86 M 36 1B AGARDograph 90

- From Mrbehoiks |

“ﬂ i ’Qlummf&.
1 Iy Mg g o
| " AGARDograph

i ")O‘f&é’@m&’f’l\ |

L%\( ~ p-Stwallpessue,
‘1 et related) 6 edaied nase,
71% MECHANISM OF NOISE GENERATION
||u[u[ ||{u| IN THE
|||| ||||.|, |||

||||||| |” TURBULENT BOUNDARY LAYER

I uuul by h.B deenbes

|| it N i

||| rm JOHN LAUFER expts
:|| ‘“f\o‘d\t\%or\ tml/(

|

| “' i f

m' lh“',r"u i denp elfedr o0
i ; |||| |m No (6

I |||||

i

™ o SchoedeShog |

|

N
=
ORA>Q>
=/

e

/

| JOHN E. FFOWCS WILLIAMS
} ‘ ”l STEPHEN CHILDRESS
Il N I

il

" ||||‘| 1 ||| I

||’ || i |||| i  NOVEMBER 1964
,.fl |

L
|l||{|| ||||||||"“||||||l|=|||||||||||| i

. NORTH ATLANTIC TREATY ORGANIZATION

:

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT
64 rue de Varenne, Paris VI



/1t

AGARDograph 90

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AERONAUTICAL RESEARCH AND DEVELOPMENT

MECHANISM OF NOISE GENERATION IN THE
TURBULENT BOUNDARY LAYER

by
John Laufer

John E. Ffowecs Williams
Stephen Childress

November 1964



This is one of a series of NATO-AGARD publications by the Fluid Dynamics Panel.
Professor Wilbur C. Nelson of the University of Michigan is the Editor.

ii



SUMMARY

The first chapter briefly states the problem and gives its historical
development; the second reviews some basic notions of classical acoustics
with special emphasis on the sound field produced by elementary sound
sources, while the third one contains the generalized wave equation
governing the pressure field radiated by nonuniform nonstationary flow.
Subsequent chapters describe the methods proposed by the various authors
for finding a solution to the radiation problem. The experimental
approach is discussed.

SOMMAIRE

Le premier chapitre décrie briévement le probléme et conte son
développement historique; le deuxieme chapitre rappelle quelques notions
de base en acoustique classique et, en particulier, le champ sonore
produit par des sources sonores elementaires, alors que le troisiéme
contient les equations d onde generalisées qui governent le champ de
pression radié par un dcoulement nonuniforme et nonstationnaire., Les
chapitres suivants déerivent les methodes proposées par les differents
auteurs pour trouver une solution au probléme de radiation. L’ approche
experimentale est discutée.
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PREFACE

The subject matter treated here is a comparatively new and rapidly expanding one.
The bulk of the published works on boundary layer noise appeared in the last four or
five years. Under these circumstances the writer of a monograph faces the risk of
becoming rapidly out-dated. Recognising this situation, the authors did not try to
cover all the available literature on boundary layer noise production in detail -
except by giving an extensive list of references - but rather they attempted to pick
out those works that in their opinion were most instrumental in generating new ideas
and approaches to this difficult problem. The arrangement of the chapters reflects
this point of view.

Chapters 1, 2 and 3 are introductory ones: the first chapter briefly states the
problem and gives its historical development; the second reviews some basic notions
of classical acoustics with special emphasis on the sound field produced by elementary
sound sources, while the third one contains the generalized wave equation governing
the pressure field radiated by a nonuniform, nonstationary flow. The subsequent
chapters describe then the methods proposed by various authors for finding a solution
to the radiation problem.

Undoubtedly, the theory that exerted the most profound influence on the subject is
Lighthill’ s acoustic analogy. Although the theory has been described in a number of
papers by Lighthill himself and by several subsequent workers, it has often been
misinterpreted and misused. Chapter 4 attempts to restate again the analogy,
summarizing all the assumptions involved and endeavors to point out the advantages and
disadvantages of the approach. In the same chapter Ribner’s interpretation of the
source term in the analogy is touched upon, but only briefly.

Chapter 5 describes the application of the analogy to the boundary layer problem.
The importance of the size of the boundary surface compared to the radiation wavelength
is emphasized.

Chapter 6 introduces a new approach proposed by Phillips to treat the radiation
problem for high convection velocities. Some comparisons are made between his theory
and the consequences Ffowcs Williams drew from Lighthill's analogy applied to higher
convection speeds.

A separate section, Chapter T, is devoted to a third method of attack to study
aerodynamic noise first proposed in an unpublished work by Liepmann. This approach,
although virtually unexplored, offers a possibility of relating the radiated noise to
flow parameters familiar in the study of incompressible flows. It is this aspect,
with its promise of straight-forward experiments, that led the authors to devote to
it a complete chapter, although much of the chapter is of a general illustrative
nature.

The last chapter deals with the experimental investigations concerning boundary
layer noise. It is to be noted that the considerable wealth of information on the
fluctuating velocity field within a boundary layer and on the pressure fluctuations
over the solid surface adjacent to the layer obtained at subsonic speeds have not
been included. There are several indications, both theoretical and experimental,

iv



that such subsonic fields radiate very small noise indeed and have no practical
significance. TFor this reason the chapter concentrates primarily on the supersonic
boundary layer problem.

The monograph is designed for those who are familiar with classical acoustics and
fluid mechanics in addition to some basic notions of turbulence: the concepts of
correlation and spectrum functions. \Wherever a more detailed treatment of a
particular question exists in the literature, an attempt was made to give adequate
references. The bibliography does not include all the papers on aerodynamic noise
but only those restricted to boundary layers. 1In this sense it is hopefully fairly
complete.

Portions of this AGARDograph were prepared at the Jet Propulsion Laboratory,
California Institute of Technology, and the encouragement and cooperation of
Dr. William H. Pickering is greatly appreciated. One of us (J.E.F.W.) gratefully
acknowledges the sponsorship of the Bureau of Ships’ Fundamental Hydromechanics
Research Program, administered by the David Taylor Model Basin.
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MECHANISM OF NOISE GENERATION IN THE
TURBULENT BOUNDARY LAYER

John Laufer, John E. Ffowes Williams
and Stephen Childress

CHAPTEHR 1

GENERAL CONSIDERATIONS

1.1 Statement of the Boundary Layer Radiation Problem

In the present monograph we will consider a turbulent boundary layer over a rigid
wall and will examine the time-dependent pressure field outside of the layer. Within
the layer the fluctuations may be described primarily in terms of vorticity and
entropy modes and, to a lesser extent, sound modes. Outside of the layer the first
two modes decrease rapidly in amplitude, so that, at a sufficiently large distance from
the shear zone (several wavelengths away), one expects to find fluctuations only in
the sound mode present. These fluctuations are usually referred to in the literature
as aerodynamic noise. The current ideas on the mechanism of production, nature and
intensity of the aerodynamic noise are the subject of the present work.

There are two fundamentally new features that arise in this problem, not present in
an incompressible turbulent field. Once the compressibility of the fluid is taken
into account, a disturbance from a source will propagate at a finite speed and will
influence the flow field over a finite distance in a given time. This means that,
in calculating the flow properties at a given point and time, it will now be necessary
to known the behavior of the disturbance source at a certain earlier time. This fact
must be reflected in the statistical description of the fluctuating flow field: in
order to calculate the pressure fluctuations emanating from a turbulent shear field,
certain statistical quantities, such as the space-time correlation functions, have to

be known within the shear =zone.

The second new feature in a compressible turbulence is the fact that a new form of
energy loss, in addition to the dissipation, appears in the problem. This is simply
the energy radiated away from the turbulent field. Just how important such a process
is could turn out to be one of the most important questions connected with high Mach
number flows. If indeed the energy radiation were so intense that it, together with
the dissipation rate, exceeded the rate of turbulence energy production, turbulence
could not exist at very large Mach numbers, This question is discussed in
Chapter 8.

J. Laufer, Head, Graduate Department of Aerospace Studies, University of Southern
California, Los Angeles, U.S.A.

J.E. Ffowes Williams, Senior Scientist, Bolt, Beranek & Newman Inc. Cambridge,
Massachusetts, U.S.A,

S. Childress, Jet Propulsion Laboratory, California Institute of Technology,
California, U.S.A.




1.2 Methods of Solution

Mathematical tools to handle radiation problems have been well developed in the
field of electromagnetic, acoustic and nonstationary supersonic theories. In all of
these cases, however, the radiation source could be defined and separated from the
radiation field it generates. One of the basic difficulties in the aerodynamic
noise problem is the fact that the separation of the flow field from the noise it
produces is no longer obvious in the sense that the operation of a mechanical acoustic
emitter may be separated from the sound field it creates. Perhaps the greatest
merit of Lighthill’s acoustic analogy, described in Chapter 4, is the successful
arrangement of this problem by formulating it in such a manner that a classical
treatment is made possible. The analogy, of course, does have certain limitations,
which were discussed by Lighthill himself.

A less formal approach proposed by Liepmann, on the other hand, attacks the aero-

dynamic noise problem from a different point of view., It introduces for the generation

process certain acoustical models which presumably retain the main features of the
physical problem but at the same time treat it in precise mathematical terms with
explicit results. The physical meaning of these results can then be clearly
interpreted. The pitfalls of this approach are quite obvious; nevertheless, with
proper physical intuition considerable progress can be made with this method, as will
be seen in Chapter 7.

The fundamental difficulty of the problem is well reflected in the rather
controversial nature of its historical development. Next to the problem of hydro-
dynamic stability, few questions in fluid mechanics have excited as much controversy
as has this one,

1.3 Historical Background

The aerodynamic noise problem is another example in the history of development of
fluid mechanics, the conception and formulation of which belongs clearly fo a single
individual. While the name of Prandtl is associated with the boundary layer theory,
Taylor’s to the statistical turbulence theory, similarly Lighthill’ s name belongs to
the general field of turbulence-generated sound radiation.

It has been a little over a decade since Lighthill published his famous paper,
“On Sound Generated Aerodynamically.” The work stimulated a great number of workers
in the field to extend, re-examine and apply his theory. Of particular interest is
the work of Proudman®® who considered the noise produced by an isotropic turbulent
field, the only case in which the radiation intensity can he explicitly calculated.
Later, Curle!! applied the Lighthill analogy to the boundary layer, but it was
Phillips®® who actually evaluated the surface integral derived by Curle. His rather
surprising result that an incompressible, homogeneous turbulent boundary layer does
not emit sound brought about a considerable controversy (see, for instance, Reference
44), It is generally accepted now that, within the framework of his assumptions,
Phillips’'s conclusion is correct (see Chapter 5). During the controversy, some
interesting points concerning the region of validity of Curle’s formulation have heen
brought out and clarified by Powell®® and Ffowes Williams??



Parenthetically, one might mention that, along with attempts to estimate the far
field intensity“'ng considerable effort has been spent in the calculation of the
pressure fluctuations in the near fieldg’au’uﬁ'“T. For this one has available the
great wealth of experimental information concerning the wall pressure
fluctuationsu’”'zg'“'70'76’ai that has recently appeared in the literature.

In 1959 Ribner proposed an alternative formulation of Lighthill’ s acoustic analogy,
expressing the sound sources in terms of simple sources rather than quadrupoles75
The work produced criticism from many sides““*ﬁﬁ, put recently Lighthill has pointed
out the basic soundness of the approach even though he questioned on several grounds
the advantages of this formulation™®.

The extension of the acoustic analogy to high speeds was first attempted by
Lilley*®; his approach, however, was unconvincing. It was Phillips who advanced a
completely new formulation of the problemél, the most important result of which turned
out to be the concept of “eddy-Mach wave" radiation in a supersonic flow. As far as
his detailed analysis 1is concerned, certain questions have been raised and are
discussed in Chapter 6. Somewhat later Ffowes Williams has shown that the eddy-Mach
wave radiation can be deducted by a proper extension of the Lighthill analogy to high
speeds?".

Quite independently from the development deseribed above, Liepmann forwarded a
completely different approach that attracted very little attention, mainly because it
was not published in the open literature.

He has suggested to express the radiated pressure intensity in terms of fluctuations
in the boundary layer displacement thickness. His work has inspired the concept of
constructing physically realistic models of turbulent sound sources that can bhe
handled mathematically. Chapter T was written in the spirit of this approach.

It is interesting to observe that, while the boundary layer radiation problem
occupied the interest of a large number of theoretical workers, very few experimental
papers were published on the subject. In 1960 Wilson considered the sound radiated
from the turbulent flow produced around a rotating cylinder; this, however, is not
exactly a boundary layer noise problem. Probably, the first measurements of boundary
layer noise were made by Laufer®® in studying the turbulence levels in supersonic
wind tunnels. Later on, he extended these experiments to examine the statistical
nature of the radiation field"®, At present, these are the only measurements which
can serve as a guide to the analytical studies.
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CHAPTER 2

THE CLASSICAL RADIATION PROBLEM

2.1 Introduction

Before presenting the general problem of sound generation by turbulence, it is
appropriate to review briefly the classical treatment of radiation due to elementary
sources. The purpose of the discussion is twofold: first, to present the governing
equations of acoustics, so that subsequently they may be compared to the more general
equations; this will provide us with a logical basis for Lighthill’ s acoustic analogy.
Second, to examine the near and far fields generated by elementary sources; this will
enable us to construct an appropriate acoustic model that should contain the main
features of the turbulent radiationm.

2.2 Governing Equations

We will consider a compressible, inviscid, nonconducting fluid. It is well known
that in such a fluid small perturbations propagate with a characteristic velocity and
obey the wave equation. Since we are interested primarily in the generation of these
waves, we shall exhibit in the equations of motion the fluctuating body forces,

PF; , and masses, pom , producing the perturbation fields. Our main goal is to show
the wave character of the perturbations, and to determine the structure and intensity
of radiation for a given distribution of fluctuating masses and body forces.

The equations expressing the conservation of mass and momentum for the fluid
described above have the following form:

3o Jpu
— 1 2-1
ot Oxy - (3D
Jou Jou.u, op
Ly 1)+ — = pF, 2-2
ot 9x; x4 i ke

In what follows we may, with no loss of generality, take the fluid as a whole to be
at rest, its ambient pressure and density being, respectively, D, and Py - We
shall further assume deviations from the ambient state are small:

u, = ul, p = p,+tp', p = pytp

uf pl !
where — , —, al << 1 and a
a, Py Py
substitutions in Equations (2-1) and (2-2), and neglecting higher order terms, we
obtain

o 1is the sound velocity of the medium. Making these

9p + dpuy
ot  9x

= pgm (2-3)
i



i p - !
5 = e &, (2-4) ;

where henceforth, for convenience, the primes will be omitted.

These equations, together with the isentropic relation between the pressure and ;
density fluctuation, p' = agp’ , enable us to calculate the velocity and pressure i
fields, for example, outside of a closed, bounded region of space produced by a known
distribution of m and Fi over the interior. 18

We now take the time derivative of (2-3) and the divergence of (2-4) and subtract

¥p 9% dogm  IpFy :
e = = ¢
ot2 3xiaxi ot Bxi ’

With the use of the isentropic relation, this may be rewritten :

_1__3_22_ 3% _ 3phn  pgFy (2-5)
23t2  9x.9x, Ot dx

0 i i

It is thus seen that the pressure perturbations obey an inhomogeneous wave equation
with a known source distribution

dpgm _ 9p Fy

ot Bxi

2.3 General Solution

If this function is distributed in an infinite volume V bounded internally by a
surface S , the solution of (2-5), usually called the Kirchhoff solution, may be i
written down explicitly (Ref.79, Dp.429) \ i
3o m F.
p(x;t) = _f[ U _ pO l (iV(('?:}J) +
L
1 1|9p o] P (1) 1 or|9p i et
+— - - lp)l = |- -— = -
4772 r|on om \r a,r on | ot E)

Here r is the distance between a volume or surface element at n to point x where
the pressure is to be determined; n is the outward normal from i , and the square
brackets indicate that the quantities within them are taken at the retarded time
t - (r/a.) .

0

If no internal surfaces are present, Equation (2-6) becomes simply

1 [1|%m 9pF,
) = — o _ —01fqy 2-17
p(xt) = |:Bt . | V@ (2-7)
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Thusg, in order to determine the pressure at any point in the field, an a priori
knowledge of the time rate of change of the mass flow fluctuations and of the body
force gradients throughout the volume V is necessary. The nature of radiation
produced by these two volume integrals will be examined later in this chapter.

2.4 The Boundary Value Problem

In many instances the radiation problem is more amenable to solution as a boundary
value problem. If, for instance, the sources are concentrated within a surface S,
outside of which the field is homogeneous, then the field is determined uniquely by
its properties on this surface together with possibly a local condition at infinity.
It is convenient to define at this point a velocity potential ¢ such that

3
._d) = (2-8)
Bxi

¢ can be shown to be related to the préssure as

_ o
B = -Py (2-9)

to satisfy within the source-free volume the wave equation
——-—— = 0 (2-10)

The solution of (2-10) which describes, for example, the sound produced by small
pulsations of S, is completely determined by the usual radiation condition at
infinity (waves are entirely outgoing with respect to S) and by the requirement that
the medium follow the motion of the surface S :

u, = EEE = G on S (2-11)
n al’l
The function G may be found from the motion of the surface. To be consistent we
must assume that the velocity on S remains small (in the acoustic sense), in which
case G = Of/0t , where f(x,t) - m =0 defines the surface S .

2.5 Structure of the Radiation Field

Either of the aforementioned methods can of course be applied in solving for the
emission of sound by radiators, and it usually depends on the particular problem which
is the more convenient one to use. As we will see later, Lighthill formulated the
aerodynamic noise problem in such a way that the first method of solution was the
logical one. He was able to express the radiated pressure field in terms of an
explicit volume integral in a form similar to Equation (2-7). The main difficulty
of his formulation lies in the evaluation of the integral. Liepmann, on the other
hand, proposed the second method of attack. In this approach the difficulty reappears
as an unknown boundary condition.



In this section we will consider some simple examples of mass-like and force-like
sources representing emission from a point and which can be easily handled
mathematically. With the method described in the pfevious section, we will obtain
the desired expressions for their radiation fields and compare them with the more
general, continuous distribution afforded by Equation (2-7). On the basis of such a
comparison, we will be able to make conjectures concerning the nature of the radiation
field of more complicated sources.

(a) Mass-Like Emitters

Suppose that through a spherical control surface a mass of fluid is ejected
uniformly and radially at a time-dependent rate. The acoustic field is represented
by a solution of the wave equation having the form

_alt -r/ay
= e O (2-12)
47r

whére, by the boundary condition (2-11), a is related to the instantaneous mass
flux at the sphere 1 =71, , 58y qu(t) , as follows:

~ r oa(t - ry /ay)
q,(t) = alt - ro/ay) +Z{:_'a—t0_0'

Suppose that associated with the time variation of mass flux there is a characteristic
frequency « , so that qo(t) is a function of tw =t* . According to the last
equation, therefore, there is a dimensionless parameter r&v/ao contained in the
poundary condition. Moreover, if r&ﬂ/an w1, g )= a(t) approximately, and the
boundary r =T, may be said to lie in the near field. Similarly, if a(t) so
determined is inserted into Equation (2-12), there emerges a second dimensionless
parameter, representing the characteristic distance of an observer from the boundary
divided by the wavelength ao/a>. If this number is large compared to one, the
observer may be said to be situated in the far field of the acoustic radiation. (If

a random distribution of sources over a region is under consideration, it will also
be useful to define the far field as that part of the sound where the above condition
holds, and also which is far from the sources in units of a typical correlation
length). With a = q, the pressure may be obtained from Equation (2-9).

