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ABSTRACT

The pressure distribution predicted by the modified Newtonian
theory is used to develop equations for the aerodynamic forces,
moments, and stability derivatives for components of hypersonic lift-
ing configurations. In conjunction with the equations, a set of charts
is presented to enable simple determination of the aerodynamic char-
acteristics of swept cylinders, swept wedges, spherical segments, and
cone frustums at zero sideslip and angles of attack from 0 to 180 deg.
This method allows evaluation of most delta wing-body combinations
without the need for numerical or graphical integration. As an example
of the procedure, the theoretical characteristics of a blunt, 75-deg
swept delta wing are calculated and compared with experimental results.
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NOMENCLATURE
A Body surface area
Ap Base area of swept-wedge wing half

Planform area of swept-wedge wing half

As Side area of swept-wedge wing half

b Half-span of swept-wedge wing

Ca Axial-force coefficient, Fa/q_S

Cp Drag coefficient, drag/q_S

Ci. Lift coefficient, lift/q_S

C, Rolling-moment coefficient, M,/q_S4

C,ZB Rollin.g—moment coefficient derivative, 9C,/98 atg = 0,
1/radian

Cnm Pitching-moment coefficient, My/q_S4£

Cn Normal-force coefficient, Fy/q, S

Cn Yawing-moment coefficient, Mz /q_S ¥4

Cnﬁ Yawin.g-moment coefficient derivative, dC,/d8 at 8 = 0,
1/radian :

Cp Pressure coefficient, (p - p_)/q,

Py Pressure coefficient at stagnation point

Cp;mse Pressure coefficient at nose of pointed body

Cy Side-force coefficient, Fy/q_S

Cyg Side-force coefficient derivative, 9Cy/d8 at B = 0,
1/radian

c Chord of swept-wedge wing

F Function defining body surface

Fa Axial force

Fn Normal force

Fy Side force

h \ Vertical displacement of swept-wedge wing half from
wing centerline

1,3,k Unit vectors directed along the X-, Y-, and Z- axes,

respectively

ix
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(n,x), (n,y),

(n, z)

=1

Proportionality constant used in the modified Newtonian
theory

Body length

Delta-wing length, measured from theoretical apex
Lift-to-drag ratio

Moment coefficient reference length

Rolling moment

Pitching moment

Yawing moment

Free-stream Mach number

Angles between unit normal vector, n, and the positive
X-, Y-, and Z-axes, respectively

Inward directed unit vector normal to the body surface
Surface static pressure :
Stagnation pressure behind normal shock
Free-stream static pressure
Free-stream dynamic pressure

Radius of curvature

Base radius of cone frustum

Nose radius of cone frustum

Liocal body radius on cone frustum
Reference area

Thickness of swept-wedge wing half
Free-stream velocity

Orthogonal body axes

Moment transfer lengths

Coordinates along X-, Y~, and Z- axes
Angle of attack

Angle of attack where ¢, = ~¢” on swept-cylinder leading
edge

Angle between body X- axis and free-stream velocity
vector
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SUBSCRIPTS
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Angle of sideslip
Dihedral angle of swept-wedge wing

Ratio of specific heats and wedge angle normal to lead-
ing edge of swept-wedge wing

Half-angle of cone frustum and base tangent angle of
spherical segment

Nose half-angle of pointed body

Centerline angle of swept-wedge wing measured in
X, Z~ plane

Angle between surface unit inner normal vector and free-
stream velocity vector

Angular coordinate which defines cross-sectional planes
Angle defining base location of spherical segment
Sweepback angle and base angle of spherical wedge
Cone frustum bluntness ratio, R,/Ry ‘

Angle of body roll measured in Y, Z- plane

Angular coordinate which defines circumferential position
in a cross-sectional plane

Angle defining circumferential position where surface
becomes shielded from the flow

