Factors affecting non-point source loads
1. Source level
2. Partitioning in the soil
3. Degradation: microbial, photodecay
4. Leaching – Subsurface Transport
5. Runoff and sediment movement – surface transport
6. Volatilization
7. Plant uptake/Bioconcentration (animal uptake)
8. Chemical oxidation
9. Photo-transformation
10. Hydrolysis

Phase Relationships

<table>
<thead>
<tr>
<th>Mass</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_A = 0$</td>
<td>V_A</td>
</tr>
<tr>
<td>$M_w = \rho_s V_s$</td>
<td>V_s</td>
</tr>
<tr>
<td>$M_w = \rho_s V_w$</td>
<td>V_W</td>
</tr>
</tbody>
</table>

$M_{tot} = M_w + M_s$
$V_{tot} = V_A + V_w + V_s$

Bulk Density = $\rho_b = \frac{M_s}{V_{tot}}$

Water Content
Gravimetric $w = \frac{M_w}{M_s}$
Volumetric $\theta = \frac{V_w}{V_{tot}}$

Chemical transport by surface water
1. Particulate Phase
 - Adsorption to sediment
 - Chemical Solids (crystals or pellets)
2. Dissolved phase
Loading of chemical, $A \Rightarrow Y_A\left(\frac{g}{\text{runoff event}}\right)$

$Y_A = Y_S S_A + \forall C_A$

where

$Y_S = \text{Sediment Yield (Mg (metric tons)/event)}$

$S_A = \text{Adsorbed Chemical Conc. g/Mg = } \mu g/g$

$\forall = \text{Volume Runoff m}^3$

$C_A = \text{Dissolved concentration IN RUNOFF g/m}^3$

Adsorption Isotherms

Adsorption Models ⇒ Isotherms

1. **Freundlich**: Empirical Relationship

 $S_A = K C_A^{b}$

 where

 $S_A = \text{adsorbed concentration } \mu g/g$

 $C_A = \text{solute concentration } \mu g/cm^3 = g/m^3$

 $K = \text{adsorption coefficient } \left(\frac{cm^3}{g}\right)^{1/3}$

 $b = \text{empirical coefficient}$

2. **Langmuir**: Based on monolayer of chemical at saturation

 $S_A = \frac{ab C_A}{1 + b C_A}$

 $a = \text{empirical value of max possible adsorption (saturation) for the soil (mg/g)}$

 $b = \text{saturation coefficient (empirical) } \left(\frac{m^3}{g}\right)$

Example Phosphorus Adsorption

$S_A = \frac{ab C_p}{1 + b C_p}$

$a = \text{function (clay, oc)}$

$a \approx -3.5 + 10.7[\% \text{ clay}] + 49.5[\% \text{ oc}] \quad \text{ (for acid soils)}$

$b = \text{function (clay, oc, pH)}$

$b \approx 0.061 + \left[169,832 \times 10^{-\nu PH}\right] + 0.027[\% \text{ clay}] + 0.76[\% \text{ o.c.}]$

Fertilizer Application Rate 90 kg/ha P

Mixed by Tillage to 30 cm

Initial $P = 3.3 \mu g/cm^3$

$P_{added} = \frac{\left(90kg/ha\right)\left(10^5 \mu g/kg\right)10^{-8} (ha/cm^2)}{30cm} = 30 \mu g/cm^3 \quad \text{mass } P\text{ soil volume}$
\[P_{\text{tot}} = S_p \rho_b + C_p \theta = 33.3 \frac{\mu g}{cm^3} \]

for our soil:
- clay = 20%
- silt = 55%
- sand = 25%
- pH = 6
- \(\rho_b = 1.5 \text{ g/cm}^3 \)
- \(\theta = 0.4 \text{ cm}^3/\text{cm}^3 \)
- oc = 1%
- a = 260 mg/g
- b = 1.53 cm\(^3\)/mg

1) \[S_p = \frac{abC_p}{1 + bC_p} \]

2) \[S_p = \frac{(P_{\text{tot}} - C_p \theta)}{\rho_b} \]

Substitute and solve

\[abC_p \rho_b = (P - C_p \theta)(1 + bC_p) \]

\[(b\theta)C_p^2 + (ab \rho_b + \theta - bP)C_p - P = 0 \]

\[(0.612)C_p^2 + (546.15)C_p - 33.3 = 0 \]

\[C_p = \frac{-546.15 \pm \sqrt{298.280.9 + 81.52}}{1.224} \]

\[C_p = 0.0618 \frac{\mu g}{cm^3} \]

\[S_p = 22.2 \frac{\mu g}{g} \]

\[P_{\text{tot}} = 33.3 \frac{\mu g}{cm^3} \text{ soil} \]

\[C_p \theta = 0.025 \frac{\mu g}{cm^3} \text{ soil} \]

\[S_p \rho_b = 33.3 \frac{\mu g}{cm^3} \text{ soil} \]

For practical purposes:
A) \(P_{\text{total}} = S_p \rho_b \)
B) \(C_p \) is very small!

