:

• Regular users: Can switch between users, change their password, delete specific

images only taken by themselves, and send crashlogs to the server.

• Administrative users: Can modify the server domain name/IP address, change

user IDs, change passwords, delete specific images from any user, delete all

images of any specific user, and send crashlogs to the server.

When launching the MERGE application, a dialog box prompts the user (Figure

4.33a). The user ID and a password is entered. If this is the first time the user logs

in, a new dialog box prompts the user to change the default password (provided by

the MERGE staff by email). For successive logins, the user will appear on a list of

previously logged users, and no password is necessary (Figure 4.33b).

All authorized users can access the “Settings” option from the main screen of the

application. Figure 3.73 shows the various options.

• Server Location: Administrative users can change the server IP address (Figure

4.34f).

• Change Login: The change user dialog is exactly the same as the login dialog,

with the exception that if someone chooses to change the user for the applica-

tion, they can cancel the change before submitting (Figure 4.34g).
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(a) First time login (b) Returning user

Fig. 4.33.: User ID Screen.



208

• Change Password: The change password dialog is exactly the same as the change

password dialog, which appears immediately after the first login - on either the

website or the mobile app - with the exception that if someone chooses to change

the password for the current user of the application, they can cancel the change

before submitting (Figure 4.34h).
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(a) Settings Menu (b) Change Server (c) Change User (d) Change Password

(e) Settings Menu (f) Change Server (g) Change User (h) Change Password

Fig. 4.34.: Settings Menu Options. Android (top) and iPhone (bottom).
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4.5.4 Web Interface7

System Overview

We also implemented our system as a web interface tthat gives the user access

to the hazmat database, and provides the ability to upload and browse images, and

browse the official guidebook. We called this application Desktop MERGE. The web

interface is available from any device with a web browser. This includes all desktop

and laptop machines and all mobile telephones capable of browsing the web (e.g.,

iPhone, Blackberry, Android devices).

User Interface

As of March 2014 the MERGE website is located at www.hazmat-signs.org. The

main page contains information about the MERGE project, its principal investiga-

tors, and the graduate students involved. The “Internal” page (Figure 4.35) displays

the options the user has to interact with the graffiti database, including Browse

Guidebook and Browse Images.

Browse Guidebook

Users can browse the guidebook using four different methods (Figure 4.36). The

intersection of the sets created by the Color, Symbol and Classes chosen will be

returned as a list of guide pages. Given more information, users can combine colors

with symbols and classes. This will produce a smaller list of placards, containing all

of the characteristics added. When a user searches by UNID, it takes preference over

the other fields. That is, if UNID is searched, the Color, Symbol and Class fields are

ignored.

The list of results contains images representing the color and symbol and shows

the class searched. Each entry in the list of results contains the Guide Page number

and Guide Page name (Figure 4.37).

7The work presented in this section was done by Andrew W. Haddad.
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Fig. 4.35.: “Internal” Section of Desktop MERGE.

Fig. 4.36.: Search Guidebook Pages by Color, Symbol, Class, or UNID
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Fig. 4.37.: Browse Guidebook Page Results
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The Guide Page in MERGE is very similar to the Guide Page in the Emergency

Response Guidebook. It contains the Guide Page Number, Guide Page Name, Cat-

egories (Potential Hazards, Public Safety, Emergency Response, and Supplemental

Information), Sub-categories (Fire or Explosion, Health, Protective Clothing, Evacu-

ation, Spill or Leak, First Aid, etc) and each sub-category contains a bulleted list of

details (Figure 4.38).

Fig. 4.38.: View Guidebook Page

Browse Images

Administrative users can browse images that have been uploaded (Figure 4.39). The

images are listed along with the user who uploaded the image and the date and time

they were taken. The user can choose between browsing the images containing signs

(Signs) or the scene images uploaded for forensic analysis (Scene).
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Fig. 4.39.: Browse Images
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5. EXPERIMENTAL RESULTS

All the experiments in this section were done using a Samsung Galaxy Nexus mobile

device with a dual-core 1.2GHz CPU and 1GB RAM for the client tasks, and a desktop

computer with a quad-core 3.2GHz CPU and 32GB RAM for the server tasks.

5.1 GARI

5.1.1 RGB to Y’CH Conversion

In Section 3.4 and Appendix A we describe two approaches to transform the

RGB color space to our Y’CH color space. The first, which we called arithmetic

approach, converts RGB to Y’CH by only doing arithmetic operations The second,

which we called trigonometric approach, converts RGB to YIQ color space as an

intermediate step, and then to Y’CH, using arithmetic and trigonometric operations.

As a reminder, Equation 5.1 shows the mathematical definition of the arithmetic

approach and Equation 5.2 shows the mathematical definition of the trigonometric

approach. Note that Equation 5.2 does not define the transformation RGB to YIQ,

since it is a linear transformation, it will not have an influence on the execution time

of the overall transformation RGB to Y’CH.
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Y = 0.299R + 0.587G+ 0.114B

C = max(R,G,B)−min(R,G,B)

= M − n

H =





60(G−B
C

) if M=R

60(B−R
C

+ 2) if M=G

60(R−G
C

+ 4) if M=B

undefined if C=0

(5.1)

Y = 0.299R + 0.587G+ 0.114B

C =
√

I2 +Q2

H =





arctan(Q
I
) I > 0

π + arctan(Q
I
) Q ≥ 0, I < 0

−π + arctan(Q
I
) Q < 0, I < 0

π
2

Q > 0, I = 0

−π
2

Q < 0, I = 0

undefined Q = 0, I = 0

(5.2)

Given that trigonometric operations are computationally more complex than arith-

metic operations [304], we could assume that the arithmetic approach is always com-

putationally faster than the trigonometric approach. However, we conducted tests to

verify this. Table 5.1 and Figure 5.1 show the results of both transformations using

various number of data points on the HTC Desire. Note that each data point corre-

sponds to a pixel operation. Also note that the functions used to compute the time

differential both on the hand-held device are accurate to the nearest millisecond. One

can see how the execution time of the trigonometric approach grows exponentially

faster than the arithmetic approach when the number of data points is greater than
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approximately one million. For example, for a five megapixel image (i.e., five million

data points) the difference between the arithmetic approach and the trigonometric

approach can be linearly interpolated to 3.36 seconds. Since the RGB to Y’CH con-

version is done not only along a traced path during the color recognition process, but

also on entire images during the image segmentation process, it is worth considering

the arithmetic approach as a lightweight and fast approach if we plan on doing color

image segmentation on the device in the future.

Table 5.1: Execution Time (seconds) of the Arithmetic and the Trigonometric Ap-
proaches For Color Conversion.

Execution Time
Data Points Arithmetic Trigonometric

100 0 0
1,000 0.002 0.004
10,000 0.010 0.010
100,000 0.02 0.10
1 million 0.20 0.96
10 million 1.91 9.39
100 million 18.37 91.85
1 billion 183 922

Fig. 5.1.: Execution Time with Respect to the Number of Data Points for the Arith-
metic and the Trigonometric Approaches For Color Conversion.
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5.1.2 Color Correction Based on Mobile Light Sensor1

To evaluate the performance of our proposed Color Correction Based on Mobile

Light Sensor we did an experiment in 3 different scenarios: 1) using a fiducial marker

in every image (M1), 2) using a fiducial marker every week (M2), 3) using the mobile

light sensor values (M3). Using a fiducial marker every week means taking an image of

the fiducial marker under daylight conditions to create a color correction matrix, and

using this matrix on every image taken in the following week. For scenario M3 4,916

images were acquired during a period of three weeks during August of 2013, using a

5Mpx camera on a Samsung Galaxy Nexus mobile device, to obtain 612 unique lux

values. Figure 5.2 illustrates the distribution of lux values for each lightning step.
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Fig. 5.2.: Distribution of Lux Values for Each Lightning Step.

For each scenario we computed 3 different color correction matrices to map col-

ors under an unknown lighting condition and a D65 reference lighting condition:

1) CIELab based mapping (MLab
GT→D65), 2) Linear-RGB mapping (MRGB

GT→D65), and

3) Polynomial-RGB mapping (MRGBPOL
GT→D65 ). The mapping MLab

GT→D65 is described in

1The work presented in this section is partly based on the work by Chang Xu on color correction.
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Section 3.3. The mappings MRGB
GT→D65 and MRGBPOL

GT→D65 are obtained following the de-

scription from [61]:

MLab
GT→D65 = argmin

M3×3

11∑

i=1

∥∥∥(Labi)TD65 −M3×3(Labi)
T
GT

∥∥∥ (5.3)

MRGB
GT→D65 = argmin

M3×3

11∑

i=1

∥∥∥(RGBi)
T
D65 −M3×3(RGBi)

T
GT

∥∥∥ (5.4)

MRGBPOL
GT→D65 = argmin

M3×10

11∑

i=1

∥∥∥(RGBi)
T
D65 −M3×10P10×11

∥∥∥, (5.5)

where

P10×11 = [RGT GGT BGT R2
GT G2

GT B2
GT RGTBGT RGTGGT GGTBGT 1]T . (5.6)

For this experiment we acquired 200 images during a period of 3 days during

March of 2014 using a 8Mpx camera on a LG Nexus 5 mobile device. Each image

contained the fiducial marker already introduced in Section 3.3 and a GregtagMacbeth

Colorchecker [305], which is a calibrated color reference chart. Figure 5.3 shows both

markers. The fiducial marker was used to obtain the color correction matrices in M1

and M2, and the GregtagMacbeth Colorchecker was used to compute the differences

between the original image and the corrected images.

Each image was color corrected using the 3 mappings under each of the 3 scenarios

for a total of 9 different color corrections. Figure 5.4 shows an example of color

correction for each mapping. For each color corrected image we obtained the mean

RGB channel errors ∆ by calculating the Euclidean distances of the average color

of each color patch in the GregtagMacbeth Colorchecker between the color corrected

marker (RGBcorr) and the known reference marker under D65 illumination (RGBD65).

That is,
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(a) Fiducial Marker (b) GregtagMacbeth Colorchecker

Fig. 5.3.: Fiducial Marker (left) and GregtagMacbeth Colorchecker (right).
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∆ =
1

24

24∑

i=1

∥∥∥(RGBi)
T
corr − (RGBi)

T
D65

∥∥∥. (5.7)

(a) Original Image. Lux: 2219

(b) M1 Lab (c) M1 RGB (d) M1 RGB POL

(e) M2 Lab (f) M2 RGB (g) M2 RGB POL

(h) M3 Lab (i) M3 RGB (j) M3 RGB POL

Fig. 5.4.: Color Correction Example Under Each Scenario and Each Mapping. M1:
using a fiducial marker in every image, M2: using a fiducial marker every week, M3:
using the mobile light sensor value.

Table 5.2 shows the mean RGB channel errors (∆) and running times for each sce-

nario (M1, M2, M3) and each mapping (Lab, RGB, RGB POL), including individual



222

errors in the R, G, and B color channels. We also include the ∆ of image before cor-

rection for comparison. Figures 5.5 and 5.6 illustrate the RGB results in bar graphs.

Note that since the errors are computed in the RGB color space, the Lab corrected

images are transformed back to RGB. The time spent on this transformation is not

taken into account in the running time.

Table 5.2: Mean Channel Errors (∆) and Average Running Times (seconds) For Each
Scenario (M1, M2, M3) and Mapping (Lab, RGB, RGB POL).

RGB R G B Time
Before 14.06 6.90 6.10 8.35 -
M1 Lab 8.55 2.92 5.06 5.11 1.81
M1 RGB 11.99 4.49 4.97 8.07 1.11

M1 RGB POL 8.73 3.44 4.07 5.26 1.33
M2 Lab 12.72 6.02 5.97 7.18 1.80
M2 RGB 13.96 6.03 5.65 9.04 1.07

M2 RGB POL 12.18 5.84 5.04 6.82 1.31
M3 Lab 10.88 4.99 5.62 6.00 1.76
M3 RGB 13.27 5.63 5.33 8.59 1.05

M3 RGB POL 10.88 5.17 4.75 6.30 1.27

Fig. 5.5.: Mean Channel Errors (∆) For Each Scenario (M1, M2, M3) and Mapping
(Lab, RGB, RGB POL).

The Lab color correction method always gives the best results, at the expense of

a small increase on the computational time. As expected, color correcting an image
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Fig. 5.6.: Average Running Times For Each Scenario (M1, M2, M3) and Mapping
(Lab, RGB, RGB POL).
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using always a fiducial marker produces the best results (∆ = 8.55). However, the

color correction based on the mobile light sensor produces better results than using

a fiducial marker once a week (∆ = 10.88 and ∆ = 12.72 respectively). Also, when

using light sensor values we do not have to compute the color correction matrix for

each image, thus being the fastest of the three scenarios.

5.1.3 Content Based Image Retrieval2

We did two experiments to determine the accuracy and the speed of our image

retrieval approach.

The goal of the first experiment was to match query images to images in our

database based on the scene. We call this process “Gang Graffiti Scene Recognition”.

That is, by finding features not only from the graffiti in the image, but also of the

background. We trained 1,329 images from our database to extract a total of 633,764

SIFT descriptors (an average of 477 descriptor per image), and used hierarchical k-

means to create a vocabulary tree. Figure 5.7 shows some samples from the training

dataset. A separate set of 156 images was used for testing. Both training and testing

images were acquired using multiple cameras with different resolutions, at different

distances, and lighting conditions over a period of 3 years.

Each of the test images corresponded to one of the scenes in our database, but un-

der different viewpoint, rotation, and illumination, and using different camera makes

and models. Figure 5.8 shows some samples from the testing dataset. For each test

image we retrieved its 5 closest matches from the training set and we gave it a score

from 5 to 0, 5 meaning that the matching image was ranked in first position and 0

meaning that there was no match in the top 5 results. We called this scoring method

“weighted top-5 accuracy”.

Table 5.3 summarizes the results of the first experiment using different combina-

tions of k and nw in the range k ∈ [2 . . . 1, 000] and nw ∈ [100 . . . 1, 000, 000]. Table

2The work presented in this section was done by the author in cooperation with Bin Zhao and
Joonsoo Kim.
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Fig. 5.7.: Samples from Training Dataset.
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Fig. 5.8.: Samples Image Matches. Left: Training Images (Samsung Galaxy Nexus).
Right: Matching Testing Images (Casio PowerShot S95).
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5.4 shows the Top-1 accuracies for the same ranges of k and nw. Tables 5.5 and 5.6

show the average training and query times. Figures 5.9 to 5.11 illustrate the same

information using color maps. Even though the retrieval accuracy increases with the

number of leaves, the query time is directly related to the number of nodes and levels

in the vocabulary tree, as shown in Figures 5.12 and 5.13. A wise choice for k and nw

would then take into account both the accuracy and the query time (not the training

time, since it does not affect the real time retrieval). For k = 3 and nw = 10, 000 we

obtain a retrieval accuracy of 99.10% with a Top-1 accuracy of 96.15% and an aver-

age query time of 70 ms. As a comparison, using basic L2-norm matching of SIFT

features between two images in the same computer takes 0.18 seconds on average.

Therefore, a query against the 1,329 training images takes 4 minutes on average.
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Fig. 5.9.: Color Map of Weighted Top-5 Accuracies of Scene Recognition Using Dif-
ferent Values of k and nw.
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Table 5.3: Weighted Top-5 Accuracies of Scene Recognition for Different Values of k and nw (percentage).

❍
❍

❍
❍
❍
❍

nw

k
2 3 4 5 6 7 8 9 10 11

100 19.62 40.64 28.21 16.15 38.33 62.82 68.97 79.23 7.56 11.54
500 72.31 76.41 84.74 70.77 88.72 92.05 71.15 79.62 83.85 85.51
1000 84.74 94.23 84.87 93.21 88.59 92.18 92.95 96.54 85.00 87.69
10000 99.10 99.10 98.21 98.21 98.46 98.21 98.72 98.97 98.21 97.95
50000 98.85 99.10 98.85 98.85 99.23 99.10 99.10 98.85 99.10 99.10
100000 98.85 98.85 98.97 99.10 99.23 98.97 99.23 99.23 99.10 99.10
1000000 99.10 98.85 98.85 98.33 99.23 98.97 97.95 99.23 92.18 99.23

❍
❍

❍
❍
❍
❍

nw

k
12 13 14 15 20 50 100 500 1000

100 17.69 19.10 15.64 18.46 39.23 83.33 6.67 65.64 78.46
500 89.74 87.69 90.64 92.69 92.95 83.59 91.80 65.64 80.26
1000 85.51 92.31 92.31 94.49 91.28 87.31 91.28 98.46 80.00
10000 98.33 98.72 98.46 98.59 98.72 96.54 90.26 98.33 98.72
50000 99.23 99.10 99.23 98.97 98.97 98.21 98.72 98.72 98.33
100000 99.10 99.10 99.10 99.23 98.46 98.46 98.33 97.95 99.10
1000000 92.31 85.00 99.10 98.97 98.72 99.23 98.21 99.10 99.10
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Table 5.4: Top-1 Accuracies of Scene Recognition for Different Values of k and nw (percentage).