_ Py 994t - r/a,)

D T o ——————

dgrr ot

Thus the pressure at time t and at a distance r from the source is determined by
the rate of change of the flux through a sphere of sufficiently small radius 1, ,
evaluated at the retarded time t - r/a0 .

If this simple source were not concentrated within the control surface but dis-
tributed over a volume V , then the pressure field would be given by a volume integral
identical to the first right-hand side term of Equation (2-7), where apom/at
corresponds to the source strength per unit volume.
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(b) Force-Like Emitters

Let us consider now a solid spherical surface executing an oscillating motion in

the X4 direction. Clearly a spherical harmonic of the first order of the form

9 At - r/ay)

axi r

qb:_

will satisfy the necessary boundary conditions, at least in the near field. For the
components A;(t) one obtains, using (2-11),

of n.A
i ;31 = nyuy(t) f
0
and
y o T2 ora
2 axi r

Clearly, the potential field is caused by a dipole. The pressure field, according to
Equation (2-9), will have the form

Poty © 13uy(t - r/a)
2 Ox, r Jt

1

o

Now the total external force acting on an oscillating sphere is®’

Ju,
— 3 7
D, = 2npor0_iﬁ?

Consequently, the emitted pressure may be written in terms of this force

1 9 D.(t - r \2
p = — _;f____fffﬂf g o.Eﬂ (2-13)
4778xi r a

It is seen, therefore, that the acoustic dipole field is equivalent to a field
produced by a concentrated fluctuating force, the dipole strength being equal to the
force Di . (For a more general treatment, see Lamb).

On the basis of this argument, we may interpret the second term of the right-hand
side of Equation (2-T7) as a volume distribution of dipoles of strength pOFi i Thus,
in a uniform acoustic medium which contains distributed mass-like and force-like
sources, the radiated pressure field can be interpreted as that of simple poles and
dipoles (provided the force-like sources have no spacial gradients; this point will
be further discussed later).

We_will examine further the nature of these two types of radiation.




2.6 The Stokes Effect

Let us introduce the following dimensionless quantities:

x* = E A= ra N = aoﬁx

5 aot
A

where M and [ are the characteristic wavelength and linear dimension (size of the
radiator) in the problem. Introducing these quantities into Equations (2-12) and
(2-13), we obtain

1 Bq* i

1 . * —_ ]

for a simple source: pr = (2-14) i
2 4+ 3t i

4

f

P . 1 r* aniDi i

] . = i * = ]

for a dipole: Py — e + niDi (2-15) .§
|

It is to be noted here that for a fixed MA* , while due to a simple source the pressure |
varies like 1/r* over the whole medium, due to a dipole it behaves differently in i
the near and far field, namely,

!

|

r* n.D* E

" —_— s 11 i |

for P =< 1, pa P (2-16) ’

4

g . 1 r* on,;D} i

for - I 23] 4wr*2';; St (2-17) i

A*

Assuming now that the pressure fluctuations near the two radiators are
approximately the same, Figure 1 indicates the pressure amplitude distributions with
distance for a fixed A* . i

We note in Figure 1, first, that the behavior of the pressure fluctuation in the
far field is similar in the two cases (see also equations (2-14) and (2-17)), second,
that the amplitude of the pressures in the far field is much smaller for the dipole.
Thus the dipole is a less efficient radiator.

This fact was well recognized by Stokes who explains it in the following way '8,
In the region 1 << r* << A* |, the fluid elements follow the motion of the sphere
almost instantaneously; thus they execute a simple reciprocating motion producing
negligihly small compression and dilatation. At larger distances, however, the fluid
elements will lag behind the sphere motion, producing compression and rarefaction
waves that will propagate outward. This outward propagation is therefore caused
simply by the time lag between emission and fluid readjustment far from the source.
Thus an appreciable fraction of the energy imparted from the body to the fluid will
go into the reciprocating motion, which renders the radiation inefficient.

e —————E .
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If we consider now the more general case of distributed sources, the conclusions
are similar: the radiation from a distributed simple source field of non-zero strength
is more efficient than that of a distributed dipole field. However, if the total
source strength of the simple poles is zero (as it is for the dipole field), this is
not true anymore; in fact, in this case the far field radiation is equivalent for the
two types of sources.

2.7 Sources of Higher Order

There are many instances when the fluctuating force per unit volume paFi is a
divergence of a stress tensor Tij ,

PRy = A (2-18)

If we substitute this into Equation (2-2), then it is easy to show that the volume
integral for the pressure (Equation (2-T7)) will contain a double divergence term.
Or, if we consider a concentrated stress Sij over a small volume V , the pressure
fluctuation may be expressed in the form

V.o 9% 8yt - r/ag)

= — (2-19)
47I8xiaxj 4
Carrying out the differentiation, we obtain the dimensionless equation
1 3r* 9n.n.S:* r*29%n.n.8.*
* = ik . = o A
b 4'1?1’*3 <3n1nJSlJ * A* ot * N2 dp*2 (2-20)

Comparing again the near and far field form of the pressure fluctuations, and using
the same argument as in the previous section, one finds that the ratio of the strength
of the radiation to the fluctuation in the near field will be even smaller than in the
dipole case, Thus, the quadrupole process is less efficient than the dipole one,
particularly at the larger acoustic wavelengths.

CHAPTEHR 3

THE GENERALIZED WAVE EQUATION

3.1 General Considerations

In order to fix our ideas, we‘shall consider a uniform velocity field in which a
finite turbulent region having a knpwn mean velocity distribution moves at a certain
speed. We assume initially that no solid surface is present. We shall be interested
in the possible production of sound by turbulence and in the structure of the acoustic
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field throughout the uniform region. In principle at least, one could proceed to
solve the complete set of equations deseribing the flow and calculate the noise
field. Obviously, there could be no hope of real success by such procedure, not only
pbecause of the complicated initial value problem which must be solved, but also
because there is as yet no physical basis upon which to build a theory of the noise-
producing mechanism, that is, of the turbulence itself. One possible alternative
method of attack is to borrow ideas from a related discipline and focus attention

on the acoustical problem, and upon the structure of the sound field alone, and try
to set up the problem analogous to that of a noise field due to acoustic sources
indicated in the previous chapter. In other words, one would like to express the
equation of motion in the form of an inhomogencous wave equation in which a certain
mechanism within the turbulent field provides the source term.

3.2 perivation of the Wave Equation

Although in the present work we will consider aerodynamic sound generation only,
that is, the generation of sound by a fluctuating vorticity field, it will be
constructive when setting up the general equations to include other sources as well,
so that one may make some comparison between the nature of various ways of generating
sound. We will therefore write the conservation laws in a form which will include a
source density, m , external fluctuating hody forces, F; , and heat sources @ .
Assuming that the gas is compressible, viscous, heat-conducting and perfect, the
conservation laws have the following form:

—=3 e = (3-1)

19 197y,

A, = — ———+ + P (3-2)
. pox; P Oxy 1
J
her Wt ¥ Y gnd is the vi t t ;
where A; S s uy 5;; and 7;; 1is the viscous stress tensor
TDS = @ ° k or + £Q (3-3)
£ Dt Bxi Bxi e

Here T is the temperature, @& the dissipation function and S the entropy. We
now write the second law of thermodynamics in the form

— = X— = (3-4)

where Cv is the specific heat of constant volume, and R the specific gas constant.

By using the equation of state

p = PRT (3-5)
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and remembering that

. 3-6
i - - (3-6)

We take now the total derivative of (3-1) and (3-6) and the divergence of (3-2)

D 1Dp D du Dm ,
e (3-T)
Dt p Dt Dt Ox; Dt

D 1 DS D1 bp D /1Dp
—_——— == — - — [-= (3-8)
Dt C, Dt Dt ¥p Dt Dt \p Dt

. St R P " S | (3-9)

where the isentropic speed of sound a? =<p/p has been introduced. Combining (3-7)
and (3-8)

D 1 Dp D 1 DS D du; Dm

—_— e e D et —— — —— 1+,_

Dt yp Dt Dt C, Dt Dt dx; Dt

and adding it to (3-9) we obtain

D 1Dp 9 a® dp- QA D Ouy D 1 DS

Dt p Dt Ox; p Ox;  O%; 7Dt %, Dt C, Dt
9 197, N Dm OF (3-10y

R T

This equation in a slightly different form was first obtained by Phillipssi.
Introducing the pressure perturbation p' =p - Pg - the equation may be rewritten

1= 3 d| p' D Ju, 1 DS 9 197, .
_2H.__32_ — = y— (- - —— )+ Y — Ai_pi___i.l (3-11)
Dt 3xi Bxi D, Dt axi c, bt axi el ij

The pressure perturbations in an inhomogeneous medium are thus governed by an
equation of this form (it is not the only form; see, for instance, Lighthill’s
formulation in Chapter 4). The equation brings to light two basic difficulties not
present in the classical radiation problem dealt with in Chapter 2.
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Inhomogeneity. Since the turbulent field usually is inhomogeneous, both in mean
velocity and temperature, the usual wave operator is replaced by a more general one.
If the right-hand side is known and if the variable coefficients of the partial
differential equation are prescribed, the structure of the sound may be studied in
various ways, and (3-11) provides then the starting point for several theories.
However, even in the case of a linear inhomogeneous equation, general solutions which
could be of interest here are known only under quite restrictive conditions. Thus,
in view of the somewhat speculative nature of the simplifications that must be made,
a satisfactory and general discussion of the effect of inhomogeneities is quite
difficult.

Nonlinearity. The terms on the right-hand side of Equation (3-11) are grouped
in such a way that purely formalistically one can recognize “mass-1like’” and
“force-1ike” sources as in classical acoustics. For instance, it is conjectured that
the dilatation term, Bui/ax- , and the entropy production within the turbulent field
would generate noise as does a mass fluctuation in an acoustic medium: in effect,
like a simple source type of radiation. On the other hand, fluctuations in
acceleration and in shearing stress are “force-like”’, they produce dipole or higher
order radiation. This rather superficial argument, however, has to be examined more
carefully.

The terms in question are in general implicit functions of the pressure and
therefore should be considered as external forcing functions acting on the wave
equation. Clearly, certain assumptions will have to be introduced in order to
decouple these terms from the radiated pressure field. It should be emphasized,
however, that this does not necessarily mean a linearization of the equations.

The following chapters will present simplifications introduced by various authors
in an attempt to eliminate some of these difficulties.

CHAPTER 4

LIGHTHILL' S ACOUSTIC ANALOGY

4,1 Introduction

It was shown in the previous chapter that the equation governing the pressure
fluctuations is too difficult to solve in general. Certain simplifications will be
introduced to make the problem tractable. It soom becomes obvious that a conventional
linearization procedure that is to neglect terms, which are in some sense “second
order”, is inadequate. Certain terms that we know to be important in turbulence
production, and which might also be essential for the noise generation, would disappear
as a result of such a linearization. We will discuss in this chapter an approximation
introduced by Lighthill, who first formulated successfully the aerodynamic noise
problem. His formulation is based upon an acoustic analogy that is an exact one, the
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approximation being introduced only after the analogy has been established. In order
to demonstrate the generality of the analogy, we will follow Lighthill's deductive
approach, instead of applying his approximations directly to the general equations
obtained in the previous chapter.

4.2 The Acoustic Analogy

Lighthill succeeded in formulating the problem by a seemingly simple rearrangement
of the equations of motion, but, in fact, he was motivated by an ingenious and useful
idea: to draw an analogy between acoustical and aerodynamic radiation. As was shown
in Chapter 2, the density (or pressure) fluctuations in a uniform acoustic medium at
rest obey the well-known inhomogeneous wave equation

% 9%p

2

— - g —— source terms 4-1)
ot? 0 Ox, 0% (

One may pose the question: is it possible to express the density fluctuations‘in a
turbulent fluid in motion by an equation of a similar form? We may proceed by

considering the conservation laws of mass and momentum in a viscous, compressible gas:

dp  Opuy
E-t + ?x-'- = 0 (4-2)
i
dpuy ; dpuu _ 2 s 'd'rij ‘ ‘ .
ot axj 9xy 3xj

where Ty is the viscous stress tensor. By taking the time derivative of (4-2), the

divergence of (4-3), and subtracting the two, we obtain

2 2 2
Op_ b _ Feuyy - 7yy) o
at? axiaxi axiaxj
We may rewrite (4-4) in a purely formai manner*
82,0 sz 32
2 _ 2 :
7 o i 0, = B, [puiuj ST 85018, (4-5)

If the right-hand side of this equation is considered to be a forcing term, Equations
(4-1) 'and (4-5) are indeed of the same form. Thus, the density fluctuations in the
real fluid may be identified with those occurring in a uniform acoustic medium at
rest produced by the source terms azTij/axiaxj where

Ty; = Pujuy = Ty + (b - aip)dy; (4-6)

* L,ighthill chose the density rather than the pressure as the primary variable mainly because
the forcing term is then the double divergence of an effective stress tensor leading toa
solution in the form of a quadrupole field; if instead the pressure field is sought, the
forcing term has a more complicated structure.
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We may consider the turbulent fluctuations as some equivalent external forcing function
acting on a free system which, in this case, is the uniform acoustic medium at rest.
This is in essence Lighthill’s acoustic analogy.

4.3 Remarks on the Analogy

It should be pointed out that up to now no simplifying assumptions have been
introduced explicitly into the equations. Thus, the analogy describes not only the
generation of sound at its source, but also accounts for certain global features of
the sound field, e.g., the effect of an overall convection of the turbulence with
respect to the fluid at infinity; it is then merely required that the analogy be
applied in a coordinate system fixed to the free stream. It also includes dissipation
by viscosity and by conduction.

However, the analogy does have certain limitations. In the extreme case when the
generated sound field is so strong that it interacts with and alters the turbulent
field itself, the analogy has no obvious meaning., What then are the conditions under
which the acoustic analogy holds in the sense that it is suggestive of the analytical
properties of the full solution? This question, in spite of its relevance, has not
been treated adequately in the literature. A few comments are therefore appropriate.
Vaguely speaking, Lighthill’s acoustic analogy will be useful only when the process
of generation of sound by a flow is in some sense separable from the sound itself.

To put this another way, there should exist a clean division of the flow into near and
far fields, a separation that implies corresponding division of the labor of
constructing a solution of (4-5).

The inhomogeneous wave equation (4-5) may be put into an integral form using
Kirchhoff’ s solution (Chapter 2), For simplicity we assume at present that no internal
surfaces exist in the field, in which case the density fluctuations p’ = p - p, may
be written

! - 1 f 1|—82T'11-I E
P = E [#7m,| av (7 (4-7)

Without making any statements regarding the stress tensor T;; , we have merely
transformed the partial differential equation (4-5) into an integral equation (4-1T).
Clearly, we may consider (4-7) a solution of our problem only if the sound field has
no contribution to the stress tensor Tij . This is not precisely the case. Thus,

* in order to consider Tij an external forcing function independent of the sound
field - the basis of the acoustic analogy - we have to introduce certain assumptions.

4.4 Lighthill’s Approximation

There are two assumptions introduced by Lighthill at this point which we will
discuss subsequently.

4.4.1 Low Mach Number Flows

Let us examine the consequences of this assumption. First of all, under this
condition the mean temperature or density gradients in the flow field may be neglected,
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and therefore pX~p, . It follows that density fluctuations at constant pressure
produced by these gradients are small compared to the fluctuations associated with the
sound field; thus p' is closely balanced by p’/ag . The last term in (4-6) may
therefore be neglected.

The remaining two terms contain velocity fluctuations. These fluctuations are
either part of the vorticity field of the turbulence, U,y » or part of the sound
field generated by the turbulence, Ugj - We may thus write formally

Uy = Uy F Ugi
The viscous term of Equation (4-7) can now be written in two parts. The term
containing u is responsible for the dissipation of sound energy by viscosity.
This, however, is a very slow process, as shown by Kirchhoff, and becomes important
only at extremely large values of r/A , at distances outside the region of our
interest. The second term containing the uy fluctuations, when compared with the
Reynolds stress fluctuations pujuy , are also negligibly small in low Mach number
flows. Equation (4-7) can now be written in the form

1 1 9% u.u.
ol(x,t) = — Jf — __JEE_l_l av(m) (4-8)
~ d7a, d r aninj ~

4.4.2 Small Refraction Effects

The stress pouiuj again has contributions from the vorticity and sound fields.
Following the usual acoustic approximation, the pure sound term Polgilgy 5 can be
neglected. This leaves the pure vorticity term pouviuvj and the mixed terms in the
volume integral. Within the framework of Lighthill’'s approximation only the pure
vorticity term is retained. The neglect of the mixed term is difficult to justify
without adequate experimental evidence. In the presence of large mean velocity
gradients, terms of the form

9 3ﬁi
é?i usi—‘anj

may indeed be important. They refer to refraction of sound within the turbulent

region by the mean velocity, - ﬁi .

4.5 Nature of the Source Term

Under the assumptions described above, we propose that

where uy and u, refer to the mean and fluctuating velocities of zero divergence
(no sound is included). Referring now to the discussion in Chapter 2, we recognize
that the volume integral of Equation (4-T7) represents the gradient of a force-like
source, more specifically, a distributed quadrupole source with a strength Tij (see
Equation 2-20). Furthermore, we note that the radiation of such a source is a very
inefficient one, especially at large wavelengths, since the ratio of the far-field
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to near-field pressure fluctuations contains the factor I/Aﬁz . This inefficiency
is the result of the Stokes cancellation effect in the near field, this cancellation
being more effective for the higher order source type of radiation.

4.6 Evaluation of the Volume Integral

Equation (4-7) is rewritten to indicate explicitly the argument of

1 9%, (7t - r/a ) dv
P = — f @S - 2y T (4-9)
™ d77a, Bnianj r
where
rf = (xy - MY xg =)

Now the quantity of interest is the mean square of the density fluctuation, which
is proportional to the sound intensity. This can be written as

(4-10)

D = — f/ %y (b - r/ay) 3Ty ('t - x/ay) dvipdv(gh

2

16m°a; g am, 9y onfon] rr!

where 7 and 7' are two points in the turbulent field where the correlations are
taken. ~

It is seen that, in order to evaluate the sound intensity, the space-time correla-
tion of the double space derivatives of the Reynolds stresses, Ti' , have to be
calculated (or measured) and integrated over the volume of the turbulent field.

This would be an extremely difficult, if not impossible, task indeed.