Angle defining circumferential extent of swept-cylinder
leading edge

Lower half of swept-wedge wing

Upper half of swept-wedge wing

X1
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1.0 INTRODUCTION

In the design and testing of lifting re-entry configurations, there is
often the need for a simple, approximate method of predicting the pres-
‘gures and forces acting on the vehicle at hypersonic speeds. The New-
tonian theory has proven very useful for this purpose. A number of
studies have shown the accuracy of this simple theory in predicting the
fpressur‘es and forces on such configurations as sharp and blunted cones
(Refs. 1 through 5), circular cylinders (Refs. 6 and 7), hemispheres
(Ref. 7), and delta wings (Ref. 8). Although the Newtonian theory is
“easily applied to the calculation of pressure distribution, integration of
. the pressure over the body surface to obtain total forces and moments
' ¢an be difficult and time consuming. Hence, the theory is not always
“used to full advantage. Design charts which simplify the evaluation of
body loads have been developed for complete and partial bodies of revo-
lution (Refs. 5 and 9 through 13), elliptic cones (Refs. 5, 14, and 15),
“delta-wing components (Ref. 13), and three-dimensional bodies (Ref. 16).
The charts of Refs. 5, 9, 11, 13, 14, and 15 provide total loads and
derivatives for selected bodies, while the methods of Refs. 10, 12, and
16 apply to arbitrary bodies but require numerical or graphical integration.

. The purpose of the present report is to extend the scope of the pre-

vious design charts by providing additional aerodynamic characteristics
“and an increased angle-of-attack range. To avoid a requirement of

numerical integration, only selected configurations consisting of typical
delta-wing and body components are considered. FEquations are derived
or the pressure distribution on each component, and this distribution is
then integrated over the surface area in closed form to obtain total forces
and moments. Equations and charts are given for the longitudinal sta-
bility and performance coefficients (Cy, Ca, Cn) and the directional and
lateral stability derivatives CYB' Cnﬁa C;;B) for an angle-of-attack range
of 0 to 180 deg at zero sideslip.

An example of the use of the charts is given in the appendix, where
the aerodynamic characteristics of a blunt, 75-deg swept delta wing are
computed and compared with experimental results.

2.0 DEVELOPMENT OF EQUATIONS
The Newtonian theory has been discussed in a number of references,

and only a brief summary will be given here. A thorough analysis of this
theoretical method is given by Hayes and Probstein in Ref. 17.

Manuscript received January 1964.
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Newton calculated the force on a body by assuming that the impact
of fluid particles was completely inelastic for the normal component of
momentum and was frictionless. Thus, the normal component of mo-
mentum is converted to a pressure force on the body while the tangen-
tial component remains unchanged. The analysis based on these
assumptions gives the surface pressure coefficient, Cp, as

Cp =2 cos’ 7 (1)

where 7 is the angle between the free-stream velocity vector and the
inward directed unit vector normal to the surface.

At high Mach numbers the disturbed region in front of a body be-
comes very limited in extent. The bow shock wave has approximately
the same inclination as the body and is separated from the body surface
by a very thin, practically inviscid, shock layer. With this flow geom-
etry, the normal momentum of impinging molecules is lost inelastically
and the tangential component of momentum is conserved. Hence,
Newton's analysis is realistic for this type of flow, and the validity of
the analysis increases as the shock-layer thickness decreases: For
the shock wave to approach the inclination of the body, the gas dynamic
equations show that the ratio of the density ahead of the shock to that
behind the shock must approach zero. The equations further show that
for the density ratio to approach zero, the Mach number must approach
infinity and the ratio of specific heats must approach unity. If these
Newtonian conditions (M, - «~, y » 1) are satisfied, the Newtonian pres-
sure coefficient, Eq. (1), is identical to that given by the oblique shock
relations for the pressure immediately behind the shock wave.

In Newton's analysis, the impinging molecules leave the body surface -
along an unaccelerated path. However, in the case of a curved body with
a thin shock layer, the particles are constrained in the shock layer and
must follow an accelerated path. Therefore, for a correct analysis
Eq. (1) must be modified to allow for the pressure gradient resulting from
the centrifugal forces acting on the particles. This correction was first
obtained by Busemann (Ref. 18), and the rational theory including the
correction has been called the Newton-Busemann theory in Ref. 17. How-
ever, despite the theoretical correctness of the Newton-Busemann rela-
tion, the simple Newtonian theory has been found to agree much better
with experimental data (e. g., Ref. 7), and the equations given in the pres-
ent paper have not been corrected for centrifugal effects.

