
High-resolution, real-time three-
dimensional shape measurement on
graphics processing unit

Nikolaus Karpinsky
Morgan Hoke
Vincent Chen
Song Zhang

High-resolution, real-time three-
dimensional shape measurement on
graphics processing unit

Nikolaus Karpinsky
Morgan Hoke
Vincent Chen
Song Zhang

High-resolution, real-time three-dimensional shape
measurement on graphics processing unit

Nikolaus Karpinsky, Morgan Hoke, Vincent Chen, and Song Zhang*
Iowa State University, Department of Mechanical Engineering, Ames, Iowa 50011

Abstract. A three-dimensional (3-D) shape measurement system that can simultaneously achieve 3-D shape
acquisition, reconstruction, and display at 30 frames per second (fps) with 480,000 measurement points per
frame is presented. The entire processing pipeline was realized on a graphics processing unit (GPU) without
the need of substantial central processing unit (CPU) power, making it achievable on a portable device, namely a
laptop computer. Furthermore, the system is extremely inexpensive compared with similar state-of-art systems,
making it possible to be accessed by the general public. Specifically, advanced GPU techniques such as
multipass rendering and offscreen rendering were used in conjunction with direct memory access to achieve
the aforementioned performance. The developed system, implementation details, and experimental results to
verify the performance of the proposed technique are presented. © 2014 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.OE.53.2.024105]

Keywords: structured light; fringe projection; multifrequency phase unwrapping; real-time; portable device.

Paper 131615P received Oct. 22, 2013; revised manuscript received Jan. 7, 2014; accepted for publication Jan. 15, 2014; published
online Feb. 18, 2014.

1 Introduction
Recent advances in technology have enabled high-resolu-
tion, real-time three-dimensional (3-D) shape measurement
through the use of structured light techniques.1,2 (Note
that real-time 3-D shape measurement includes 3-D shape
acquisition, reconstruction, and display, all in real time.)
Although these advances are impressive, they require
large amounts of computing power, thus being limited to
using large desktop workstations with high-end central
processing units (CPUs) and sometimes graphics processing
units (GPUs). This is undesirable in making high-resolution,
real-time 3-D scanners ubiquitous in our mobile lives due to
cost and portability issues. Recently, advancements in the
speed of structured light-based techniques have pushed
them into real-time without being computationally intensive
and are more portable; this growth into real-time has given
structured light scanners broad exposure, as can be seen with
the introduction of the Microsoft Kinect. Though successful,
the Kinect only provides sparse data points with low accu-
racy. Achieving high-resolution, real-time 3-D shape meas-
urement on a low-end computer, such as a portable laptop,
still remains challenging.

Similar to a stereo vision technique, structured light scan-
ning works off of the principle of triangulation. Instead of
using two cameras, such as the case of stereo vision, struc-
tured light scanning replaces a camera with a projector.3 The
projector projects a set of encoded patterns, which are used to
establish a correlation between the projector and camera
images, thus circumventing the correlation problem in stereo
imaging. Assuming the system is calibrated, 3-D information
can be triangulated using the established correspondence.4

Decoding patterns and performing triangulation is a
computationally intensive task, making it difficult to reach
real-time speeds using serial processing methods, as is
seen with traditional CPUs. If the processes can be realized

using parallel algorithms, parallel compute devices such as a
GPU can be used to offload the computationally intensive
problem.5–9 Although the clock speed on a GPU is not as
fast as a CPU, anywhere from 1 to 8 times slower, it can
process hundreds of threads simultaneously, assuming
there is no branching.10 Gao and Kemao11 provide a good
review on parallel computing devices and their application
in optical measurement. If the GPU can be leveraged on a
portable device, then it has the potential to reach real-time
3-D shape measurement speeds even with the devices’ lim-
ited computational power.

To establish the correlation between projector and camera
pixels, the encoded patterns must be properly chosen to
allow for parallel computation and maximum speed, yet
be resilient to noise from things such as ambient light, sur-
face reflections, etc. Many different techniques such as stripe
boundary code,12 binary coded patterns,13 and phase shifting
methods14 exist. Although codification strategies such as
binary coded patterns are parallel in nature, thus being
well suited for GPU implementation, they typically require
many patterns and are limited to the number of projector pix-
els. Fringe projection, on the other hand, uses sinusoidally
varying fringe images, which no longer limits the measure-
ment to the number of projector pixels, but requires spatial
phase unwrapping.15 Since phase unwrapping is typically a
serial operation, it is not well suited to parallel implementa-
tion and difficult to achieve on a GPU.7

To address this issue, this work describes and demon-
strates a real-time 3-D shape measurement system that is
realized on a portable device, namely a laptop computer,
which achieves a speed of 30 frames per second (fps) at
an image resolution of 800 × 600. This technique is based
on a modified two-frequency phase-shifting technique
with binary defocusing.16,17 The two-frequency phase-
shifting algorithm enables pixel-by-pixel phase computation

*Address all correspondence to: Song Zhang, E-mail: song@iastate.edu 0091-3286/2014/$25.00 © 2014 SPIE