Under certain conditions Equation (4-10) can be somewhat simplified. Suppose the
difference in the retarded times r/a, - r’/a0 = l/a.0 is small compared to the
characteristic period 1/w of the turbulence, and to the time of emission r/au :
that is

lw l
— 1 and - <1 (4-11)
a T

Q
The first condition is usually met in low Mach number flows which we consider, while
the second condition is satisfied if the observation distance is large compared to the
extent of the turbulent source. This last one, however, is not always easy to satisfy
for practical reasons (signal levels too low at large distances). With this in mind
we may proceed by applying the divergence theorem twice to the integral of Equation
(4-9) (see the details in Reference 77). One obtains then the following form

1 9° T t -1/
Pl = — f L2 R av (4-12)
e 4 Bxinj J r o

'm
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Carrying out the double differentiation under the integral sign, one obtains three
terms that fall off as the inverse first, second and third power of 1 (see also
Equation 2-20). For large distances from the turbulence source (for large r*/A*) the

r ! term will dominate, therefore

pl(x,t) =

dV(IP (4-13)

4ma o oL

1 f (x5 - 7 (x5 - 1p) O°Tyy(Qab - v/ay)
0
v

and the mean square density will have the form

’OFQ('—}E‘) -

1 (Xi"ﬂi) (Xj _T}j)(xk—n};) (xl"r]i) BzTij (ﬂ,t-l‘/ao) aszl(;ﬂ’, t‘l"/ac) i
1677 MR 32 312 e
ma * X t (4-19)

Introducing the inequalities (4-11), Equation (4-14) simplifies to

- 2, _ 2 I _ 1
.ji.prz(x) _ 1 xgXyXpXg Jf 2 T30t r/ag) o1y, (m't - x /ay) Wty (4-15)
om e 16ﬂ2ag 7o J o2 ot L
9
The notation E;— is introduced for the contribution to the sound field from unit
i)

volume of turbulence centered at n - Thus, the complexity of the integral has heen
considerably reduced; nevertheless its exact evaluation still represents a formidable
task. However, an order of magnitude estimate of the gound intensity emanating from
the volume V can now be performed and, in fact, the greatest practical value of the
Lighthill approach is the fact that it provides the basis of such an estimate
(Chapter 6).

4.7 Ribner’'s Simple-Source Theory

While the physical basis of the acoustic analogy of Lighthill is relatively easily
understood using his mathematical formalism, his interpretation of the effective
sources as guadrupoles is a much more subtle one and more difficult to comprehend.
This prompted Ribner to propose a different interpretation, but still within the
framework of the acoustic analogyT”. In Ribner’ s picture the sound generation may be
interpreted in terms of simple sources produced by fluctuations in “pseudo sound”
pressure; that is, in an incompressible flow approximation of the pressure. His
formal expression for the radiation intensity is mathematically equivalent to.that of
Lighthill, Its evaluation is just as difficult a task as, for instance, Equation
(4-15). For details the reader is referred to the original work of Ribner.

4.8 A Mechanical Model

As a further aid to the understanding of the reasoning behind Equation (4-5),
Liepmann has described a simple mechanical model which, although it by no means
furnishes an exact analogy, illustrates the way in which sound is generated by a flow.
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This model starts from the observation that the role of the pressure force in
incompressible flows 18 analogous to the role of the force exerted by the string of

a pendulum. Indeed, in either case the equations follow from Hamilton’ s principle

and the tension in the one, and the pressure in the other, enter the variational
problem as Lagrange multipliers*. These forces then do no work and may be interpreted
physically as reactions, against the gravitional and centrifugal forces in the
pendulum problem, and against a change of volume of a fluid element in the hydro-
dynamic problem.

To introduce the ugound field” into the model we now imagine the string to be
extensible and elastic with a certain spring constant, so that in the absence of
lateral motion of the bob, the length of the string can be made to oscillate about
some mean value. In practice, hoth modes of oscillation will occur, the length of the
string with some characteristic frequency @, and the pendulum near the frequency
w_ . There is also a third parameter in the “poundary conditions”, namely the
amplitude, which we now fix. If o >> @, i.e., if the string is essentially
inextensible, the appropriate expansion procedure is obvious. If o« and ), are
comparable, however, no obvious division of the two modes is possible. On the other !
hand, we are certainly able to write down an equation for the length [ of the i
string in the form

Ter(l-1) = 2€(L66 (4-16)

in which the right-hand side depends on 1 as well as on the angular displacement e
of the string and its first derivative with respect to time.

We are thus led to consider the following correspondence between this mechanical
system (or, in fact, any similar system exhibiting two coupled modes) and the problem i
of aerodynamic noise. The motion of the bob may be jdentified with the turbulent f
fluctuations of the medium, having a certain characteristic amplitude (u’ normalized {
by the mean value 1) and frequency (e.g. L/d, where L is a characteristic eddy “
dimension). In place of w, Wwe now take a/L , where a is the speed of sound. i
The perturbation for small ab/a@ now hecomes the perturbation for small Mach number 2
M , and Equation (4-16) states the “acoustic analogy” for this mechanical system. The {
acoustic analogy therefore emerges here as an expression of a pasic division of the i
computation of noise, @ division which is exact in the case of small M . The model H
also predicts that at sufficiently high speeds the coupling between turbulence and ﬂ
sound is not .obtainable by conventional perturbation methods, at least provided the 1
turbulence leveltf scales with 1 . {

* For a derivation of the equations for incompressible flow from Hamilton's principle, see, €.8.,
gommerfield, Mechanics of Deformable Bodies, Chapter I1I, Academic Press, 1950.

t 1t should be noted that this mechanical model does not contain a length analogous to the
characteristic wavelength of turbulent fluctuations. Since the notion of eddy convection 7'
does not enter, without further refinements the mechanism of noise generation at high speeds ‘4
cannot be properly represented (cf. Chapters-ﬁ and 7). |
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CHAPTER 5

THE ACOUSTIC ANALOGY APPLIED TO THE
TURBULENT BOUNDARY LAYER

5.1 Curle's Analysis

The problem of aerodynamic noise generation in the presence of solid boundaries
was first examined by curle!!. He showed how rigid surfaces were acoustically
equivalent to dipoles of strength equal to the aerodynamic surface stresses. Within
the framework of Lighthill’s analogy, these surface stresses appeared to dominate the
radiation field - because they represent dipoles of inherently greater radiation
efficiency than the equivalent quadrupoles of the turbulent flow. This was Curle’s
approach, an eminently successful one in accounting for the noise produced by unstable
flows in the vicinity of small surfaces. The theory, being an exact extension of the
acoustic analogy, is applicable to the boundary layer problem also, but there one must
exercise a certain amount of caution, since the surface dipoles are of zero strength
in many instances of practical interest. It is easy to appreciate a proof of this
property if one is first reminded of the way in which the general solution of the
~ forced wave equation should be applied. This point is best illustrated by noting an

equivalence between certain integrals over a closed surface 2 , and those over a
volume V bounded by that surface.

Consider the volume integral

vz
A f [__,'D] avm (5-1)
b3 r ~o
v

where the square brackets, [ 1, indicate a retarded time, t - r/a0 , to be
operative.

This can be expanded by completing Hivergences and applying the divergence theorem
to introduce surface integrals over > .

V%o 1[9p 9 N 1 Or [op
— | av = 2 - — (=) [p) + — =— |=—=|pdS(m +
l:r:l 2 rLBn] dn (1) Lo a,r on |:3t W
L ,
/2 1 |19%
+ [PV av) + [ = |-z | VD (5-2)
J ¥ o a, |r ot L

d/3n is the derivative with respect to the outward normal to the surface at :E

- e
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Now V2 (1/r) is equal to - 478(r) , so that the second term on the right-hand
side is non-zero only if the observat?bn point, r =0, is enclosed by the surface
S . The integrand of the first term on the rightfhaud side we shall denote X, and
subtract the third term from each side to obtain the relation

, 1 plavem 1 %14 | V(D)
a2 3t?| r a? [ |onon|
= [[Xlasp - f[p]éﬂS('z"J) dv(n) (5-3)
s v

The first equaiity defines Lighthill’s stress tensor, Tij , cf. Equation (4-5).
This equation can then be written in two forms, the first one applicable whenever the
observation point, {J: 0 , is enclosed by the surface 2 ;

1 1, | av 1
— y | 28— ] dsep (5-4)
47ma, ani’anj r 4T ~

p(X, t)
by

The second form is that applicable when the observation point is excluded from the
volume V, and shows how the source system enclosed by the surface > makes no
contribution at the point I = 0.

1 %, | dv(p 1

— i | 0 LK) ascp (5-5)

d7ma anfhh r 47 ~
v =

curle' s equation can be derived from these by completing the divergence in the volume
integral and applying the divergence theorem.

| 221, | av ? o
a1J ,(@ = g | av +
9m;0m; r x-laxj r
v v
19| o ° (3) )+ — o =22} S
r | Ony on; \r ar om; t (5-6)
>

The suffix n is used to indicate the direction of the outward normal at the surface.
The momentum relation equates BTin/ani to

)2
3t 0 Bn
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Writing Tij as Pugu; + Pyy aéoSij ., Equation (5-6) can be re-expressed

1 %7, . | dvi 1 o? o
: 1;.—] @ — AL v -
ama? Bniaan T 47a’ 0% 0 r ~

v v

1 |[o ds
[x] ds(p) - — [(p“an @

477“3.0 ot T

> z

47

1 9 dS(zp
¥ 47a’ C™ Eouiu" * Pin r (5-7) .
0 iy

The general equation of the acoustic analogy can then be written by inserting this
expression into Equation (5-4)

1 o7 Ti4 1 9 ds(m)
) = —=| dv _—— P, - pu, o
pP(x,t) 4ﬂa§ axinj [r (m 4'na§ %, [1 puguL i
v >
il L ds ()
| o 5-8
e BT kmn] - (5-8)

The radiation is seen to be zero if X, the observation point where I = 0, is
excluded from V and S, a point evident from Equations (5-5) and (5-T).

P; is the force exerted on the fluid by the surface in the Xy direction and is
equal to - Py, - curle’ s equation is the particular value of Equation (5-8) when
the normal velocity at the surface is set equal to zero.

A comparison of this general result with that of Lighthill’s theory, Equation
(4-12), allows us to draw an important conclusion. It is evident that, in the
presence of boundaries, sound is generated, not only by quadrupoles of strength Tij
distributed throughout the turbulent region, but also by dipoles distributed over
% , of strength equal to the rate of change of momentum through > , and finally by
simple sources at the surface, of strength equal to the rate of change of mass flux
through X . Our knowledge of the increasing inefficiency of the more complex
sources allows us to rate these three contributions in an ascending order of
importance, but we shall see how such an argument sometimes Dproves to be misleading.

———te
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Before going on to discuss the general theory it is worth emphasizing one point
which is often misunderstood. On a rigid surface the dipole strengths are related
to forces applied on the fluid by the surface. It is sometimes argued that the
radiation from these sources must be zero since the points of application of the
forces do not move, so that the forces do no work. The point is easily answered
when one appreciates that the whole theory is in the form of an acoustic analogy soO
that the source system is essentially an equivalent one, which need not correspond
directly to any real source of acoustic energy. The dipole energy is in fact
extracted from the turbulent volume and the equation could have been written in a way
to stress that point because

[,
fPidS = f—(&l av , (5-9)
ot .
>

v

a relation that follows by applying the divergence theoren to the momentum equation.
But, however the term is expressed, the situation ig precisely analogous to a surface
distribution of radiating dipoles and this is an important concept in the theory of
aerodynamic sound production.

5.2 The Reflection property of a Solid Surface

The mechanism of noise generation in the turbulent boundary layer is our particular
concern here and the question of how sound is generated on an infinite, flat, rigid
surface by boundary layer turbulence, is then an important one. It happens to be an
instance when the major surface dipoles vanish, so that the theory must be extended
considerably beyond Curle’s analysis before it becomes really useful. This vanishing
property has been argued on several grounds, most arguments being based on the
equations of incompressible fluid motion. Phillip557 showed how the instantaneous
surface integral of pressure, which is the integrated dipole strength, vanished under
those conditions, but it was Powell®® in a paper later to be emphasized by Ffowcs
Williams22 and Meecham55 who first gave a rigorous argument on the exact role of the
surface pressure field. Since Powell’ s argument is also the simplest, it is with
that that we deal here. Consider the situation illustrated in Figure 2. The real
flow, including the turbulence and the observation point, is supposed to lie within a
volume V enclosed by a surface S, which is, in part, coincident with the rigid
surface. The equation relating the real equivalent sources to the sound heard at
(Krt) is then Equation (5-8). Below the surface is supposed an image flow, an exact
gpecular reflection of the real flow, enclosed by the surface =2/ . 1Tt is immaterial
whether this image is physically realizable or not, since it makes precisely no net
contribution to the sound heard at the observation point (X,t) which lies outside the
surface 2/ . This point follows directly from Equations (5-5) and (5-T).

The sound heard at (th) can then be written as the sum of that generated by the
source system enclosed by the surface 2 and the zero contribution of that enclosed
by ' . The surface velocity v, is zero for the rigid surface, so that Equation
(5-8) gives the total radiation field to be

=

———
s e ———

——————————————
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1 9 P; P
c——d | as+ [ [E] as (5-10)
dmra Bxi T r

b3 2!

We recall that P, was defined (page 22) to be the force in the i direction

exerted on the fluid by unit area of surface. The tangential force is clearly equal
for both the real and image flow but the normal force has exactly opposite sign across
the boundary. The “normal’”, or pressure, dipoles therefore annihilate each other,
leaving only the viscous dipoles whose axes lie in the surface. The summation over

i should then bhe restricted to those directions, and this we achieve by replacing i
by the suffix g, a notation implying that viscous effects alone are operative.
Equation (5-10) thus reduces exactly to

(x, t) L& / [T“] av -1 . ° F&} (5-11)
PX, 3 Mo, T oma? B s B
ama’ Bxiaxj vy T 2ma ax# 4 r

We recall that Tij in V' 1is not equal to Ti' in V, but is that associated
with the specular reflection of Tij in the surface. Similarly, r , and consequently
the retarded time, differ in the two regions.

In the absence of viscosity, the second term in Equation (5-11) is zero and we
see how the surface integral of Equation (5-8) has become exactly equivalent to the
integral of the image quadrupoles distributed through the volume V' . We have, in
fact, repeated Powell’s argument that in the absence of viscous stresses a plane
rigid surface acts like a passive reflector. The reflection property is distorted
by any viscous terms which are reinforced by their images.

5.3 Radiation by Flows Near “Small” Surfaces

Bearing in mind the possibility of a vanishing dipole strength, we can now consider
more specific applications of the general aerodynamic noise theory. If would seem
appropriate to deal first with the question of sound generation by flows near surfaces
small compared to the acoustic wavelength. It is there that Curle's extension of
Lighthill’ s theory is straightforward. BEquivalent dipoles associated with surface
stresses overwhelm quadrupoles distributed throughout the unsteady flow, so that
the pertinent equation is that involving the surface integrals of Equation (5-8).

1.3 sy 1 9 ds(n)
N i —_— . P, - ; —_— -12
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Whenever the surface is rigid the normal velocity u, is zero, so that this equation
reduces to precisely Curle’s result, which, when expressed in its far-field form,
shows how the radiation strength increases with the rate of change of surface stresses.

—e
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The normal stresses induce dipoles whose axes lie perpendicular to the surface.

These normal stresses, Pn , are likely to be the most significant since they contain
the effects of hoth viscosity and pressure. The fluctuating pressure, which increases
in direct proportion to a typical dynamic head, % EUQ , exceeds the fluctuating
viscous stresses by a factor of the order of a typical Reynolds number. Consequently,
Equation (5-13) can be approximated by

-1 x. -7n) |9
Pl t) 2 — f( . an) [—p] ds () (5-14)
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The differentiation with respect to time is dimensionally equivalent to multiplication
by a characteristic frequency, U/l , where [ is a typical length. The integration

introduces an 12 in the dimensional treatment which, when applied to this equation,

shows how the radiation density o' has the proportionality

3

s (5-15)
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This radiation overwhelms the volume quadrupole contribution by a factor proportional
to Mach number squared in intensity. This is evident from a comparison of the mean
square density perturbations predicted here, _2(12/r )(Uﬁ/a ) , with that predicted
for the quadrupoles in the next chapter, ﬁz(lz/r )(Ua/aﬂ) (convection effects
being set equal to zero).

This dimensional dependence has been observed in numerous experiments concerning
Aeolian tones®7:17. There, vortices are periodically shed from a cylinder lying
normal to the direction of flow., As the vortices are shed the cylinder is subjected
to a lifting force and this force gives rise to a dipole whose axis lies normal to
the flow.

Should the cylinder be free to move, the periodic force will excite it into
oscillation, and then the remaining terms of Equation (5-12) would have to be
considered. Oscillatory motion would be mainly normal to the flow since the cylinder
is subjected to a predominantly lifting force. If retarded time changes were
ignored, the first integral of Equation (5-12) would vanish, since the outward normal
surface velocity at one point is exactly cancelled by that at its diametrically
opposite point on the cylinder. But, taking proper account of retarded time, one
can show that term to be equivalent to an additional dipole field. The cancellation
is incomplete, since the surface velocity has changed slightly in the time interval
separating emission from any two opposite points. This change is then the strength
of the additional equivalent dipole, The leading term of a Taylor expansion about
any point in the cylinder, of diameter D , shows that strength to be

p or o°
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This term, being linear in the surface velocity, overwhelms the velocity term in the
second integral of Equation (5-12) by a factor of the order of the ratio of a typical
flow velocity to the vibrational surface velocity, generally a very large factor.
The equation relevant to Aeolian tone generation by a vibrating cylinder is then

-1 (. -7m) [op D 9?2 -
,t ~ n n L e X
P, 1) Wang ' [Bt > 502 Pu)| 4@ (5-17)

The surface pressure is, of course, related to the velocity ¥y which it excites.
Should the cylinder be unrestrained and under the assumption that gross flow is
unaffected by the response of the cylinder, these two terms can be brought together
very simply. The result is particularly simple in its far-field form when the
surface is sufficiently small that retarded time differences are negligible.

The integral

f(x—n-;l“) p ds(n)
z

is the force per unit length exerted on the cylinder in the direction of sound
emission, (that of the vector (ﬁ’— lp). Since the cylinder is subjected to a lifting
force, F , this component can be designated F sin &, & = 0, implying the

observer to be downstream of the cylinder. The velocity 'V at which the cylinder
responds to the lifting force is related to F through the equation of motion:

D% QY
R (5-18)

where Pg is the density of the solid material. The force available for acceleration
of the cylinder is reduced from that active on a fixed cylinder, Ff , say, by the
force required to overcome the inertia of the virtual mass:

F F ﬁDz ¥ (5-19)
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The integral
(xg - M)
f_“.__.ﬁ_ u, dS(1)
T
>
has the value (77/2) VD sin & , a relation that allows us to rewrite Equation (5-17)

in a form more appropriate to the relatively simple problem of Aeolian tone generation
by flow over a small unsupported cylinder excited into transverse vibration:

1 oF 2
P T sin@H Q. . ' (5-20)
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We are, of course, discussing a rather hypothetical situation in our treatment of a
purely two-dimensional flow. Pressures are unlikely to be fully correlated over the
entire length of a cylinder, a feature of considerable importance in the practical
prohlem. This is particularly true in considering the main effect of vibration, for
the influence of coherent vibration in synchronizing the pressure field is possibly
the most important aspect affecting radiation strength in air, a point first noted
by Phillips. But, within the framework of our model, it is of interest to note that
the effect of vibration seems to be unimportant in air since the density ratio
ps/(p +pg) 1s, to all intents and purposes, unity.