Equation (1) has been modified by a number of investigators to pro-
vide a better correlation with experimental data for several classes of
bodies. The modified forms of the equation have the general relation,

Cp =K cos’” 7 (2)
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where K is a multiplicative factor which is used to match certain limit-
ing conditions. For a flat plate with attached shock (i.e., at low angles
of attack), Love (Ref. 19) suggested that K = y + 1 provides better
agreement with the exact oblique shock solution. For a slender pointed
body with attached shock, best agreement with exact theory is obtained
by using either the simple Newtonian value of K = 2 or the value
suggested in Ref. 19 of K = ———Cﬁ‘—"s—e—, where 8,05 is the surface angle

sin? 8,050
at the nose and Cp, ., is the exact value of pressure coefficient for this
angle. Lees (Ref. 20) suggested that for a blunt body with detached
shock wave the Newtonian theory could be modified to match conditions

Py, = Poo

at the stagnation point by letting K = Cp . = , which is closely

900
approximated by K = y + 3/y + 1 for large Mach numbers. In the present

derivations, the modified form of the Newtonian approximation as given
in Eq. (2) will be used with an arbitrary value of K.

The angle, 7, between the velocity vector ‘700 and the surface unit
inner normal vector n is determined by the scalar product of the two
vectors. The velocity vector (Fig. 1) is

\700:—-\/00 (7 cos a cosﬁ+?sin,8+-l:sina cos B) (3)

where 7, §, and k are unit vectors directed along the X-, Y-, and
Z-~axes. The body surface may be described by the equation

F(x,y,z) = 0. Then the inward directed unit vector normal to the body
surface is

;=Tcos(n,x)+7cos(n,y)+Ecos(n,z) (4a)

where (n, x), (n,y), and (n, z) are the angles between & and the positive
X~, Y-, and Z-axes, respectively, and their cosines are given by

JOF / dx
V(9F/dx) + (9F /dy) + (OF /92 )

I

cos (n, x)

oF / dy (4b)
V(9F /9x)* + (0F /dy) + (9F 192)°

cos (n,y) = -

OF / 0z
V(OF 20x Y + (OF /3y )’ + (9F /92 )

cos (n, z) =

Thus,

i

cos 7 N (5)

= - [cosa cos 8 cos (n,x) + sinfB cos(n,y) + sina cos B cos (n,z)]
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The Newtonian theory predicts pressures only on surfaces which face
the flow. For surfaces which are shielded from the flow, it is
assumed that the surface pressure is equal to the free-stream static
pressure and C, = 0. Therefore, Eqgs. (1) and (2) are applicable only
for cosn 2 0.

Force and moment coefficient nomenclature utilized in the deriva-
tion is shown in Fig. 1. The coefficients are non-dimensionalized by
an arbitrary reference area, S, and, in the case of moment coefficients,
by an arbitrary reference length, £. The moment reference point of
each component is given in the corresponding figure. The coefficients
are obtained by integrating the Newtonian pressure distribution over the
body surface area, A, as indicated in the following general equations
where the moment reference point is at the origin of the axes:

Cy = qil‘; = - % ffA cos’ 7 cos (n,z) dA (6)
Ca = inS - - —'; [f eos’y cos (n,x) dA ' (7)
Com = q:”;-[ - - o [ffA xcosn cos (n,2)dA = [f 2 cos'T cos (n,x)dA] (8)
Cy = quS - % i cos’  cos (n,y)dA (9)
Co = quz - Sig [ffA x cos’ 7 cos (n,y)dA — I1 cos’ 7 cos (n, x) dA | (10)
C, = qf;{z = % [ffA y cos' 7 cos (n,z)dA - ffA zcos’ 7 cos (n,y)dAJ (11)

