SOLUTION MANUAL FOR
WAVES AND FIELD IN INHOMOGENEOUS MEDIA

EpiTED BY W. C. CHEW
WiTH CONTRIBUTIONS FrROM:

I. Aksun, J. H. LiN, C. C. Lu, G. OrTo
Y. M. WANG, R. WAGNER AND W. WEEDON

(© CoPYRIGHT RESERVED 1993
PUBLISHED BY
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
UNIVERSITY OF ILLINOIS
URBANA-CHAMPAIGN, IL 61801






CHAPTER 1

EXERCISE SOLUTIONS
By W.C. Chew

§1.1
Using

A(r,t) = -21; / A(r,w)e ' dw,

where A can be E,H,D, B, or J, and letting

1 —iw
p(r,t) = '2_7r / p(r,w)e tdwa

-0
it follows that

aAg’t) = 2_11r. / (iw)A(r,w)e™".

Then, Fourier transforming (1.1.1) to (1.1.4) yields (1.1.12) to (1.1.15).

§1.2

(a) 1 volt = 1 watt/amp. 1 watt = 1 joule/sec. 1 joule has the dimension of
force x distance. Force has the dimension of mass X acceleration = kg
x m/s. Therefore, dim (watt) (which stands for dimension of watt) is kg
- m?/s®. But dim (amp) = coulomb/sec = C s™. Therefore dim(watt) =
kg - m?/(C s?).

(b) Since V x E = iwuoH, the LHS has a dimension of V/m?, while wH has
a dimension of A/(m - s) where V = volt and A = Amp. Therefore, y
has a dimension of (V/m?) - m - s/A =V - s/ (m - A). Putting volt and
amp in fundamental units, dim (po) = kg - m?/(C s?) - s/ (m - C/s) =
kg- m/ C%.

(c) H the size of po is altered, then the size of coulomb has to be altered, since
Ho is tied to the definition of kg - m/C2. Therefore, in order to make o
from 47 x 10”7 to 47 or 107 times bigger, the size of coulomb will have to
increase by 10*5, Then, 1 coulomb, instead of being 6.25 x 10'® electrons
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is now 1.98 x 10?? electrons. 1 new volt = 10735 volt, and 1 new amp
= 10%5 amp. These units of voltage and amperes are too small and too
large respectively. Hence, yq is defined to be 47 x 1077,

§1.3

A(r,t) = a(r) cos(wt + ¢,)
B(r,t) = b(r) cos(wt + ¢2).

T
(A(k, 1), B(r, 1)) = Jim %a(r)b(r) / cos(wt + ¢1) cos(wt + $y)dt

= Jim —a(r)b(r) / [cos(és — ¢2) — cos(2wt + 1 + )] dt

- -;-a(r)b(r) cos($y — @2).

A(r,t) = Re[A(r)e”!], where A(r) = a(r)e':, B(r,t) = Re[B(r)e™™"],
where B(r) = b(r)e*#2. Therefore,

%Re{A(r)B‘(r)} = %ae{a(r)b(r)e‘wl-h)}

- %a(r)b(r) cos(é1 — ¢2)
= (A(r,t), B(r,t)).

§1.4
If we have a point charge it produces an electric field given by E = r.

If we have a DC current in a wire, it produces a magnetxc field ngeerol by

H= — . If we put the point cha.rge next to the wire, E x H is nonzero
locally But both E and H are static fields, and there cannot be power flow.

§1.5

(a)
V(t) = Vocoswt, I(t) = It coswt + Ig sinwt.

Then,
V(#$)I(t) = VoI cos® wt + %V,,IQ sin 2wt.

(b) V(1) = Re{Voe~t}, I(t) = Re{(I; + ilg)e~*“*}. The phasors are V; and
It + i1, for voltage and current respectively.
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(¢) The complex power is P = VI* were V and I are phasors. Therefore,
P = VolI; +iVoly. 1Re{P} is equal to the time average power from the
in-phase component of the current. 13m{P} is equal to the amplitude of
the time-varying power from the quadra.ture component of the current.

(d) The imaginary part of the complex power 13m{P}, is also known as the
reactive power. This reactive power is equal to the amplitude of the time
varying power which has zero time averages.

§1.6

a = i(@t - @), b = i(e€* — €) are Hermitian because &t = E,E+ =b.
Therefore, they are either positive, negative definite, or indefinite. They
correspond to lossy, active and lossless media respecitively.