Optical Engineering 024105-1 February 2014 • Vol. 53(2)

Optical Engineering 53(2), 024105 (February 2014)

http://dx.doi.org/10.1117/1.OE.53.2.024105
http://dx.doi.org/10.1117/1.OE.53.2.024105
http://dx.doi.org/10.1117/1.OE.53.2.024105
http://dx.doi.org/10.1117/1.OE.53.2.024105
http://dx.doi.org/10.1117/1.OE.53.2.024105
http://dx.doi.org/10.1117/1.OE.53.2.024105

yet only requires a small number of fringe patterns (only 6);
the proposed, modified two-frequency phase-shifting algo-
rithm is also less sensitive to the noise caused by the
two-frequency phase-shifting algorithm. To achieve high-
resolution, real-time 3-D shape measurement on a portable
device, our approach utilizes a GPU as a multipurpose par-
allel coprocessor. Through the use of the OpenGL Shading
Language (GLSL) we have created a structured light
processing pipeline that is implemented solely in parallel
on the GPU. This reduces the processing power requirements
of the device performing 3-D reconstruction, allowing us to
realize the system with a portable device, namely a laptop
computer. To mitigate high-speed camera transfer problems,
which typically require a dedicated frame grabber, we make
use of USB 3.0 along with direct memory access (DMA) to
transfer camera images to the GPU without the need of syn-
chronization between the CPU and GPU. In addition to low
processing power requirements, since the entire system is
realized on the GPU, the CPU is nearly ideal, thus freeing
it perform other operations in parallel to the 3-D
reconstruction, such as 3-D registration or feature extraction.
We developed a low-cost system (less than $3,000 including
the laptop computer) that can achieve 30-fps measurement
speed with 480,000 points per frame.

Section 2 of this article explains the principles of the tech-
niques employed by the system. Section 3 breaks the imple-
mentation of the system down into stages and discusses how
each stage is achieved on the GPU. Section 4 shows the
experimental results to demonstrate the success of the pro-
posed techniques. Finally, Sec. 5 summarizes the article.

2 Principle

2.1 Two-Frequency Phase-Shifting Algorithm

The structural patterns used by our system are a set of three-
step phase-shifted fringe patterns. A phase-shifting method
was chosen over other structured light coding techniques due
to it only requiring a few patterns for codification resulting in
high speed, it not being limited by projector resolution, and
its resilience to noise.15 Three-step phase-shifted patterns can
be described by

I1ðx; yÞ ¼ I 0ðx; yÞ þ I 0 0ðx; yÞ cos½ϕðx; yÞ − 2π∕3�; (1)

I2ðx; yÞ ¼ I 0ðx; yÞ þ I 0 0ðx; yÞ cos½ϕðx; yÞ�; (2)

I3ðx; yÞ ¼ I 0ðx; yÞ þ I 0 0ðx; yÞ cos½ϕðx; yÞ þ 2π∕3�: (3)

Here, I 0 is the average intensity, I 0 0 is the intensity modu-
lation, and ϕ is the encoded phase. Using these equations, the
phase ϕ can be solved by

ϕðx; yÞ ¼ tan−1
� ffiffiffi

3
p ðI1 − I3Þ
2I2 − I1 − I3

�
: (4)

This equation yields a phase value ϕ for every pixel, but
since the tan−1 only ranges from 0 to 2π, the phase value
provided will have 2π phase discontinuities; this phase
value is known as wrapped phase. Conventional approaches
employ a spatial phase unwrapping algorithm that traverses

along the phase map adding multiples of 2π,18 but this is a
serial operation that requires neighboring pixel information
thus being undesirable for GPU implementation.

Instead, we adopted a two-frequency phase-shifting algo-
rithm to temporally unwrap the phase pixel by pixel, which is
well suited for GPU implementation.19,20 For the temporal
phase unwrapping algorithm, two frequencies are the mini-
mum number needed to unwrap, although more21 can be uti-
lized for higher-quality phase; to achieve real-time speeds,
our implementation chose only two, thus requiring six fringe
images. Briefly, the two-frequency phase-shifting algorithm
works as follows: we obtain the phase map ϕ1 from one set
of phase-shifted fringe patterns with frequency of f1 (or
fringe period of T1), and phase map ϕ2 from the second
set of phase-shifted fringe patterns with a different frequency
of f2 (or fringe period of T2). Instead of using fringe
frequencies or fringe periods, conventionally, the “wave-
length” was used because such an algorithm was developed
for laser interferometers where the wavelength λ of the laser
light has a physical meaning, and can uniquely determine the
interfered fringe pattern. However, in a digital fringe projec-
tion (DFP) system, the fringe patterns are directly generated
by a computer, and the wavelength of light used does not
have any correlation with the fringe patterns generated.
Therefore, in this article, we use fringe period or fringe fre-
quency instead. The fringe period is defined as the number of
pixels per period of the fringe.