In the integration over the surface area, it is assumed that Cp, = 0
on all surfaces shielded from the flow and on all flat surfaces (except
in the case of the swept wedge) because these surfaces are usually con-
cealed by other body components. Equations and charts are given for
components having vertical symmetry and for the corresponding flat-
topped components. For flat-bottomed components, the loads may be
determined by taking the difference between the loads acting on the com-
plete component and those acting on the flat-topped component and adding
the pressure load of the flat lower surface to the normal force and
pitching moment.
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enough interest to warrant a presentation of the equations. Letting
8 = 0 in Egs. (101), (108), and (112) gives, for v < a < 7,

CN Kiz = _Z._ sina (1 + cos a) (120)
Ca f%’_ = % (1 + cos a) (121)
CYﬁ KSR’ - - _% (1 + cos a) (122)

The moment coefficients and their derivatives are zero for a moment
reference point at the center of curvature. The characteristics of the
hemisphere are presented in Figs. 2 and 6. ‘

2.2.4 Flat-Topped Hemisphere

For 0 £ a £ #/2 and 6 = 0, Egs. (114), (115), and (119) give

CN KSR’ = % (1 + 2cos a sina + sin’ a) (123)
Ca ng = i;_ (1 + 2cos a sina + cos” a) ’ (124)
CYﬁ Ksﬂz = - g— (cos @ + sin a) (125)

The moment coefficients and their derivatives are zero for a moment
reference point at the center of curvature. For « 2 »/2 the equations
for the full hemisphere apply. The characteristics of the flat-topped
hemisphere are presented in Figs. 3 and 7.

2.2,5 Cone Frustum
The cone frustum is frequently used as a nose or flare section of

lifting bodies. The nomenclature used in the derivation is shown in
Fig 71

€ = Rn/Rp
_r
LT .
a— 1 — < ‘¢' T -
! igf\ \<¢ Y

Moment Reference Point

Fig. ] Cone Frustum

29
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The direction cosines of the inward directed unit normal vector are

cos (n,x) = —sin &
cos (n,y) = —cos § cos ¢ (126)
cos (n,z) = —cos § sin ¢

Then, from Eq. (5)
cosn = cos B (cosa sind + sina cos & sin¢) + sin B cos & cos @ (127)

At B = 0 the surface becomes shielded from the ﬂow along a line de-
fined by ¢ = ¢_, where '

o?

et an &
$o = ~sin™t (H222) (128)
This equation is valid only for « 2 §, since there is no shielding of the
surface for « £ 6. The elemental surface area is

r d¢p dr
dA = s (129)
It is assumed that C;, = 0 on the flat surfaces, and the coefficients and

their derivatives are evaluated at 8 = 0.
2.2.5.1 Normal-Force Coefficient

The normal-force coefficient is given by

Ry

Cy = "g%nb\— f¢ fRn r coszn sin ¢ dr d ¢ (130)

Since ¢, is not a function of r, the first integral may be evaluated to
give '
Cy = KLR12,5(1+§) qu coszn sin¢g do (131)

where € = Ry/Ryp .

Because of the limitations on the shielding equation, the integration of
Eq. (131) must be treated as two separate cases. In each case, the
integration is taken over the right side of the body and the result is multi-
plied by 2.

(1) 0<Lac<$

m/2
Cy = KLRbS(1+f) f y coszn sin @ d¢ (132)
~7/2
which gives
Cn m = 7 cos a sin a sin 8 cos J (133)

30
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1%

(M &6 <as (n-28)