❍
❍

❍
❍
❍
❍

nw

k
2 3 4 5 6 7 8 9 10 11

100 10.90 17.31 10.90 6.41 14.74 37.82 49.36 58.97 3.21 4.49
500 52.56 55.13 69.23 41.03 76.28 82.05 51.28 58.97 71.80 75.64
1000 73.08 83.33 72.44 83.97 73.72 82.69 83.33 89.10 77.56 73.08
10000 73.08 96.15 93.59 94.23 94.23 93.59 94.23 95.51 91.67 93.59
50000 96.15 96.15 95.51 95.51 96.80 96.15 96.15 94.87 96.15 96.15
100000 93.59 93.59 95.51 96.15 96.80 95.51 96.80 96.80 96.15 96.15
1000000 96.15 96.15 95.51 95.51 94.23 96.80 95.51 95.51 96.80 96.80

❍
❍

❍
❍
❍
❍

nw

k
12 13 14 15 20 50 100 500 1000

100 9.62 10.26 8.33 9.62 19.23 63.46 1.28 42.31 62.18
500 80.13 76.92 82.05 82.69 80.77 66.67 76.92 39.74 62.18
1000 71.80 81.41 80.77 83.97 71.80 69.23 77.56 95.51 61.54
10000 92.31 94.23 95.51 94.23 94.23 92.31 78.21 95.51 96.15
50000 96.80 96.15 96.80 95.51 95.51 94.23 95.51 96.15 96.15
100000 96.15 96.15 96.15 96.80 94.87 94.87 95.51 95.51 96.15
1000000 96.80 94.23 94.23 92.31 94.87 96.80 96.15 96.15 96.15
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Table 5.5: Training Times of Scene Recognition for Different Values of k and nw (minutes).

❍
❍
❍
❍

❍
❍

nw

k
2 3 4 5 6 7 8 9 10 11

100 69 94 110 116 107 142 219 399 169 241
500 92 106 112 141 173 189 288 220 243 272
1000 87 121 122 179 186 169 234 256 250 343
10000 146 133 152 179 221 220 220 257 261 416
50000 152 134 152 170 202 208 218 256 302 293
100000 175 154 143 189 205 219 287 270 338 391
1000000 723 429 229 292 328 367 350 323 325 396

❍
❍
❍
❍

❍
❍

nw

k
12 13 14 15 20 50 100 500 1000

100 216 365 278 353 309 327 340 293 386
500 359 337 478 519 307 321 342 292 385
1000 448 373 367 452 308 328 346 300 385
10000 380 369 460 497 309 323 346 299 390
50000 327 371 401 374 309 328 346 300 392
100000 452 370 412 415 457 308 379 320 234
1000000 424 492 530 552 785 311 327 306 205
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Table 5.6: Query Times of Scene Recognition for Different Values of k and nw (seconds).

❍
❍
❍
❍

❍
❍

nw

k
2 3 4 5 6 7 8 9 10 11

100 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
500 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
1000 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
10000 3.45 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07
50000 52.27 0.07 0.08 0.08 0.12 0.09 0.11 0.07 0.08 0.09
100000 199.09 54.46 35.68 0.15 0.12 0.09 0.11 0.14 0.08 0.09
1000000 6381.98 3444.07 3408.00 3378.00 3349.00 3325.00 3291.00 3278.00 3215.00 3211.00

❍
❍
❍
❍

❍
❍

nw

k
12 13 14 15 20 50 100 500 1000

100 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.09 0.12
500 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.09 0.12
1000 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.14 0.12
10000 0.07 0.07 0.07 0.07 0.08 0.08 0.07 0.14 0.21
50000 0.10 0.11 0.15 0.07 0.08 0.08 0.18 0.14 0.20
100000 0.10 0.11 0.12 0.14 0.08 0.08 0.13 0.14 0.20
1000000 3207.00 3185.00 3182.00 3171.00 3122.00 3081.00 3051.00 3036.00 2997.00
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Fig. 5.11.: Color Map of Query Times of Scene Recognition Using Different Values
of k and nw.
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It is worth noting that although this experiment only accounted for scene recogni-

tion, we found that sometimes the results returned included scenes of nearby graffiti

or even graffiti that have been removed. Figure 5.14 illustrates an example.

Fig. 5.14.: Query Images (Left) And Similar Retrieved Scenes (Right).

The goal of the second experiment was to classify query images into categories

based on a set of gang graffiti symbols. We call this process “Gang Graffiti Component

Classification”. We created 14 classes for training, where each class corresponds to a

distinct graffiti component, including: 0, 1, 2, 3, 4, 5-point star, G, 6-point star, 8,

arrow, E, pitchfork, S, and X. For each class we trained 17 images, making a total

of 238 images for training. Each training image consists of one graffiti component

in black with white background. A separate set of 56 images, 4 images per class,

was used for testing. Each of the test images also consisted of one graffiti component

in black with white background. Figure 5.15 shows some sample images. Note the

inter-class variance as well as the intra-class similarity.

Since in this experiment we used our proposed SIFT-based Local Shape Context

(LSC) descriptors to generate the vocabulary tree we need to set two additional

parameters: nr for the number of concentric circumferences representing log-radial

distance bins and nθ for the number of angular bins. Given the results of the first

experiment we chose k = 3 and nw = 10, 000 to create the vocabulary tree.
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Fig. 5.15.: Sample Images for Each Class. From left to right, top to bottom, in groups
of 4 images: 0, 1, 8, X, G, 5-point star, 3, 6-point star, E, 4, S, pitchfork, 2, and arrow.
Note the inter-class variance as well as the intra-class similarity.
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For each query image we retrieved its 10 closest matches from the training set and

we assigned a class based on the following scoring method. Given the scores (votes)

of the 10 closest matches p = {p1, . . . , p10} in ascending order, we manually group

them into N classes, N ∈ {1, . . . , 14}. We add up the new scores associated to each

class, and we assign the class C with the highest score to the query image, such that

C = argmax
n

{
∑

k p
(n)
k }, where k is the set of indices of p belonging to the n-th class,

n ∈ {1, . . . , N}.
Tables 5.7 and 5.8 summarize the results of the second experiment using different

combinations of nr and nθ in the range nr ∈ [1 . . . 20] and nθ ∈ [4 . . . 30]. Tables

5.9 and 5.10 show the Top-10 accuracies, and Tables 5.11 and 5.12 show the Top-5

accuracies for the same ranges of nr and nθ.

Figures 5.16 to 5.18 illustrate the same information using color maps. Low values

of nθ cause low classification accuracy, because we do not have enough discrimination

between feature locations. High values of both nr and nθ also cause low classification

accuracy, because we do not account for the elasticity of the graffiti components.

Since we use fixed values of k and nw on this experiment, nr and nθ do not have a

strong impact in the query time. Therefore we can choose our values from the results

of Tables 5.7 and 5.8. For nr = 3 and nθ = 16 we achieve a classification accuracy

of 89.29% with a Top-10 accuracy of 94.64% and a Top-5 accuracy of 92.86%. The

average query time is 71 ms, from which 6 ms are spent on average to compute the

LSC descriptor.

Figure 5.19 illustrates the confusion matrix [306] for each of the 14 classes when

nr = 3 and nθ = 16. Each column of the matrix represents the instances in a predicted

class, and each row represents the instances in the ground-truth (i.e. expected) class.

Hight counts on the diagonal indicate high classification accuracy for a specific class.

Table 5.13 summarizes the classification results for each class, including precision,

recall and F1 score for each class [307]. Given a confusion matrix M where the x-axis
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Table 5.7: Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [4 . . . 17] (per-
centage).

❍
❍
❍

❍
❍❍

nr

nθ
4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 55.36 69.64 71.43 75.00 75.00 73.21 76.79 71.43 82.14 78.57 80.36 71.43 89.29 80.36

2 60.71 67.86 76.79 69.64 73.21 82.14 73.21 80.36 78.57 78.57 82.14 85.71 87.50 87.50

3 64.29 69.64 80.36 76.79 75.00 80.36 78.57 82.14 76.79 76.79 85.71 78.57 89.29 82.14

4 71.43 71.43 73.21 76.79 82.14 78.57 80.36 80.36 76.79 78.57 78.57 78.57 78.57 83.93

5 71.43 76.79 76.79 73.21 78.57 83.93 76.79 82.14 80.36 80.36 80.36 80.36 83.93 82.14

6 75.00 75.00 75.00 76.79 76.79 69.64 75.00 75.00 76.79 73.21 76.79 78.57 82.14 85.71

7 67.86 73.21 71.43 73.21 67.86 80.36 78.57 73.21 76.79 73.21 71.43 80.36 83.93 80.36

8 62.50 75.00 71.43 76.79 76.79 80.36 73.21 80.36 82.14 76.79 80.36 80.36 80.36 80.36

9 66.07 73.21 73.21 76.79 73.21 82.14 76.79 80.36 75.00 83.93 75.00 80.36 82.14 78.57

10 69.64 75.00 71.43 75.00 76.79 78.57 76.79 76.79 78.57 82.14 73.21 78.57 78.57 83.93

11 78.57 73.21 71.43 75.00 75.00 76.79 76.79 75.00 83.93 83.93 78.57 80.36 83.93 76.79

12 76.79 75.00 71.43 78.57 76.79 78.57 76.79 80.36 83.93 82.14 75.00 82.14 82.14 80.36

13 69.64 71.43 78.57 78.57 80.36 76.79 69.64 80.36 78.57 82.14 76.79 78.57 76.79 80.36

14 69.64 69.64 76.79 76.79 76.79 80.36 78.57 76.79 80.36 78.57 82.14 78.57 82.14 82.14

15 67.86 71.43 76.79 71.43 80.36 75.00 80.36 76.79 82.14 78.57 78.57 85.71 78.57 76.79

16 71.43 69.64 71.43 75.00 73.21 73.21 75.00 80.36 80.36 82.14 75.00 80.36 75.00 83.93

17 66.07 69.64 75.00 73.21 73.21 75.00 78.57 78.57 80.36 78.57 75.00 80.36 75.00 80.36

18 67.86 75.00 73.21 69.64 78.57 80.36 78.57 78.57 78.57 78.57 82.14 78.57 82.14 78.57

19 67.86 69.64 71.43 78.57 78.57 76.79 75.00 76.79 76.79 80.36 76.79 76.79 78.57 75.00

20 64.29 75.00 73.21 80.36 80.36 78.57 67.86 80.36 73.21 76.79 76.79 78.57 85.71 80.36
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Table 5.8: Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [18 . . . 30]
(percentage).

❍
❍
❍
❍

❍❍
nr

nθ
18 19 20 21 22 23 24 25 26 27 28 29 30

1 82.14 80.36 82.14 85.71 82.14 87.50 80.36 82.14 80.36 78.57 78.57 80.36 78.57

2 83.93 83.93 83.93 83.93 83.93 80.36 83.93 85.71 83.93 80.36 82.14 78.57 80.36

3 82.14 82.14 82.14 87.50 78.57 82.14 82.14 83.93 78.57 76.79 82.14 78.57 78.57

4 87.50 76.79 82.14 82.14 85.71 80.36 85.71 78.57 82.14 75.00 76.79 82.14 78.57

5 85.71 83.93 85.71 82.14 87.50 82.14 80.36 80.36 80.36 80.36 85.71 75.00 78.57

6 85.71 78.57 85.71 82.14 85.71 85.71 82.14 80.36 80.36 78.57 80.36 82.14 76.79

7 82.14 78.57 78.57 82.14 85.71 87.50 76.79 78.57 80.36 85.71 76.79 80.36 76.79

8 80.36 76.79 85.71 78.57 76.79 80.36 78.57 80.36 85.71 83.93 78.57 82.14 82.14

9 76.79 76.79 82.14 78.57 76.79 78.57 82.14 75.00 78.57 71.43 80.36 82.14 82.14

10 82.14 80.36 83.93 80.36 78.57 76.79 78.57 78.57 75.00 80.36 75.00 75.00 78.57

11 80.36 78.57 83.93 82.14 78.57 75.00 76.79 78.57 78.57 75.00 76.79 78.57 80.36

12 80.36 78.57 83.93 82.14 80.36 78.57 80.36 82.14 73.21 78.57 80.36 78.57 80.36

13 78.57 78.57 80.36 76.79 82.14 78.57 78.57 82.14 75.00 80.36 76.79 78.57 82.14

14 75.00 80.36 82.14 80.36 73.21 75.00 82.14 80.36 73.21 82.14 76.79 69.64 82.14

15 80.36 75.00 82.14 80.36 82.14 78.57 80.36 83.93 80.36 78.57 76.79 80.36 69.64

16 80.36 80.36 78.57 76.79 75.00 80.36 76.79 78.57 76.79 80.36 80.36 76.79 78.57

17 76.79 78.57 80.36 76.79 80.36 76.79 75.00 83.93 82.14 73.21 71.43 76.79 78.57

18 73.21 82.14 80.36 67.86 78.57 76.79 78.57 75.00 73.21 78.57 82.14 76.79 71.43

19 80.36 80.36 82.14 82.14 78.57 83.93 73.21 78.57 80.36 76.79 75.00 78.57 76.79

20 78.57 75.00 78.57 76.79 69.64 78.57 76.79 76.79 67.86 82.14 78.57 82.14 76.79
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Table 5.9: Top-10 Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [4 . . . 17]
(percentage).

❍
❍

❍
❍
❍❍

nr

nθ
4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 91.07 92.86 96.43 98.21 96.43 98.21 100.00 100.00 96.43 98.21 96.43 98.21 98.21 96.43

2 87.50 92.86 100.00 98.21 98.21 94.64 98.21 94.64 94.64 94.64 94.64 96.43 96.43 98.21

3 96.43 98.21 96.43 98.21 94.64 96.43 96.43 96.43 94.64 96.43 92.86 98.21 94.64 98.21

4 92.86 96.43 98.21 94.64 94.64 98.21 94.64 94.64 98.21 98.21 96.43 94.64 94.64 100.00

5 92.86 96.43 96.43 96.43 94.64 94.64 92.86 94.64 94.64 92.86 92.86 96.43 96.43 96.43

6 91.07 91.07 96.43 98.21 98.21 96.43 96.43 96.43 98.21 94.64 94.64 100.00 100.00 96.43

7 92.86 92.86 96.43 92.86 96.43 94.64 89.29 91.07 96.43 96.43 98.21 94.64 94.64 96.43

8 87.50 92.86 94.64 92.86 94.64 96.43 94.64 94.64 96.43 96.43 94.64 92.86 96.43 92.86

9 92.86 92.86 98.21 92.86 94.64 94.64 94.64 92.86 92.86 96.43 96.43 98.21 94.64 96.43

10 96.43 92.86 91.07 91.07 96.43 98.21 92.86 92.86 94.64 92.86 96.43 91.07 98.21 94.64

11 96.43 89.29 92.86 92.86 94.64 96.43 96.43 94.64 96.43 96.43 94.64 96.43 96.43 92.86

12 92.86 91.07 94.64 92.86 92.86 94.64 94.64 98.21 96.43 96.43 96.43 94.64 96.43 98.21

13 91.07 92.86 94.64 96.43 96.43 92.86 91.07 96.43 96.43 94.64 96.43 96.43 94.64 94.64

14 89.29 91.07 94.64 98.21 96.43 92.86 92.86 92.86 91.07 96.43 94.64 94.64 94.64 94.64

15 92.86 87.50 96.43 94.64 92.86 94.64 91.07 92.86 92.86 96.43 96.43 96.43 92.86 92.86

16 92.86 91.07 96.43 94.64 94.64 91.07 91.07 96.43 94.64 96.43 94.64 94.64 96.43 94.64

17 91.07 87.50 92.86 96.43 94.64 96.43 89.29 96.43 91.07 98.21 92.86 98.21 98.21 94.64

18 96.43 87.50 96.43 91.07 94.64 91.07 92.86 94.64 96.43 92.86 96.43 96.43 94.64 96.43

19 91.07 91.07 92.86 98.21 98.21 91.07 92.86 92.86 94.64 91.07 96.43 94.64 94.64 96.43

20 92.86 91.07 91.07 94.64 92.86 94.64 94.64 96.43 96.43 94.64 96.43 92.86 96.43 100.00
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Table 5.10: Top-10 Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [18 . . . 30]
(percentage).