By utilizing the phase difference of the phases ϕ1 and ϕ2

with different fringe frequencies and the modus operation, an
equivalent phase map can be obtained

ϕeq ¼ ϕ1 − ϕ2 mod 2π: (5)

This resultant phase map has a different fringe period
from T1 and T2, which is usually called the equivalent fringe
period, Teq, that can be determined by

Teq ¼
T1T2

jT1 − T2j
: (6)

By properly selecting the spatial frequencies of the phases
ϕ1 and ϕ2, a continuous phase ϕeq, that spans the entire
phase map without 2π discontinuities can be achieved.
The equivalent phase map ϕeq can then be utilized to unwrap
the phase ϕ1 or ϕ2 point by point by

kðx; yÞ ¼ round

�
ϕeqðx; yÞ × Teq∕T1 − ϕ1ðx; yÞ

2π

�
; (7)

Φðx; yÞ ¼ ϕ1ðx; yÞ þ 2π × kðx; yÞ: (8)

This two-frequency phase-shifting approach can obtain an
unwrapped absolute phase mapΦ per pixel in parallel; thus it
is well suited for GPU implementation. Figure 1 shows a set
of captured fringe images with two fringe periods, T1 ¼ 60
and T2 ¼ 66 pixels. Their corresponding wrapped and
unwrapped phase maps are shown in Figs. 1(c)–1(f).

2.2 General Purpose GPU

Recently, in order to accelerate parallel tasks on a computer,
general purpose GPU (GPGPU) computation has been

Optical Engineering 024105-2 February 2014 • Vol. 53(2)

Karpinsky et al.: High-resolution, real-time three-dimensional shape measurement on graphics processing unit

leveraged. The main goal of GPGPU computation is to free
the CPU of a computer from parallel intensive tasks by lev-
eraging the GPU as a parallel coprocessor.7 Although not
having nearly as high a clock speed as modern CPUs,
GPUs have many more processing cores, typically on the
scale of hundreds to thousands. To leverage this technology
in applications such as 3-D reconstruction, different
programming interfaces can be used, such as NVIDIA
CUDA,22 OpenCL,23 or the GLSL.24

While GPGPU programming interfaces such as CUDA
and OpenCL offer lower level hardware access to features
such as shared memory, they are only beginning to be sup-
ported in portable and mobile devices with platforms such as
the NVIDIATegra. Conversely, GLSL is supported on nearly
all modern graphics devices, is part of the OpenGL ES speci-
fication,25 and is better for interoperability with a graphics
application programming interface.26 In terms of perfor-
mance, CUDA and OpenCL have been shown to be margin-
ally faster than GLSL assuming efficient memory access.27,28

Due to interoperability and only minimal performance loss,
GLSL was the chosen GPGPU programming interface for
our implementation.

In order to use GLSL for GPGPU computation versus
traditional computer graphics applications, certain tech-
niques need to be leveraged: offscreen rendering, DMA,
and multipass rendering. Offscreen rendering allows
OpenGL scenes to be rendered into buffers other than the
standard frame buffer or screen. This is done by creating
a frame buffer object (FBO) and binding its output to the
desired output buffer, such as an OpenGL texture. When
geometry is rendered through the pipeline, it will output
into the texture versus the screen. By rendering a screen
aligned quad with the FBO bound, a GLSL fragment pro-
gram can be run for every pixel in the output buffer, allowing
per-pixel computation.29

In order to get input into the GLSL program, buffers such
as textures are bound that the program can access. When

using GPUs, one of the major bottlenecks is transfer of
data to and from the GPU buffers. To alleviate this bottle-
neck, we use DMA, which allows specifically allocated
parts of memory to be used in transfers.30 Transfers through
DMA do not require the CPU and GPU to synchronize, and
the GPU can transfer data while simultaneously processing
its pipeline. Thus, utilizing a DMA approach mitigates the
bottleneck of transfers.

Lastly, multipass rendering is leveraged to run different
GLSL programs multiple times on different buffers, achiev-
ing synchronization of threads between multiple stages in a
pipeline. By clearing or not using depth buffering, the
OpenGL driver will not cull any geometry from the process-
ing pipeline. Transforms on the data can be utilized by bind-
ing different input and output buffers as well as different
GLSL programs in between rendering screen aligned
quads. This allows previously computed data to be utilized
in future stages as well as compounding effects and is known
as multipass rendering, since multiple rendering passes are
used to render a single scene.

3 Implementation
In the 3-D decoding pipeline for our system, there are seven
discrete stages: phase wrapping, phase filtering, phase
unwrapping, phase filtering, depth map calculation, normal
map calculation, and final rendering. Figure 2 illustrates the
decoding pipeline, showing the data at each step. This sec-
tion will look into the implementation of each step.

3.1 Step 1: Phase Wrapping

Phase wrapping is the first step in the overall pipeline that
takes incoming fringe data from the camera and wraps it
into wrapped phase maps. Each set of three step fringe
images are passed in as a texture, with the three images
in the red, green, and blue color channel. Next, Eq. (4) is
applied to each image resulting in two-wrapped phase

Fig. 1 Two-frequency phase unwrapping process. (a) Three fringe images of smaller phase; (b) three
fringe images of larger phase; (c) wrapped phase ϕ1; (d) wrapped phase ϕ2; (e) equivalent phase ϕeq;
(f) unwrapped phase Φ for ϕ1.