3) /2
CN = KLRbs(l+§) qu cos’n sing d¢ (134)
which gives
S _ . . ., =1 tan O
0 CN KLR, (158 = cos a sin a sin § cosa[% + sin (tanTa)]
a ) L, . (135)
¢ (Zainecond ot sin fcosa) Ve o6
8) At (m = 8)S a <7, Cy = 0. Equations (133) and (135) were evaluated for
a = 0 to 180 deg and 5 = 0to 40 deg, and the results are presented in
Fig. 8a.
2.2.5.2 Axial-Force Coefficient
9)
The axial-force coefficient is given by
Ry
Ca = % f¢ fRn r coszn dr do (136)
Integrating over r,
Cap = KLRy (1 + &) tan 8 [ cos n do (137)
28 ¢
0) Evaluating Eq. (137) for the two cases:
(I) 0Lacsé
/2
Ca = KLRy (1+¢) tan § [ cos’n dg (138)
,1) S —1m/2
which gives
Ca KLRS w3 = nta;B (2 cos’a sin° 8 + sin’ @ cos” &) (139)
(ti- (M &< as (7 ~-8)
/2
Ca = KLRbS(l+§) tan 6 [ coszq do (140)
which gives
12)
S _ t o) 2 .2 .2 2 . .o—=1 tan O
Ca TR G - azﬂ {(2 cos a sin & + sin a cos 5)[2 + sin <—tana)]
33) + 3 cosa sind Vsin a - sinZS} (141)

31




AEDC-TDR-64-25

At (m = 8) £ a<w, Cp=0. The numerical evaluation of Egs. (139) and
(141) are presented in Figs. 8b and c.

2.2.5.3 Pitching-Moment Coefficient

The pitching-moment coefficient is given by

tan? &

Ry 2 .
_ K r{Rp ~ r) cos 7 sin ¢
Cm = Sy [qu fRn dr d¢
(142)

- J J  cos’y sing dr dc,zS:I

Integrating over r,

2 Rp
K 1 r R r r 2 .
Cn = S I: —5 ( b~ ——) - —3—:| f¢ cos' 77 sin¢ do (143)

2 3

Substituting Eq. (131) into Eq. (143) gives

Ry, 2 (1-~¢3%)
Cm = Cy £ tan & I:l - 3 cos?d (l—fz)] (144)

Since the limits of integration on ¢ do not enter into this derivation,
Eq. (144) is valid for 0 £ a £ #.

2.2.5.4 Side-Force Coefficient Derivative
The side-force coefficient derivative is given by Eq. (112),

Cn
sin a

CYB = = (145)

and CYB may be obtained from Eqgs. (133) and (135). For « = 0,
substituting Eq. (133) into Eq. (145) gives

S L
(CYB)a:O KLR, (1+ &) 7 sin 8 cos & (146)

The numerical evaluation of Eqs. (145) and (146) is presented in Fig. 8d.

2.2.5.5 Yawing-Moment Coefficient Derivative

It is obvious from Eq. (145) that a general relation for all bodies of
revolution is
C. = - —Cm
nB sin a (147)

Substituting Egs. (144) and (145) in Eq. (147) gives

32
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_ Ry 2 (1~¢&%) |

Cnﬁ h CYB Ztan & [1 - 3 cos? & (1= ¢2 )] (148)
Like Eq. (144), this equation is valid for 0 £ a £ 7 .

2.2.5.6 Rolling-Moment Coefficient Derivative

The resultant force acts through the center of the cone, and there
is no rolling moment about the indicated reference point. There-
fore, C 1 = 0.

2.2.6 Flat-Topped Cone Frustum

The geometry of the flat-topped cone frustum is shown in Fig. K.

Moment Reference Point

€ = Rn/Rp ¢ y/
Fig. K Flat-Topped Cone Frustum

The direction cosines, pressure coefficient, and elemental area
are the same as for the complete cone frustum. For 0 < e £ #/2, the
limits of integration on ¢ are from 0 to »/2. Then, from Eq. (131) and
(137)

CNKLRbS(l ke g— cos a sina sind cos & + cos a sin” & +

and

% sin” @ cos & (149)

CAmTS(—I———m = tan & [2 cos a sin a sin 8 cos & (150)

2 2 in® 28
+ %(cosasin8+ ﬂ—%—&)

Equations (145) and (146) apply only to the complete cone frustum, and
Cyﬁ for the flat-topped cone frustum must be obtained from Eq. (9).

33
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