The first effect is one of impeding the generation of sound, and, if the response
were increased by allowing the density of the cylinder to approach that of the fluid,
the dipole strength would vanish completely. Further reduction of the density would
cause the dipole to become reversed in sense, limiting to precisely the opposite
of the rigid ecylinder case should the cylinder become weightless.

One other aspect of considerable importance in underwater applications concerns
the case when the rigid surface is maintained in a preferred position, or path, by
a force proportional to its displacement from that path. Then the possibility of a
resonance is raised, and, if the frequency of vortex shedding coincides with that
resonance, & major noise source can occur. Such resonances were discussed by Lamb
in connection with the scattering problem, and are dealt with more specifically by
Fitzpatrick and Strasberg25 in their summary article on sources of underwater sound.

Before leaving the topic of small surfaces immersed in unsteady flow, it is worth
touching briefly on the subject of sound generation by bubbles entrained in turbulent
liquids. It is often the case that the fluid entrained in bubbles is considerably
more compressible than is that of the surrounding liquid. Such compressibility
emphasizes the simple source terms of Equation (5-8) which is likely to overwhelm the
other multipole terms. The details of the surface motion must be very complex indeed,
being controlled by both compressible and surface tension forces. The characteristic
frequency of the motion is also complex, since there often exists the possibility of
resonance which destroys the Strouhal number dependence normally operative in flow
noise problems. These difficulties detract from the value of an estimate of radiation
strength based on dimensional analysis of the type that led to Equation (5-15).
Perhaps the most reliable deduction that one can make on the importance of bubbles
is that they represent fundamentally more efficient sources of acoustic energy than
those otherwise present in flow. A detailed analysis could be based on Equation (5-8),
though such an analysis would be extremely complex, but the dynamics of the interface
plays such a major role as to rule out significant deductions of a general nature.

5.4, Radiation by Flows Near “Large” Surfaces

We turn now to consider the sound radiated by turbulent boundary layer flow formed
on a plane surface of sufficient size that edge effects are negligible. More
strictly, we return to the topic, to fill in some of the details, for this is a
situation to which we have already applied the basic theory. We deduced, as Powell
nad done beforehand, that a plane rigid surface merely reflects the sound generated
by equivalent quadrupoles in the turbulence. Reflection is distorted by the action
of viscous stresses, but, since they could only hecome significant at relatively low
Reynolds numbers, of the order of the flow Mach number, we ignore them. We consider
the plane surface to be a perfect reflector.
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The relevant aerodynamic noise equation is then the leading term of Equation (5-11)
where the sound is shown to be the sum of that generated by the real quadrupoles in
the volume V above the boundary and that of the image quadrupoles in the volume V'
below the houndary.

1 2 T,
px,E) = —y ——— —| av (5-21)
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A comparison of this equation with the inviscid form of Equation (5-8) applied
directly to the rigid surface, shows a certain equivalence between volume and surface

integrals,
1 22 /I:T:I 1 9 |:p:|
— _1] dv = [— —| ds (5-22)
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It is tempting to suppose a general equivalence between surface and volume integrals
of this type, and to seek a procedure for computing the radiation field in terms of
equivalent surface stresses. Such surface stresses are easier to handle than the
fluctuating Reynolds stresses of the volume integral, both experimentally and
analytically. But no such equivalence is possible in the boundary layer application,
and one is forced to admit that the leading terms of a multipole expansion of the
radiation field are volume quadrupoles that cannot be synthesized from a surface
stress system. The surface pressure is the sum of contributions from both real and
image quadrupoles, which radiate towards the surface in phase so that their contri-
butions add. On the other hand, radiation from the source and image combination to
positions outside the boundary layer is markedly different from that of the real
source system in isolation. The reason for this is that those quadrupoles with one
and only one axis in a direction normal to the flow are opposed by their images so
that the combination forms an octupole of basically lower efficiency. All other
quadrupoles are reinforced by their images, so that they appear to be doubled in
strength. These arguments hold whenever the boundary layer thickness is smaller
than the acoustic wavelengths of interest, a common condition to which we restrict
our present arguments.

The turbulent boundary layer is a flow in which high mean velocity gradients occur.
LighthillLla showed how such gradients amplify lateral quadrupoles which can often be
treated as the dominant sources of sound in turbulent shear flows. Such guadrupcles
have one, and only one, axis normal to the flow, so that it is precisely those
quadrupoles that dominate a free shear flow that degenerate into octupoles of
negligible strength in the boundary layer case. From a practical standpoint, a large,
and possibly dominant, part of the surface pressure field results from interaction
of the boundary layer turbulence with the mean shear flow. That pressure field would
now appear to be precisely the contribution which is not related to the radiated
noise problem, for it is the field which opposes directly the radiation from the mean
shear amplified lateral quadrupoles of the turbulent flow. This conclusion is in
agreement with the directionality and strength of the sound field radiated by the wall
pressure field reported in Reference 21, but there the all-important details of the
cancellation were not considered. The conclusion that one is led to from the foregoing
discussion, is that the only markedly directional radiation of the boundary layer
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turbulence is destroyed by the presence of the boundary. The resulting radiation
will consequently be of an omnidirectional quadrupole character, whose intensity will
increase proportionally to (,Eg/po)Uahl5 , a result that follows from the dimensional
arguments of our next chapter. This conclusion is modified drastically by rapid
convection of the turbulent stream, especially at supersonic speeds. The reflection
argument remains unchanged, so that the proper analysis need consider only the flow
in association with its image, but the radiation becomes extremely directional as
Mach waves emitted by supersonically convected eddies begin to dominate the
radiation field.

We conclude our present discussion of the boundary layer noise problem by making
brief reference to two important effects. The first is that, although the main
surface dipoles were shown to vanish on a large surface, they need not vanish near
the edges of that surface or from smaller surfaces in contact with turbulent flow.
Dipoles exist in those regions and, unless the area of the plane surface exceeds
that of the edge region by a factor of the order M2, they will be the dominant
source of sound. A precise definition of the edge region is not possible within the
present state of the art but is the subject of current theoretical study. Those
dipoles will have the same general features as those already discussed in the earlier
sections of this chapter so they need not be considered further.

5.5 Some Remarks on Flexible Surfaces

Our final point concerns the possibility of surfaces responding to stresses
induced by turbulent flow and thereby creating an additional source of sound. For
surfaces of limited extent, wall motion becomes equivalent to a simple source system
of high acoustic efficiency and can quickly become the most important feature of the
practical boundary layer noise problem, This aspect is dealt with in Reference 21
where the computations of radiated noise is based on the hypothesis that all the
power flowing into the vibration is radiated as sound. The problem then reduces to
one of estimating surface response to boundary layer turbulence and does not come
within the scope of our present discussion of the acoustic analogy applied to the
boundary layer. Should the surface be plane, large and constructed of a homogeneous
material, the acoustic analogy can be applied directly. This problem has been dealt
with by one of the authors* and we shall only summarize the results here, since the
analysis is again more concerned with structural vibration than with the fluid
mechanies. It appears that the role of the surface is precisely what it would he
when excited by a purely acoustic field. The infinitely rigid surface reflects, and
the infinitely limp surface reflects in the opposite sense, with the images having
the negative of their value at the rigid condition. Our conclusion regarding the
strong lateral quadrupoles would then be modified considerably since they would be
the ones enhanced by their images. Internal damping of the surface tends to be a
dissipative action which distorts the image system, but under all these conditions,
both the simple source and dipole contributions vanish on the large surface so that
the radiation maintains its quadrupole character of low radiation efficiency.

* Ffowcs Williams, J.E., Radiation from a Boundary Layer Formed on a Flexible Surface.
(Unpublished).
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CHAPTER 6

NOISE GENERATION AT HIGH SPEED

6.1 Introduction

The mechanism of noise generation by turbulent flow has, so far, been described
in terms of a straightforward acoustic analogy. An equivalent source system produces
in an ideal fluid at rest the same sound as is generated in the real fluid by the
turbulent flow. Certain properties of the equivalent sources defy a detailed
description. Refractive effects are prime examples for their influence is only felt
on the source terms if the stress tensor is admitted to contain elements of the
acoustic field. 1In principle, however, the analogy is complete and its application
is hampered more by a lack of turbulence knowledge than it is by difficulties of this

type.

By identifying the equivalent aerodynamic sources as quadrupole Lighthill®®
inferred many important features of the radiation from concepts of classical acoustics.
The extreme acoustic inefficiency of turbulence became obvious, for a quadrupole is
a combination of two dipoles in opposition. Radiation results from imperfect
cancellation of these dipoles which are themselves of low efficiency, being comprised
of two mutually.opposing simple sources. That aerodynamic sound could be highly
directional was also evident, as was the property that radiation strength would
increase as a high power of frequency, for both these are fundamental features of
acoustic quadrupoles. One other point was obvious too but was an aspect that had
escaped the detailed attention of early workers in acoustics. An aerodynamic source
might well be in motion relative to the surrounding fluid. Such relative motion is
known to increase the frequency of the radiated wave above that of the source by the
doppler factor. Since quadrupole efficiency increases rapidly with increasing
frequency, source convection must augment the radiation of aerodynamic sound. But
the analogy could go very little further on this point because classical studies on
the effect of source motion were concerned only with frequency changes. The theory
developed by Lighthill to describe convective effects is more analogous to the
Lienard-Wiechert theory of electromagnetic radiation and it is with this aspect of
the theory that we shall deal now. Lighthill initially developed the theory to
illustrate the effects of source motion at subsonic speeds. More recently?" this
work has been extended to supersonic situations where turbulent eddies are shown to
emit Mach waves, analogous to the shock waves radiated by thin aerofoils flying
supersonically, or to the Cherenkov radiation from ulta-relativistic particles.
These Mach waves were first studied specifically by Phillipsﬁl, whose approach was
quite different to Lighthill’s which predicts Mach waves as a particular instance of
quadrupole emission at high speed. Phillips, on the other hand, considered these
Mach waves alone. We shall outline both approaches here, starting with Lighthill’s
at low speed, then at supersonic speed and finally describe some aspects of the
development of Phillips’s theory although we shall discuss only the early sections,
since there is some question as to the validity of the final result.

-3
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6.2 Lighthill’'s Theory of Convected Quadrupoles

The theoretical development of the equations governing aerodynamic noise
production at high speeds is simpler if we restrict our discussion to regions
sufficiently far away from the turbulent flow that the far field equations apply.
The relevant theory can then be based on the final equation of Chapter 4, Equation
(4-15), That will be taken as the starting point of this section. The mean square
density fluctuation at the observation point, X, per unit volume of turbulence at
the origin of coordinates is

—p'2x) = an"  (6-1)
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In writing the mean square density at f. as a function independent of time, we have
assumed statistical stationarity in time. The stress tensor correlation function
forming the integrand of this equation can be rewritten under such stationary
conditions as
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We can simplify this further by assuming a stationarity in space so that the
correlation function is dependent only on the separation (1f - 1) which is equal to
n' at m =0 . Then Equation (6-1) has the simpler form
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This equation can be written in a still more simple form if one denotes the
particular element of the correlation tensor Tijkl , where the suffixes are all

equal and indicate the direction of emission, by T, . Then X0 X5, Xy and X;
are all equal to r , the distance travelled by the sound, and Equation (6-4) becomes
30" 2 (x) 1 1 [ 7' x
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where use has been made of the fact that r - r/ may be rewritten as zrf/r
whenever the correlation lengths are much smaller than the distance separating the
observation point from the turbulence, i.e., r/n' >> 1.

Whenever the turbulence time scale is large compared torthe time taken by a sound
wave to traverse an eddy, or a correlated region, the value of the correlation
function will remain insensitive to the variation of retarded time. To all intents
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and purposes the integral of Equation (6-5) could then be regarded as an instantaneous
one and such a step is often taken in approximate calculations of aerodynamic noise.
But if the source system is in motion, much of the temporal variation observed at a
point is due to the passage of turbulence past that point. The time derivative is
then made up in part of a velocity times a space derivative, which integrates directly

- if retarded time is neglected. An approximate calculation based on the magnitude of
such time derivatives would consequently overestimate the radiation, for the space
derivatives make no contribution to the integral. In practice, turbulent eddies are
often convected a distance many times their scale so that the time derivative is
dominated by a part which makes no contribution to the radiation field, a point that
renders Equation (6-5), in its present form, of little value in assessing the radiated
sound. Lighthill overcame this difficulty by carrying out an axis transformation
which emphasized that small part of the flow capable of radiation. This transformation
is as follows.

Let .é be a coordinate system which is in motion with the average convection
speed of .the turbulence. The convection velocity is assumed to be a solenoidal
field of magnitude adﬂ . Then define a function, Sr(ggvj , to be the correlation
of the stress tensor in the moving reference frame. :

i e _ 1'%
B = '_% + a,(ﬂi:r = £ +H - (6-6)
5.5, = T, (6-7)

It is a straightforward exercise (Reference 24, p.480) to show that the Jacobian of
the transformation is |1 - M .x/r| and that
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The last term in Equation (6-9), being a divergence of a.vector field, integrates
directly to zero; consequently, it may be discarded in computing the moving axis form
of Equation (6-5). That equation can then be written down immediately as
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The retarded time variation, zfog/r , can be expressed in terms of the moving
cooordinate g' by simply forming the scalar product If'i. from Equation (6-6).
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Equation (6-10) then assumes its more significant form from which the high Mach
number extensions can be readily derived.
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Here, r(1 — Mcos®) has been written for r — M.x . The angle & is measured
in such a way that & = 0 when the observer lies downstream of the convective flow.

In basing an estimate of radiation intensity on Equation (6-13) it soon becomes
apparent that there exist two characteristic regimes of radiation. The first of
these is the one encountered in low speed flows where retarded time changes are
small compared to the natural, moving axis time scale of the turbulence. If Lr is
the correlation scale of the turbulence in the direction of sound emission, and 7*
is its moving axis time scale, then provided that

L
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retarded time effects are negligible and Equation (6-13) can be effectively
approximated by
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Where this equation holds, the situation is one where convected quadrupoles emit
waves in a relatively classical manner. Frequencies are shifted by the doppler
factor {1 — Mcos®} (this was the time scale expansion of Equation (6-9)) and
subsonic convection is seen to augment the radiation efficiency; the factor,

1 - M(ux59|‘5 , having an average value in excess of unity. This radiation regime
is seen to apply at very high convection speeds since the inequality of (6-14) is
satisfied there too. At supersonic convection speeds where M cos 6 >> 1, the
observer hears the quadrupole sound in reverse time, since nearer parts of the
quadrupole emit at an earlier time, quite contrary to the low speed situation.

6.3 Extension of Lighthill’s Formulation

When the inequality (6-14) is not satisfied a different situation exists which can
occur at all supersonic convection speeds whenever (1 — Mcos &) approaches zero.
The situation is most straightforward at that condition for the observer is able to
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hear each constituent element of the quadrupole separately. At low speeds an
equivalent quadrupole is of low efficiency because the cancellation of its constituent
elements is almost complete. At higher convection speeds the radiation time scale is
increased and the elements can change more in the interval separating their emission
times, so the cancellation becoming less complete results in an enhanced acoustic
output. This is the Stokes effect that accounts for the (1 - Mcos 6) factors in
Equation (6-15). But the increase in efficiency is strictly limited, for the
quadrupole can at no time radiate more than its constituent simple sources. It could
do this only when the cancellation was completely absent, a condition experienced
whenever Mcos& = 1 . Then the quadrupole is approaching the observer with precisely
the speed of sound. The near elements of the quadrupole emit and continue to move
with the sound wave they generate. The other quadrupole elements never overtake this
wave and are therefore quite unabhle to make their presence felt and all mutual
cancellation ceases. Since the simple source emission is far more efficient than that
of a quadrupole, strong radiation must occur at the Mach angle, 6 =cos Mt . The
details of the radiation at this condition were first studied by Phillips, who showed
how eddies convected supersonically gave rise to Mach waves. It was later?" that
Lighthill’s equations were transformed into a system capable of dealing with these
waves although, in retrospect, the transformation is extremely simple. It is most
easily performed by recognizing that in Equation (6-13), the retarded time 7 could
well replace ér as an independent variable, Qr being the component of E’ in the
radiation direction. 7 and Er are related through Equation (6-11).
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The volume element df can be re-written

df = g~ Mcos@)d’rd’és
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where déﬁ is an element of area perpendicular to the radiation direction.

The radiation equation can then be re-expressed in a form devoid of possible
singularities at the Mach wave condition:

op'f(x) o ,
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If we neglect all but the Mach waves, (1 —Mcosf) =0 and ér =0, so that the
radiation is described by the equation
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Application of these equations is strictly limited by our presently restricted
knowledge of turbulent flows, particularly at high speed. However, a crude dimensional
analysis readily yields the characteristic dependence of the radiation intensity on
typical flow parameters. Such a technique is clearly useful where the flow fields
remain geometrically similar. At low speeds, similarity is usually established in
both jet and boundary layer flows but the situation is more complex at high speed.

At low supersonic speeds the region of flow capable of generating Mach waves, i.e.,
that region moving supersonically relative to the observer at rest in the uniform
flow enclosing the turbulence, is increasing in scale with increasing Mach number

and the dimensional arguments based on similar systems cannot apply. More refined
arguments are possible, but very few examples have so far been attempted. In jet

or rocket exhausts, similarity of the Mach wave producing flow seems to be
established at nozzle exit Mach numbers near three, for the important regions of
intense turbulence near the nozzle evidently move supersonically above that speed and
emit intense Mach waves. The supersonic houndary layer is more complicated, for the
region of intense turbulence travelling supersonically relative to the free stream is
continually changing, even up to Mach numbers near five and one must be cautious in
applying the dimensional arguments based on geometrical similarity.

6.4 Dimensional Considerations

The dimensional arguments are straightforward. The correlation function 8. ,

being quadratically dependent on the turbulence stress tensor T,. , will increase in

— — 1]
level like sz” where 7 and U are respectively the typical density and velocity

of the turbulent flow. Differentiation with respect to time is dimensionally
equivalent to multiplication hy a typical frequency which will have the characteristic
Strouhal proportionality U/l , where [ 1is a characteristic turbulence length scale.
Differentiation with respect to the correlation variable, Er , 1is carried out
gsymbolically by simply dividing by I and integration is the converse of this
operation. Applying these techniques to the quadrupole equation, (6-15), one predicts
that the mean square radiation density will have the characteristic dependence
8 12 2
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provided, of course, the inequality of (6-14) is obeyed. Near the singularity of this
equation Mach wave emission dominates the radiation field and its strength is derived
by applying the same dimensional arguments to Equation (6-19).
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Both these formulae can be combined in one more uniformly valid form as has been

done in Reference 20. There it was suggested that €, the ratio of the root mean

square turbulence level to mean velocity, plays an important part in establishing the

speed range over which Mach wave emission is dominant. The form given in that

reference has the value of Equation (6-20) far away from the Mach wave condition and

that of Equation (6-21) when Mcos@ is equal to unity.
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2 ey? 5/2

@f= & B —1—21\13 el (6-22)
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The same dimensional arguments, when applied to Phillips’s equations, do not
reproduce this result; the difference is probably due to the singular nature of his
final result, and that we shall now discuss in more detail.