Optical Engineering 024105-3 February 2014 • Vol. 53(2)

Karpinsky et al.: High-resolution, real-time three-dimensional shape measurement on graphics processing unit

maps, ϕ1 and ϕ2, one for each frequency. At this point, the
sine and cosine components of the phases are taken out, and
each component is rendered out to the output texture color
channels ðr; g; b; aÞ as
r ¼ sinðϕ1Þ; (9)

g ¼ cosðϕ1Þ; (10)

b ¼ sinðϕ2Þ; (11)

a ¼ cosðϕ2Þ: (12)

The components are extracted so that during phase filter-
ing, errors are not introduced into the wrapped phase map.

3.2 Step 2: Gaussian Phase Filtering

Phase filtering is the only stage of the pipeline that can have a
variable number of steps, since it depends on how the
unwrapped phase should be filtered. In our experimental
pipeline, we performed one pass of a separable 11 × 11
Gaussian filter; this is done to smooth out high-frequency
phase noise. If larger kernels are needed, multiple passes
of a small kernel can be utilized, but in our analysis, it
was faster to perform just a single 11 × 11 kernel. The sepa-
rable Gaussian filter requires two rendering passes, one for
the vertical pass and one for the horizontal pass of the
Gaussian kernel. By using a separable Gaussian filter,
only 22 texture lookups are required, 11 for horizontal
and 11 for vertical. If a nonseparable kernel were used,
121 texture lookups would be required, substantially slowing
down filtering.

3.3 Step 3: Phase Unwrapping

The phase unwrapping stage involves taking the filtered
wrapped phase components and combining them into an
unwrapped phase map. To recover ϕ1 and ϕ2, the tan−1 is
applied to the filtered sine and cosine components.

ϕ ¼ tan−1
�
sin ϕ

cos ϕ

�
: (13)

At this point, the equivalent phase ϕeq can be calculated
using Eq. (5). If the fringe periods T1 and T2 are properly
chosen, such that the equivalent fringe period Teq is large
enough that the single fringe spans the entire image, ϕ1

can be unwrapped with Eq. (8). Choosing these optimal
fringe periods is typically not easy,31 since if these two fringe
periods are too close, the equivalent phase map will be very
noisy, making it difficult to resolve the phase steps.32

The two-frequency phase-shifting algorithm works well
for high-end systems, where the sensor noise is small. To
mitigate the noise-induced phase unwrapping problems for
our low-end system, we chose fringe periods that result in
the equivalent phase only spanning half the image (i.e., it
is ∼50% less sensitive to noise effects). This selection, of
course, will introduce a 2π phase jump. However, unlike
the convention phase map where there are many 2π jumps
per line perpendicular to the fringe direction, the proposed
method only has a single phase jump at its maximum.
Therefore, it is not necessary to adopt a complex spatial
phase unwrapping algorithm to unwrap the phase map.
Instead, to correct for the phase jump, we employ a parallel
phase unwrapping method that unwraps the phase based on a
phase value and its location. Specifically, we start with cap-
turing the phase maps of a flat plane at two extreme depth
locations, Zmin and Zmax, the minimum and maximum depth
values respectively, and then plotting a cross-section yielding
Fig. 3(a). As can be seen, there is a gap between the min and
max phase jump that can be best separated by a line. The
equation of this line is

y ¼ 2π

P
× xþ bϕ; (14)

where P is the number of camera pixels per period of the
fringe, and bϕ is the y intercept found though fitting the
line between the phase of Zmin and Zmax. Using this equation,
phase values below this line should have 2π added to them to
correct for the jump, and phase values above do not.
The resulting unwrapping is shown with Fig. 3(b). By
adopting this proposed phase unwrapping algorithm, fringe

Fig. 2 Real-time three-dimensional (3-D) scanning pipeline. The pipeline starts with the fringe images
(packed into the RGB color channels of the fringe images presented) and streams them to the GPU via
direct memory access transfers. Next, phase wrapping is performed, followed by Gaussian phase filter-
ing, phase unwrapping, median phase filtering, depth calculation, and normal calculation. Finally, final
rendering is performed using the depth map and normal map producing the 3-D scan.

Optical Engineering 024105-4 February 2014 • Vol. 53(2)

Karpinsky et al.: High-resolution, real-time three-dimensional shape measurement on graphics processing unit

periods with a larger difference can be selected, reducing the
overall noise.

3.4 Step 4: Median Phase Filtering

Again, similar to Step 2 (phase filtering), this stage can have
a variable number of steps since it depends on how many
passes of the filter are needed for the implementation. In
our implementation, we performed a single pass of a special-
ized median filter33 that removes one or two pixels spiking
noise due to incorrect phase unwrapping that could be caused
by motion or system noise. In this research, we adopted the
median filter with a size of 1 × 5 that operated in the direc-
tion of the phase gradient, reducing the number of compar-
isons and branches required. Once the median for a pixel is
calculated, the delta between the median phase ϕm and actual
phase ϕa is taken and rounded after dividing by 2π. This
results in an integer number k that can be determined by

k ¼ round

�
ϕa − ϕm

2π

�
: (15)

The nonzero k indicates a spiking point that can be cor-
rected by subtracting the k number of 2π. Our research found
that this filtering stage effectively removes spiking noise yet
will not introduce artifacts caused by standard median
filtering.