§1.7
Another positive set of replacement rule is that

E—'Ha H""—Es -ﬁ_’ia E—’ﬁ,
M—--J, J-M, pn——p, p— pPn-

§1.8
(a) V-(pvv) + &(pv) = F. Using the chain rule,
V- (pvy;) = (V- pVv)v; + pv - Vu,,
or
V-(pvv) = (V:pv)v+ pv-Vv.
But from (1.2.1), (V. pv) = —%f therefore V - (pvv) = —v-ﬂ + pv -Vv.
Furthermore, &(pv) = pZ + vZ2. Consequently, V - (pvv) + 2(pv) =
plv-Vv+ & =F

(b) The force acting in the +z direction between z and z + Az is [p(z) —
p(z + Az)]A. The volume is AA:c Therefore, the force/unit volume is

[o(z) — p(z + Az)]/Az or F; = —3£ where F is the force density.
(c) We can a.pply the a.bove denvatlve to a cube of volume AzAyAz. We will
get Fp = a =2, F, = —ay, and F, = —32. Therefore, F = —Vp.
§1.9
(a)
D _ 6p Opdx Opdy Opdz
D=5 Yo m toya T @
= %t’—) +v-Vp
dr . dy .dz
h =32 Pl
where V= zdt+ydt+ 7R
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(b) p(p, S), where = 0. Then,

Dp opDp  GpDS _0pDp 6p@ .
9Dt ' dSDt 09pDt [ v V”]

But also, D 5
Dp _0p
Dt TV VP
Therefore, 5
op P
aTVVP= [at +v- V).

By using the perturbation expansions of (1.2.6), and collecting the first
order terms, we have

5171 dpo
Bt +v1-Vp = Po[ + 1‘VPo]
Letting C? = , we have (1.2.13).

§1.10

KE=+E,+6E,+ d;E.,, for example, 7, 6, and é are functions of position
(z,y, 2). Therefore, they do not commute with V2, or that V27 # #V?2, V24 #
§V2, and V?¢ # V2. Consequently, (V2 + k2)E, # 0,(V? + k?)Es # 0, and
(V2 +K?)Ey # 0.

§1.11
For n = 0, the wavefront of e*****+%*¢? Jooks like Figure 1.

Figure 1 for Exercise Solution 1.11.

For n # 0, for constant z, the wavefront looks like e'#”**??, The az-
imuthal wave number is % which is a function of p. So the wave front looks
like Figure 2. It spirals in the counterclockwise direction.
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Figure 2 for Exercise Solution 1.11.

§1.12

[1apa n?
p0p"8p  p?

is the equation for cylindrical Bessel functions. If we let f,(p) = —\}—,-,B,.(kp)
then

+ kf,] Bo(kp) =0

10 0 [6’

5P 5 Bn(0) = [5053 + 5 55| VEF(o)

pOp
- +Zp 2 fa(0) + 2075 £1(P) + \/PF2(P)

and (1.2.28) becomes

fa(p) + f (0) + e fn(p) +k;falp) =

But f2(p) + 2f1(p) = ?‘a_pp apf,,(p) and § — n? = (3 — n)(} + n), therefore,
the above can be written as

10 ,0 ‘(' +1
5057 a0 = Ty 0) + By () =0

where n’ =n—1. Soif welet p — r, k2 — k?, and let b, (kr) = Varfws1(p);
then the above becomes
19 ,0 ’(n + 1)

——r?—b,(kr) -

2
S5 5t b (kr) + kb (kr) =

’ ™
b,,:(kr) = mBnH_%(kr),

which is precisely (1.2.40a).

where
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§1.13

n n

B, (kyp) = Ba-1(kop) - an(ka) = —Bu1(kop) + % Bu(k,p).
oP oP

Letting b _%(kr) = /7= Bn(kr) and p — r,k, — k, we have

0 n
éyx/ﬁb,,_%(kr) = Vkrb,_3(kr) - \/—?b,,_é(kr)
n
= —Vkrb, . (kr) + —\/—k_:bn_%(kr).
But 5 1
aﬁbn_g(z) = mbn-g-(z) + \/Eb;_%(a:).
Therefore,
: n+
bn-%(kr) = n—%(kr) - kr 2 bn-%(kr)
1
= n—2
== n+%(kr) + kr bn—%(kr)'
Letting n — = n’, we obtain
!
vo(kr) = bp_y(kr) — n—k-:—l-b,,'(kr)

nl
= —bn4a(kr) + Ebn'(k")-

§1.14

V- p7'V(r) + K ¢(r) = s(r).

(a) We can integrate the above about a pill box at an interface where p(r) is
discontinuous. Then,

/r‘z -p~'Vé(r)dr =0
5

assuming that no source resides at the interface. The subsequent boundry
condition is that

f-pr'Vér=n-p;'Ve,

at interface. Moreover, we need ¢, = ¢, at interface, otherwise, V¢ will
be singular.
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(b)
V. p 1V ¢i(r) + k2 ¢i(r) = 5 (1), (1)

V- p 1V ¢y(r) + K2 ¢a(r) = s5(r), (2)

Multiplying (1) by ¢,(r) and (2) by ¢,(r), subtracting the two equations
and integrate yields

(@2(r), 81(r)) — (1(r), 52(x))
= / dV[$2V -p71V¢ — 1V - p71V ]
v

- / dVV - (4™ Vi — dip~ Vo]
\'4

- / dSh - [$ap™ V1 — 107"V bo]
S

We can let S — Siyr. In this case ¢; and ¢, will look like plane waves so
that V¢; = tk¢ and V¢, = tk¢s. The above integral is seen to vanish,

and we have
(#2,S:) = (41, 53).