6.5 Phillips’s Theory of Mach Wave Generation

Phillips’'s theory61 is based on the leading term of an asymptotic expansion
solution to the equations describing a model shear flow. In presenting the theory
Phillips described apparent shortcomings of the acoustic analogy, which was at that
time regarded as essentially limited to flows of low Mach number. His novel approach
to the problem overcame (at least in principle) some of those shortcomings of which
the refraction problem was possibly uppermost in his mind. His solution promised an
important advance, for not only did it display refractive effects brought about by
changes in hoth mean flow velocity and temperature, but it was then the only solution
available which gave any indication of the situation existing at Mach numbers higher
than unity.

Phillips based his theory on the equations of continuity and momentum, the
equations leading to Lighthill’s acoustic analogy. However, Phillips required more
specific details of the fluid state and these he obtained by confining his attention
to a perfect gas. He arranged those equations in a form equivalent to Equation (3-10).

2
ilOg .E _._a azi 10g ._p_ = ')/a_u_l.ah,-}-'y_n_ i.]E —
Dt ? Po/ Ox, Ox, D ij Ox Dt ¢, Dt

o /1 9 ;

The right-hand side of this expression may be regarded as the source terms of the
modified wave equation which constitutes the left-hand side. The first term represents
the sources arising from turbulent velocity fluctuations, while the remaining two

deal with the effects of entropy and viscosity which are both assumed negligible.

Were a general solution to this equation available, it would offer two significant
advantages over Lighthill’s theory. The first is that major convective and refraction
effects have been incorporated into the left-hand side of the equation and need not

be sought in a modified source term as in the acoustic analogy. On the other hand it
must not be thought that the problem would have been avoided completely. The velocity
term on the right-hand side is also subject to acoustic influence, the neglect of
which induces an error of the order u’/u , where u’ is the acoustic velocity
fluctuation and u the typical turbulence level. The error of ignoring the acoustic
term in Lighthill’ s stress tensor is of the order p'/p , which exceeds the error in
Phillips’ s term by a factor proportional to the mean flow Mach number, a significant
fraction at the high supersonic speeds studied by Phillips. The second advantage is
that changes in the flow temperature responsible for refraction of sound would play

a natural part in the theory, again an aspect important in high Mach number flows.
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It is not surprising that the known solutions to such a general equation are few
and far between, a point that led Phillips to seek an approximate solution at very
high Mach numbers, a regime quite beyond the scope of other currently available
theories. In seeking this solution, Phillips confined his attention to those
refractive effects associated with changes in the mean flow properties. He selected
a particular class of mean flows, that of two-dimensional free shear layers. To
simplify the analysis he also neglected the second derivative of acoustic velocity
so that the temperature across the layer was, in effect, assumed to vary linearly
with cross-stream position. This step, coupled with a slight variable modification,
allowed him to write the relevant form of Equation (6-23) as a modified wave equation.
That modified equation can be written out explicitly, although this was not done by
Phillips.

Q 2|2 p du. du.
- ] 2| = = -
5; + “1(x3) §;: - a (xS)V a(xs) log G;;> = «ya(xa) ﬁgj.égi (6-24)

X, 1is the coordinate normal to the shear layer and U,(x,) is the mean velocity.
The other variables have their obvious meaning, already defined in Chapter 2. The
equation treated by Phillips was this one, hut expressed in terms of generalized
Fourier transforms of the normalized parameters. The normalization was based on
expressing the time scale t as 7L/U , the space coordinates, x; as yiL ;

the velocities u,; as viU and the local speed of sound a as A(y3)30 ;

T, Y40 V4 and A%y3) are then non-dimensional variables based on the mean velocity
differential,” 2U , across a shear layer of width 2L . a, is the speed of sound

in the uniform flow on the positive 1y, side of the layer and the characteristic
Mach number of the flow is U/a0 . The generalized Fourier transforms of the
normalized right-hand side of Equation (6-24) is defined as rYya,g}n) and that of
the left-hand side variable, A(ya) log (p/po) , as Exya,g}n) .k is a non-
dimensional wave number vector in the plane of the shear layer, kﬂk1’k2) ,and n a
non-dimensional frequency. The suffix on the ¥y is dropped and k is written for
k| in Phillips’s restatement of Equation (6-24):

2 2 2

@ M 5 ol — M
— k) 13— m + Vk)? - Kpay, k) = -— Dy k) (6-25)
dy ~ A ~ A s

This equation can then be rearranged in a form more suitable to a solution by an
asymptotic technique. We follow Phillips in this rearrangement but express the
technique in rather a different way. We do this to facilitate comparisen. with other
high speed theories later on.

[n + k V()]

a(y,k,,n) is written for
A(y)

(6-26)

kl is assumed to be greater than n so that q has a single zero at y =Y , say,

and is positive for all values of y in excess of that value.

a(¥,k,,n) = 0 (6-2T)
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Now we define a positive parameter §2 as
o Y
Exm = 2f awk,m @ (6-28)

and we rearrange Equation (6-25) in the form

g dz@+qz M? L3 @p = & k? (1 L P g
q3/2 dy2 QQ q3/2 Qz qa/z A2

Ty, )k, n) (6-29)

where Q 1is the limiting value of q as Yy approaches infinity. q effectively
assumes the value @ immediately outside the shear layer. This can be rewritten
right away as

+ M2 - —p &2 @f = o —  (6-30)

1/2 ¢
PR KN
§1/2} K2 ql/Z B §3/2 2 q2 _ “i/z ner
d§2 Q §1/2 q3/2 - q3/2 A2
Phillips employed an approximate analysis, the exact nature of which we shall
discuss later, in order to solve (6-30). The first term on the right-hand side was
shown to make no contribution to the limiting solution, which was dependent only on
the value the second term assumed at the critical layer, y =Y . At the critical
layer, gq = 0, so that the frequency n is related to the wave number k1 by the
convection velocity V . Since the terms on the right-hand side may again be
regarded as source terms, it becomes evident that at very high Mach number the
development of the turbulent structure during its travel downstream is of no
consequence in the radiation problem. Such development is essentially tied up with
frequencies and wave numbers not related by the convection velocity, for they
characterize the convection of a rigidly frozen pattern. This feature of the Mach
wave radiation was later to be re-emphasized by application of Lighthill’s equation
to high speed flow and is quite contrary to the situation existing at lower convection
speeds. This point is readily appreciated when one considers that the radiation
integral of Equation (6-15) would assume the value zero if the turbulence did not
develop during its convective motion downstream, for the time derivative operative
there is that in a reference frame moving with the turbulence.

The solution with the above properties is obtained by Phillips as an asymptotic
approximation for large values of the parameter {M2 - kz/Qz} , a parameter which in
the later developments of his theory is replaced by simply M? . The approximate
spectrum function, incorporating the last simplification, is then valid pointwise in
wave number space, as M — o . However, the intensity of the radiated noise involves
an integral over all wave numbers contributing to the Mach wave radiation, a range
which includes wave numbers for which the expansion parameter is in fact arbitrarily
small. Therefore, the validity of Phillips’s final results necessitates also that
" the solution be uniformly valid in wave number space, to a degree which allows an
expansion of the intensity in terms of the pointwise approximation alone. Moreover,
the pointwise approximation in the region outside the shear zone varies as
{M? - k2/Q%}%/% near the critical wave numbers (cf. Phillips’'s Equation 5-6), so
that the intensity, without further strong and unnatural restrictions on the source
spectrum [', is not bounded. Physically, the difficulty is not easily explained
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since the wave numbers which contribute to the divergent part lie in a range which
decreases with increasing Mach number. On the other hand, a comparison of his
analysis with related asymptotic expansions suggests that the questions we raise are
standard ones in the mathematical theory, and lead to the hope that the source of the
difficulty, and an improved approximate solution, will emerge from a refinement of
the same basic approach.*

With this strong reservation on the validity on the final result, we abandon our
discussion of Phillips’s theory, even though some of the physical ideas are
complementary to those described and the work is of considerable intrinsic interest.

CHAPTEHR 1

ACOUSTICAL MODELS

7.1 Preliminary Remarks

In the preceding chapters the term acoustic analogy has been used consistently to
describe the reduction of our problem to essentially the solution of the classical
wave equation with a random forcing term. This analogy has been found in many
instances to reflect the essential fact that the sound produced by an aerodynamic
flow may be computed from an independent knowledge of an incompressible motion. On
the basis of its derivation, therefore, the acoustic analogy is likely to provide the
most satisfactory and complete theory when the right-hand side of the fundamental
equation

P V2 = _l.azTi' 7-1)
3‘0_2—8‘0 B Bxiaxj (

may be correctly described as a forcing term whichi is essentially independent of the
sound field. In practice, of course, we encounter physical problems, such as the
generation of noise in the turbulent boundary layers at high speeds, where the
division of the solution implied by (7-1) is probably not the most natural, and where
computation of the Tij's from experimental data or otherwise is exceedingly
difficult. In these complex situations involving high speeds, large gradients in
mean speed and density, ete., the usefulness of (7-1) rests largely on the possibility

* In this connection we mention two recent additions to the literature, which deal with the
noise generated in a two-dimensional supersonic shear flow. In a paper presented at the
Sixth Symposium on Advanced Problems in Fluid Mechanics held at Zakopane, Poland in 1963,
Lilley has described a modification of Phillips’s procedure which leads to an improved
estimate of the intensity of the radiated noise. Also, an extension of Lighthill’s theory
to this problem has been discussed in a recent paper by Ffowcs Williams (to appear in the
Journal of Fluid Mechanics).
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of deriving partial information, e.g. of a dimensional nature, which is virtually
independent of the statistical structure and level of the turbulent fluctuations in
the quadrupoles. Therefore, in a sense the large amount of information contained in
the exact forcing term is not used and any model equation of the form

?% 2, =
? = aD £ = £ (7-2)
where f is a random function having certain broad constraints, will yield
substantially the same answers. In view of these facts there emerge two obvious
questions: First, for a given problem to find for the equivalent forcing function in
the model equation a representation which is, in some sense, appropriate to the
available “input” as derived from measurements on the turbulence; second, for a given
representation of the input, to relate it in a precise way to the “output”, i.e.,

the noise in the far field. In the present chapter, under the general heading of
“acoustical models”, we propose to examine several simple examples where the first of
these equations is of definite interest, where the second can be answered in detail.

The proposal that an acoustical model of the generation process might be useful in
some problems was originally put forward in an unpublished paper by Liepmann*.
Liepmann proposed to divide up the calculations of boundary layer noise into two
parts. In the first part, the effect of the boundary layer on the acoustic medium is
calculated as if the boundary layer were absent, its effect being the same as if the
wall were flexible, vibrating in a random way. Therefore, this part of the problem
explores the “piston’” action of the boundary layer on the outer flow, and the forcing
term appears in the boundary condition at the wall on the normal component of the
acoustic velocity. In the second part, the boundary condition is related to the
“displacement effect” of the boundary layer, in a way which is well known in
classical stationary viscous flows and also useful in the present study. In this
division of the problem, the principal unknown becomes the fluctuation in an
equivalent displacement thickness of the boundary layer, which then takes the place
of the quadrupole density in (7-1). The possible advantage gained here is that in
certain instances this displacement thickness might be simpler to measure than the
gquadrupole density, and is in fact known once the instantaneous integrals of density
and tangential velocity fluctuations, as well as their product, over the boundary
layer are Kknown

The examples discussed by Liepmann suggest that there are likely to be other cases
where his general viewpoint may be useful, and it is in this spirit that the present
chapter was written. We stress at the outset that, so long as the wave equation
(7-2) forms the basis for the model, the way in which the forcing term appears is
immaterial and the mathematical equivalence of the results with those derived from a
strict application of (7-1) is complete (cf. Section 7.5). However, the fact that we
now place the unknown in the boundary condition leads to estimates on the noise through
a different sequence of steps, and it is hoped that this alternative analysis will
aid in the understanding of the essential ideas, even in those cases where it
offers no intrinsic advantage over the quadrupole theory.

* Liepmann, H.W., On the Acoustic Radiation from Boundary Layers and Jets, 1954 (Unpublished).
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7.2 The Displacement Effect

‘The concept of displacement thickness is a useful concept in viscous flow theory,
not only because, as a parameter which can be measured directly, it is useful to the
experimentalist, but also because of its appearance in the fundamental theory of
laminar boundary layers. For the purposes of the present chapter, only the following
well known result from the steady two-dimensional theory need be mentioned. Consider
a boundary layer on a semi-infinite plane wall. In the region outside a boundary
layer, that is, in the potential flow, the effect of the boundary layer on the
uniform stream is the same as if the boundary layer were removed and the exterior flow
determined by the condition '

doé*
v = U (7-3)
v @ dx

at the wall. In Equation (7-3), U, and v, - are, respectively, the free-stream
speed and the normal component of the potential flow due to the displacement effect,
the latter evaluated at the wall; &% is the boundary layer displacement thickness,
and x is the distance along the wall. It is assumed in (7-3) that separation of
the boundary layer does not occur. In physical terms it may be said that the curve
defined by y — &*(x) = 0, y being the distance normal to the wall, defines the
position as viewed from the external flow of an effective wall which accounts for the
existence of a boundary layer of varying thickness.

We may extend this concept to turbulent, compressible flow by defining &* in a
similar way, now with 08%*/9t added to the right-hand side of (7-3). If the
uniform stream is removed by Galilean transformation in x,t , then the linearized
boundary condition on the acoustic field follows from Equation (2-11) and is

i - (7-4)
v = Ta=s = -
W ‘ay L at

where ¢ is the velocity potential of the sound field. The right-hand side of (7-4)
is now to be interpreted as the equivalent “piston velocity” at the wall.

To find &* from the boundary layer equations is the second part of the problem,
and we shall limit our remarks here to the application of integral methods to the
continuity equation, i.e., the integration of

) dou dov  dow
%, Bpu v Bpow
ot ox dy oz

with respect to y across the boundary layer. If this step is carried out, and the
result separated into mean (barred) and fluctuating (primed) parts, and if turbulent
fluctuations are of order € , then
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In the last equation & denotes the boundary layer thickness and is taken to be
independent of t . It is seen from (7-5), viewed as a first-order partial
differential equation for &*' , that displacement thickness fluctuations relative
to the laboratory frame can be found, in principle, from measurements of the
fluctuating velocity and pressure, and their correlation through the boundary layer.
One can, of course, seek to further simplify (7-5) on the basis of the numerical
magnitude of the various terms. However, we shall not pursue this any further, and
point out only that the measurement of the various terms on the right of (7-5) would
provide the input for the “displacement-thickness” acoustical model proposed by
Liepmann, that is, the right-hand side of (7-4)*.

In addition to the use of an equivalent displacement thickness, there are of course
other possibilities. An attractive one in the case of boundary layer noise can be
called the “wall-pressure” model. Here we seek to relate the boundary values of the
sound pressure to the measured wall pressure. The chief difficulty with the wall-
pressure model is that a rational theory that would give such a relationship seems to
be lacking. However, a simple example, based upon an assumption of a linear relation,
is discussed in Section T.4.

7.3 Radiation from a Line

Simple examples which may be used to illustrate in more detail the preceding ideas
are not difficult to find. We have (in Section 2.5) studied the noise produced by a
sphere which expands and contracts radially, as a way of representing an isolated
source. When one allows convection, however, the simplest element is not a source
but rather a line distribution of sources, and we shall begin by first considering the
noise produced by an infinite circular cylinder having random corrugations (Fig.3).

We might conceive of such a representation for the fluctuations induced by a fully
developed turbulent jet, and the solution has been discussed from this point of view,
in the case of low Mach number convection by Liepmann. We seek to solve

by ~ Vi = 0 i (7-6)
s == : p = = — i

v 3t

* Although to the knowledge of the authors the necessary experiments have not as yet been
performed, it should be noted that only integrals through the boundary layer are involved,
and this might allow a direct measurement. For a theoretical example illustrating the
generation of a pressure wave by changes in shear at the boundary, the reader is referred to
van Dyke, M., Impulsive Motion of an Infinite Plate in a Viscous Compressible Fluid,
Zeitschrift fiir angewandte Mathematik und Physik, Vol.3, p.343, 1952.
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with the boundary condition analogous to®(7-4). Using y to denote the cylindrical
radius, this condition is

27 &* 2778 e Gl A 7-1
TT —_— = — 27M0% —— = o — = — =
dy =5+ at 9t L=

where A is the cross-sectional area of the jet. For convenience we have chosen
units so that the wave speed and density are unity, and for a reference length we
take a characteristic wavelength of the fluctuations A . We will in fact take the
mean value of &* to be small in these units, but still large compared to the
fluctuations themselves*. Then (7-7) becomes, approximately

Vel
where y, is the mean value of &% .

If the function A defined in (7-8) is a random function of x and t , we may

interpret the solution as noise radiated from a column of turbulence, the characteristic

“eddy size” in the direction of the column (in accordance with the restriction on
wave numbers) being large compared to the diameter of the column. It will he assumed
that the statistical properties of A (and therefore of the radiated noise) are
independent of the values assigned to x,t , that is, are stationary in both
arguments. With this assumption, we may define the normalized correlation functions,
corresponding to A and ¢, by

RRrEn = Akt A +EE+T) 5 R0,0) = 1 (7-82)

) RgETY) = Bty P +EL +TY) . Rg0,0y) = 1 (7-8D)

Note that y ocecurs in (7-8b) as a parameter, The energy spectrum functions are
next defined by

RyEn = [ [l wow) dkde (7-9a)

Ry(£,Tiy) = ffe“fk”“” y(k, w;y) dkdo (7-9b)

where, unless the contrary is stated, integration is always over the entire two-
dimensional space.

* We might state this differently by saying that the cylinder is acoustically thin,
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By standard procedures in the spectral analysis of solutions of linear equations
with constant coefficients it may be shown that LA and ¥; are related by*

P Yy = A [stoin |2 %o (7-10)
where s satisfies
Sgp — Vs =0 (7-11a)
Js 1
meig) ::—;e”“W“ (7-11b)
y=0 Yy=y, "

The solution of (7-11) involves also a radiation condition of a familiar kind. As is
evident from (7-11b), the solution for each (w,k) will be a Bessel function of order
Zero, so that without going further into the analysis, it can be seen that

i
saan|? = — |55 — k% + Y] Vet - k%:l o el > k| (7-120)
1 —
= KAt el < k] (7-12b)
m

The phase speed, with reference to the speed of sound, of the Fourier component s
is defined by

Yy = - aw/k (7-13)
According to (7-12), the contribution to the mean square fluctuation in ¢ , coming
from those components of Eﬁ whose phase velocity is equal to ' is augmented
by the factor |s(k,- vpk;y)|2 . This factor is a function of ky/1 — v2 alone if
v. €1 (“subsonic’” phase speed) and of kvas -1 if v_> 1 (“supersonic” phase
speed)., Moreover, it follows from the behavior of K, and J, for large values of
the argument (exponential decay for the former and slowly decaying oscillations for
the latter) that the attentuation of the radiation is far greater where v <1
The relation connecting the two energy spectra depends crucially upon this variation
with phase speed, particularly at the higher wave numbers.