Phosphorus Yield

\[Y_p = AW(SDR)(ER)S_p \]

A = soil loss (tons/ha)
W = watershed area (ha)
SDR = sediment delivery ratio (unitless)
ER = sediment enrichment ratio (unitless)
\(S_p = \) adsorbed P concentration (g/ton) = (\(\mu g/g \))

\(Y_p = \) P yield (g)
For prior example, if:
\[A = 10 \text{ tons/ha} \]
\[W = 50 \text{ ha} \]
\[SDR = 0.2 \]
\[ER = 1.3 \]
\[SP = 22.2 \text{ g/ton} \]
\[Y_P = (10)(50)(0.5)(1.3)(22.2) = 2900g = 2.9kg \]

Suppose watershed empties into a 3 ha lake of depth \(H=5m \). What is the loading to the lake?
\[P = \frac{2.886g}{3ha} \times \frac{ha}{10,000m^2} = 0.10g/m^2 \]

Pesticides

Amount of pesticides reaching waterways are function of:
1. Rate of application
2. Persistence [conservation or nonconservation]
3. Mobility

3 classes of pesticides:
1. Insecticides
 a. Organochlorine – very conservative \(\text{DDT} \Rightarrow 10 \text{ yrs} \)
 b. Organophosphorus
 c. Carbamate
2. Herbicides
 a. Generally non-conservative
 b. Some may persist up to a year
3. Fungicides
 a. Typically in orchards and on vegetable farms

Pesticide Adsorption

Pesticide Mobility
Sorption of pesticides
Most are non-ionic=adsorption is to organic matter less to clay
Some are organic cations – diquet and paraquat – adsorb strongly to clays

\[S=KC \] Special case Freundlich
\[S = \text{adsorbed concentration } \mu g/g \]
\[C = \text{solute concentration } \mu g/cm^3 \]

\[K = \text{adsorption coefficient } cm^3/g \]
$$K = \text{fnc}(\text{o.c.}, \text{pesticide type})$$

$$K = K^1 \times \left[\%\text{o.c./100}\right]$$

<table>
<thead>
<tr>
<th>Mobility class</th>
<th>$$K^1$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>1000</td>
</tr>
<tr>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td><15</td>
</tr>
</tbody>
</table>

$$K^1 = K_{oc}$$

Pesticides Example:

Lindane: class 1 pesticide ⇒ $$K_{oc} = 2000 \left(\frac{cm^3}{g}\right)$$

- Application rate 11.4 kg/ha
- o.c. soil = 3%
- $$\rho_b = 1.2 \frac{g}{cm^3}$$
- $$\theta = 0.3$$
- $$K = 2000(0.6) = 60 \frac{cm^3}{g}$$
- incorporated depth = 7.6 cm
- Total Pesticide, $$T$$

$$T = \frac{11.4 \text{ kg}}{\text{ha}} \frac{10^9 \mu g}{\text{kg}} \frac{1}{7.5 \text{ cm}} = 15.2 \frac{\mu g}{cm^3}$$

1) $$S_L = KC_L$$

2) $$T = S_L \rho_b + C_L \theta$$

$$T = (K_p + \theta) C$$

$$C = 15.2 \frac{\mu g}{cm^3}$$

$$S = 60 \left(\frac{cm^3}{g}\right) 0.21 \frac{\mu g}{cm^3} = 12.6 \frac{\mu g}{g}$$

$$T = 15.14 + 0.06$$

Microbial Degradation

Pesticide Relationships

EPA/600/3-87/015

Processes, Coefficients, and Models for Simulating Toxic Organics and Heavy Metals in Surface Waters

- Biological Transformation
- Michaelis-Menton kinetics
\[
\frac{dT}{dt} = -k_b T
\]

where \(k_b = \frac{\hat{\mu} X}{Y(K_m + T)} \)

\(\hat{\mu} \) = max specific growth rate of culture (1/doubling time)

\(X \) = biomass concentration (cells/cm\(^3\))

\(Y \) = yield coefficient (cells produced/toxicant removed)