❍
❍
❍
❍
❍❍

nr

nθ
18 19 20 21 22 23 24 25 26 27 28 29 30

1 96.43 98.21 98.21 100.00 98.21 98.21 96.43 98.21 100.00 96.43 100.00 98.21 100.00

2 98.21 96.43 98.21 100.00 100.00 98.21 98.21 98.21 98.21 96.43 98.21 100.00 96.43

3 96.43 94.64 96.43 98.21 100.00 100.00 98.21 100.00 98.21 98.21 100.00 100.00 98.21

4 100.00 98.21 96.43 98.21 96.43 94.64 96.43 98.21 96.43 96.43 94.64 96.43 94.64

5 100.00 96.43 94.64 94.64 96.43 98.21 98.21 96.43 94.64 96.43 98.21 94.64 96.43

6 98.21 91.07 94.64 96.43 100.00 96.43 94.64 96.43 94.64 96.43 96.43 98.21 92.86

7 98.21 96.43 96.43 96.43 96.43 94.64 94.64 96.43 98.21 96.43 92.86 98.21 96.43

8 98.21 96.43 96.43 96.43 96.43 96.43 96.43 98.21 94.64 96.43 96.43 98.21 98.21

9 98.21 96.43 94.64 94.64 96.43 98.21 94.64 98.21 98.21 96.43 98.21 92.86 94.64

10 96.43 96.43 98.21 96.43 98.21 96.43 96.43 92.86 96.43 98.21 94.64 94.64 94.64

11 98.21 98.21 94.64 96.43 98.21 98.21 96.43 94.64 92.86 96.43 96.43 94.64 96.43

12 100.00 98.21 94.64 96.43 91.07 96.43 96.43 96.43 96.43 96.43 98.21 98.21 96.43

13 94.64 96.43 92.86 96.43 98.21 96.43 96.43 96.43 96.43 94.64 91.07 96.43 98.21

14 94.64 100.00 94.64 100.00 96.43 98.21 96.43 94.64 96.43 94.64 92.86 92.86 98.21

15 96.43 96.43 98.21 100.00 98.21 94.64 96.43 96.43 96.43 98.21 94.64 96.43 96.43

16 96.43 96.43 100.00 92.86 96.43 96.43 98.21 94.64 98.21 96.43 94.64 96.43 98.21

17 96.43 92.86 94.64 92.86 98.21 94.64 94.64 96.43 98.21 96.43 96.43 96.43 96.43

18 94.64 98.21 100.00 94.64 100.00 96.43 96.43 96.43 96.43 94.64 94.64 94.64 92.86

19 100.00 94.64 96.43 96.43 96.43 91.07 96.43 96.43 98.21 96.43 94.64 96.43 94.64

20 96.43 98.21 98.21 98.21 98.21 96.43 96.43 92.86 96.43 94.64 98.21 92.86 94.64
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Fig. 5.17.: Color Map of Top-10 Classification Accuracies of Gang Graffiti Component
Classification Using Different Values of nr and nθ.
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Table 5.11: Top-5 Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [4 . . . 17]
(percentage).

❍
❍
❍

❍
❍❍

nr

nθ
4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 76.79 87.50 89.29 92.86 96.43 92.86 96.43 92.86 92.86 91.07 89.29 92.86 96.43 92.86

2 78.57 91.07 94.64 91.07 94.64 92.86 94.64 89.29 89.29 92.86 92.86 94.64 96.43 96.43

3 83.93 89.29 94.64 89.29 87.50 91.07 94.64 92.86 94.64 91.07 91.07 96.43 92.86 94.64

4 91.07 87.50 96.43 92.86 91.07 89.29 92.86 92.86 92.86 92.86 92.86 92.86 94.64 96.43

5 89.29 89.29 92.86 91.07 91.07 91.07 89.29 94.64 87.50 91.07 92.86 92.86 91.07 92.86

6 85.71 89.29 92.86 98.21 92.86 92.86 89.29 89.29 91.07 92.86 92.86 96.43 96.43 91.07

7 83.93 85.71 89.29 89.29 91.07 92.86 89.29 89.29 91.07 92.86 91.07 92.86 91.07 89.29

8 82.14 87.50 92.86 89.29 89.29 92.86 91.07 94.64 89.29 91.07 87.50 92.86 92.86 91.07

9 87.50 89.29 94.64 87.50 89.29 89.29 85.71 92.86 91.07 92.86 91.07 91.07 91.07 92.86

10 92.86 89.29 91.07 85.71 85.71 94.64 89.29 92.86 89.29 89.29 94.64 87.50 91.07 91.07

11 89.29 85.71 87.50 91.07 91.07 92.86 89.29 87.50 94.64 92.86 92.86 92.86 96.43 87.50

12 87.50 83.93 92.86 87.50 92.86 89.29 91.07 89.29 92.86 94.64 89.29 92.86 87.50 94.64

13 83.93 85.71 91.07 89.29 92.86 85.71 89.29 92.86 91.07 89.29 91.07 89.29 94.64 89.29

14 85.71 83.93 87.50 92.86 92.86 89.29 92.86 91.07 91.07 91.07 92.86 91.07 94.64 92.86

15 89.29 82.14 87.50 91.07 89.29 91.07 87.50 91.07 89.29 89.29 91.07 94.64 87.50 87.50

16 89.29 83.93 91.07 94.64 91.07 89.29 87.50 92.86 89.29 94.64 92.86 89.29 94.64 91.07

17 85.71 83.93 87.50 91.07 92.86 87.50 85.71 87.50 89.29 91.07 92.86 94.64 96.43 91.07

18 89.29 80.36 94.64 91.07 92.86 89.29 89.29 91.07 89.29 92.86 91.07 91.07 92.86 92.86

19 85.71 89.29 89.29 89.29 92.86 89.29 85.71 89.29 85.71 89.29 94.64 91.07 89.29 91.07

20 83.93 85.71 83.93 91.07 91.07 87.50 89.29 89.29 92.86 92.86 92.86 89.29 92.86 91.07
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Table 5.12: Top-5 Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [18 . . . 30]
(percentage).

❍
❍
❍
❍
❍❍

nr

nθ
18 19 20 21 22 23 24 25 26 27 28 29 30

1 96.43 98.21 98.21 100.00 98.21 98.21 96.43 98.21 100.00 96.43 100.00 98.21 100.00

2 98.21 96.43 98.21 100.00 100.00 98.21 98.21 98.21 98.21 96.43 98.21 100.00 96.43

3 96.43 94.64 96.43 98.21 100.00 100.00 98.21 100.00 98.21 98.21 100.00 100.00 98.21

4 100.00 98.21 96.43 98.21 96.43 94.64 96.43 98.21 96.43 96.43 94.64 96.43 94.64

5 100.00 96.43 94.64 94.64 96.43 98.21 98.21 96.43 94.64 96.43 98.21 94.64 96.43

6 98.21 91.07 94.64 96.43 100.00 96.43 94.64 96.43 94.64 96.43 96.43 98.21 92.86

7 98.21 96.43 96.43 96.43 96.43 94.64 94.64 96.43 98.21 96.43 92.86 98.21 96.43

8 98.21 96.43 96.43 96.43 96.43 96.43 96.43 98.21 94.64 96.43 96.43 98.21 98.21

9 98.21 96.43 94.64 94.64 96.43 98.21 94.64 98.21 98.21 96.43 98.21 92.86 94.64

10 96.43 96.43 98.21 96.43 98.21 96.43 96.43 92.86 96.43 98.21 94.64 94.64 94.64

11 98.21 98.21 94.64 96.43 98.21 98.21 96.43 94.64 92.86 96.43 96.43 94.64 96.43

12 100.00 98.21 94.64 96.43 91.07 96.43 96.43 96.43 96.43 96.43 98.21 98.21 96.43

13 94.64 96.43 92.86 96.43 98.21 96.43 96.43 96.43 96.43 94.64 91.07 96.43 98.21

14 94.64 100.00 94.64 100.00 96.43 98.21 96.43 94.64 96.43 94.64 92.86 92.86 98.21

15 96.43 96.43 98.21 100.00 98.21 94.64 96.43 96.43 96.43 98.21 94.64 96.43 96.43

16 96.43 96.43 100.00 92.86 96.43 96.43 98.21 94.64 98.21 96.43 94.64 96.43 98.21

17 96.43 92.86 94.64 92.86 98.21 94.64 94.64 96.43 98.21 96.43 96.43 96.43 96.43

18 94.64 98.21 100.00 94.64 100.00 96.43 96.43 96.43 96.43 94.64 94.64 94.64 92.86

19 100.00 94.64 96.43 96.43 96.43 91.07 96.43 96.43 98.21 96.43 94.64 96.43 94.64

20 96.43 98.21 98.21 98.21 98.21 96.43 96.43 92.86 96.43 94.64 98.21 92.86 94.64
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Fig. 5.18.: Color Map of Top-5 Classification Accuracies of Gang Graffiti Component
Classification Using Different Values of nr and nθ.
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Table 5.13: Classification Accuracy, Precision, Recall and F1 Score for Each Class.

Class Accuracy Precision Recall F1 Score
0 100% 100% 100% 1
8 100% 66.67% 100% 0.80
G 75% 100% 75% 0.86
3 100% 100% 100% 1
E 75% 100% 75% 0.86
s 50% 100% 50% 0.67
2 100% 80% 100% 0.89
1 100% 80% 100% 0.89
x 100% 100% 100% 1

5-point star 100% 80% 100% 0.89
6-point star 100% 100% 100% 1

4 75% 100% 75% 0.86
pitchfork 100% 80% 100% 0.89
arrow 75% 100% 75% 0.86

corresponds to predicted outputs and the y-axis corresponds to expected outputs,

precision Pi and recall Ri for class i are defined as

Pi =
Mii∑
j Mji

(5.8)

Ri =
Mii∑
j Mij

. (5.9)

Given precision and recall values, the F1i score is given by

F1i = 2
PiRi

Pi +Ri

(5.10)

As a comparison, Tables 5.14 to 5.16 show the classification accuracies, Top-10

accuracies and Top-5 accuracies when using SIFT descriptors instead of LSC de-

scriptors. The maximum classification accuracy achieved is 41.07% with nr = 6 and

nθ = 13, with a Top-10 accuracy of 75.00% and a Top-5 accuracy of 55.36%. The
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Fig. 5.19.: Confusion Matrix for the 14 Graffiti Component Classes.
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average query time is the same as when using LSC descriptors, because most of the

time is spend pushing the descriptors down the vocabulary tree.

In order to evaluate the overall performance of our “Gang Graffiti Component

Classification” system we also used the Mean Average Precision (MAP ) measure,

which provides a single-figure measure of quality across recall levels and has been

shown to have especially good discrimination and stability [308–310].

The MAP is defined as

MAP =
1

Q

Q∑

j=1

1

N

N∑

k=1

Pjk, (5.11)

where Q is the total number of query images and N is the number of database im-

ages retrieved for each query. Equation 5.11 can be redefined as the average precision

scores for the set of queries:

MAP =

∑Q
j=1AveP (j)

Q
, (5.12)

where AveP (j) is average precision of the j-th query image, defined as

AveP (j) =

∑N
k=1 Pjk

N
, (5.13)

being Pjk is the precision of the j-th query image at rank k:

Pjk =

∑k
i=1 Iji
k

. (5.14)
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Table 5.14: Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 10] and nθ ∈ [4 . . . 17] using
SIFT Descriptors (percentage).

❍
❍
❍

❍
❍❍

nr

nθ
4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 33.93 35.71 32.14 37.50 33.93 37.50 32.14 30.36 30.36 32.14 39.29 35.71 30.36 33.93

2 33.93 28.57 32.14 32.14 30.36 32.14 33.93 37.50 28.57 30.36 30.36 33.93 30.36 30.36

3 32.14 30.36 30.36 28.57 33.93 35.71 28.57 35.71 33.93 32.14 33.93 30.36 33.93 32.14

4 26.79 33.93 32.14 37.50 41.07 35.71 30.36 33.93 33.93 33.93 33.93 30.36 35.71 30.36

5 30.36 32.14 33.93 33.93 35.71 30.36 28.57 33.93 30.36 30.36 35.71 32.14 32.14 28.57

6 28.57 30.36 30.36 33.93 33.93 33.93 30.36 32.14 37.50 41.07 35.71 28.57 33.93 33.93

7 32.14 32.14 32.14 35.71 35.71 32.14 30.36 39.29 33.93 32.14 35.71 30.36 25.00 32.14

8 32.14 28.57 33.93 30.36 32.14 33.93 26.79 32.14 33.93 30.36 35.71 35.71 30.36 33.93

9 32.14 35.71 32.14 32.14 28.57 30.36 35.71 30.36 33.93 30.36 35.71 35.71 33.93 33.93

10 30.36 32.14 35.71 33.93 32.14 33.93 33.93 33.93 30.36 33.93 35.71 30.36 32.14 30.36
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Table 5.15: Top-10 Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 10] and nθ ∈ [4 . . . 17]
using SIFT Descriptors (percentage).

❍
❍
❍

❍
❍❍

nr

nθ
4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 73.21 76.79 75.00 69.64 64.29 67.86 67.86 69.64 71.43 67.86 73.21 67.86 66.07 69.64

2 73.21 69.64 75.00 71.43 67.86 73.21 71.43 71.43 67.86 67.86 66.07 64.29 73.21 73.21

3 69.64 75.00 78.57 71.43 67.86 69.64 69.64 76.79 64.29 67.86 67.86 76.79 66.07 71.43

4 69.64 71.43 66.07 69.64 66.07 75.00 66.07 67.86 64.29 67.86 76.79 69.64 78.57 73.21

5 73.21 71.43 73.21 71.43 67.86 67.86 75.00 69.64 78.57 71.43 73.21 69.64 69.64 66.07

6 73.21 75.00 69.64 69.64 73.21 62.50 73.21 75.00 66.07 75.00 69.64 69.64 69.64 67.86

7 73.21 75.00 71.43 67.86 75.00 75.00 62.50 75.00 67.86 69.64 69.64 69.64 71.43 69.64

8 71.43 78.57 69.64 66.07 75.00 64.29 75.00 71.43 71.43 69.64 71.43 69.64 76.79 69.64

9 62.50 66.07 67.86 66.07 67.86 80.36 69.64 60.71 78.57 69.64 71.43 71.43 75.00 67.86

10 71.43 64.29 67.86 73.21 62.50 71.43 71.43 69.64 66.07 76.79 66.07 69.64 67.86 67.86
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Table 5.16: Top-5 Classification Accuracies of Gang Graffiti Component Classification for nr ∈ [1 . . . 10] and nθ ∈ [4 . . . 17]
using SIFT Descriptors (percentage).

❍
❍
❍

❍
❍❍

nr

nθ
4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 51.79 50.00 57.14 53.57 48.21 53.57 55.36 53.57 53.57 55.36 64.29 53.57 53.57 48.21

2 60.71 50.00 58.93 50.00 53.57 53.57 55.36 55.36 51.79 53.57 51.79 50.00 53.57 50.00

3 55.36 48.21 58.93 55.36 57.14 55.36 51.79 58.93 48.21 53.57 55.36 62.50 53.57 58.93

4 50.00 58.93 48.21 55.36 55.36 58.93 50.00 58.93 48.21 50.00 55.36 55.36 67.86 53.57

5 55.36 57.14 62.50 57.14 53.57 57.14 53.57 53.57 55.36 57.14 57.14 51.79 58.93 53.57

6 58.93 55.36 53.57 55.36 53.57 53.57 57.14 53.57 55.36 55.36 55.36 50.00 62.50 48.21

7 58.93 51.79 53.57 57.14 66.07 57.14 51.79 62.50 57.14 53.57 58.93 58.93 50.00 53.57

8 51.79 55.36 55.36 53.57 51.79 50.00 51.79 55.36 46.43 53.57 55.36 50.00 55.36 55.36

9 51.79 55.36 53.57 57.14 50.00 55.36 58.93 51.79 53.57 55.36 51.79 51.79 60.71 53.57

10 53.57 50.00 58.93 55.36 50.00 57.14 57.14 60.71 51.79 57.14 51.79 57.14 57.14 55.36
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Table 5.17: Example of MAP score calculation for a set of two queries. The total
MAP score is 0.22+0.41

2
= 0.31.