The relative weighting of subsonic and supersonic components depends also on the
distance from the line, as is to be expected from the conventional division of the
noise into its near and far fields. We can define the far field in the present
problem by the condition

[v2 - 1][2y > 1 (7-14)

where we form v. as given by (7-13) from a wavelength and frequency which characterize

Tﬁ . We shall at this point make the assumption (7-14) and pass to the mathematically

* See, e.g., Batchelor, G.K., Homogeneous Turbulence, Cambridge, 1959, Chapter 1V,
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much simpler representation of qg in the far field. There is no real loss of
generality in doing so, since it is in the far field that the model is sufficiently
independent of the choice of @% to be useful anyway. In the following v_ need not
(and will not) enter as a parameter, the far-field representation being obtained by
expansion with respect to y . We may expect, in view of the asymptotic behavior

of the Bessel functions noted earlier, that the principle contribution to the Fourier
integral for Ry(¢,7;y) are likely to come only from the region lw| > |k| of the
phase space (that is, the (e k) plane). There is, however, a certain freedom in how
we may pick the decay of (e, k) for large ok , which conceivably can give cases of
relatively large contribution near |e| = |k| (where Ko(yvk2 — w?) behaves like

log yl/k2 - w® approximately).

It turns out that if the decay of | Wh(k.— v_ k) with increasing k 1is fast enough,
the asymptotic behavior of R¢ is what would be expected purely from the decay of the
Bessel functions (i.e., from a discrete spectrum), and the error can be estimated to
be close to the order of the neglected terms in the expansions of these functions.

Our main result may then be expressed as follows: Suppose that k® qa(k,an is
bounded uniformly over the phase plane, where ¢ may be any number satisfying
0 <ec¢ <1, and suppose further that the function

i ]I!'(klw) .
RL(E,T) = ff pl(CktTe) _A ' grdw 7-15
#7 A— {118
lw|> |k |
exists for all &,7 . Then, as y — @,
RL(E,T)
R (E,T3y) = =22 + &(y) (7-16a)
® R}(0,0)
— F e(y)
#* = — R(0,0) + — (7-16b)
87y N
where y7e(y) — 0 as y @ for any ¥y <1 . It does not seem necessary to derive

the estimates here, since (7-16) essentially bears out the observations made above.
The main point is that contributions from the “transonic” phase speed regions near
lw| = |k| do not contribute a significant fraction of sound, provided that the
decay of WA(k,— vpk) as k —® is faster than k! .

Since we can now exclude the subsonic phase velocities, it is convenient, for the
purpose of discussing the integral (7-15), to introduce a phase angle £ defined by

1
v ——
p cos O

This definition is illustrated in Figure 4, where it is seen that the discrete
sources having a particular phase velocity are identified physically with sources
moving with speed ¥ relative to the medium. With the substitution (7-16),
Equation (7-15) becomes
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R$(§.T) = 2 I jnTQE(—a)cos 8,w) cos (T — & cos 6) dBdw (7-17)
0vo0

Let us return now to the idea that the noise of a jet can be represented by a line
distribution of sources. For the intensity of the noise there is obtained

= =l AE @
¢z = p® = — ?¥, (< cos 6,) dOdaw (7-18)
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Since
ae dx
x2 + y2
the distribution function
w
D) = 11 ¥ (~w cos 0,w) do (7-19)
(4]

is equal to the intensity of the noise originating in a segment dx at the origin,
as measured by an observer positioned on the line & = tan~! (-y/x)

To take a specific example, let

Tl . g 72 )
4ﬁ(k,a» = — P |k +—5 (@ + M k)
M, M2

where F is an arbitrary function. Then, if
w
c = 'rlf P (o?) dw
0

is finite,
2

C T
D) = — 1% cos®d +—; (1 - M, cos 6)° -3/2 (7-20)
M, M2

Drawing upon the terminology of turbulence theory, the constants [ and 7T can be
interpreted as the “eddy length” and “eddy lifetime”, respectively. The constant
M. is seen to represent the Mach number of convection of the eddy pattern, relative
to the free stream.
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The two limiting forms of (7-20) which are of interest are (i) the case of low
convection Mach number, M, << 1 , and (ii) the case of sharply directional (fully
eddy Mach wave) radiation. The condition that the radiation be sharply directional is
T(Mﬁ _1)Y/2 5> | . This will be the case at high Mach number, in which case the
sharp directionality occurs by virtue of the shallow angle of nearly all the eddy
Mach waves, or at any Mr > 1 provided nearly all the eddies move with the same
convective speed. For the example (7-19) the two limiting forms of the distribution
of intensity with phase angle are

cm? 1
D -~ _r
7% (1 - M, cos 63

omZ (sharply directional
2 = cos™?
12 + Tz(Mr _ 1o - gr)2 about 6. = cos 1M

Do -~

It is further seen that p® is proportional to A2 M2 in the first case, and goes
. 5 > 5 . T
like A® M /M; -1 1in the second.

We may define an apparent convection speed for the noise in the far field by

g~k

ML

_— where [/, ¢ = 0
cos QE —

This definition of M! 1is motivated by the fact that the maximum at Of should be
observable in the laboratory, at least for the case of sharply directional noise.
For our example, it is seen that

ML = ——— M. > M (7-21)

According to (7-21) then, the sources will appear to be convected more rapidly in the
far field. Relative to a frame moving to the right with speed M, My . therefore,
the opposite is true and the eddies appear to move at a slower speed. The reason

for this lies in the nature of eddy wave emission, which in the far field results in
a shift of M, in the direction of increased emission, that is, toward more rapid
convection relative to the free stream*.

*+ This result would seem to explain the values of convection speed measured by Laufer (see
Chapter 8) above a turbulent boundary layer. However, in that experiment there is no
question that, at least for M, > g, the noise was sharply directional, in which case the
difficulty with (7-21) is that it will not account under these conditions for the substantial
measured difference between Mf and M (taking here for the latter the value measuredat the
the wall), and certainly not for the observed variation of MS/Mr with M, . It has been
suggested by Laufer that in order to fully account for these results (as well as any equally
precise statistical property of the noise) it is necessary to allow for the variation of
Mr with k (or «), i.e., to allow for a dispersion of phase velocity among the eddies of
different lengths. We shall return to this point in Section 7.6.
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7.4 Radiation from a Plane

If one attempts to represent a boundary layer over an infinite plane in terms of
its displacement thickness and proceeds as before, there unfortunately occurs a
divergent integral when integration is performed in the phase plane. The reason for
this infinite result may be seen quite simply from the fact that the amplitude of the
sound decreases as the inverse of the distance from the source and, when the sources
are distributed over a large circle of radius L , the total intensity goes like
log I, as L — ., However, we can deal with a large plate, and allow for convection
in one direction (the direction of the x-axis, say) simply by integrating the line
distribution of Section 7.2 along the plate; that is, by using the line sources as the
fundamental solution in the construction of more complicated fields.

We seek to solve (7-6) with the condition

R
— = o = . §¥ (7-22)
t=0+

ot ot

on the strip - ®<x <+®, -L<y € +L. The correlation functions are defined
as before, but with the addition of a separation 7 in the z-coordinates and with
28* replacing A . The Fourier transforms are then defined by

Rjs (6,1, 7) = fff el (K& + Kpn + 0m) g (k |, k,,0) dk,dk,dw

etec. Also s(k,wy,z) is defined in a way analogous to s(k,w;¥y) 1in one dimension.
Then the theorem used earlier which states how Y(k,e) can be chosen in the far field
has a simple corollary in the planar case. The derivation of Ré for the planar

case is correspondingly quite similar to that for the full three-dimensional case,

which we discuss in more detail in Section 7.5, and so we give now only the result

for intensity. Suppose that =z 1is very large compared to the statistical (correlation)

lengths lx,ly for the distribution in the plane. Then for the intensity there
results
+[, [l s
g z @’ Wiy (- cos 0,0 sin B cos A, )
pi(y,z) = 26* dEﬁwdyl , (7-23)
VF = 3y)% + 22
—L> 0 Jo
7> lx'ly

where A is defined in Figure 5. The last equation may be compared to the result
(7-17) for the line distribution.

1t is seen from (7-23) that the growth of the integral for large L depends upon
how the angle A occurs in the integrand. For a source distribution over a plane
(or for that matter for any distribution which can be obtained by differentiation of
the source distribution with respect to time or in the plane) the dependence of the
integrand upon A is of no consequence near A= 0,7, so the integral will diverge
like log L. as L — o . On the other hand if we replace ?s* by wzsin2851nzhu%,
which vanishes at the critical points, convergence is obtained. This disappearance
of the divergent part clearly occurs because of cancellation, that is, becauseno noise
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is produced by a fluctuating dipole in the plane normal to its axis. On the basis of
this result, we can assert that in the far field the mean square of the velocity
perturbation normal to the plane, arising from a source distribution having spectrum
Y5+ . as well as the mean square pressure in the case of a distribution of dipoles with

axis normal to the plane, having spectrum Yi, , both of these quantities will be finite

for an infinite plane. This is because in both of these cases the factor sin?\ is
introduced into the integrand by a differentiation with respect to =z .

We remark that the dipole distribution may be of interest as an alternative to the
displacement thickness model, in cases where the wall pressure is assumed to be given.
It can be shown from (7-23), or directly by Fourier analysis in two-dimensional
(k k ) space, that the intensity of the radiated pressure is obtained by
1ntegrat1ng the normalized spectrum function over the region k2 + k2 <’ and
multiplying by the intensity of the wall pressure; in partlculal the intensity is
independent of distance from the plane. Such a model will then predict that at high
convection speeds and Mach numbers the sound level in the free stream approaches that
of the wall. Since ohservations in boundary layers show a drop in intensity of an
order of magnitude between the wall and the free stream, the “wall pressure” in the
model is not the actual wall pressure. However, it may be possible to separate the
calculation of an effective wall value from the determination of the sound that is
radiated, particularly if (as is usually the case) the dominant wavelengths are of
the order of the boundary-layer thickness or longer. Then a simple connection, e.g.,
that the effective value is a certain function of the actual value, may be useful for
the purpose of investigating the dependence of the radiated noise and its variation
with convection Mach number upon the choice of spectrum function. To illustrate this
possibility, take for the spectrum of the effective wall pressure

2 2
L. LT 1 T
Dylytsy 2. B 2, 2 2
W exp _Z [llk1 + Lk +F (Mrkl + w)}
T T
where -EE is the mean sguare wall pressure, and x is now chosen to be a constant.
To get the radiated intensity we integrate the last quantity over the region

kf + k: < @? of the phase space, with the result

p? =

szélllzfr sin 8d6

M, 2 2 T 2 ‘V/z 2 2 2 7 2
! 17 cos 9+F (1 + M_.cos6) ljcos® 6 + 17sin" 6 +— (1 -M, cos )
M
0

r r

If the radiated noise is sharply directional, so that the main contribution to the
integral occurs near & = Qr , then the approximate form

dt

a1 MZ - 1) 12
L (1+t)1/+t +( 1)
1

(7-24)
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may be used, This similitude is of course an obvious consequence of the previous
assumption, but it is interesting to recall that it will be valid not only in the
case of rigid convection, but also when Mr is sufficiently large.

Certain consequences of (7-24) may be compared with the variation of the ratio of
root mean square pressure with free stream Mach number given by the measurements of
Laufer, and of Kistler and Chen (References 40 and 32; see Chapter 8). 1In these
measurements the ratio Mr/Mm of the turbulent source field varied with M, from a
value of 0.2 in the subsonic range to about 0.4 at M, =5 . If « is taken to be
independent of Mr , then one result of the model, that pz/pé should tend to an
upper limit when Mr is large, Mr > 3 , for example, seems to be indicated by the
data. It should be noted that, since a fairly sharp directional peak was ohserved
for My, > 2.5 , even though Mr never exceeded about 2, the use of (7-24) must
assume almost rigid convection of the dipole field; In the limited Mach number range
of the data, (7-24) can be further simplified by assuming [, << ll , i.e., that
contours of constant correlation in the plane of the boundary layer are elongated in
the streamwise direction. With this assumption (7-24) gives

2
= = constant , 2 <M, <5 (7-25)
prr

If the values of M. as a function of M, given by Kistler and Chen are used,
there is obtained the following table:

L B R S I L0
2 0.64 0.32 4.6 0. 087
3 1.14 0.44 4.8 0.086
4 1.56 0.54 5.0 0. 086
5 1.95 0.92 5.2 0.085

The fact that (7-25) seems to hold here is interesting because it shows that, for the
assumed spectrum function, the Mach number variation which occurs solely because more
sources are involved in the radiation of eddy Mach waves as M, increases (the Mach
number independence of the sources themselves corresponding to the assumed Mach
numher independence of x) approximates very closely that of the far field wall
pressure ratio, at least when TIMs - I|1/2 >> 1, and IM? - 1[1/2 by oy
Therefore the largely arbitrary assumptions of this model are in some way cancelling
in their errors, as far as the Mach number variation is concerned. In interpreting
this it should be remembered that, for the same reason as the displacement thickness
model, the wall pressure model will fail to predict the observed far-field convection
Mach number, and so cannot provide a very accurate form of the far-field spectrum.
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7.5 The Radiation from an Elementary Eddy Volume

We pass now to the three-dimensional problem of determining the radiation from
volume distribution of sources. Our reason for extending the results in this way are
twofold. 1In the first place, the preceding cases, which reduce essentially to solving
for a concentrated source distribution, can be obtained as limiting forms of a con-
tinuous distribution. In the second place, from the three-dimensional results we can
most easily demonstrate the mathematical equivalence of the present analysis with that
of Lighthill and Ffowcs Williams (Chapter 6).

We shall take the source distribution to be non-zero in an infinite region V given

by —-o<x <+, y,Z2 in A, where A 1is a bounded region in the y,z plane.
The equation to be solved is

f(x,y,2,t) in V
¢tt = vqu =
0 outside V

We shall assume that f(x,y,7,t) is a stationary random function of all arguments.
In order to connect our results to the case in which the same property holds over the
entire space, we shall again require that V be large when measured in units equal
to the various correlation lengths. In order to justify the far-field approximation
used in Section 7.3, we must assume also that

v2 - 1l@? +2% > ¢

where we stipulate that C is much larger than the smallest circle containing A .
If the ¢ corresponding to the cylinder bounded by A is normalized by division
by the area a(y of A, we shall refer to the result as the radiation from an
elementary eddy volume. We define in the usual way

PryEnlmy,m = ¢ [[e1 R yoen Gy, a) dide

Here we adopt the convention, e.g., that 7 in the place of Kk, indicates that
¥, is a partial Fourier transform not involving 7 . A similar convention will
apply to wf(kl,kz,ks,aﬁ (the Fourier transform of the correlation function for the
sources). We shall use k in place of kl when there is only one wave number
involved. The expression for q& in terms of Wf is then found to be

Yk, oMLy, 2) =

f2

fs*(k'w’nl’él;yl'zl) S(klwl’nzléz;yzizz) wf(kvwr‘n’lglj dnldcldnzdgg

a(h) 2

The functions s(k,aani,éi;yi,zi) , i=1,2, solve

Sgp - Vg = S(yi _ ﬂi) S(Zi _ El) e:i.(k:\( + wt)
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with a condition that waves be outgoing. We have also defined 7 = ¥y =¥ »
{=2z,-2,, 0 =m,-m, L =, -, . In the far field we make use of the
results of Section 7.3 (which apply here uniformly over the region by virtue of our
definition of the far field in the present problem). In particular, (7-16) is again
valid with f replacing A and

' 1 . ST T
Ré(f,ﬂ.é,T:y.Z) — m ff el(fkww) feusgn wive?-k2 J(yi'zi'ﬂi'ci) y
lwl> x| A

1
X T Yk’ ) dndg,dn,dE, | dkde  (7-26)

The function J appearing in the exponential factor is given hy

J(yi'zi"ni’ Ei) & ./(71 + TJ] - 7]2)2 + (Zl + g - Cz)z - '/>(y1 - 771)2 + (Zl - él)z

Vy2 + 22)

y 23
;§g=i=;§ (n-n" +‘;§§=i=;g (L -0 +o0(1/

We can use this expansion in (7-24) without changing the error estimate. The integral
may be partially evaluated as follows. We first introduce oblique coordinates

n', ! n1,§1 . The part of the integrand in (7-24) between the brackets can then be
evaluated in terms of the full spectrum function #mkl,kz,ka,aﬁ (it is assumed that
the latter exists) provided that A is sufficiently large. Introducing the angles
A6 , there results

’ +® a7
Ré(ﬁ,'q, LN = 4772f f exp i{-€cos @ - nsinfcos A — {sinBOsin\ + 7w x
-0 0

x Yp(-wcos 8, wsinBcos A, wsinfsin A, w) dbdw

In particular

— v w
2
2 _ 2 , . )
p° = 7 w® W, (-wcos 0, wsinfcos A, wsinBsinA, @) dedb (7-27)
. zsz f
. ouo

In (7-27) we have obtained the intensity in terms of averages in Fourier space over
spheres of radius « . The meaning of (7-27) is that only those components of the
spectrum associated with phase speed in the direction of the observer (as fixed by

6 and A) contribute to the far-field noise level. That is, only those disturbances
which approach an observer with sonic phase speed are contributing. The equivalent
statement in terms of the correlation function appeared in Chapter 6, in Equation
(6-18). That the approach we have taken here leads to the Lighthill result
illustrates the ultimate mathematical equivalence of the two points of view. On the
other hand, our starting with the spectrum function of a line distribution of sources
has led to this result through a quite different sequence of steps.
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7.6 Further Extensions

The particular examples given are of the very simplest kind, and in order to
complete our discussion of acoustical models, we shall list briefly three extensions
of the theory which appear to be needed on the basis of our intuitive knowledge of
the problem, and which offer some hope of useful analytic results.

We first point out that the effect of dispersion in the sources, which has not
appeared in the examples, is generally present and will affect any detailed study of
the radiated spectrum. In this the medium remains non-dispersive, and only the form
of the source spectrum function is changed. We may say that the sources are
dispersive if the maximum of the distribution of intensity among wave angles e
occurs at a point t9r which is not constant, but depends upon the frequency « , or,
what is essentially the same, on the wave number. For example, in the line-source
model the general definition of €r

1
o

d
2.y
Tl w’¥,; (wcos 8, w) dw

0 5=6r }
can not, in the dispersive case, be reduced to a computation at one frequency. A
qualitative discussion of the effect of dispersion upon the ohserved convection Mach
number was given by Laufer*®, and similar conclusions obviously apply to the present
models if the source spectrum behaves in the required way. Although a detailed
analysis of a dispersive radiated spectrum is complicated by the integrals which must
be performed, such a computation would be of great interest in cases where the wave ‘
number-frequency form of the source spectrum could be established with sufficient
accuracy.