\(K_m = 1/2 \) saturation constant (value of T where \(k_b = \frac{1}{2} \hat{\mu} \))

\[
k_b = \frac{\left(\frac{1}{I} \right) \left(\frac{\# \text{ cells}}{\text{vol}} \right)}{\left(\frac{\# \text{ cells}}{M_p} \right) \left(\frac{M_p}{\text{vol}} \right)} = \left(\frac{1}{I} \right)
\]

Table A.1. (EPA Handbook)

\[
T = T_o e^{-k_b t}
\]

Factors affecting biodegradation rates:
1. Temperature
 \(k = k_{20} \theta^{(T-20)} \)
 \(\theta \Rightarrow 1.04 - 1.13 \)
2. Nutrients – necessary for growth
3. Acclimation – shock load toxicant \(\Rightarrow \) may kill portion of organisms
4. Population Density – (a lag occurs if # of organisms too few)

Oxidation
\(2^{\text{nd}} \) order
\[
\frac{dT}{dt} = -KO_x T
\]

\(O_x \) = conc. of oxidant
Under natural waters O_s is constant source

$\Rightarrow 1^{\text{st}}$ order

$$\frac{dT}{dt} = -KT$$

Photolysis

![Diagram of photolysis process]

- Energy increase
- Molecule \rightarrow Excited electron state
- Back to original molecule \rightarrow Loses energy \rightarrow Converted to new molecule

$$\frac{dT}{dt} = -k_a \phi T$$

k_a is rate constant for adsorption of light by the toxicant

$$\phi = \frac{\text{number moles toxicant released}}{\text{number einsteins adsorbed}}$$

(unit of light – molar basis of photons)

ϕ = efficiency of transformation

k_a = intensity \times adsorption
Indirect Photolysis

\[
\frac{dT}{dt} = -k_2 \times T = -k_p T
\]

2nd order psuedo 1st order

k2 is indirect photolysis rate constant
x is conc. of non-target intermediary

Volatilization
Movement from liquid to gaseous phase.

\(f_{inc} \) (molecular wt.)

Two-Film Theory

Mass moves from areas of high to low conc.

\(H = \frac{p}{c} \) Henry’s Law

\(H = \) Henry’s law constant

\(p = \) partial pressure of chemical in gas film

\(c = \) solubility of chemical in the fluid film

Liquid/gas film resistance
Liquid Film Controls

\[H > 0.1 \]

\[
\left(2.2 \times 10^{-3} \, \text{atm} \cdot \text{m}^3 \text{mole}^{-1} \right)
\]

Gas Film Controls

\[H < 0.1 \]

Rate Transfer Eq. – Liquid to Gas

\[
\frac{dc}{dt} = K_L \left(c_s - c \right)
\]

\(c_s \) = saturated chemical conc.

\(K_L \) = rate transfer coefficient

\(d \) = avg. fluid depth

\(K_L \) is computed as geometric mean resistance in series

\[
\frac{1}{K_L} = \frac{1}{K_{li}} + \frac{1}{K_{gi}}
\]

\(K_{li} \) & \(K_{gi} \) can be computed from diffusivities of the chemical in liquid and air, respectively.

Liquid Film Transfer

\(K_{li} \) from comparing to oxygen transfer as standard

\[
K_{li} = K_a \left(\frac{D_l}{D_{02}} \right)^{\frac{1}{2}} \left\langle \text{Rivers & Lakes} \right. \]

\(K_a \) = oxygen re-aeration coef.

\(D_{02} \) = diffusivity \(O_2 \) in water = \(2.4 \times 10^{-5} \, \text{cm}^2 \text{s}^{-1} \) at \(20^\circ \text{C} \)

\(D_l \) = diffusivity chemical in water

\[
D_l = \left(22 \times 10^5 \right) \left(\frac{M_w^{2/3}}{c^2} \right) \left(\text{cm}^2 \text{s}^{-1} \right)
\]

Gas Film Transfer

\[
K_{gi} = \frac{0.001}{h} \left(\frac{D_g}{v_g} \right)^{\frac{3}{2}} \left\langle \text{Lakes} \right. \]

\(h \) = water depth (m)

\(v_g \) = kinematic viscosity air \(\left(0.12 \sim 0.17 \, \text{cm}^2 \text{s}^{-1} \right) \)

\(w \) = wind speed (m/s)
$D_g = \text{diff. chemical in air}$

$D_g = 1.9 M_w^{2/3} \left(\frac{cm^2}{s} \right)$

Fig. 6-8. Persistence of pesticides for soils. (Redrawn from Kearney et al.)