3.5 Step 5: Depth Calculation

Depth map calculation involves calculating depth values for
each unwrapped phase value. There are a number of
approaches4,34–43 to do this based on the chosen calibration,
and in our method, we chose to perform a very simple refer-
ence-plane-based approach detailed by Xu et al.44 By captur-
ing the phase of a reference plane ΦR where z ¼ 0, a phase
difference between the captured phase ΦC and ΦR can be
calculated. This phase difference will be proportional to
the depth z by a scaling value. To calculate this in the frag-
ment shader, a texture containing ΦR is read in along with a
texture containing the filtered phase ΦC. Subtracting the two
phases and scaling, based on a scaling factor c determined
through calibration, yields the depth value z; this depth value
is then rendered out, yielding the depth map.

3.6 Step 6: Normal Map Calculation

During the reconstruction, point normals for the geometry
are calculated so that Phong lighting may be applied. The
normal map is calculated by calculating all adjacent surface
normals and then averaging them together, resulting in a
point normal. Adjacent surface normals are calculated by
taking the vectors between the current coordinate and two
neighboring coordinates, moving sequentially counterclock-
wise in a 3 × 3 neighborhood and calculating the cross prod-
uct. This yields a surface normal for the polygon composed
of these three points. After normalizing and averaging all
these surface normals, the result is the point normal for
the coordinate. This is rendered out to the normal map
texture, yielding a normal map for the scanned data.

3.7 Step 7: Final Rendering

The last stage in the 3-D scanning pipeline is final rendering.
Before final rendering can take place, the frame buffer needs
to be switched back from the FBO to the screen so that the
result is rendered to the screen. After doing so, the depth map
and normal map are passed to the final render shader, and a
plane of points is rendered with uniformly varying texture
coordinates. At this point, the final geometry can be down-
sampled, if needed, by rendering a reduced number of points
in the plane of points. In the vertex shader, the depth for the
point is read from the depth map and the vertex z attribute is
modified accordingly. In the fragment shader, the point nor-
mal is read from the normal map, and then per-fragment
Phong shading is applied to each point. At this point, the
reconstructed geometry is rendered onto the screen.

4 Experimental Results and Discussion
To test the effectiveness of the system, we performed differ-
ent experiments including measuring a flat surface, measur-
ing static sculptures, and measuring dynamically moving
objects. In each of the experiments the hardware stayed con-
sistent, a Point Grey Research Flea3 camera with a Computar
12-mm lens, a Texas Instruments (Dallas, Texas) digital light
processing (DLP) LightCrafter projector, an Arduino Uno
for timing signal generation, and a IBM Lenovo laptop
with a Intel i5 3320M 2.6-GHz CPU and NVIDIA (Santa
Clara, California) Quadro NVS5400M GPU. The DLP
Lightcrafter can project and switch binary structured patterns

Fig. 3 Cross-section of captured phase before and after phase unwrapping. (a) Cross-section of
wrapped phase ϕeq; red denotes the phase at Zmin, blue the phase at Zmax, and the black line is
the phase unwrapping line; (b) cross-section of unwrapped phase after unwrapping ϕeq with the
phase unwrapping line, and using Φeq to unwrap ϕ1.

Optical Engineering 024105-5 February 2014 • Vol. 53(2)

Karpinsky et al.: High-resolution, real-time three-dimensional shape measurement on graphics processing unit

at 4 kHz with full resolution, and the Point Grey camera can
acquire images up to 180 Hz with an image resolution of
800 × 600 and exposure time of <2 ms operating under
the external triggering mode. Figure 4 shows an overview
of the system with labeled components as well as the system
scanning a sculpture.

Since under the external triggering mode, the maximum
exposure time of the camera can use is 2 ms at 180-Hz cap-
turing rate, the conventional sinusoidal fringe projection
technique does work due to the rigorous timing requirement
(i.e., the camera exposure time must be precisely
1000∕180 ms). Therefore, the binary defocusing technique16

was used to circumvent this problem. Using defocused
binary patterns, each pixel of the DMD is either on or off
and no time modulation is used; thus the camera only

needs to capture a specific slice of the projector exposure
reducing the rigid timing constraints. Furthermore, to allevi-
ate the short depth range problem caused by square binary
defocusing technique, we adopted the error-diffusion dither-
ing method to generate all six desired sinusoidal fringe
patterns17 and the modified two-frequency phase-shifting
algorithm to unwrap the phase pixel by pixel. For such a sys-
tem, since it requires six fringe images to recover one 3-D
shape, the 3-D shape measurement rate is 30 fps.

To test the system noise, we first captured a flat surface. In
an ideal system, the surface should be perfectly flat, but due
to sensor and environment noise there are small variations.
Figure 5(a) shows the results of the capture, and Fig. 5(b)
shows a horizontal cross-section at the 300th row. The var-
iations in the surface height results in a root-mean-square
error of 0.00081 mm, for a measurement area of
100 × 75 mm2 with a resolution of 800 × 600.