The next obvious generalization of the acoustical model would be to investigate,
through a modification of the differential equation, the effects of mean and possibly
also randomly distributed inhomogeneities in the gas. A first step in the direction
has been taken, with only partial success, by Phillips (Chapter 5). A re-examination
of the problem posed by Phillips is clearly needed, and it is certainly possible that
limited information may bhe obtained without restricting the analytical problem to the |
asymptotic behavior of Fourier components well within the critical lines |
k2 + k2 = w? , even though the Mach number is retained as the expansion parameter. '
A thlrd limitation in the preceding examples is the assumption that the linear wave |
equation is relevant. It is evident that the generation of Mach waves by turbulence |
may be compared with the random flights of small projectiles about some mean speed.
Although it may seem likely that in a turbulent field only “waves” and never ‘‘shocks”
are so generated, such a conclusion cannot be valid for arbitrarily large Mach
numbers unless the turbulence is damped to smaller fluctuations as the mean Mach
number increases. We can therefore envisage a situation in which linear acoustic
theory is insufficient to determine the structure of the “eddy shock” and so also a
random distribution of such shocks. Although an entirely consistent non-linear
statistical theory would be far too difficult to consider seriously, there is some
hope of improving the linear theory by exploiting the projectile analogy directly,
i.e.. to make use of existing first-order wave theories from supersonic flow theory.
Such an analysis might have an interesting application to the formation of shocks in
stars, or in regions of the interstellar gas where turbulent fluctuations with large {

- Mach numbers are found. ‘
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CHAPTER 8

THE EXPERIMENTAL APPROACH

8.1 Introduction

In the previous chapter some analytical methods applied to the boundary layer
radiation problem have been described. The general conclusion one can make from these
studies may be stated as follows: Using the Lighthill analogy, the radiation problem
can be successfully formulated in a formal manner; at low speeds the intensity variation
with Mach number can be predicted for the limiting cases of a large or small surface
dimension compared to some typical wavelength; the abhsolute value of the intensity,
however, cannot be evaluated because of its complicated integral form (Equation
(5-10)); at high speeds the analogy is helpful to predict the changing character of
the radiation (“eddy Mach waves’) but gives only very limited information about its
intensity. The “simplified model approach” of Chapter 7, on the other hand, is not
far enough developed to provide more information than the acoustic analogy.

It is quite clear than an experimental approach is essential in order to further
clarify the problem. Unfortunately, here too, one encounters some difficulties. The
most obvious one is the setting up of an appropriate environment for the measurements.
This in a sense is more difficult to do than in a jet noise experiment where a free
field can be more easily approximated. In a wind tunnel the presence of the tunnel
walls produces reflections that must be properly accounted for. In a ballistic
range, on the other hand, the instrumentation problems related to the required small
size sensing devices and to the time averaging method of the measurements cause
complications. Finally, full scale tests involving planes or submarines are
accompanied by the usual difficulties with extraneous noise producing effects. In
addition to the environmental question, one has to provide for very high sensitivity
transducers in order to be able to detect the relatively small sound intensities
expected in the far field.

To the knowledge of the authors, no subsonic experiments have been performed on
boundary layer noise. Perhaps the only relevent work is that of Wilson®® who
concerned himself with the noise generated from a turbulent region around a rotating
cylinder, strictly speaking not a boundary layer problem. He found the radiation
intensity to be very small indeed: near the noise level of the environment. A clear
cut determination of the intensity variation with Mach number was, therefore, not
possible, although the measurements tended to confirm a dipole rather than a
quadrupole type of radiation, as expected from the discussion given in Chapter 5.

At supersonic speeds, the measurements of one of the authors (J.L.) gave more
specific results concerning the intensity and nature of the radiation"?®, However,
these experiments too, suffer from the fact that they were not made in a free field
but rather in a wind tunnel, and therefore the absence of reflection effects has to
be ascertained. This chapter will concern itself mainly with the description of these

experiments.
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8.2 Experimental Set-Up

The experiments were carried out in a supersonic wind tunnel having a cross
section of 18 inches x 20 inches. The turbulence boundary layers on the four tunnel
walls had thicknesses of one to approximately two inches in the test section,
depending on the Mach number. The radiation from all four of these boundary layers
was then measured. An arrangement of this type is far from being a “clean” set-up.
The presence of the opposite walls might cause reflections that would result in
erroneous conclusions from the intensity measurements. A short discussion on this
point is therefore in order.

The reflections from the opposite walls, giving a larger intensity of radiation
than one would detect in a free field, is, in general, difficult to isolate.
Reference 40 describes a special experiment to investigate this point. The configura-
tion of this test was such that, at the point of measurements, no reflection could
have occurred. The intensity and spectrum measured this way were consistent with the
rest of the results, as will be shown subsequently.

8.3 Method of Measurement

The pressures of the fluctuations were deduced with the application of the hot-wire
technique. As is well known, the hot-wire responds to mass flow, m' , and total
temperature, Té , fluctuation. However, in a sound field where the isentropic
relations hold between pressure, temperature and density, both m’ and Té may be
expressed in terms of pressure and velocity fluctuations only. This is a fortunate
circumstance, since a hot-wire having a very small size (0.0005 inch diameter and
0.012 inch length) is an ideal pressure pick-up with excellent ‘“wave number response”.
In addition to the pressure intensity, the technique gives one additional information:
Provided most of the sound energy is carried by plane waves moving approximately in
the same direction, the direction can be calculated. This is so because, for a plane
wave, the relation between the perturbations in velocity normal to the wave front
and pressure is known, uﬁ = (1/M) (p'/¥D) , and hecause a hot-wire responds to
velocity perturbations in the direction of the flow, u’ , and not in the direction
pverpendicular to the wave front. Thus

! cos @

u p’
YD My

]

since uécos@ = qu' (8-1)

where €& is the angle between the flow direction and the normal to the wave front.
However, if the sound intensity is distributed over waves having a broad angular
distribution, the information available is insufficient to obtain the directional
distribution.

8.4 The Intensity of Radiation

The hot-wire senses the pressure fluctuations emanating from all four bhoundary
layers. 1In order to obtain the intensity due to one layer only, the measured mean
square values of the fluctuations were divided by four under the assumption that the
four boundary layers are identical and the sound fluctuations produced by them are
independent. Figure 6 shows the root mean square pressure fluctuations calculated
this way; they were normalized by the free-stream dynamic pressure. The effect of
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the Reynolds number is quite apparent in the figure, This suggests that the sound
sources (T;, in the Lighthill formulation) scale with T the wall shearing stress,
as indeed the wall pressure fluctuations do. Figure 7 shows the wall and radiated
pressure fluctuations normalized by the wall shear. It is seen that, within the
experimental scatter, the Reynolds number effect disappears. The figure also
indicates that the radiation intensity is at least two orders of magnitude smaller
than the intensity measured on the wall®?, Finally, the experimental point
designated by a square was obtained with a configuration in which only one wall
boundary layer was turbulent and no reflected waves could reach the point of
measurements. It is seen that, within the expected accuracy, the result is consistent
with the other measurements. (The accuracy at small Reynolds numbers is lower
bhecause the hot-wire calibration constants are not as well established under these
conditions).

The interesting point to note is the rapid reduction in intensity as the supersonic
free-stream Mach number approaches one. If the radiation is an “eddy Mach wave” (see
Section 8.5) then this is understandable since no such radiation can take place at
subsonic speeds.

8.5 The Directional Character of the Radiation

As mentioned already in Section 8.3 it is possible to obtain the direction of
radiation from a single hot-wire sensor provided two conditions are satisfied:
(1) the measurement is made in the far field of the source so that the assumption of
plane waves is fulfilled; (2) the radiation is unidirectional. As will be shown
from the spectrum measurements (Section 8.6), condition (1) is satisfied for the
largest portion of the energy spectrum. With reference to the second condition, the
measurements show®® that the velocity and pressure fluctuations are perfectly
anticorrelated. This is consistent with the conjecture that the field consists of
backward facing waves with a directional preference. The angle of directionality is
then given by Equation (8-1)

u'/u
cos 6 = yM,—
p'/p
Once & is known, the velocity of the “sources”, US , producing the waves may be |
calculated, since
1 U, -0
= = @ S = M, . -
cos & g U,
and therefore
U 1
ey B O ey
U Mcos &

8.6 The Statistical Nature of the Radiation

In the previous argument the source velocity was obtained in a rather indirect
method. In order to investigate the streamwise component of the propagation velocities
of the sound, a space-time correlation measurement was performed using two hot-wires
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displaced in the flow direction by an amount Ax . (A slight displacement in the
perpendicular direction, Ay , was also necessary in order to avoid interference). -
Figure 8 shows a few typical correlation curves. It is seen that there exists a
certain time delay A7 for which the correlation between the pressure fluctuations
at the two test stations is a maximum. This implies a propagation velocity, the
x-component of which is Ax/Ar = U, . It is quite apparent, however, that, at the
lower Mach numbers, the definition of a propagation velocity becomes rather ohscure.
The weak maximum of the correlation curve suggests that the convection occurs over a
rather wide range of velocities. The implication of this result will be discussed

subsequently.

Figure 9 shows the velocities US in the far field obtained from the space-time
correlation measurements, together with the convection velocities, UC , of the wall
pressure fluctuation as measured by Kistler and Chen®2., The interesting point to
note is the large difference in these two quantities in the low Mach number range.

If one would take the simple-minded point of view that the “eddy Mach wave"” radiation
is produced by a supersonically moving wavy wall (that carries a pressure field on its
surface identical to that measured under a turbulent layer), the speed of the wall
and the x-component of the propagation velocity in the far field would be equal.
Obviously, this is not the case. As a matter of fact, at, say, M, =2 the wall
pressure is convected subsonically with respect to the free stream [Mw(l - Uc/Um) =
2(1 - 0.68) = 0.64] and therefore Mach wave radiation could not take place according
to the wavy wall model. Nevertheless, the hot-wire measurements (and schlieren
pictures taken in ballistic ranges) do indicate that some Mach wave radiation is
taking place. At present the explanation may be conjectured only, because not enough
information is known about certain statistical properties of the turbulent sources,
specifically, about the wave number-frequency spectrum of the wall pressure
fluctuations. However, it is well documented by now®! that in a subsonic boundary
layer (and there should be little doubt that in a supersonic layer also) the phase
velocities of the pressure disturbances are frequency-dependent; they are dispersive.
More specifically, pressure disturbances of large wave numbers have higher phase
velocities relative to the free stream. Keeping this in mind, it is quite feasible
that, although at Mach number 2 the energy containing perturbations move subsonically,
the high wave number components have supersonic phase velocities with respect to the
free stream and can produce Mach wavelets.

There are several important consequences of this conjecture which can be verified
experimentally. First of all, at high enough Mach number where the phase velocities
of most of the energy containing disturbances are supersonic, Mach wave radiation
could take place throughout the wave number spectrum; therefore, the average phase
velocities measured on the near and far fields could be expected to be the same.
Indeed, at M, =5 one finds that U, ~U, . Secondly, at low Mach numbers the
large wave number disturbances that radiate Mach waves contain a small amount of
energy relative to the total disturbance energy; therefore, the intensity of
radiation is expected to be small compared to that at high Mach numbers where
presumably almost all of the disturbances take part in the radiation process. This
is believed to be the main reason that at M, = 2 the radiation intensity is found
to be almost an order of magnitude smaller than at M, = 5 , even though the
intensities of the wall pressure fluctuations and their spectrum distributions are
about the same. (See Figures 7 and 10). Finally at the lower Mach numbers, one
expects the normalized energy spectrum to contain relatively more energy in the large
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wave number region, compared to the low wave number regime (since presumably
radiation takes place only here) than does the spectrum at the higher Mach number
flows. Indeed, measurements made in the far field at M, = 4.5 and M, = 2.0 are
consistent with this conclusion (Fig.11). The normalizing factor Lx was obtained
from the wall spectrum measurements of Kistler and Chen shown in Figure 11. It is

the integral scale defined by

27E(0)
x T 4

where E(0) is the normalized wall pressure spectrum at zero wave number.

1t should be emphasized that the foregoing arguments were made having had in mind
the moving wavy wall or surface dipole model discussed in Section 7.4. The main
justification for this is the fact that the model is simple and does contain the
“eddy Mach wave” nature of this radiation. It is inadequate for predicting the
intensity and energy spectrum of the radiation. One should mention at this point
that in comparingithe energy spectrum distributions measured at the wall and in the
far field (Fig.12), it is quite apparent that the radiation field contains much less
energy in the high wave number region, suggesting a strong filtering action within
the boundary layer. Whether the filtering is due to some cancellation, scattering or
reflection process is one of the important open questions of the problem.

8.7 The Question of Turbulence Damping

It has been pointed out in Chapter 1 that one of the most interesting new features
of a compressible, turbulent boundary layer is the fact that it loses turbulent
energy, not only by dissipative processes, but also by radiation. The question of
whether under certain circumstances these losses could be strong enough to damp out
turbulence, or at least seriously affect it, is an intriguing one and also from
practical considerations a very important one,

The measurements described in this chapter give sufficient information to allow us
to compare the rate of energy loss due to radiation, to the work done by the turbulent
shearing stresses. To calculate the former, we shall assume that the boundary layer
occupies the x,z plane (or at least a strip of this plane parallel to the free
stream). Consider then the acoustic field, filling a region V bounded by the wall,
a parallel plane above the boundary layer, and a cylinder normal to the planes whose
cross-section S has a very large area. For sufficiently large area, the acoustic
equations may be integrated to give the following expression for the energy radiated
away through the upper plane, per unit time and unit area:

1
N = -——— er’v’ dxdz (8-2)

area of S

In order to compute N , we immediately consider a sharply directional sound field,
so that we may substitute
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v/ - sin@r, where 6‘1, = cos™! —
T Peb M,
in (8-2). This gives
N p'?
s - —ssing
Poofles P

The rate at which energy is extracted from the mean flow (per unit area) is given
simply by the product of the shearing stress and the wall speed relative to the medium

W Tls _ Ce o
I 7 - oMy
The ratio of N to W is then given by
N p'? _
- = — CeMg sin 6, (8-3)

W

Since sin 671, -1 as M, —»®, the ultimate Mach number variation of N/W depends
on the behavior of the quantities p’/Tw and C/My, . For the particular case
M =5, the experimental results give

!

'

= 0.6, C; = 6.6 x 107", M, ~ 2

3

w

so that N/W is of the order of 5 x 10™% . Therefore, even if we allow for the
fact that not all of the energy extracted from the mean flow actually goes into the
kinetic energy of the turbulent fluctuations, the turbulence damping remains extremely
weak, certainly less than one percent of the energy in the turbulence.
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CHAPTETR 9

CONCLUDING REMARKS

While a complete understanding of the sound producing mechanism due to a turbulent
boundary layer is still lacking, important advances have been made in the last decade.
In particular, three general approaches have been proposed that have either contributed
substantially to our present knowledge or have the potentiality of furthering the
present state of the art.

(i) The acoustic analogy formulates the problem in terms of a classical wave
equation with a random forcing term; the forcing term is assumed to
incorporate independently known incompressible flow behavior. The analogy
predicts the inefficient nature of the generation mechanism, the directional
behavior, and the strong dependence of the intensity on frequency and
velocity. Unfortunately, in the formulation, a forcing term emerges which is
difficult to obtain in detail, either by experimental or analytical means.
The predictions of the theory are therefore limited in practice to informa-
tion which is insensitive to the detailed structure of the forcing term or
its spectrum.

(ii) This latter circumstance motivated the second line of inquiry: the acoustic
model approach. Here the forcing function of the inhomogeneous wave
equation is obtained, not in the formal manner of the analogy,; rather an
“equivalent forcing function” is sought that would fulfill the requirement
of being directly measureable and of containing hopefully the main features
of the “real” noise generating mechanism. An approach of this type cannot,
of course, replace a formal solution but, as was shown in Chapter 7, it can
bring out some of the important points of the problem with relatively
simple examples. From this point of view, it is therefore a helpful
undertaking.

(iii) The third approach seeks a solution of the generalized wave equation derived
in Chapter 3. Recognizing that a general solution is not in sight, it
searches for a valid expansion procedure by which the problem could be
simplified. That Phillips has not succeeded in doing this does not detract
from the promise of his method. It could turn out, of course, that a much
better understanding of the general compressible turbulence problem will be
necessary before this approach can be successful.

As far as the experimental line of inquiry is concerned, comparatively speaking,
inadequate efforts have been made so far. It is true that the existing measurements
described in Chapter 3 generated some valuable information, but much more could be done
with well-conceived experimentation. One of the most interesting questions, however,
concerning turbulence damping due to radiation losses has been answered: in supersonic
flows apparently such damping is very weak indeed, and it is doubtful that even at
hypersonic Mach numbers it can completely eliminate the turbulent fluctuations. The
measurements do indicate that the radiation is more efficient in supersonic flows and
that the notion of “‘eddy Mach wave” radiation is a correct one, but they are incomplete
as yet as far as suggesting a generation mechanism. It seems, for instance, that the
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knowledge of the pressure field on the solid surface is inadequate for estimating

the radiated field. The measurement of a more pertinent quantity, perhaps of the
displacement thickness fluctuation - as suggested by Liepmann - might be a worthwhile
undertaking to this effect. .

Finally, it should be mentioned that the strongly nonlinear case, in which the
generated sound field interacts with the turbulence itself, has not been touched upon
at all. This is an area that might have some important applications in some
astrophysical problem and therefore deserves serious experimental consideration.

REFERENCES

1. Batchelor, G.K. Pressure Fluctuations in Isotropic Turbulence.
Proceedings of the Cambridge Philosophical Society,
Vol.47, Part 2, 1950.

2. Blokhintsev, D.I. Acoustics of a Nonhomogeneous Moving Medium. NACA
T™ 1399, February 1956.

3. Bull, M.K., Some Results of Experimental Investigations of the
Willis, J.L. Surface Pressure Field due to a Turbulent Boundary Layer.
University of Southampton, AASU Report 199, November
1961.
4, Bull, M.K. Properties of the Fluctuating Wall-Pressure Field of a

Turbulent Boundary Layer. University of Southampton,
AASU Report 234, March 1963.

5. Bull, M.K., Wall Pressure Fluctuations in Boundary Layer Flow and
et alii Response of Simple Structures to Random Pressure Fields.
University of Southampton, AASU Report 243, July 1963.

6. Chu, Boa-Teh, Non-Linear Interactions in a Viscous Heat-Conducting
Kovasznay, S.G. Compressible Gas. Journal of Fluid Mechanics, Vol.3,
Part 5, February 1958.
7. Corcos, G.M. Resolution of Pressure in Turbulence, Journal of
the Acoustical Society of America, Vol.35, No. 2,
February 1963.

. 8. Corcos, G.M. Pressure Fluctuations in Shear Flows., University of
California, Berkeley, No. 183, July 1962.