Prediction Correctness Precision
1 wrong none
2 right 1/2
3 right 2/3
4 wrong none
5 right 3/5
6 wrong none
7 wrong none
8 wrong none
9 right 4/9
10 wrong none

(a) AveP = 1/2+2/3+3/5+4/9
10

= 0.22

Prediction Correctness Precision
1 right 1/1
2 right 2/2
3 right 3/3
4 wrong none
5 wrong none
6 wrong none
7 wrong none
8 right 4/8
9 right 5/9
10 wrong none

(b) AveP = 1/1+2/2+3/3+4/8+5/9
10

= 0.41

Iji is an indicator function equaling 1 if the j-th query image at rank k is a match,

and zero otherwise. Table 5.17 shows an example of how to calculate the MAP score

with Q = 2 and N = 10. In our experiments Q = 56 and N = 10.

Tables 5.18 and 5.19 show the MAP scores for a range of nr and nθ using LSC

descriptors. Figure 5.20 illustrates the same information using a color map. This

results confirm that not using enough bins for radius and angles, or using too many,

will cause the classification accuracy to drop. Values of nr ∈ [3 . . . 18] and nθ ∈
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[12 . . . 28] provide enough discrimination between feature locations and robustness

against shape elasticity.

n
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Fig. 5.20.: Color Map of MAP Scores of Gang Graffiti Component Classification
Using Different Values of nr and nθ.

5.1.4 End-To-End System

In this experiment we tested the entire GARI system, including all the steps shown

in Figure 5.21. The system is composed of seven blocks: Color Recognition Based on

Touchscreen Tracing, Color Correction Based on Mobile Light Sensor, Color Image

Segmentation Based on Gaussian Thresholding, Block-Wise Gaussian Segmentation

Enhancement, Background Stripe Removal, Graffiti Component Reconnection, and

Graffiti Component Classification. Note that the Color Recognition Based on Touch-
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Table 5.18: MAP Scores of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [4 . . . 17] (percentage).

❍
❍
❍
❍

❍❍
nr

nθ
4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0.23 0.28 0.32 0.37 0.40 0.37 0.35 0.37 0.39 0.39 0.39 0.39 0.41 0.42

2 0.23 0.27 0.33 0.35 0.37 0.39 0.34 0.35 0.38 0.36 0.39 0.42 0.41 0.40

3 0.32 0.34 0.34 0.39 0.38 0.39 0.37 0.37 0.38 0.35 0.37 0.38 0.38 0.39

4 0.34 0.39 0.39 0.41 0.40 0.39 0.41 0.41 0.39 0.40 0.41 0.42 0.40 0.42

5 0.35 0.39 0.40 0.42 0.40 0.41 0.41 0.44 0.43 0.41 0.42 0.45 0.44 0.44

6 0.34 0.39 0.38 0.41 0.41 0.41 0.39 0.41 0.42 0.44 0.43 0.43 0.43 0.46

7 0.36 0.37 0.36 0.40 0.40 0.40 0.39 0.42 0.41 0.41 0.43 0.44 0.44 0.42

8 0.36 0.37 0.37 0.39 0.39 0.42 0.41 0.41 0.41 0.44 0.43 0.42 0.41 0.43

9 0.34 0.39 0.37 0.41 0.41 0.42 0.39 0.42 0.39 0.42 0.43 0.44 0.44 0.43

10 0.34 0.39 0.39 0.41 0.40 0.43 0.40 0.42 0.41 0.43 0.43 0.42 0.43 0.42

11 0.36 0.39 0.39 0.40 0.42 0.42 0.43 0.42 0.42 0.43 0.44 0.46 0.44 0.44

12 0.35 0.36 0.38 0.41 0.43 0.41 0.41 0.39 0.42 0.43 0.42 0.42 0.42 0.42

13 0.34 0.36 0.38 0.43 0.39 0.38 0.38 0.42 0.40 0.42 0.41 0.43 0.41 0.42

14 0.36 0.37 0.36 0.40 0.41 0.40 0.41 0.41 0.40 0.40 0.41 0.39 0.42 0.41

15 0.34 0.36 0.36 0.41 0.42 0.42 0.39 0.41 0.42 0.44 0.43 0.43 0.41 0.41

16 0.34 0.37 0.37 0.40 0.40 0.41 0.42 0.41 0.43 0.41 0.42 0.42 0.42 0.43

17 0.34 0.34 0.37 0.42 0.40 0.38 0.41 0.41 0.40 0.43 0.41 0.41 0.42 0.42

18 0.35 0.36 0.37 0.39 0.39 0.39 0.41 0.42 0.42 0.42 0.39 0.44 0.42 0.43

19 0.34 0.36 0.40 0.40 0.38 0.40 0.38 0.39 0.42 0.41 0.42 0.39 0.42 0.41

20 0.35 0.36 0.37 0.39 0.39 0.41 0.39 0.40 0.41 0.41 0.39 0.40 0.42 0.42
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Table 5.19: MAP Scores of Gang Graffiti Component Classification for nr ∈ [1 . . . 20] and nθ ∈ [18 . . . 30] (percentage).

❍
❍
❍
❍
❍❍

nr

nθ
18 19 20 21 22 23 24 25 26 27 28 29 30

1 0.40 0.42 0.39 0.41 0.43 0.42 0.41 0.41 0.42 0.42 0.39 0.40 0.42

2 0.40 0.42 0.39 0.42 0.41 0.41 0.41 0.40 0.40 0.41 0.43 0.41 0.43

3 0.40 0.42 0.39 0.40 0.41 0.39 0.40 0.40 0.41 0.40 0.40 0.41 0.41

4 0.41 0.38 0.42 0.43 0.41 0.42 0.41 0.41 0.41 0.42 0.40 0.42 0.42

5 0.43 0.44 0.43 0.44 0.44 0.45 0.43 0.45 0.44 0.44 0.44 0.45 0.45

6 0.44 0.44 0.46 0.42 0.46 0.46 0.47 0.45 0.45 0.45 0.46 0.44 0.43

7 0.44 0.44 0.43 0.46 0.44 0.45 0.45 0.45 0.46 0.44 0.44 0.44 0.43

8 0.43 0.43 0.43 0.43 0.43 0.43 0.45 0.43 0.44 0.44 0.43 0.45 0.44

9 0.43 0.44 0.47 0.43 0.44 0.42 0.44 0.44 0.43 0.43 0.44 0.45 0.45

10 0.44 0.43 0.44 0.43 0.43 0.43 0.43 0.42 0.44 0.42 0.42 0.45 0.43

11 0.42 0.43 0.44 0.44 0.45 0.44 0.42 0.43 0.44 0.42 0.41 0.45 0.43

12 0.43 0.44 0.44 0.42 0.44 0.44 0.42 0.43 0.43 0.43 0.42 0.47 0.43

13 0.43 0.41 0.44 0.44 0.43 0.44 0.42 0.43 0.42 0.42 0.41 0.42 0.41

14 0.42 0.42 0.44 0.43 0.43 0.42 0.43 0.43 0.42 0.40 0.40 0.42 0.42

15 0.42 0.42 0.44 0.44 0.42 0.44 0.42 0.44 0.42 0.43 0.43 0.41 0.44

16 0.43 0.43 0.42 0.43 0.40 0.45 0.44 0.43 0.41 0.43 0.43 0.41 0.39

17 0.43 0.43 0.45 0.41 0.43 0.43 0.42 0.44 0.41 0.44 0.41 0.43 0.40

18 0.42 0.41 0.43 0.43 0.45 0.43 0.43 0.42 0.42 0.43 0.42 0.42 0.39

19 0.43 0.42 0.43 0.42 0.43 0.44 0.44 0.42 0.41 0.43 0.42 0.42 0.40

20 0.43 0.40 0.42 0.43 0.43 0.41 0.42 0.41 0.42 0.41 0.41 0.42 0.41
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screen Tracing is the only step that is done on the mobile device. The rest of the

process is done in the server.

Fig. 5.21.: GARI End-To-End System.

We use the touchscreen tracing method to obtain the color median (either luma

or hue) of a graffiti component, and we send this information to the server along with

the image and the lux value automatically obtained from the device’s light sensor.

Once on the server we color correct the image by mapping the lux value to a color

correction matrix. We then use the color median to automatically segment the image

using our proposed Gaussian thresholding method. The segmented image is locally

enhanced, the existing background stripes are removed and the disjoint connected

components are reconnected. The extracted components are gang graffiti component

candidates that are classified and the predicted results are returned the mobile device.

We tested the entire process in 20 images with different colors, shapes, back-

grounds, lighting conditions, and taken in different seasons (Summer and Winter).

Figure 5.22 illustrates the 20 images.

Table 5.20 shows the running times of each step for all the test images. The

processing times vary from 3.15 to 10.39 seconds, with a median of 4.69 seconds.

Images 1016 and 1019 have two versions each because we segmented them using
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Fig. 5.22.: Test Images for Automatic Gang Graffiti Segmentation.
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different colors (i.e. two different touchscreen tracings). Figure 5.23 illustrates these

cases. Figure 5.21 shows the running times of the three main blocks: color correction,

image segmentation, and component classification. The high standard deviations

of some steps indicate their dependence of the complexity of the input image. For

example, the Graffiti Component Reconnection step evaluates each end-point of the

image skeleton. The more complex the graffiti is, the more end-points it will have,

and the more time it will take to process. Also, depending on the graffiti the number

of segmented components vary from 4 to 31. This affects the running time of the

Content Based Image Retrieval method following the segmentation process.

(a) Original Image (b) Hue Segmentation (c) Luma Segmentation

(d) Original Image (e) Hue Segmentation (f) Luma Segmentation

Fig. 5.23.: Images Segmented Separately From Two Different TouchScreen Tracings.

Figure 5.24 shows some examples of the proposed Color Image Segmentation Based

on Gaussian Thresholding followed by Block-Wise Gaussian Segmentation Enhance-

ment. Note that the enhancement contributes to both noise removal and graffiti

component reconstruction. Figure C.22 shows some examples of our color image

segmentation compared against other thresholding methods, including Niblack [20]

(local thresholding) and Otsu [294] (global thresholding). For Niblack we set the
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Table 5.20: Running Times (seconds) of Each Step in The GARI End-To-End Sys-
tem. 1: Color Correction Based on Mobile Light Sensor, 2: Color Image Segmen-
tation Based on Gaussian Thresholding, 3: Block-Wise Gaussian Segmentation En-
hancement, 4: Background Stripe Removal, 5: Graffiti Component Reconnection, 6:
Graffiti Component Classification.

Image Number 1 2 3 4 5 6 Total
1001 1.72 0.24 0.88 0.05 2.05 0.64 5.57
1002 1.91 0.13 0.52 0.24 3.26 1.07 7.12
1003 1.85 0.28 0.94 0.05 0.91 0.99 5.04
1004 1.69 0.60 1.28 0.04 0.35 0.64 4.60
1005 2.27 0.17 0.79 0.03 0.28 0.64 4.18
1006 2.05 0.12 0.47 0.04 0.76 0.64 4.08
1007 1.71 0.13 0.65 0.04 0.34 0.28 3.15
1008 1.69 0.12 0.46 0.04 0.74 0.71 3.76
1009 1.73 0.25 0.62 0.04 0.75 0.99 4.39
1010 1.75 0.61 1.03 0.19 3.01 2.20 8.79
1011 1.87 0.19 0.62 0.07 5.86 1.78 10.39
1012 1.92 0.78 1.23 0.07 2.89 0.92 7.81
1013 1.70 0.20 0.85 0.04 0.75 0.50 4.04
1014 1.73 0.73 1.21 0.04 0.57 0.50 4.77
1015 1.67 0.76 1.19 0.05 2.00 1.07 6.73
1016 1 1.84 0.20 0.89 0.05 0.97 0.57 4.51
1016 2 1.80 0.19 0.61 0.05 1.10 0.43 4.17
1017 2.30 0.15 0.66 0.04 1.05 0.85 5.05
1018 1.86 0.14 0.73 0.04 0.39 0.43 3.58
1019 1 1.92 0.56 1.24 0.03 0.15 1.78 5.68
1019 2 1.71 0.55 1.05 0.09 2.51 0.36 6.27
1020 1.76 0.13 0.56 0.05 0.55 0.50 3.54

Median 1.78 0.20 0.82 0.05 0.84 0.64 4.69
Std Dev 0.17 0.24 0.27 0.05 1.38 0.50 1.85
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Table 5.21: Running Times (seconds) of The Three Main Blocks in The GARI End-
To-End System. 1: Color Correction, 2: Automatic Graffiti Component Segmenta-
tion, 3: Graffiti Component Classification. CCs: Number of Connected Components.

Image Number 1 2 CCs 3 Total
1001 1.72 3.22 9 0.64 5.57
1002 1.91 4.15 15 1.07 7.12
1003 1.85 2.19 14 0.99 5.04
1004 1.69 2.27 9 0.64 4.60
1005 2.27 1.27 9 0.64 4.18
1006 2.05 1.39 9 0.64 4.08
1007 1.71 1.16 4 0.28 3.15
1008 1.69 1.36 10 0.71 3.76
1009 1.73 1.66 14 0.99 4.39
1010 1.75 4.84 31 2.20 8.79
1011 1.87 6.74 25 1.78 10.39
1012 1.92 4.97 13 0.92 7.81
1013 1.70 1.84 7 0.50 4.04
1014 1.73 2.54 7 0.50 4.77
1015 1.67 4.00 15 1.07 6.73
1016 1 1.84 2.10 8 0.57 4.51
1016 2 1.80 1.95 6 0.43 4.17
1017 2.30 1.89 12 0.85 5.05
1018 1.86 1.29 6 0.43 3.58
1019 1 1.92 1.98 25 1.78 5.68
1019 2 1.71 4.20 5 0.36 6.27
1020 1.76 1.28 7 0.50 3.54

Median 1.78 2.04 9 0.64 4.69
Std Dev 0.17 1.52 7.04 0.50 1.85
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filter radius to 25 pixels and standard deviation threshold to -0.2. When the graffiti

surface has uniform texture and color all the methods produce good results. However,

for complex surfaces and non-uniform illumination scenes Niblack and Otsu fail to

segment the graffiti from the background. The only disadvantage of our proposed

method is the running time. The average running times of Niblack and Otsu are

0.5 seconds and 0.01 seconds respectively, while our proposed method runs in 1 sec-

ond on average. The comparison of the three methods for all 20 test images can

be found on Appendix C. We also considered a stroke-width based image opera-

tor proposed in [311] to detect text in natural scenes, but it is not robust against

non-alphanumerical symbols.

The Background Strip Removal process is the fastest of the four segmentation

steps on average. This is because even though 18 of the 20 test images contain

background strips only two of them still contain strips after the enhancement step.

Figure 5.27 shows some examples of background strips removed during previous steps.

Figure 5.26 shows the strip removal process in the two remaining images.

The Graffiti Component Reconnection process is the slowest of the four segmenta-

tion steps. This is because it conducts an exhaustive search among all the end-points

on the image skeleton to find connection point candidates. Figure 5.28 shows an

example of a test image where 252 end-points are checked in 5.86 seconds. Large

amount of end-points are usually the results of skeletonization of background noise,

such as trash on the ground or vegetation. Figure 5.29 shows some examples of

successful component reconnection. Note that reconnection is not necessary when

two end-points already belong to the same 8-neighbor connected component. Some-

times the distribution of the connected components is such that false connections are

created, as shown in Figure 5.29b between the 1 in 2-1 and the l in Almighty.

To illustrate the effectiveness of the automatic gang graffiti segmentation Figure

5.30 shows examples of the number of 8-neighbor connected components after Color

Image Segmentation Based on Gaussian Thresholding, and after Graffiti Component

Reconnection. An additional step can be added to merge connected components
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(a) Original Image (b) Gaussian Thresholding (c) Block-Wise Enhancement

(d) Original Image (e) Gaussian Thresholding (f) Enhancement

(g) Original Image (h) Gaussian Thresholding (i) Enhancement

(j) Original Image (k) Gaussian Thresholding (l) Enhancement

Fig. 5.24.: Examples of our proposed Color Image Segmentation Based on Gaussian
Thresholding followed by Block-Wise Gaussian Segmentation Enhancement.
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(a) Proposed (b) Niblack (c) Otsu

(d) Proposed (e) Niblack (f) Otsu

(g) Proposed (h) Niblack (i) Otsu

(j) Proposed (k) Niblack (l) Otsu

Fig. 5.25.: Comparison of our proposed color image segmentation method against
Niblack and Otsu thresholding. From top to bottom: 1001, 1002, 1004, 1017.
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(a) Enhanced (b) Enhanced

(c) Detected Strips (d) Detected Strips

(e) Removed Strips (f) Removed Strips

Fig. 5.26.: Examples of Background Strip Removal.
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(a) Original Image (b) Original Image (c) Original Image

(d) Gaussian Thresholding (e) Gaussian Thresholding (f) Enhanced

Fig. 5.27.: Examples of Background Strips Automatically Removed in Previous Steps.