To test the system’s capabilities of measuring more com-
plex 3-D objects, we performed measurements on a static
sculpture. Figure 6(a) shows the statue we captured, and
the surface geometry is pretty complex. The live recon-
structed 3-D results on the computer screen are shown in
Figs. 6(b) and 6(c). These results clearly show there are
no phase jumps, verifying that the proposed phase unwrap-
ping algorithm works properly. These images are also very
clean without spiking noise, common to a multifrequency
phase-shifting algorithm, meaning that the proposed filtering
methods can effectively remove spiking noise.

To further demonstrate the speed of the proposed system,
we measured some dynamically changing objects. Figure 7

Fig. 4 Picture of the developed system. (a) Overview of the system with labeled components; (b) system
scanning static sculpture.

Fig. 5 Measurement result of a flat surface. The measured area is
∼100 × 75 mm2, and the resulting root-mean-square error is
0.00081 mm. (a) 3-D plot of the surface; (B) example cross-section
of the surface.

Fig. 6 Capture of static statues. (a) Two-dimensional photo of statue; (b) and (c) two screen shots of the
3-D reconstructions of the statue.

Optical Engineering 024105-6 February 2014 • Vol. 53(2)

Karpinsky et al.: High-resolution, real-time three-dimensional shape measurement on graphics processing unit

and the associated media show two examples, one single
hand motion capture, and simultaneous two-hand motion
capture. The videos were filmed from the computer screen
using an high definition (HD) video recorder (Sony,
Tokyo, Japan: HDR-AX2000) so as not to affect the
reconstruction frame rate. The computer screen was the
Lenovo laptop screen that demonstrates the live-recon-
structed 3-D results of the object being measured.
Regardless of the geometry complexity, this laptop can con-
stantly reconstruct and display 3-D geometry at 30 fps with
an image resolution of 800 × 600. These experiments once
again confirm that the proposed GPU phase-shifting algo-
rithm and portable system can deliver high-resolution,
real-time 3-D shape measurement of dynamically deform-
able objects with arbitrary shapes.

5 Conclusion
This article has presented a technique for achieving high-res-
olution, real-time 3-D shape measurement on a portable
device by implementing the entire processing pipeline of
a modified two-frequency phase-shifting algorithm on a
GPU. We have demonstrated the principles behind the tech-
niques leveraged by the system, as well as giving a descrip-
tion of the GPU implementation. By utilizing a GPU for the
entire 3-D processing and display process, the processing
power requirements of CPU have been drastically reduced,
allowing the system to be realized with a portable device.
Through experiments, we have shown that 3-D shape acquis-
ition, reconstruction, and display can reach 30 fps on a
Lenovo laptop at an image resolution of 800 × 600.
Utilizing the binary defocusing technique, the USB 3.0 cam-
era, and the GPU implementation, the whole system is quite
inexpensive, making such a system potentially accessible to
the general public.

Acknowledgments
This material is based upon work supported by the National
Science Foundation (NSF) Graduate Research Fellowship
under Grant No. DGE1247194, and the NSF under grant
numbers CMMI-1150711 and CMMI-1300376. Any opin-
ion, findings, and conclusions or recommendations
expressed in this article are those of the authors and do
not necessarily reflect the views of the NSF.

References

1. S. Zhang, D. Royer, and S.-T. Yau, “GPU-assisted high-resolution,
real-time 3-D shape measurement,” Opt. Express 14(20), 9120–
9129 (2006).

2. K. Liu et al., “Dual-frequency pattern scheme for high-speed 3-D
shape measurement,” Opt. Express 18(5), 5229–5244 (2010).

3. J. Salvi, J. Pages, and J. Batlle, “Pattern codification strategies in struc-
tured light systems,” Pattern Recognit. 37(4), 827–849 (2004).

4. S. Zhang and P. S. Huang, “Novel method for structured light system
calibration,” Opt. Eng. 45(8), 083601 (2006).

5. L. Ahrenberg et al., “Using commodity graphics hardware for real-
time digital hologram view-reconstruction,” J. Disp. Technol. 5(4),
111–119 (2009).

6. A. Espinosa-Romero and R. Legarda-Saenz, “GPU based real-time
quadrature transform method for 3-D surface measurement and visu-
alization,” Opt. Express 19(13), 12125–12130 (2011).

7. W. Gao et al., “Real-time pipelined heterogeneous system for win-
dowed fourier filtering and quality guided phase unwrapping algorithm
using graphic processing unit,” in AIP Conf. Proc., Vol. 1236, pp. 129–
134 (2010).

8. J. Carpenter and T. D. Wilkinson, “Graphics processing unit–acceler-
ated holography by simulated annealing,” Opt. Eng. 49(9), 095801
(2010).

9. H. Kang et al., “Acceleration method of computing a compensated
phase-added stereogram on a graphic processing unit,” Appl. Opt.
47(31), 5784–5789 (2008).