9, Corcos, G.M. The Structure of the Turbulent Pressure Field in
Boundary Layer Flows., Journal of Fluid Mechanics,
Vol.18, Part 3, 1964.



62

10.

a5 I

12.

13.

14.

15.

16.

17.

18.

19.
20.

21,

22,

23.

Curle, N.

Curle, N.

Curle, N.

Doak, P.E.

Dyer, Ira.

Dyer, Ira.

Eckhaus, Wiktor,

Etkin, B.
et alii

Favre, A.J.
et alii

FPfowes Williams,

Ffowes Williams,

Ffowes Williams,
ILyon, R.H.

Ffowes Williams,

Ffowes Williams,

J.E.

The Mechanism of Edge Tones. Proceedings of the Royal
Society A, Vol.216, 1955.

The Influence of Solid Boundaries Upon Aerodynamic
Sound. Proceedings of the Royal Society A, Vol.231,
1955.

The Generation of Sound by Aerodynamics Means. ARC
22,114, August 1960,

Acoustic Radiation from a Turbulent Fluid Containing
Foreign Bodies. Proceedings of the Royal Society A,
Vol. 2564, 1959.

Sound Radiation Into a Closed Space from Boundary Layer
Turbulence. Second Symposium on Naval Hydrodynamics,
Washington, D.C. August 25-29, 1958.

Response of Plates to a Decaying and Convecting Random
Pressure Field. Journal of the Acoustical Society of
America, Vol.31, No.7, July 1959,

Some Remarks on the Theory of Noise Generation by
Turbulence Shear-Flows. Massachusetts Institute of
Technology, ASRL Tech. Report 92-2, December 1960,

Acoustic Radiation from a Stationary Cylinder in a Fluid
Stream (Aeolian Tones). Journal of the Acoustical
Society of America, Vol.29, No. 1, January 1957.

Further Space-Time Correlations of Velocity in a
Turbulent Boundary Layer. Journal of Fluid Mechanics,
Vol.3, Part 4, January 1958.

The Noise from Turbulence Convected at High Speed.
ARC 23,323, November 1961.

The Importance of High Order Multipoles in Aerodynamic
Noise Theory. ARC 24,017, September 1962.

The Sound Radiated from Turbulent Flows Near Flextble
Boundaries. Bolt Beranek and Newman Report No. 1054,
1963.

Thoughts on the Problem of Aerodynamic Noise Sources
Near Solid Boundaries. AGARD Specialist Meeting,
Brussels, April 1-4, 1963, AGARD Report 459.

On the Noise Produced by Boundary-Layer Turbulence.
Journal of the Acoustical Society of America, Vol. 35,
No. 6, pp.930-931, June 1963.



24.

25.

26.

27,

28.

29,

30.

31.

32.

33.

34,

35.

36.

31.

Ffowes Williams, J.E.

Fitzpatrick, H.M.
Strasberg, M.

Gerrard, J.H.

Gerrard, J.H.

Harrison, Mark.

Hodgson, T.H.

Kistler, Alan L.

Kistler, Alan L.

Kistler, A.L.

Chen, W.S.

Kraichnan, Robert, H.

Kraichnan, Robert H.

Kraichnan, Robert, H.

Kovasznay, Leslie, S.G.

Landau, L.D.
Lifschitz, E.M.

63

The Noise from Turbulence Convected at High Speed.
Philosophical Transactions of the Royal Society, A,
No.1061, Vol.255, 1963.

Hydrodynamic Sources of Sound. David Taylor Model
Basin Report 1269, 1956,

Measurements of the Sound from Gircular Cylinders in an
Air Stream. Proceedings of the Physical Society, B,
Vol.68, 1955.

An Experimental Investigation of the Oscillating Lift
and Drag of a Circular Cylinder Shedding Turbulent
Vortices., Journal of Fluid Mechaniecs, Vol.11, 1961.

Pressure Fluctuations on the Wall Adjacent to a
Turbulent Boundary Layer.. David Taylor Model Basin
Report 1260, December 1958.

Pressure Fluctuations in Shear Flow Turbulence. The
College of Aeronautics, CoA., Note 129, May 1962.

Fluctuation Measurements in a Supersonic Turbulent
Boundary Layer. The Physics of Fluids, Vol.2, No. 3,
May-June 1959.

Surface Pressure Fluctuations Produced by Attached and
Separated Supersonic Boundary Layers. Yale University.
1964.

A Fluctuating Pressure Field in a Supersonic Turbulent
Boundary Layer. Journal of Fluid Mechanics, Vol. 186,
Part 1, May 1963.

Pressure Field Within Homogeneous Anisotropic
Turbulence. Journal of the Acoustical Society of
America, Vol.28, No. 1, January 1956.

Pressure Fluctuations in Turbulent Flow Over a Flat
Plate, Journal of the Acoustical Society of America,
Vol. 28, No. 3, May 1956.

Noise Transmission from DBoundary Layer Pressure
Fluctuations. Journal of the Acoustical Society of

America, Vol.29, No. 1, January 1957.

Turbulence in Supersonic Flow. Journal of the
Aeronautical Sciences, Vol.20, October 1953.

Fluid Mechanics. Pergamon Press, 1959.



64

38.

39.

40.

41.

42,

43.

44,

45.

46.

417,

48.

49,

50.

51.

Laufer,

Laufer,

Laufer,

Lighthill, M.J.

Lighthill, M.J.

Lighthill, M.J.

Lighthill, M.J.

Lighthill, M.J.

Lilley,

John,

John,

John,

G.M.,

Hodgson, T.H.

Lilley,

G.M.,

Hodgson, T.H.

Lilley,

Lilley,

Lilley,

Ludwig,

G. M.

G. M.

G. M.

G.R.

Aerodynanic Noise in Supersonic Wind Tunnels. Journal
of the Aerospace Sciences, Vol.28, September 1961.

Sound Radiation from a Turbulent Boundary Layer.

Proceedings of

the Marseille Conference on Turbulence,

August 1961, Published as CNRS Report 108, Editions de
Centre National de la Recherche Scientifique, 15, Quai

.Anatole-France,

Paris (VII), 1962,

Some Statistical Properties of the Pressure Field
Radiated by a Turbulent Boundary Layer. Physics of

Fluids, Vol.T,

No. 8, August 1964.

On Sound Generated Aerodynanically: I, General Theory.

Proc. Roy. Soc.

. A, Vol.221, p.564, 1952,

On the Energy Scattered from the Interaction of
Turbulence with Sound or Shock Waves. Proceedings of
the Cambridge Philosophical Society, Vol.49, 1953,

On Sound Generated Aerodynamically: II, Turbulence as a
Source of Sound, Proc. Roy. Soc., A, Vol.222, 1954.

Sound Generated Aerodynamically. Proc. Roy. Soc. A,
Vol. 267, No. 1329, May 8, 1962.

Jet Noise. AIAA Journal, Vol.1, No. 7, 1963.

On Surface Pressure Fluctuations in Turbulent Boundary

Layers. AGARD

Report 276, April 1960.

On Surface Pressure Fluctuations in Turbulent Boundary
Layers. The College of Aeronautics, CoA Note 1,

April 1960.

Pressurée Fluctuations in an Incompressible Turbulent

Boundary Layer.
133, June 1960.

The College of Aeronautics, CoA Report

On The Noise from Air Jets. ARC 20,376, Sept. 1958.

Wall Pressure Fluctuations Under Turbulent Boundary
Layers at Subsonic and Supersonic Speeds. The College

of Aeronautics,

CoA Note 140, March 1963.

An Experimental Investigation of the Sound Generated
by Thin Steel Panels Excited by Turbulent Flow (Boundary

Layer Noise).
November 1962.

University of Toronto, UTIA Report 87,



52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Lyamshev, L.M.

Lyamshev, L.M.

Mawardi, O.K.

Meecham, W.C.
Ford, G.W.

Meecham, W.C.

Phillips, O.M.

Phillips, O.M.

Phillips, O.M.

Phillips, O.M.

Phillips, O.M.

Powell, Alan,

Powell, Alan,

Powell, Alan,

Powell, Alan,

Powell, Alan,

65

Analysis of Acoustic Radiation from a Turbulent Aero-
dynamic Flow. Soviet Physics-Acoustics, Vol.6, No. 4,
April-June 1961.

Sound Radiation from Elastic Shells Excited by Turbulent
Aerodynamnic Flow, Soviet Physics-Acoustics, Vol.T,
No. 1, July-September 1961.

On the Spectrum of Noise from Turbulence. Journal of
the Acoustical Society of America, Vol.27, 1955.

Acoustic Radiation from Isotropic Turbulence. Journal
of the Acoustical Society of America, Vol.30, No. 4,
April 1958.

Surface and Volume Sound from Boundary Layers.
University of Minnesota, Department of Aeronautics and
Engineering Mechanics Report, 1964.

On Aerodynamic Surface Sound. ARC 16,963, 1955.

The Irrotational Motion Outside a Free Turbulent
Boundary. Proceedings of the Cambridge Philosophical
Society, Vol.51, Part 1, 1955.

The Intensity of Aeolion Tones. Journal of Fluid
Mechanies, Vol.1l, 1956.

On the Aerodynamic Surface Sound from a Plane Turbulent
Boundary Layer. Proc. Roy. Soc. A, Vol. 234, 1956.

On the Generation of Sound by Supersonic Turbulent
Shear Layers. Journal of Fluid Mechaniecs, Vol.9,
Part 1, 1960.

On Edge Tones and Associated Phenomena., University of
Southampton, F.M. 1809, October T, 1952.

Thoughts on Boundary Layer Notise. University of
Southampton, F.M. 2061, April 15, 1954,

On the Aerodynamic Noise of a Rigid Flat Plate Moving
at Zero Incidence. Journal of the Acoustical Society of
America, Vol. 31, December 1959.

Aerodynanic Noise and the Plane Boundary. Journal of
the Acoustical Society of America, Vol.32, August 1960.

On the Aerodynamic Sound from Dilation and Momentum
Fluctuations. Journal of the Acoustical Society of
America, Vol 33, December 1961.



66

67.

68.

69.

0.

L

72.

3.

T4,

75.

6.

1.

8.

79

80.

Powell, Alan,

Powell, Alan,

Proudman, I.

Remenyik, C.J.

Kovasznay, L.S.G.

Ribner, H.S.
Ribner, H.S.
Ribner, H.S.
Ribner, H.S.

Richards, E.d.
Doak, P.E.

Serafini, John S.

Stokes, G.G.

Stratton, J.A.

Willmarth, W.W.

More on Noise Produced by Boundary-Layer Turbulence.
Journal of the Acoustical Society of America, Vol.35,
May 1963.

Theory of Vortex Sound, Journal of the Acoustical
Society of America, Vol.36, p.177, January 1964.

The Generation of Noise by Isotropic Turbulence.
Trinity College, Cambridge, 1952.

The “Orifice-Hot-Wire” Probe and Measurements of Wall
Pressure Fluctuations. Proceedings of the 1962 Heat
Transfer and Fluid Mechanics Institute, 1962.

Boundary-Layer-Induced Noise in the Interior of
Aireraft. University of Toronto, UTIA Report 37, April
1956.

Note on Acoustic Energy Flow in a Moving Medium.
University of Toronto, UTIA Tech. Note 21, April 1958.

New Theory of Jet Noise Generation; Directionality and
Spectra. Journal of the Acoustical Society of America,

- Vol.31, 1959.

A Theory of the Sound from Jets and Other Flows in
Terms of Simple Sources. University of Toronto, UTIA
Report 67, July 1960.

Some Practical Appligations of Boundary Layer Pressure
Fluctuation Work. University of Southampton, AASU
Report 235, March 1963.

Wall-Pressure Fluctuations and Pressure-Velocity
Correlations in a Turbulent Boundary Layer. NASA Tech.
Report 165, 1963.

Noise and Acoustic Fatigue in Aeronautics. University
of Southampton, Vol.l, April 1961,

On the Communication of Vibrations from a Vibrating
Body to a Surrounding Gas. Philosophical Transactions
of the Royal Society, Vol.158, 1868.

Electromagnetic Theory. McGraw-Hill, New York, 1941.
Space-Time Correlations and Spectra in a Turbulent

Boundary Layer. Journal of the Aeronautical Sciences,
Vol.25, May 1958.



81.

82,

83.

84.

Willmarth, W.W,

Wooldridge, C.E.

Wills, J.A.B.

Wilson, L.N.

Wooldridge, C.E.

Willmarth, W.W.

67

Measurements of the Fluctuating Pressure at the Wall
Beneath a Thick Turbulent Boundary Layer. The University
of Michigan, 02920-1-T, April 1962.

On Convection Velocities in Thrbulent Shear Flows.
National Physical Laboratory Aerodynamics Division,
NPL Aero Report 1050, January 1963.

An Experimental Investigation of the Noise Generated by
the Turbulent Flow Around a Rotating Cylinder.
University of Toronto, UTIA Report 57, April 1959.

Measurements of the Correlation Between the

Fluctuating Velocities and the Fluctuating Wall Pressure
in a Thick Turbulent Boundary Layer. The University of
Michigan, 02920-2-T, April 1962.



68

SIMPLE POLE

DIPOLE

LOG P* ARBITRARY SCALE

| 10 102 103
LOG r¥/a¥

Fig.1 The Stokes effect



Fig.2

VOLUME V¥ ENCLOSED BY SURFACE X

OBSERVATION POINT, (x,7) i
LIES WITHIN £ BUT OUTSIDE 2

TURBULENT BOUNDARY LAYER

69

IMAGE TURBULENT BOUNDARY LAYER

PLANE BOUNDARY FORMS PART OF
BOTH SURFACES Z AND 2

IMAGE VOLUME V'ENCLOSED BY SURFACE 2’

Diagram illustration of the proof of acoustic reflection by a rigi
supporting a boundary layer

d boundary




70

X =

g oTSue oseyd 9U3 JO UOTITUIFRA ¥4

JopUITLD IeINOITO PIJe3NIIOD ATwopueI & I2A0 MOTH

g 9td

xS

S,



71

Paye

(£z-1) UoTgenbd UT Pasn WajsAs 21BUTPIOOD BYL

xp

G 314

Z Ut



T2

Iaqumu UYoBW UFTM UOTIBTIBA armssald pejeIpel 9JBNDS-UBSW-300X YL g-3td
D
74 ¢ 2 |

4
L Jo
<

0o

000'06 = ul/?y o
000'0bS = ul/3y e




suorqengonyy einssord pajerpel pue TTEs 243 JO uosTIedwo)

L3814

|
S 14 Z I 0
. 0]
¥0 \ﬂ\ 2
O
H1 o M3
Y, 80 1% \_“Q
o) © O Jw ©
@)
21 YNOLLYHNOI4NOD TTvM TTONIS) FUNSSIYd QaLviavy B |°
(NOILYNNOI14ANOD TT¥YM ¥NO4) IUNSSIYd G31VIAvY mw ©
(431LS 1Y) 3UNSSI™d TIVM .\nwl
ol | ~ 8



4

UOTQBT9I100 SWIJ-20edS

RQ\mDp

|

|

el 1% ¢ (0]

@ O
- m/

/// -

¢0

X..u..o

+'0

8I'0 ,82°0 99s/H06S 07T V G0

91'0 ,L2°0 29s/130801 G'€ O /...T.\

21’0 20 99/1402El SV e 90

Ay XV SN O

80




75

LTeaT300dsax
‘pIeTJ JIBI 9} UL pUB TTEM a2yl 9e spaads uorgededord osTMmEaI]S PUE UOT]09AUCY  6°3Td

<
o

©
o

%/ /%

| |
woustn %/ n—/
| _ o1




8

10.00 | .
‘{ 1.00
<
e
=
o
0.10 k
— Ry = 30,000
M Lin /Uy Ugfl/sec
" o 45 0l2 053 2400
— A 2.0 O0I0 034 1760
o I AT A
0.0l

0.l 1.0
kLy/ 21

Fig.10 Pressure gpectrum in the far field at M =4.5 and M = 2.0



77

(zg 39y ‘uey) pue ILT3STH) [Tem U3 UO uniyoads ainssaig TI1°8Td

/%74
80 20 S0 c¢'o 0 €0 20 'O 0
_ 0
¥ 7| €|y
7 _
|
oa.
ve
%
) o :
e
K
-y ¢
O
0021 190 110 oz ¥
061 190 1’0o 9z + m
oSz €90 210 ge o b
olsz 890  €I0 cv e
038/ @n/n w7 W
000's1=%




8

10.00 —
N
— T
% 1.00
Q{ \\ Q\ _ ]
< \
;g \
o \J R
b
- Ry =15,000
M= 4.5
o WALL PRESSURE
o FAR FIELD
- 0.0l
0 0.0l 0.10 1.00
kiLy/2 1

Fig.12 Far and near field pressure spectra



DISTRIBUTION

Copies of AGARD publications may be obtained in the
various countries at the addresses given below.

On peut se procurer des exemplaires des publications
de 1’ AGARD aux adresses suivantes.

BELGIUM
BELGIQUE

CANADA

DENMARK
DANEMARK

FRANCE

GERMANY
ALLEMAGNE

GREECE
GRECE

ICELAND
ISLANDE

ITALY
ITALIE

LUXEMBURG
LUXEMBOURG

NETHERLANDS
PAYS BAS

Centre National d’Etudes et de Recherches
Aéronautiques
11, rue d’Egmont, Bruxelles

Director of Scientific Information Service
Defence Research Board

Department of National Defence

‘A’ Building, Ottawa, Ontario

Danish Defence Research Board
@sterbrogades Kaserne,
Copenhagen, @

O0.N.E.R.A. (Direction)
25, Av. de la Division Leclerc
ChAtillon-sous-Bagneux (Seine)

Zentralistelle fdr Luftfahrtdokumentation
und Information

8 Munchen 27 Maria-Theresia-Str. 21

Attn: Dr. H.J. Rautenberg

Greek National Defence General Staff
B.JSG, Athens

Director of Aviation
¢/o Flugrad,
Reykjavik

Ufficio del Delegato Nazionale
all’ AGARD

Ministero Difesa — Aeronautica
Roma,

Obtainable through Belgium

Netherlands Delegation to AGARD
Michiel de Ruyterweg 10, Delft



NORWAY
NORVEGE

PORTUGAL

TURKEY
TURQUIE

UNITED KINGDOM
ROYAUME UNI

UNITED STATES
ETATS UNIS

Norwegian Defence

Research Establishment
Kjeller per Lillestrém
Attn: Mr. 0. Blichner

Delegado Nacional do ‘AGARD'
Direcgao do Servigo de Material
da Forca Aerea

Rua da Escola Politecnica, 42
Lishoa

Ministry of National Defence
Ankara :
Attn: AGARD National Delegate

Ministry of Aviation
T.I.L., Room 135
Leysdown Road,
Mottingham, London S.E.9.

National Aeronautics and Space Administration

(NASA)
Washington, D.C. 20546

&

e e o, o

Printed by Technical Editing and Reproduction Ltd
Harford House, %-g Charlotte St. London. W. 1.