(a) Original Image (b) Skeleton End-Points

Fig. 5.28.: End-Points in Skeleton of Image 1011.
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(a) 1001 - 4 Reconnections (b) 1003 - 5 Reconnections

(c) 1014 - 1 Reconnection (d) 1020 - 1 Reconnection

Fig. 5.29.: Examples of Graffiti Component Reconnection.
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that may belong together forming words, as shown in Figure 5.31. Note how graf-

fiti components are successfully segmented and can be now treated separately for

classification.

(a) Before - 133 CCs (b) After - 9 CCs

(c) Before - 141 CCs (d) After - 15 CCs

(e) Before - 114 CCs (f) After - 7 CCs

Fig. 5.30.: Number of Connected Components (CCs) Before and After Automatic
Gang Graffiti Segmentation.
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(a) Segmented Components (b) Merged Components

Fig. 5.31.: Merged Connected Components Forming Words.
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Each of the graffiti component candidates are independently classified to return

a predicted class and a confidence score. The prediction class corresponds to one of

the 14 trained classes, and the confidence score is the score given to the predicted

class according to the equations presented in Section 5.1.3, in the range [0, 1]. Figures

5.32 to 5.34 show the classification results of one of the test images for each of its

components, including component color, predicted class and confidence. Figure 5.35

shows a test image were gang graffiti components are found from two different colors

(i.e. two different touchscreen traces). Note how even though one component is

sprayed on top of the other we are able to recover the one on the back and successfully

classify it. Further automatic interpretation can be done to understand that the

component in the back has been crossed-out as a thread from a rival gang. Note

that although some graffiti components have been successfully segmented they do

not belong to any of the 14 classes we have trained. They are currently assigned to

the closest class and given a low confidence score. For symbols that belong to the

trained set we usually obtain a confidence higher than 0.60. Therefore, we can discard

results if we do not achieve a minimum confidence score.

In the 20 test images there are a total of 98 gang graffiti components; 82 of

them can be found in our set of trained classes. We are able to segment and isolate

75 of the 98 gang graffiti components, corresponding to 66 of the 82 recognizable

components. We can then successfully classify 59 of them. The segmentation fails

when either graffiti components are discarded or multiple graffiti components are

merged into one. In all cases we are able to correctly identify the color of the graffiti

component based on the median value of the color corrected touchscreen trace. That

is, we have an end-to-end gang graffiti accuracy of 71.95%. The accuracy of each of the

blocks is as follows: 100% color recognition accuracy, 76.56% automatic segmentation

accuracy on color corrected images (80.49% for recognizable components), and 89.39%

gang graffiti component classification accuracy on successfully segmented components.

Table 5.22 show the accuracies of the automatic segmentation and graffiti component

classification steps.
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(a) Original Image (b) Segmented Components

(c) Graffiti Component Candidates

Fig. 5.32.: Automatically Segmented Candidate Graffiti Components.
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QUERY IMAGE: K=3, nleaves=10000, 0.94445 s

MATCH SCORE: 0.00075067 MATCH SCORE: 0.00063105 MATCH SCORE: 0.00056311 MATCH SCORE: 0.0005584
MATCH SCORE: 0.00051101

MATCH SCORE: 0.00045804
MATCH SCORE: 0.00045196

MATCH SCORE: 0.00044509 MATCH SCORE: 0.00041354 MATCH SCORE: 0.00037546

(a) White. 6-Point Star. Confidence: 0.84

QUERY IMAGE: K=3, nleaves=10000, 0.83168 s

MATCH SCORE: 0.00065715 MATCH SCORE: 0.00064513 MATCH SCORE: 0.00059651 MATCH SCORE: 0.0005309 MATCH SCORE: 0.00049049

MATCH SCORE: 0.0004662 MATCH SCORE: 0.00045035 MATCH SCORE: 0.00043996 MATCH SCORE: 0.00041753 MATCH SCORE: 0.00041295

(b) White. 0. Confidence: 0.26

QUERY IMAGE: K=3, nleaves=10000, 1.012 s

MATCH SCORE: 0.0022429 MATCH SCORE: 0.00086801 MATCH SCORE: 0.0007245 MATCH SCORE: 0.00059803 MATCH SCORE: 0.00059588

MATCH SCORE: 0.00057742 MATCH SCORE: 0.00057687 MATCH SCORE: 0.00057535 MATCH SCORE: 0.00045862 MATCH SCORE: 0.00045788

(c) White. arrow. Confidence: 0.35

QUERY IMAGE: K=3, nleaves=10000, 0.89779 s

MATCH SCORE: 0.00047354 MATCH SCORE: 0.00046289 MATCH SCORE: 0.00037564 MATCH SCORE: 0.00035408 MATCH SCORE: 0.00034558

MATCH SCORE: 0.00032479 MATCH SCORE: 0.00027643 MATCH SCORE: 0.00024906 MATCH SCORE: 0.000247 MATCH SCORE: 0.00024698

(d) White. E. Confidence: 0.49

QUERY IMAGE: K=3, nleaves=10000, 0.93104 s

MATCH SCORE: 0.0026198 MATCH SCORE: 0.00062279 MATCH SCORE: 0.00053718 MATCH SCORE: 0.00036474
MATCH SCORE: 0.00035147

MATCH SCORE: 0.00029573 MATCH SCORE: 0.00028501 MATCH SCORE: 0.00024594

MATCH SCORE: 0.00024443

MATCH SCORE: 0.00020632

(e) White. Pitchfork. Confidence: 0.75

QUERY IMAGE: K=3, nleaves=10000, 1.0731 s

MATCH SCORE: 0.00054001

MATCH SCORE: 0.00053792

MATCH SCORE: 0.00050217 MATCH SCORE: 0.00038827 MATCH SCORE: 0.00036447

MATCH SCORE: 0.00036428 MATCH SCORE: 0.00034959 MATCH SCORE: 0.00033871 MATCH SCORE: 0.00033341 MATCH SCORE: 0.00029662

(f) White. Pitchfork. Confidence: 0.70

QUERY IMAGE: K=3, nleaves=10000, 0.88115 s

MATCH SCORE: 0.00053182 MATCH SCORE: 0.00045094 MATCH SCORE: 0.00039905 MATCH SCORE: 0.00037952 MATCH SCORE: 0.0003678

MATCH SCORE: 0.00035929 MATCH SCORE: 0.00032086 MATCH SCORE: 0.0002985 MATCH SCORE: 0.0002975 MATCH SCORE: 0.000273

(g) White. 8. Confidence: 0.43

QUERY IMAGE: K=3, nleaves=10000, 0.94294 s

MATCH SCORE: 0.00040726

MATCH SCORE: 0.00031821

MATCH SCORE: 0.00025067 MATCH SCORE: 0.00024441 MATCH SCORE: 0.00023589

MATCH SCORE: 0.0002222 MATCH SCORE: 0.00022127
MATCH SCORE: 0.0002142 MATCH SCORE: 0.00021385 MATCH SCORE: 0.0002079

(h) White. 6-Point Star. Confidence: 0.39

Fig. 5.33.: Classification Results and Top-10 Matches for Candidates 1 to 8.
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QUERY IMAGE: K=3, nleaves=10000, 1.1583 s

MATCH SCORE: 0.00042493

MATCH SCORE: 0.00035278 MATCH SCORE: 0.00031595

MATCH SCORE: 0.00030569 MATCH SCORE: 0.0002915

MATCH SCORE: 0.00028319

MATCH SCORE: 0.0002794 MATCH SCORE: 0.00025276 MATCH SCORE: 0.00025094 MATCH SCORE: 0.00024015

(a) White. Pitchfork. Confidence: 0.29

QUERY IMAGE: K=3, nleaves=10000, 0.99907 s

MATCH SCORE: 0.00067623 MATCH SCORE: 0.00065732 MATCH SCORE: 0.00048869 MATCH SCORE: 0.00043265 MATCH SCORE: 0.00042883

MATCH SCORE: 0.00037958 MATCH SCORE: 0.0003549 MATCH SCORE: 0.00035417 MATCH SCORE: 0.0003468 MATCH SCORE: 0.00032428

(b) White. 2. Confidence: 0.35

QUERY IMAGE: K=3, nleaves=10000, 0.92467 s

MATCH SCORE: 0.00035791 MATCH SCORE: 0.00034948 MATCH SCORE: 0.00033107 MATCH SCORE: 0.00028936 MATCH SCORE: 0.00028918

MATCH SCORE: 0.0002767 MATCH SCORE: 0.00026142 MATCH SCORE: 0.00026069 MATCH SCORE: 0.00024163 MATCH SCORE: 0.00023935

(c) White. 4. Confidence: 0.37

QUERY IMAGE: K=3, nleaves=10000, 0.8936 s

MATCH SCORE: 0.00071066 MATCH SCORE: 0.00043707 MATCH SCORE: 0.00041579 MATCH SCORE: 0.00037954 MATCH SCORE: 0.0003771

MATCH SCORE: 0.00035123
MATCH SCORE: 0.00030477 MATCH SCORE: 0.00028786 MATCH SCORE: 0.00028782 MATCH SCORE: 0.00027386

(d) White. 3. Confidence: 0.26

QUERY IMAGE: K=3, nleaves=10000, 0.92734 s

MATCH SCORE: 0.0039754 MATCH SCORE: 0.0025008 MATCH SCORE: 0.0021075 MATCH SCORE: 0.00089841 MATCH SCORE: 0.00071766

MATCH SCORE: 0.00068514 MATCH SCORE: 0.00052627 MATCH SCORE: 0.00048999 MATCH SCORE: 0.00045802 MATCH SCORE: 0.00044629

(e) White. 0. Confidence: 0.70

QUERY IMAGE: K=3, nleaves=10000, 0.89753 s

MATCH SCORE: 0.0011152
MATCH SCORE: 0.00066013

MATCH SCORE: 0.00063918
MATCH SCORE: 0.0005261

MATCH SCORE: 0.00049081

MATCH SCORE: 0.00048951 MATCH SCORE: 0.00038144 MATCH SCORE: 0.00037422 MATCH SCORE: 0.00035789 MATCH SCORE: 0.00033659

(f) White. 2. Confidence: 0.50

QUERY IMAGE: K=3, nleaves=10000, 1.016 s

MATCH SCORE: 0.00050297 MATCH SCORE: 0.00048936 MATCH SCORE: 0.00047137 MATCH SCORE: 0.00045944 MATCH SCORE: 0.00040305

MATCH SCORE: 0.00039667 MATCH SCORE: 0.00037213 MATCH SCORE: 0.00034706 MATCH SCORE: 0.00032352 MATCH SCORE: 0.00031965

(g) White. 3. Confidence: 0.33

Fig. 5.34.: Classification Results and Top-10 Matches for Candidates 9 to 15.
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(a) Original Image

(b) Segmented Components in Hue (c) Segmented Components in Luma

(d) Red. X. Confidence: 0.72 (e) Black. 1. Confidence: 0.71 (f) Black. 3. Confidence: 0.67

Fig. 5.35.: Automatic Segmentation and Classification from Multiple Colors.
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Table 5.22: Automatic Segmentation and Graffiti Component Classification Accura-
cies. N GC: Number of gang graffiti components. N GC Rec: Number of recognizable
gang graffiti components.

Image Number N GC Segmented N GC Rec Segmented Rec Classified
1001 6 4 4 2 2
1002 7 7 3 3 3
1003 5 5 4 4 3
1004 2 2 7 6 3
1005 3 3 8 7 6
1006 2 2 1 1 1
1007 2 2 0 0 0
1008 8 4 6 4 3
1009 4 4 3 3 3
1010 8 4 8 7 7
1011 5 5 0 0 0
1012 2 2 0 0 0
1013 7 4 6 3 3
1014 4 3 3 3 2
1015 2 2 2 2 2
1016 1 4 4 3 3 3
1016 2 2 2 2 2 2
1017 5 4 4 4 4
1018 9 1 6 0 0
1019 1 2 2 4 4 4
1019 2 5 5 5 5 5
1020 4 4 3 3 3
Total 98 75 82 66 59

Accuracy 76.53% 80.49% 71.95%
Marginal Acc 89.39%
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Table 5.23: Average Running Times (seconds) and Accuracies of The Three Main
Blocks in The GARI System on Testing Dataset.

Color Correction Segmentation Classification End-To-End
Time 1.78 2.04 0.64 4.69

Accuracy 100% 80.49% 89.39% 71.95%

Table 5.23 summarizes the results of the end-to-end system. The Color Correction

time is based on the entire image and its accuracy is based on the touchscreen tracing

results.
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Table 5.24: Number of Images and Users In the Different GARI Systems.

GARI Classic GARI IND GARI CCSO Total
Images 720 595 173 1,488
Users 73 138 61 272

5.1.5 Database of Gang Graffiti

As of March 2014, our databases of gang graffiti images in the different GARI

systems (GARI Classic, GARI IND, GARI CSSO) accumulate 1,488 browsable images

with associated thumbnails and reduced size versions, for a total of 1.82 GB of data.

We have a total of 272 users from more than 20 departments in the United States

distributed across the GARI systems.

We cooperated with the Indianapolis Metropolitan Police Department (IMPD)

to acquire a separate set of 657 graffiti images for research purposes. This allows

us to be able to accurately calibrate and analyze the images. These include images

acquired with and without using a tripod and with and without fiducial markers. We

used three digital cameras for this purpose: a 10Mpx Canon Powershot S95, a 4Mpx

Panasonic Lumix DMC-FZ4, and a 5Mpx HTC Desire (Android mobile telephone).

Table 5.24 shows the distribution of images and users across the three GARI

systems.

5.1.6 Database Query Performance

We tested the elapsed time between sending an image from the hand-held de-

vice, using the Android application, and receiving the results of the upload. On the

client side, the process includes sending and receiving the image to the server via

HTTPS and returning the graffiti image thumbnail and text retrieved to the user.

On the server side, the process includes creating a session for the user, checking im-

age existence in the database, copying the image to a specific directory, creating the

thumbnail image and reduced size copies of the image, extracting up to 24 EXIF data
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points from the image, creating a new entry in the PosgtreSQL table and adding in-

formation in as many as 30 fields, and sending back a string with the results of the

upload. Table 5.25 shows the details of ten graffiti image uploads using the same

network conditions (WiFi). As one can see most of the elapsed time is due to the

HTTPS connection since the user interface operations on the hand-held device (for

the specific action of uploading an image to the server) do not slow down the process.

Table 5.25: Elapsed Time On the Hand-Held Device and the Server When Uploading
an Image.

Image Size Server Time Total Time
146.7 KB 0.66 s 2.24 s
157.9 KB 0.65 s 2.33 s
179.8 KB 0.65 s 2.66 s
203.3 KB 0.66 s 2.42 s
207.9 KB 0.64 s 2.44 s
227.8 KB 0.65 s 2.34 s
609.9 KB 1.05 s 3.64 s
639.8 KB 1.47 s 4.71 s
653.6 KB 1.06 s 4.00 s
760.4 KB 1.07 s 4.31 s

5.2 MERGE3

We did experiments for our three proposed methods from Section 4. The first

experiment evaluates the accuracy of the sign location detection and color recognition

of the segment detection using geometric constraints (see Section 4.2). The second

experiment evaluates the accuracy of the sign detection, color recognition, and the

saliency map methods of the convex quadrilateral detection based on saliency map

(see Section 4.3). The third experiment evaluates the accuracy of the sign location

detection of the sign detection based on Fourier descriptors (see Section 4.4). The

tests were executed on a desktop computer with a 2.8GHz CPU and 2GB RAM.

3The work presented in this section was done by the author jointly with Bin Zhao and Kharittha
Thongkor.
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The ground-truth information included the sign distance from the camera, sign color,

projective distortion of the sign, image resolution, possible shadow affecting the sign,

and sign location on the image. Note that we only used the color and not the text

of the sign for sign identification for these experiments. The image dataset consisted

of 50 images each containing one or more hazmat signs (62 hazmat signs in total).

Figure 5.36 illustrates some of the images in the dataset. The images were acquired

by first responders using three different cameras: a 8.2 Mpx Kodak Easyshare C813,

a 16 Mpx Nikon Coolpix S800c, and a 5 Mpx camera on an HTC Wildfire mobile

telephone. The images were acquired in the field, under various lightning conditions,

distances, and perspectives. Among the 50 images, 23 were acquired at 10-50 feet,

23 at 50-100 feet, and 4 at 100-200 feet. Among the 62 hazmat signs, 2 had low

resolution, 11 had projective distortion, 8 were blurred, and 6 were shaded.
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Fig. 5.36.: Example Images From The Test Dataset.
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Table 5.26: Analysis Results: Segment Detection Using Geometric Constraints.