10. S. Asano, T. Maruyama, and Y. Yamaguchi, “Performance comparison
of FPGA, GPU and CPU in image processing,” in Int. Conf. Field
Programmable Logic Appl., pp. 126–131, IEEE, Prague, Czech
Republic (2009).

11. W. Gao and Q. Kemao, “Parallel computing in experimental mechan-
ics and optical measurement: a review,” Opt. Lasers Eng. 50(4),
608–617 (2012).

12. S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model
acquisition,” in SIGGRAPH ’02 Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive Techniques,
pp. 438–446, ACM, San Antonio, TX (2002).

13. I. Ishii et al., “High-speed 3D image acquisition using coded structured
light projection,” in IEEE/RSJ Int. Conf. Intell. Robots Syst IROS 2007,
pp. 925–930, IEEE, San Diego, CA (2007).

14. S. Zhang and S.-T. Yau, “High-resolution, real-time 3D absolute coor-
dinate measurement based on a phase-shifting method,” Opt. Express
14, 2644–2649 (2006).

15. S. Zhang, “Recent progresses on real-time 3D shape measurement
using digital fringe projection techniques,” Opt. Lasers Eng. 48(2),
149–158 (2010).

16. S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector
defocusing,” Opt. Lett. 34(20), 3080–3082 (2009).

17. Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting
technique with optimal pulse width modulation,” Opt. Express 19,
5149–5155 (2011).

18. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping:
Theory, Algorithms, and Software, Wiley, New York (1998).

19. K. Creath, “Phase-measurement interferometry techniques,” Prog.
Opt. 26(26), 349–393 (1988).

20. C. Joenathan, “Phase-measuring interferometry: new methods and
error analysis,” Appl. Opt. 33(19), 4147–4155 (1994).

21. Y.-Y. Cheng and J. C. Wyant, “Multiple-wavelength phase shifting
interferometry,” Appl. Opt. 24(6), 804–807 (1985).

22. NVIDIACUDAComputeUnifiedDeviceArchitecture—Programming
Guide, http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming
_Guide.pdf (2007).

Fig. 7 Example frames from capturing dynamically moving objects. (a) A single hand motion (Media 1,
4.9 MB) [URL: http://dx.doi.org/10.1117/1.OE.53.2.024105.1]; (b) two hands motion (Media 2, 3.0 MB)
[URL: http://dx.doi.org/10.1117/1.OE.53.2.024105.2].

Optical Engineering 024105-7 February 2014 • Vol. 53(2)

Karpinsky et al.: High-resolution, real-time three-dimensional shape measurement on graphics processing unit

http://dx.doi.org/10.1364/OE.14.009120
http://dx.doi.org/10.1364/OE.18.005229
http://dx.doi.org/10.1016/j.patcog.2003.10.002
http://dx.doi.org/10.1117/1.2336196
http://dx.doi.org/10.1109/JDT.2009.2013159
http://dx.doi.org/10.1364/OE.19.012125
http://dx.doi.org/10.1117/1.3484950
http://dx.doi.org/10.1364/AO.47.005784
http://dx.doi.org/10.1016/j.optlaseng.2011.06.020
http://dx.doi.org/10.1364/OE.14.002644
http://dx.doi.org/10.1016/j.optlaseng.2009.03.008
http://dx.doi.org/10.1364/OL.34.003080
http://dx.doi.org/10.1364/OE.19.005149
http://dx.doi.org/10.1016/S0079-6638(08)70178-1
http://dx.doi.org/10.1016/S0079-6638(08)70178-1
http://dx.doi.org/10.1364/AO.33.004147
http://dx.doi.org/10.1364/AO.24.000804
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.1
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.2
http://dx.doi.org/10.1117/1.OE.53.2.XXXXXX.2

23. A. Munshi et al., “The openCL specification,” Khronos OpenCL
Working Group, pp. l1–15, https://www.khronos.org/registry/cl/
specs/opencl-2.0.pdf (2009).

24. R. J. Rost, J. M. Kessenich, and B. Lichtenbelt, Open GL: Shading
Language, Addison-Wesley Professional (2004).

25. A. Munshi, Opengl es Common Profile Specification 2.0, Khronos
Group, http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2
.0.24.pdf (2007).

26. J. Fang, A. L. Varbanescu, and H. Sips, “A comprehensive perfor-
mance comparison of cuda and opencl,” in Int. Conf. Parallel
Proces. (ICPP), pp. 216–225, IEEE, Taipei, Taiwan (2011).

27. R. Amorim et al., “Comparing cuda and opengl implementations
for a Jacobi iteration,” in Int. Conf. High Perform. Comput. Simul.
HPCS’09, pp. 22–32, IEEE, Leipzig, Germany (2009).

28. T. I. Vassilev, “Comparison of several parallel api for cloth modelling
on modern GPUs,” in Proc. 11th Int. Conf. Comput. Syst. Technol.
Workshop PhD Students Comput. Int. Conf. Comput. Syst.
Technol., pp. 131–136, ACM, Sofia, Bulgaria (2010).