Total Signs Signs Detected Accuracy Color Recognized Accuracy
62 22 36.5% 12 19.4%

5.2.1 Segment Detection Using Geometric Constraints

The first experiment consisted of images from a dataset and manually comparing

the results with ground-truth information. The method used for this experiment is

segment detection using geometric constraints (see Section 4.2). Table 5.26 shows the

results of the first experiment using our proposed method. We determined how many

signs were successfully detected (Signs Detected) and how many were successfully

identified (i.e., sign detected plus correct color (Color Recognized)). Note that the

sign color recognition was done only if a sign was detected. Also note that although

this method uses OCR on detected signs, its accuracy was not good enough to be

tested on a wide range of images. Among the successfully detected signs we had a

higher accuracy for color recognition. The proposed method recognized the correct

color in 54.5% of the successfully detected signs. The low accuracy is caused by mul-

tiple factors, including segment overlapping, edge detection failure on low resolution

images, distortion and rotation of the sign, and multi-colored signs. The proposed

method had an average execution time of 2.30 seconds.

5.2.2 Convex Quadrilateral Detection Based on Saliency Map

The second experiment consisted of images from the same dataset from the first

experiment, and manually comparing the results with ground-truth information. The

method used for this experiment is convex quadrilateral detection based on saliency

map (see Section 4.3). We did two experiments to investigate the speed and accu-

racy of our proposed method. The first experiment consisted of constructing saliency

maps using different visual saliency models and evaluating their performance based

on ground-truth information. The second experiment consisted of hazmat sign detec-
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tion and recognition on our image dataset and manually comparing the results with

ground-truth information.

Table 5.27 shows the results of our first experiment, including average execu-

tion times and scores. The saliency map methods evaluated in the experiment are:

SBVA [312], GBVS [313], DVA [269], MSDA [271], IS [291], HFT [273]. We classi-

fied the resulting saliency maps into four categories: good, fair, bad, and lost. For

each sign, we assigned 3 points to a good map (sign was mostly contained in a high

saliency-valued region), 2 points to a fair map (sign was mostly contained in a mid-

dle saliency-valued region), 1 point to a bad map (sign was mostly contained in a

low saliency-valued region), and 0 points to a lost map (sign was not contained in

any saliency-valued region). Figure 5.37 illustrates examples of each category. The

score of each saliency map method is calculated as the sum of the points assigned

to all 62 hazmat signs, which ranges from 0 to 186. Compared with the SBVA and

the GBVS methods using one color space, the IS and the HFT methods using one

color space have comparable scores, while the IS and the HFT methods using two

color spaces have higher scores. The IS(RGB+Lab), the HFT(RGB+Lab) and the

IS+HFT(RGB+Lab) methods using two color spaces run 2.76, 1.93, and 1.14 times

faster than the SBVA method and 4.48, 3.13, and 1.84 times faster than the GBVS

method respectively. The results verified that the IS and the HFT methods can be

combined to improve the score of IS+HFT method, while still running faster than

SBVA and GBVS methods.

Table 5.28 shows the image analysis results of our second experiment. The over-

all sign detection accuracy is closely related to the number of pixels on a hazmat

sign, which is mainly influenced by the distance from a camera in a mobile device

to a hazmat sign and the resolution of the image captured by the camera. Com-

pared with the proposed IS(RGB+Lab) and the HFT(RGB+Lab) methods using one

saliency map method, our proposed IS+HFT(RGB+Lab) method using two saliency

map methods has higher accuracy. The proposed IS+HFT(RGB+Lab) method has

an overall sign detection accuracy of 64.5% for all 62 hazmat signs. Note that its
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Table 5.27: Average Execution Time (in Seconds), Distribution and Score of Each
Saliency Map Method (Color Spaces).

Saliency Map Time Good Fair Bad Lost Score
SBVA(I-RG-BY) 2.07 34 16 11 1 145
GBVS(I-RG-BY) 3.36 30 15 15 2 135

DVA(RGB) 0.43 19 2 11 30 72
MSDA(RGB) 3.74 22 7 27 6 107
IS(I-RG-BY) 0.43 23 4 17 18 94
IS(RGB) 0.36 45 8 4 5 155
IS(Lab) 0.39 27 5 20 10 111

HFT(I-RG-BY) 0.59 33 8 12 9 127
HFT(RGB) 0.53 38 5 8 11 132
HFT(Lab) 0.55 37 10 8 7 139

IS(RGB+Lab) 0.75 52 6 1 3 169
HFT(RGB+Lab) 1.08 41 6 8 7 143

IS+HFT(RGB+Lab) 1.83 55 4 2 1 175

overall accuracy is 71.9% for the 32 hazmat signs in the 50-100 feet range and 50.0%

for the 6 hazmat signs in the 100-200 feet range. We can increase the overall ac-

curacy by improving the adaptive thresholding method used in the saliency region

segmentation and the morphological operations used in the convex quadrilateral shape

detection. We determined the color recognition accuracy based on how many signs

were correctly color recognized after a successful sign detection. The color recogni-

tion accuracies of the proposed methods using IS(RGB+Lab), HFT(RGB+Lab) and

IS+HFT(RGB+Lab) are 37.1%, 30.6%, and 51.6% respectively. Note that the sign

color recognition was done only if a sign was successfully detected, and that multi-

colored signs may also cause our method to misidentify the sign color, given that we

detect signs at individual color channels. Color recognition accuracy is affected by

the absence of color calibration in the step of image preprocessing. The overall aver-

age execution times of the proposed methods using IS(RGB+Lab), HFT(RGB+Lab)

and IS+HFT(RGB+Lab) are 2.60, 2.49, and 5.09 seconds in total respectively. The

proposed IS+HFT(RGB+Lab) method is still suitable for real-time applications.
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Fig. 5.37.: Saliency map categories (top to bottom, left to right): original image,
good, fair; original image, bad, lost.

Table 5.28: Image Analysis Results: Convex Quadrilateral Detection Based on
Saliency Map.

Proposed Method Total Signs Signs Detected Overall Accuracy
IS(RGB+Lab) 62 32 51.6%

HFT(RGB+Lab) 62 24 38.7%
IS+HFT(RGB+Lab) 62 40 64.5%
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Table 5.29: Analysis Results: Sign Location Detection Based on Fourier Descriptors.

Total Signs Signs Detected Accuracy
62 45 72.6%

Table 5.30: Image Analysis Results for the Three Proposed Methods. 1: Segment
Detection Using Geometric Constraints, 2: Convex Quadrilateral Detection Based on
Saliency Map, 3: Sign Location Detection Based on Fourier Descriptors.

Proposed Method Total Signs Signs Detected Overall Accuracy Time
1 62 22 36.5% 2.30
2 62 40 64.5% 5.09
3 62 45 72.6% 6.11

5.2.3 Sign Location Detection Based on Fourier Descriptors

We implemented the methods in [257] and our previous technique [314] and com-

pared their accuracy against our method. Table 5.29 shows the results. Our method

has a hazmat sign location detection rate of 72.58%, while the detection rates for [257]

and [314] are 24.32% and 64.52%, respectively. Figure 5.38 illustrates some examples

of sign location detection for each of the methods. The proposed method had an

average execution time of 6.11 seconds.

Table 5.30 shows the analysis results for each of the three proposed methods for

hazmat sign detection.
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Fig. 5.38.: Examples of sign location detection. Column from left to right: results
from [257], results from [314], results from proposed method.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis two integrated mobile systems are described. First, a system for

gang graffiti image acquisition and recognition. We called this system Gang Graffiti

Automatic Recognition and Interpretation or GARI. GARI includes motion blur pre-

vention and detection, color correction based on light sensor, color recognition based

on touchscreen tracing, color image segmentation based on Gaussian thresholding,

and content-based gang graffiti image retrieval. We have also investigated the design

and deployment of an integrated image-based database system. Second, a system for

hazmat sign detection and recognition. We called this system Mobile Emergency Re-

sponse Guidebook or MERGE. MERGE includes segment detection using geometric

constraints, convex quadrilateral detection based on saliency map, and sign location

detection based on Fourier descriptors.

The main contributions of GARI and MERGE in the area of image analysis are

as follows:

• We presented a motion blur prevention and detection method based on mobile

device sensors.

• We presented a color correction method based on mobile device light sensor.

• We described a color recognition method based on touchscreen tracing.

• We presented a color image segmentation method based on Gaussian thresh-

olding, block-wise Gaussian segmentation enhancement, background stripe re-

moval, and connected component reconnection.
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• We presented a feature extraction method based on local shape context descrip-

tors from SIFT keypoint locations.

• We presented a gang graffiti content based image retrieval method based on

bag-of-words model.

• We presented a segment detection method based on geometric constraints.

• We presented a convex quadrilateral detection method based on saliency map.

• We presented a sign location detection based on Fourier descriptors.

The main contributions of GARI and MERGE in the design and deployment of

the integrated image-based database system are as follows:

• We developed an integrated image-based database system where data from users

and images is connected to gang graffiti information for analysis and tracking.

• We developed an integrated image-based database system where data from users

and images is connected to hazmat sign information for image analysis and

forensics.

• We created a web-based interface for first responders and researchers to upload

images and browse gang related information by location, date and time, using

interactive maps for better visualization. It is accessible from any device capable

of connecting to the Internet, including iPhone and Blackberry.

• We created a web-based interface for first responders and researchers to upload

images and browse hazardous material information by location, date and time

for forensic analysis. It is accessible from any device capable of connecting to

the Internet, including iPhone and Blackberry.

• We created Android and iOS applications for first responders on the field to

upload images to the server, use image analysis and conduct forensic tasks,

browse related information, and use location-based services to populate inter-

active maps.
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6.2 Project Status

As of March 2014 we have developed Android and iOS applications and a web-

based interface for both the GARI and MERGE systems. The GARI Android/iOS

applications include color recognition, image acquisition and upload, content based

image retrieval, and database browsing through lists, interactive maps and augmented

reality interfaces. The GARI web-based interface includes image upload and database

browsing through lists and interactive maps. The MERGE Android/iOS applications

include sign recognition and interpretation and internal database browsing using the

2012 version of the Emergency Response Guidebook (ERG). The MERGE web-based

interface includes the same capabilities. Both GARI and MERGE web-based inter-

faces can be accessed from any device capable of connecting to the Internet (e.g.,

Blackberry, laptop/desktop computers).

Table 6.1 shows the Android/iOS versions of the GARI and MERGE mobile ap-

plications as of March 2014. Note that GARI has multiple versions, since it has

been deployed for different Police Departments across the country. GARI Classic

and GARI Classic Test are versions based at Purdue University and used for testing

purposes. GARI IND is used by the Indianapolis Metropolitan Police Department

(IMPD). GARI CCSO is used by the Cook County Police Department (CCPD).

CGAP stands for Citizen Gang Alert Program. It will be released to the public so

regular citizens can report gang graffiti directly to the police.

Table 6.1: Android/iOS versions of the GARI and MERGE mobile applications.

Android iOS
GARI Classic 2.84 - February 2014 1.3 - November 2013
GARI Classic Test 2.76TEST - February 2014 1.3TEST - November 2013
GARI IND 2.76IND - February 2014 1.4IND - January 2014
GARI CCSO 2.76CCSO - February 2014 1.3CCSO - November 2013
CGAP 1.16 - February 2014 1.3 - November 2013
MERGE 3.0 - February 2014 1.5 - March 2014
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Our current image analysis system for GARI includes five methods. First, mobile-

based motion blur prevention and detection. Second, color correction based on mobile

light sensor. Third, color recognition based on touchscreen tracing. Fourth, automatic

graffiti component segmentation, which includes color image segmentation based on

Gaussian thresholding, block-wise Gaussian segmentation enhancement, background

stripe removal, and graffiti component reconnection. Fifth, content based gang graffiti

image retrieval. The first two are done on the client, while the last three are currently

done on the server.

Our current image analysis system for MERGE includes three methods, all done

on the server. First, segment detection using geometric constraints. Second, convex

quadrilateral detection based on saliency map. Third, sign location detection based

on Fourier Descriptors.

Our tests on database query performance for GARI suggest that the bottleneck

for the upload and retrieval process is from the network connection. This is because

we require the full resolution image, which can be up to several MB of data, to be

sent to the server for analysis.

Our databases of gang graffiti images in the various GARI systems (GARI Classic,

GARI IND, GARI CSSO) have 1,488 browsable images with associated thumbnails

and reduced size versions (total of 1.82 GB of data). We have also acquired 657 images

for research purposes. The Android and iPhone applications have a memory size of

6.4 MB and 1.7 MB respectively. The CGAP version of the application requires only

1.1 MB and 779 KB respectively.

Our proposed color correction method based on the mobile light sensor has proved

to be faster than using fiducial markers and more accurate than using a fiducial marker

every week. Our accuracy and speed tests for the content based gang graffiti image

retrieval for GARI were done in two scenarios: scene recognition and gang graffiti

component classification. The experimental results showed that using SIFT descrip-

tors for scene recognition and LSC descriptors for component classification produce

very accurate outcomes. The experiments also showed that the image retrieval is fast
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in both scenarios. The end-to-end system has an accuracy of 71.95% and an average

execution time of 4.69 seconds as follows: 100% color recognition accuracy, 80.49%

automatic segmentation accuracy on color corrected images, and 89.39% gang graffiti

component classification accuracy on successfully segmented components.

Our image analysis tests for MERGE showed that the sign location detection

based on Fourier Descriptors is more accurate than the convex quadrilateral detection

based on saliency map method and the segment detection using geometric constraints.

Although it runs slower, its average execution time of 6.11 seconds makes it suitable

for real-time operation.

6.3 Future Work

6.3.1 GARI

Although the Color Correction Based on Mobile Light Sensor achieves good ac-

curacy the current method to associate a color correction matrix M to a lux value

is through a lookup table. We should investigate automatic generation of color cor-

rection matrices from the lux value by describing the evolution of the elements in M

with the lightning step. Figure 6.1 illustrates such evolution with the current number

of lux samples (612).

Our experiments shown that the bottleneck for the upload and retrieval process

is the network connection. Therefore, we could pre-process the image on the mobile

device to reduce the amount of data to be sent to the server. In this case we would

need to investigate the trade-offs between battery life, network bandwidth, storage

capacity, and processor performance [315,316].

The Block-Wise Gaussian Segmentation Enhancement currently uses a fixed block

size for local image processing. In the future we could improve the enhancement by

adapting the block size to the local width of the graffiti component. We can use the

Stroke Width Transform (SWT) proposed in [311] for this purpose.
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Fig. 6.1.: Evolution of the Elements in M With the Lightning Step (Lux Value).
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Our Gang Graffiti Component Classification method is currently able to predict

14 different classes. This is because we want to have at least 15 samples of a particular

class to ensure a minimum confidence. In the future, when more images are available

from our users we will have more ground-truth samples to extend the number of

classes. With more ground-truth data we can also investigate new features for graffiti

component classification, such as Zernike moments (global and local) or the curvature

scale space descriptors (CSSD) found in MPEG-7.

On the client side, the Android/iPhone users can help improve the classification

system by manually correcting the predicted results. The corrections can be sent

back to the server and used to automatically retrain the vocabulary tree to account

for the changes.

When two or more graffiti components are merged (e.g., 6-point star with pitch-

forks) we are not currently able to classify them as separate objects. In fact, the new

merged component may not be classified as any of the individual sub-components

contained in it. We could investigate methods to retrieve multiple objects from a

single entity, such as [317] or [318].

Even though our image retrieval methods achieve high accuracy, the procedure

to obtain the vocabulary tree involves the segmentation of a high-dimensional space

in hierarchical clusters using k-means clustering. This can cause unwanted results

due to effects of the curse of dimensionality [237, 238]. We may want to investigate

other methods that are more reliable. A tree-like structure can be built by repeatedly

projecting the set of R128 descriptors into R using a normalized random vector v ∈ R
128

until the projection can be clearly separated into two regions or classes. We can use

the same method recursively until we obtain the desired number of classes. The

resulting tree can then act as a vocabulary tree.

The final output of our current end-to-end system is a list of candidate gang graffiti

components and their confidence scores. We can create associations between graffiti

components and their descriptions in order to improve the interpretation and help first

responders identify gangs, gang members, and track gang activity. However, this is
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not as easy as creating a table with one to one correspondences between components

and descriptions. Depending on the geographical location of the graffiti the same

graffiti component can have different meanings. Although we do not have direct

evidence, this may be also true for colors. A more comprehensive database could also

include information related to the locations of graffiti components with respect to

each other to provide more context information. Also, we can enlarge the number of

fields and relationships in the database so as to link gangs to their respective colors,

acronyms, gang members, locations, or activity over time.

6.3.2 MERGE

Our long term goal for MERGE is to develop a system based on a mobile device

such as a mobile telephone, capable of using location-based services, combined with

image analysis, to automatically detect hazardous material signs from images taken

up to 500 feet, and provide real-time information to first responders to identify the

hazardous materials and determine what specialty equipment, procedures and pre-

cautions should be taken in the event of an emergency. This can be done by improving

our current sign location detection method and use a more robust color recognition

technique. We can also combine the saliency map method from Convex Quadrilat-

eral Detection Based on Saliency Map with the shape descriptors from Sign Location

Detection Based on Fourier Descriptors in one method.

We can use the same color correction and blur detection methods from GARI to

improve the color recognition and reduce the impact of motion blur. An optical char-

acter recognition method would help interpret the text inside the hazmat signs when

we have enough image resolution. We can also investigate color recognition methods

for multi-colored signs.
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6.4 Publications Resulting From This Work

Conference Papers

1. Bin Zhao, Albert Parra and Edward J. Delp, “Mobile-Based Hazmat Sign

Detection System,” Proceedings of the IEEE Global Conference on Signal and

Information Processing (GlobalSIP), pp. 735-738, December 2013, Austin, TX.

2. Albert Parra, Bin Zhao, Joonsoo Kim and Edward J. Delp, “Recognition,

Segmentation and Retrieval of Gang Graffiti Images on a Mobile Device,” Pro-

ceedings of the IEEE International Conference on Technologies for Homeland

Security, pp. 178-183, November 2013, Waltham, MA.

3. Albert Parra, Bin Zhao, Andrew Haddad, Mireille Boutin and Edward J.

Delp, “Hazardous Material Sign Detection and Recognition,” Proceedings of the

IEEE International Conference on Image Processing, pp. 2640-2644, September

2013, Melbourne, Australia.

4. Albert Parra, Mireille Boutin and Edward J. Delp, “Location-Aware Gang

Graffiti Acquisition and Browsing on a Mobile Device,” Proceedings of the

IS&T/SPIE Electronic Imaging on Multimedia on Mobile Devices, pp. 830402-

1-13, January 2012, San Francisco, CA.
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A. RGB TO Y’CH COLOR SPACE CONVERSION

An image captured using our Android application is saved as 32-bit RGB JPEG

file, where each pixel is a packed 32-bit integer containing the alpha, R, G and B

color components from most to least significant bits respectively. Note that a JPEG

image does not have an alpha channel and it is automatically set to zero by the

Android bitmap Application Programming Interface (API). From these packed RGB

bits we create a three-dimensional array to store the R, G and B components in their

unpacked bit representations.

The RGB color space is psychologically non-intuitive because humans have prob-

lems with the visualization of a color defined in RGB [319]. The attributes of hue

and saturation are the most natural way for humans to perceive colors [320]. The

separation of the luma component from the chrominance information is advantageous

in image processing. Therefore, we chose to transform the pixels in the image from

the RGB color space to our new HSL-based color space, which we call the Y’CH color

space, where we carefully define the three dimensions as luma, chroma and hue. We

choose chroma over saturation because it better represents human perception of the

variation in color purity with respect to luma. In the literature, saturation is defined

as relative chroma [321, 322], and the difference must be taken into consideration.

For example, the HSL color space is symmetrical with respect to luma, taking the

shape of a cylinder. When using chroma the cylinder gets narrower as we move from

the center of the neutral axis, forming a shape similar to a bicone [321]. Note that

Figures 3.8 and 3.10 illustrate the Y’CH color space solid representation as a bicone

for simplicity. However, its true shape is shown in Figure A.3, where not all the

primaries lie in the same plane.

We can convert from RGB to our Y’CH in many ways. In this section we describe

two approaches. The first one uses just arithmetic operations, while the second also
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uses trigonometric operations. We conclude in Section 5 that the first approach is

asymptotically faster and hence it is the method that we implemented in our Android

application described in Section 3.8.3.

Our first approach for transforming from RGB to Y’CH, which we call the arith-

metic approach, is illustrated in Figure A.1. First, we interpret the RGB cube as

being tilted so that the black and white vertices are positioned at the top and the

bottom of the neutral axis (vertical axis), respectively. Second, we project the tilted

cube onto a plane perpendicular to the neutral axis, thus forming a hexagon. The

chroma (C) and hue (H) components in our model are defined with respect to this

hexagonal projection (Figure A.2). Chroma is the distance from the origin of the

hexagon to its edge. We can define it as the difference between the largest and the

smallest values of an RGB triplet [323] as shown in Equation A.1. Hue is the angle

that represents the angular distance from the red edge of the projection (i.e., set to

zero radians) to a particular RGB projection [324, 325], as shown in Equation A.2.

Note that this theoretical hue, which we define as H ′, is undefined for projections

onto the neutral axis (i.e., C = 0). Also note that these definitions of chroma and

hue correspond to a geometric warping of the hexagon into a circumference.

Fig. A.1.: Steps For Transforming from RGB to Y’CH Using The Arithmetic Ap-
proach.

H ′ is then converted to degrees, which we define as H, by multiplying by 60. This

multiplication accounts for 360◦

6
, which can be interpreted as the hexagonal analog

of the unit circumference conversion from radians to degrees. That is, since 2π is

the perimeter of the unit circumference, we define the conversion as rad = 360
2π

× deg.
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Fig. A.2.: Warping of the Hexagon Projection Into A Circumference in Our Y’CH
Color Space.

Since 6 is the perimeter of the unit hexagon, we can define rad = 360
6
×deg = 60×deg.

Note that we define H = 0 when C = 0 in order to deal with the undefined hue angle

for vector of magnitude zero.

Finally, our luma (Y ′) is the weighted average of gamma-corrected RGB color

components. We define it using the Rec. 601 NTSC primaries [326], as shown in

Equation A.3.

C = max(R,G,B)−min(R,G,B)

= M −m. (A.1)

H ′ =





G−B
C

if M=R

B−R
C

+ 2 if M=G

R−G
C

+ 4 if M=B

undefined if C=0

(A.2)

Y = 0.299R + 0.587G+ 0.114B. (A.3)
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Using these equations, our Y’CH color space is defined in 0 ≤ H < 360 (or

0 ≤ H < 2π in radians), 0 ≤ C ≤ 1 and 0 ≤ Y ≤ 1. The resulting representa-

tion is illustrated in step 3 of Figure A.1, where each colored dot represents a fully

chromatic primary. Given our definitions of luma, chroma and hue, the color space

representation does not have a symmetric shape. Figure A.3 illustrates a 3D view of

the Y’CH solid. Figures A.4 to A.6 illustrate different cross-sections of constant hue,

where the far left and far right corners represent fully chromatic colors. Note that

the primaries do not lie in a common luma plane. Also note in Figure A.5 the effect

of setting H = 0 where C = 0, instead of being undefined. The neutral axis (C = 0)

does not contain luma values, since the cross-section is not located at H = 0. Figure

A.4, however, since it is located at H = 0, we do not see any discontinuity.

Figure A.7 illustrates the bottom view of our Y’CH color space representation,

where the hue of different primaries can be identified.

Fig. A.3.: 3D view of Our Y’CH Color Space (Using the Arithmetic Approach).

Our second approach for transforming from RGB to Y’CH, which we call the

trigonometric approach, consists of defining the Y’CH color space using cylindrical

coordinates, thus skipping the hexagon warping. First, we convert from RGB to Y’IQ

using a linear transformation of the RGB cube [327], as shown in Equation A.4. With

this conversion we directly obtain the Y’CH luma, which is defined again using the

Rec. 601 NTSC primaries. Then, we can derive the hue and the chroma from a
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Fig. A.4.: Cross-Section of Constant Hue H = 0 rad in Our Y’CH Color Space.

Fig. A.5.: Cross-Section of Constant Hue H = π
3
rad in Our Y’CH Color Space.

cylindrical transformation of I and Q [323] as shown in Equation A.6. Note that the

function atan2 in Equation A.6 is the two-argument arctangent, defined in Equation

A.7.




Y

I

Q


 =




0.299 0.587 0.114

0.595716 −0.274453 −0.321263

0.211456 −0.522591 0.311135







R

G

B


 . (A.4)
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Fig. A.6.: Cross-Section of Constant Hue H = 2π
3
rad in Our Y’CH Color Space.

Fig. A.7.: Bottom View of Our Y’CH Color Space (Using the Arithmetic Approach).

H = atan2(Q, I) (A.5)

C =
√
I2 +Q2, (A.6)
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atan2(I,Q) =





arctan(Q
I
) I > 0

π + arctan(Q
I
) Q ≥ 0, I < 0

−π + arctan(Q
I
) Q < 0, I < 0

π
2

Q > 0, I = 0

−π
2

Q < 0, I = 0

undefined Q = 0, I = 0

(A.7)

Figure B.16 illustrates the bottom view of our Y’CH color space representation

where the hue of different primaries can be identified. Note the hexagon shape.

Fig. A.8.: Bottom View of Our Y’CH Color Space (Using the Trigonometric Ap-
proach).

Note that a HSL-based color space, such as Y’CH, has the disadvantage that it

does not account for the complexity of the human color perception. However, since

we are doing color recognition this is not an issue.
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B. EXAMPLES OF GRAFFITI COLOR IMAGE

SEGMENTATION

This Appendix shows examples of Color Image Segmentation Based on Gaussian

Thresholding.

Fig. B.1.: Red text: H̃ = 0.49 and σ2
H = 0.05.
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Fig. B.2.: TC = 0.04.
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Fig. B.3.: White text: Ỹ = 0.83 and σ2
Y = 0.003.

Fig. B.4.: TY b = 0, TY w = 1.
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Fig. B.5.: Black text: Ỹ = 0.13 and σ2
Y = 0.001.

Fig. B.6.: TY b = 0, TY w = 0.2.
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Fig. B.7.: Blue text: H̃ = 2.56 and σ2
H = 0.034.

Fig. B.8.: TC = 0.04.
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Fig. B.9.: Blue text: H̃ = 2.60 and σ2
H = 0.020.

Fig. B.10.: TC = 0.05.
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Fig. B.11.: Blue text: H̃ = 2.73 and σ2
H = 0.049.

Fig. B.12.: TC = 0.02.
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Fig. B.13.: Black text: Ỹ = 0.17 and σ2
Y = 0.008.

Fig. B.14.: TY b = 0, TY w = 1.
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Fig. B.15.: Black text: Ỹ = 0.19 and σ2
Y = 0.002.

Fig. B.16.: TY b = 0, TY w = 1.
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C. IMAGE THRESHOLDING METHODS

This Appendix shows the comparison of three different image thresholding methods

with respect to the 20 test images used in Section 5.1.4. The thresholding methods

are: 1) Our proposed combination of Color Image Segmentation Based on Gaus-

sian Thresholding and Block-Wise Gaussian Segmentation Enhancement, 2) Niblack

thresholding, 3) Otsu’s method. The input of our proposed method is not just the im-

age, but additional parameters returned from our proposed Color Recognition Based

on Touchscreen Tracing (Section 3.4): boolHL indicates if the recognized color is

based on hue or luma; medH is the hue median; medY is the luma median; varH is

the hue variance; varY is the luma variance. The Niblack thresholding is setup with

a filter radius of 25 pixels and standard deviation threshold of 0.2. Otsu’s method

does not need any additional configuration.
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.1.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1 3.6046,
0.3486, 0.0012, 0.0013].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.2.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 6.0868,
0.7381, 0.0075, 0.0033].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.3.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 6.0868,
0.3298, 0.0018, 0.0010].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.4.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 0.2448,
0.3145, 0.0107, 0.0023].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.5.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 6.0974,
0.5332, 0.0244, 0.0011].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.6.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 6.1730,
0.7483, 0.0093, 0.0037].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.7.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 0.1145,
0.2670, 0.0080, 0.0028].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.8.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 0.1848,
0.2120, 0.0656, 0.0017].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.9.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 4.8869,
0.1329, 1.2905, 0.0029].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.10.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 3.6070,
0.1894, 2.3252, 0.0013].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.11.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 2.7925,
0.3618, 0.1469, 0.0028].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.12.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 1.0472,
0.2784, 2.6779, 0.0161].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.13.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 3.5358,
0.4344, 0.0016, 0.0028].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.14.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 0.7854,
0.3680, 0.0250, 0.0019].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.15.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 4.8171,
0.8821, 0.3069, 0.0046].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.16.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 0.0423,
0.3018, 0.0012, 0.0018].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.17.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 0.1309,
0.2317, 0.3181, 0.0093].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.18.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 4.0075,
0.1993, 0.0021, 0.0015].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.19.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 3.9924,
0.1886, 0.1030, 0.0014].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.20.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [1, 0.1496,
0.3147, 0.0049, 0.0022].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.21.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 1.0472,
0.1529, 1.7701, 0.0005].
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(a) Original Image (b) Proposed

(c) Niblack (d) Otsu

Fig. C.22.: For Proposed Method: [boolHL, medH, medY, varH, varY] = [0, 2.6180,
0.1305, 2.3481, 0.0019].
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D. GARI DATABASE TABLES

This Appendix describes the GARI database tables in more detail.

Table D.1: EXIF data fields in Table images.

EXIF field Description

filesize Size of the image (bytes)

filedatetime Date and time of capture

resolutionheight Height of image (px)

resolutionwidth Width of image (px)

focallength Focal Length of camera’s optical system

isoequiv ISO equivalent value used

cameramake Camera make

cameramodel Camera model

gpsaltitude GPS altitude

gpslongitude GPS longitude

gpslatitude GPS latitude

xresolution DPI in the width direction

yresolution DPI in the height direction

ycbcrpositioning Position of the YCbCr components

fnumber F number

compressedbitsperpixel Compressed bits per pixel

exposuretime Exposure time (seconds)

exposurebias Exposure bias (APEX)

aperture Lens aperture (APEX)

meteringmode Metering mode
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flash Status of flash when the image was shot

interoperabilityoffset Interoperability offset

sensingmethod Sensing method

customrendered Use of special processing on image data

whitebalance White balance

digitalzoomratio Digital zoom ratio

exposuremode Exposure mode

Table D.2: Image location fields in Table images.

Field Description

country Country (given GPS coordinates)

state State (given GPS coordinates)

county County (given GPS coordinates)

city City (given GPS coordinates)

zip ZIP code (given GPS coordinates)

address Address (given GPS coordinates)

Table D.3: Graffiti analysis fields in Table images.

Field Description

gangnameia Gang name from IA 1

gangnamegt Gang name from GT 2

gangidia Gang ID from IA

gangidgt Gang ID from GT

gangmembernameia Gang member name from IA

gangmembernamegt Gang member name from GT

1IA: Image Analysis
2GT: Ground Truth
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gangmemberidia Gang member ID from IA

gangmemberidgt Gang member ID from GT

Table D.4: Image information fields in Table images.

Field Description

imageid Image ID

path Path to the image file

firstrespondername First responder name

firstresponderid First responder ID

comment Comments about graffiti

webupload File uploaded from desktop version (boolean)

realcoords Image has real GPS coordinates (boolean)

filedatetimeupload Date and time the file was uploaded to the database

lastmodified Date and time a fields was last modified

lastmodifiedname First responder that last modified a field

istattoo Boolean to indicate if image is graffiti or tattoo

isprison Boolean to indicate if image was taken at a prison

prisonname Name of the prison where the image was taken

Table D.5: User information fields in Table users.

Field Description

id User ID

password MD5 hash of user’s password

name User’s name

admin User is administration (boolean)

first First login (boolean)
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gmail Gmail address

email Alternative email address

affiliation User affiliation

android Has Android application (boolean)

comments Comments about user

Table D.6: Image blobs information fields in Table imageBlobs.

Field Description

imageid Image ID

blobid Blob ID for a particular image ID

componentid Component ID for a particular blob ID

colorid Color ID for a particular component ID

crossedout Boolean to determine if the component is crossed-out

upsidedown Boolean to determine if the component is upside-out
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E. MERGE DATABASE TABLES

This Appendix describes the MERGE database tables in more detail.

Table E.1: EXIF data fields in Table images.