29. J. Fung and S. Mann, “Computer vision signal processing on graphics
processing units,” in IEEE Int. Conf. Acoust., Speech, Signal Proces.
Proc. (ICASSP’04)., Vol. 5, pp. V-93, IEEE, Montreal, Canada
(2004).

30. D. Shreiner et al., OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Versions 3.0 and 3.1, Addison-Wesley
Professional, Boston, MA (2009).

31. C. E. Towers, D. P. Towers, and J. D. Jones, “Optimum frequency
selection in multifrequency interferometry,” Opt. Lett. 28(11), 887–
889 (2003).

32. K. Creath, “Step height measurement using two-wavelength phase-
shifting interferometry,” Appl. Opt. 26(14), 2810–2816 (1987).

33. M. McGuire, “A fast, small-radius GPU median filter,” in ShaderX6,
http://www.amazon.com/ShaderX6-Rendering-Techniques-Wolfgang-
Engel/dp/1584505443 (2008).

34. Y. Xiao, Y. Cao, and Y. Wu, “Improved algorithm for phase-to-height
mapping in phase measuring profilometry,” Appl. Opt. 51(8),
1149–1155 (2012).

35. Y. Villa et al., “Transformation of phase to (x,y,z)-coordinates for the
calibration of a fringe projection profilometer,” Opt. Laser Eng. 50(2),
256–261 (2012).

36. Y. Wen et al., “Universal calculation formula and calibration method in
fourier transform profilometry,” Appl. Opt. 49(34), 6563–6569
(2010).

37. R. Legarda-Sáenz, T. Bothe, and W. P. Jüptner, “Accurate procedure
for the calibration of a structured light system,” Opt. Eng. 43(2),
464–471 (2004).

38. F. J. Cuevas et al., “Multi-layer neural networks applied to phase and
depth recovery from fringe patterns,” Opt. Commun. 181(4), 239–259
(2000).

39. Z. Li et al., “Accurate calibration method for a structured light system,”
Opt. Eng. 47(5), 053604 (2008).

40. W. Gao, L. Wang, and Z. Hu, “Flexible method for structured light
system calibration,” Opt. Eng. 47(8), 083602 (2008).

41. R. Yang, S. Cheng, and Y. Chen, “Flexible and accurate implementa-
tion of a binocular structured light system,” Opt. Lasers Eng. 46(5),
373–379 (2008).

42. Q. Hu et al., “Calibration of a 3-D shape measurement system,” Opt.
Eng. 42(2), 487–493 (2003).

43. L. Huang, P. S. K. Chua, and A. Asundi, “Least-squares calibration
method for fringe projection profilometry considering camera lens dis-
torsion,” Appl. Opt. 49(9), 1539–1548 (2010).

44. Y. Xu et al., “Phase error compensation for three-dimensional shape
measurement with projector defocusing,” Appl. Opt. 50(17),
2572–2581 (2011).

Nikolaus Karpinsky is a PhD student in human computer interaction
(HCI) and computer engineering at Iowa State University. He received
his BS in software engineering from the Milwaukee School of
Engineering in 2009 and his MS in HCI and computer engineering
from Iowa State University in 2011. His current research interests
include parallel computing, high-speed 3-D scanning, 3-D video com-
pression, and computer vision.

Song Zhang is the William and Virginia Binger assistant professor of
mechanical engineering at Iowa State University. He received his
PhD degree from Stony Brook University in 2005. His major research
interests include high-speed 3-D optical metrology, 3-D information
processing, 3-D biophotonics imaging, and human computer interac-
tion. He is the recipient of NSF CAREER award in 2012, and a fellow
of SPIE.

Biographies of the other authors are not available.

Optical Engineering 024105-8 February 2014 • Vol. 53(2)

Karpinsky et al.: High-resolution, real-time three-dimensional shape measurement on graphics processing unit

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_cm_spec_2.0.24.pdf
http://dx.doi.org/10.1364/OL.28.000887
http://dx.doi.org/10.1364/AO.26.002810
http://www.amazon.com/ShaderX6-Rendering-Techniques-Wolfgang-Engel/dp/1584505443
http://www.amazon.com/ShaderX6-Rendering-Techniques-Wolfgang-Engel/dp/1584505443
http://www.amazon.com/ShaderX6-Rendering-Techniques-Wolfgang-Engel/dp/1584505443
http://www.amazon.com/ShaderX6-Rendering-Techniques-Wolfgang-Engel/dp/1584505443
http://dx.doi.org/10.1364/AO.51.001149
http://dx.doi.org/10.1016/j.optlaseng.2011.08.005
http://dx.doi.org/10.1364/AO.49.006563
http://dx.doi.org/10.1117/1.1635373
http://dx.doi.org/10.1016/S0030-4018(00)00765-3
http://dx.doi.org/10.1117/1.2931517
http://dx.doi.org/10.1117/1.2969118
http://dx.doi.org/10.1016/j.optlaseng.2007.12.008
http://dx.doi.org/10.1117/1.1531636
http://dx.doi.org/10.1117/1.1531636
http://dx.doi.org/10.1364/AO.49.001539
http://dx.doi.org/10.1364/AO.50.002572