EXIF field Description

filesize Size of the image (bytes)

filedatetime Date and time of capture

resolutionheight Height of image (px)

resolutionwidth Width of image (px)

focallength Focal Length of camera’s optical system

isoequiv ISO equivalent value used

cameramake Camera make

cameramodel Camera model

gpsaltitude GPS altitude

gpslongitude GPS longitude

gpslatitude GPS latitude

xresolution DPI in the width direction

yresolution DPI in the height direction

ycbcrpositioning Position of the YCbCr components

fnumber F number

compressedbitsperpixel Compressed bits per pixel

exposuretime Exposure time (seconds)

exposurebias Exposure bias (APEX)

aperture Lens aperture (APEX)

meteringmode Metering mode
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flash Status of flash when the image was shot

interoperabilityoffset Interoperability offset

sensingmethod Sensing method

customrendered Use of special processing on image data

whitebalance White balance

digitalzoomratio Digital zoom ratio

exposuremode Exposure mode

Table E.2: Image location fields in Table images.

Field Description

country Country (given GPS coordinates)

state State (given GPS coordinates)

county County (given GPS coordinates)

city City (given GPS coordinates)

zip ZIP code (given GPS coordinates)

address Address (given GPS coordinates)

Table E.3: Image information fields in Table images.

Field Description

imageid Image ID

path Path to the image file

firstrespondername First responder name

filedatetimeupload Date and time the file was uploaded to the database

issign Boolean to indicate if image is sign or scene
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Table E.4: User information fields in Table users.

Field Description

id User ID

password MD5 hash of user’s password

name User’s name

admin User is administration (boolean)

first First login (boolean)

gmail Gmail address

email Alternative email address

affiliation User affiliation

android Has Android application (boolean)

comments Comments about user

Table E.5: Fields in Table class.

Field Description

clid Class ID

text Text describing class number and name

clnumber Class number

Table E.6: Fields in Table colorids.

Field Description

colorid Color ID

colorname Color name

Table E.7: Fields in Table colorpages.
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Field Description

colorid Color ID

guide Guide page number

Table E.8: Fields in Table placard.

Field Description

pid Placard ID

unid UNID

clid Class ID

sid Symbol ID

Table E.9: Fields in Table symbol.

Field Description

sid Symbol ID

text Symbol description

Table E.10: Fields in Table textcolors.

Field Description

textid Text ID for hazardous material types

colorid Color ID

Table E.11: Fields in Table textids.

Field Description

textid Text ID

text Hazardous material description
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Table E.12: Fields in Table textpages.

Field Description

textid Text ID

guide Guide page number

Table E.13: Fields in Table unids.

Field Description

unids UNID

guide Guide page number

material Material type

iso Included in the International Organization for Standardization (ISO) (boolean)

Table E.14: Fields in Table vw01 orange page.

Field Description

guide number cd Guide page number

guide page name txt Guide page title

category txt Hazmat sign category

sub category txt Hazmat sign subcategory

detail txt Page details

Table E.15: Fields in Table vw03 yellow page.

Field Description

un number UNID

guide number cd Guide page number

polymerization ind Polymerization index
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dangerous good name txt Dangerous good description

dangerous good id Dangerous good ID

Table E.16: Fields in Table

vw05 water reactive materials.

Field Description

un number UNID

guide number cd Guide page number

dangerous good name txt Dangerous good description

chemical symbol Chemical symbol

tih gas produced Toxic-by-Inhalation (TIH) gas produced

dangerous good id Dangerous good ID

polymerization ind Polymerization index

Table E.17: Fields in Table vw06 tiiapad.

Field Description

dangerous good id Dangerous good ID

dangerous good name txt Dangerous good description

un number UNID

circumstance type txt Situation when condition applies

guide number cd Guide page number

polymerization ind Polymerization index

simetric Small spills - Isolation distance (metric)

spdmetric Small spills - Protective distance - Day (metric)

spnmetric Small spills - Protective distance - Night (metric)

limetric Large spills - Isolation distance (metric)
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lpdmetric Large spills - Protective distance - Day (metric)

lpnmetric Large spills - Protective distance - Night (metric)

siimperial Small spills - Isolation distance (imperial)

spdimperial Small spills - Protective distance - Day (imperial)

spnimperial Small spills - Protective distance - Night (imperial)

liimperial Large spills - Isolation distance (imperial)

lpdimperial Large spills - Protective distance - Day (imperial)

lpnimperial Large spills - Protective distance - Night (imperial)



370

F. GARI IMAGE ACQUISITION PROTOCOL

This Appendix describes the protocol used for acquiring test images for the GARI

database. The images are used for testing various functions of the GARI system.

• Persons involved

– 2 GARI staff members

– 1 or more persons from Police Department

• Equipment/Materials needed

– Pens or pencils

– 2 Digital Camera (1MPx and above)

– 2 Tripods

– 2 Mobile Telephone with Android OS

∗ Built-in camera (1MPx and above)

∗ GPS receiver

∗ optional: Data plan

– 1 GPS receiver

– Graffiti Information Forms

– Fiducial Markers

– Image Checklist

– 1 Purdue University owned laptop

– 1 External hard drive

1) Preliminaries (Internet connection required)

a) Check time setting on the two Android mobile telephones, the two digital

cameras, and the GPS receiver using the Purdue University owned laptop,

and ensure they are in sync with the GARI server.
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b) Make sure the two Android mobile telephones, the two digital cameras, and

the GPS receiver batteries are fully charged.

c) Verify all equipment/materials above are available.

d) Make sure the settings of the two digital cameras are set to default by finding

the appropriate menu option.

e) Turn flash feature off on the two Android mobile telephones built-in cameras

and the two digital cameras.

f) Make sure zoom and macro features are not enabled on the two Android

mobile telephones built-in cameras and the two digital cameras.

g) Assign each person an ID number, and record it on the Graffiti Information

Form.

h) Record person’s name and affiliation on the Graffiti Information Form.

2) Set up environment

a) Stand up in front of the graffiti, far enough so that the cameras can cap-

ture all the content, preferably perpendicular to the surface containing the

graffiti. Some angle margin is permitted (θ spherical degrees), as shown in

Figure F.1 and Figure F.1. This angle show be small enough so that the

graffiti contents can be identified properly.

b) Make sure weather condition does not prevent seeing the graffiti.

c) Place the fiducial marker in a spot that would be 20 inches away and parallel

to the surface containing the graffiti, as shown in Figure F.1 and Figure F.2.

It should not block the graffiti contents.

d) Make sure there are not any objects between the camera and the graffiti

that obstruct partially or totally the view of the graffiti.

e) Record Date (MM/DD/YYYY), Time (HH:MM:SS) and GPS coordinates

(latitude, longitude and altitude, with six digit precision) on the Graffiti

Information Form. Obtain the information from the GPS receiver.
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f) Record neighborhood description on the Graffiti Information Form. Specify

street name(s) and landmarks in the area near the graffiti.

g) Proceed to take image. For each graffiti, take six images, using

• Android mobile telephone 1

• Android mobile telephone 1

• Android mobile telephone 2

• Digital camera 1 with tripod

• Digital camera 1 without tripod

• Digital camera 2 with tripod

• Digital camera 2 without tripod

h) For each graffiti, record the device(s) used on the Graffiti Information Form.

3) Taking an image of a graffiti

3.1) Taking image of a graffiti using an Android mobile telephone

a) Launch GARI application on the Android mobile telephone and assign

an Image Taker ID, corresponding to the one assigned in step 1. Pre-

liminaries.

b) Select the “Capture Image” option from the GARI application main

menu. The camera activity is then initialized.

c) Prepare for taking the image (position of the camera as desired, within

the recommended distance and angle from the graffiti). Make sure all

the contents of the graffiti and the entire fiducial marker can be seen on

the device screen.

d) Take an image of the graffiti, trying to maintain the device’s position,

as much as possible.

e) If the image does not meet the requirements noted in the Image Check-

list, the image should be retaken.

f) If location available through WiFi/GSM/GPS the GPS coordinates will

be automatically stored in the image. If no location method available,
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will receive a message: “No NETWORK/GPS found. Check coordinates

manually!”. Ignore it, since the GPS coordinates have already been

recorded on the Graffiti Information Form.

g) Crop the image if desired.

h) Select the “Send to Server” option from the GARI application main

menu. If no Internet connection available, will receive a message: “No

internet connection available”. It means the image has not been up-

loaded to the server. However, the image is still in the Android mobile

telephone SD card, and it can be copied to a computer at the end of

the session (Section 5.a of the protocol), and uploaded in the future.

If the image has not been uploaded to the server, check the box “Not

Successfully Uploaded” on the Graffiti Information Form.

3.2) Taking image of a graffiti using a digital camera

a) If a tripod is used, attached it to the digital camera, and adjust it so

the digital camera is at the same position as if it is held without using

the tripod.

b) Prepare for taking the image (position of the camera as desired, within

the recommended distance and angle from the graffiti). Make sure all

the contents of the graffiti and the entire fiducial marker can be seen on

the device screen.

c) Take an image of the graffiti, trying to maintain the device’s position,

as much as possible.

4) Completing the Graffiti Information Form (Figure F.3)

a) Fill the “Ground-truth graffiti information” section on the Graffiti Infor-

mation Form with ground-truth information associated with the graffiti, if

known. It includes:

• Graffiti color(s): color or colors of the graffiti contents.
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• Gang Name(s): name of the gang or gangs that participated on the

drawing of the graffiti.

• Gang Member(s): name of the gang member or gang members that

participated on the drawing of the graffiti.

• Target Gang Name(s): name of the gang or gangs that are targeted in

the graffiti.

• Target Gang Member(s): name of the gang member or gang members

that are targeted in the graffiti.

• Symbol(s): description of the symbol(s) in the graffiti, including color,

position in the graffiti (e.g. next to the gang name), orientation (e.g.

upside down fork), and possible meaning.

• Other content(s): description of other relevant contents of the graffiti

(e.g. crossed letters, nicknames), including color, position in the graffiti

(e.g. crossed C on the right of BERO), and possible meaning.

• Comments: additional information of the graffiti that does not fit in the

previous subsections of the “Ground-truth graffiti information” section.

b) Fill the “General Comments” section on the Graffiti Information Form with

additional comments that do not fit in all the previous sections.

5) End of the session procedures

a) Copy all the images taken with the Android mobile telephones (stored in

the GARI folder) and with the two digital cameras to a Purdue University

owned laptop and to an external hard drive.

b) Take cards out of the digital cameras and reformat them.

c) Ensure the Purdue University owned laptop and the two digital cameras are

synced.

d) Recharge laptop and camera batteries.

e) Store fiducial markers and other materials in a safe place for later use.
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Fig. F.1.: Top view of the setup environment.

Fig. F.2.: Side view of the setup environment.
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Fig. F.3.: Graffiti Information Form.
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G. MERGE IMAGE ACQUISITION PROTOCOL

This Appendix describes the protocol used for acquiring test images for the MERGE

database. The images are used for testing various functions of the MERGE system.

• Persons involved

– 1 MERGE staff member

• Equipment/Materials needed

– Pens or pencils

– 1 Mobile Telephone with Android OS

∗ Built-in camera (1MPx and above)

∗ 3G/4G/WiFi data connection

∗ GPS

– 1 Digital Camera with Android OS

∗ 3G/4G/WiFi data connection

∗ GPS

– Image Recording Forms

– External Hard Drive

1) Preliminaries (Internet connection required)

a) Check Date and Time settings on the Android mobile telephone and the

digital camera, and ensure date, time, and time zone are set to automatic

(network-provided).

b) Make sure the Android mobile telephone and the digital camera’s batteries

are fully charged.

c) Make sure the GPS is enabled on the Android mobile telephone and the

digital camera.
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d) Verify all equipments/materials above are available.

e) Turn flash feature off on the Android mobile telephone and the digital cam-

era.

f) Note: The Image Taker will need to fill out an Image Recording Form for

each hazmat sign.

2) Set up environment

a) Stand in front of the hazmat sign, far enough so that the camera can cap-

ture all the content, up to 200 feet from the sign for the Android mobile

phone, and up to 500 feet from the sign for the digital camera. Stand prefer-

ably perpendicular to the surface containing the sign. Limited angles are

permitted (45 degrees), as shown in Figure G.1.

b) Make sure weather conditions do not obstruct the view of the hazmat sign.

c) Make sure there are no objects between the camera and the hazmat sign

that partially or completely obstruct the view of the hazmat sign.

3) Taking Images of Hazmat Signs

a) Launch the MERGE application on the Android mobile telephone and the

digital camera, and login using the Image Taker’s ID and password. If this

is the first time that the Image Taker is logging into the application, an

Internet connection will be required to connect with the MERGE database

on the server. From then on, the Image Taker’s credential will be stored on

the Android device for future use without an Internet connection.

b) Select the “Capture Image” option from the MERGE main screen. The

camera activity is then initialized. Note that a new directory with the name

MERGE will be created on the Android device’s image gallery, where all the

images taken using the MERGE application will be stored. Please refer to

this directory when copying the images to the external hard drive (Section

5a).
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c) Prepare for taking the image (position the camera as desired, within the

recommended distance and angle from the hazmat sign). Make sure all the

contents of the hazmat sign can be seen on the device screen.

d) Take an image of the hazmat sign, trying to hold the device as much as

stable. The image can be retaken as many times as needed by tapping on

the retake option on the camera activity.

e) Tap on the OK button on the camera activity to save the current image. The

image will be automatically uploaded to the server and analyzed. The Image

Taker should see a notification dialog with the text “Uploading image...”

followed by another notification dialog with the text “Analyzing image...”.

If no Internet connection is available at the time, a warning dialog with

the text “No Internet connection available” will be shown to the Image

Taker. However, the image is stored in the Android device, and it can be

uploaded and analyzed in the future using the “Browse Image” option from

the MERGE main screen. If the image has not been uploaded to the server,

check the box “Not Successfully Uploaded” on the Image Recording Form.

f) If no Internet connection is available at the time, a warning dialog with

the text “No Internet connection available” will be shown to the Image

Taker. In this case, the captured image is stored in the device, and it can

be uploaded and analyzed in the future using the “Browse Image” option

from the MERGE main screen.

g) Please take different images for the same sign, at different distances (10-150

ft) and angles of view (0-45◦), and then write down an Image ID shown on

the top bar / pop-up window on the result screen, an approximate Angle

of View between your viewpoint and the perpendicular plane of the hazmat

sign’s surface, and an approximate Distance from your viewpoint to the

hazmat sign on the Image Recording Form (e.g., 123456, 15◦, and 125 ft).

h) Please take at least one image with No Zoom when using the digital camera,

and then check the box “No Zoom” on the Image Recording Form. Also
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take some images using the Optical Zoom when using the digital camera (NO

Digital Zoom), and then check the box “Zoom” and mark on an approximate

Zoom Value in a box on the Image Recording Form (e.g., 3/4 of the entire

optical zoom range).

4) Completing the Image Recording Form (Figure G.2)

a) Record Date (MM/DD/YYYY), Starting Time (HH:MM:SS), the Make and

Model of the device used to capture the images (e.g., HTC Desire) and the

Image Taker’s Name and Affiliation on the Image Recording Form.

b) Complete the “Ground Truth Information” section on the Image Recording

Form with ground-truth information associated with each hazmat sign in

the captured image. This includes:

• The Total number of existing hazmat signs in the captured image

• For each existing hazmat sign

– Hazmat sign number of an existing hazmat sign in the captured image

– Color(s): color(s) found in the hazmat sign (NOT including hazmat

sign frame)

– UN Identification number (UNID) (Figure G.3a)

– Symbol (Figure G.3b)

– Class (Figure G.3c)

– Text (Figure G.3d)

– Comments: Additional information of the hazmat sign that does not

fit in the previous fields.

c) Complete the “Image Analysis Results” section on the Image Recording

Form with information retrieved from the server after a captured or browsed

image has been analyzed. This includes:

• The Image ID of the captured image

• The Total number of highlighted hazmat signs from image analysis

• For each returned hazmat sign
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– Hazmat sign number of a highlighted hazmat sign shown in the result

screen

– Color(s): color(s) shown in the result screen

– Text: text shown in the result screen

– No hazmat signs found: Check this box if a dialog containing “No

hazmat signs found” is shown to the Image Taker after uploading an

image to the server, meaning that no hazmat signs have been found

in the current image.

Figures G.4 and G.5 show two examples of completed Image Recording Forms for

two different cases shown in Figure G.6.

Fig. G.1.: Top view of the setup environment.
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Image Recording Form 

 

Image Taker Name:    ID:   Affiliation: 

Date:  / /   Starting Time:  : : 

Device Make:     Device Model: 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

 

Fig. G.2.: Image Recording Form.



383

(a) UNID (b) Symbol (c) Class (d) Text

Fig. G.3.: Hazmat sign identifiers.

Fig. G.4.: Example of Completed Image Recording Form for Figure G.6 (left).
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Fig. G.5.: Example of Completed Image Recording Form for Figure G.6 (right).

Fig. G.6.: Screenshots for hazmat sign found (left) and not found (right).
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