§1.15
If k = 2k, then (1.3.28) becomes

[0 -10
kK:k[l 0 0].
0 0 O
This is a rank two matrix. Since F =K -7! - K. €, then
_ A, D,
F-Do= [Av] evenif Dg= ‘:Dy] .
0

z

Therefore, for nontrivial %’;— in (1.3.29), D, = 0, and an eigenvector

D,
Do 3 [Dy] .
0

In this space, there are only two independent eigenvectors. Let € = €!, and
v =@}, and we have
— —Kkan —Kz2 —K3)| —Vn -~V ~—Va
K-E=| k1 K2 K3 |,K-¥V= [ vun VY12 w3 ]
0 0 0 0 0 0
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and
_ [ Knva — knva K22V21 — K12V22 K23V21 — Kisva2
F = | —kaivn1 + k112 —Kaovnn + K121 —Ka3vin + Kistas
| 0 0 0
'Fy Fi2 Fis
=|Fn Fpn Fp
Y 0 0

For nontrivial eigenvalue A = £,D = [D;, D;,0]'. Therefore,

(Fi1 — A)Dy + Fy2D; =0
FyDy + (Fp2 - A)D; =0

or

Di_ -Fu__ —(Fu=-))

D, (Fu-2X) F '
Hence,

(Fi1 = A)(Foa = A) — Fi2Fn =0
or

A2 — (Fuu+ Fp)A = FipFp =0

Therefore, Ay = %(F,1+F22)i%\/ (Fi1 + F22)? + F1oF;,. Therefore, the eigen-
vectors can be found to within a multiplicative constant for A;. The eigen-
vector corresponding to A = 0 is a vector that is orthogonal to the row space
of F. In fact, any E¢ = keo such that Dy = € - keo will be in the null space
of F, i.e., any longitudinal wave.

§1.16
B=VxA, E=-Vé+iwA,
then,
VxB=VxVxA
= —twpeE + uJ
= twpeVe + wlueA + uJ
or

VA +wiueA = V(V-A) —iwpeVe — uJ
Using Lorentz gauge, we let V- A = iwpued, so that
(V24 wlue]A = —uJ

and

E=iwA-.1 VV-A=iwlA+—
iwpe w?pe

VV-A)
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Using Green’s function method, we can show that
AG) = [ dro(e - 1)Iw)
v

where
(V2 + wpe)g(r — ') = =6(r — 1').
Therefore,

E = iwufT+ %lgvv] - / dr'g(r — r)I(r).
\ 4

By using the fact that Vg(r — r') = —V'g(r — r’), we have

(4
E= iwp/dr’J(r’)~ [f-i- V’: ]g(r—r’)
v

§1.17

(a) '
V. p7l(r)Vy(r,r') + Kg(r,r') = —6(r — 1').

Multiplying the above by s(r’) and integrating over r’, we have
V.p Y1)V / drg(r,r')s(r') + k? / dr'g(r,r')s(r') = —s(r).
v 1

Therefore, if
¥(r) = — [ dr'g(r,r')s(r"),
/
then
V- p ' Vi(r) + k*(r) = s(r)
(b)
(¥1(r), 35(r)) = (Ya(r), s1(r))

or V/dr”(r) v/ dr'g(r, ) (r') = V/ drs(r) V/ drg(e F)on(®)

The two integral are similar after exchanging the order of integration.
Since $,(r) and sy(r) are arbitrary, we have g(r,r') = g(r/, r).

§1.18

(a) Reciprocity holds over a bounded region as will. Therefore, [G(r,r')]t =
G(r',r) for a dyadic Green’s function defined over a bounded region.



10 EXERCISE SOLUTIONS
T ——

(b)
H(r) = twe / dr'G,(r,r') - M(r).
v
Therefore,
E;(r) = v waQ / dr'V x G (r,r') - Ma(r'),
Hi(r) = 2 E‘ / dr'V x G,(r,r) - Jy(r').

Since (M;, H,;) = —(J;, E;), we have
/drM,(r) . /dr'V X G(r,r") - Jy(r")
= /erl(r)- /dr’V X Gpu(r,r') - Ma(r")

or that
[V x Ge(r,r"))' =V x Gn(r, r).

§1.19
(a) A solutioninaboxaxbxdwithfi-Vég=0o0n S is

b= s (22) o (752) o (25)

where n,m and p are integers, and (22)? 4 (B%)? 4 (&) = k?

(b)

V/ Vé[2dV = V/ V4 - VdV
- V/ V. (6"V4)dV ~ V/ VgV

- / A ($'VE)V + / KoV
v

S

- / ¥|¢[2dv

v

by virtue of the boundary condition and that V%¢ = —k2¢.
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(c) If
o= Ao (7)o (222) o (),
b= Ao (2] o () o (25,

66 = ¢ — ¢ = (41 — Az) cos ("2 ) cos (T2 ) c0s (E2),

which satisfies the boundry condition that - V¢ =0o0n S.

(d) When a,b and d tend to infinity, the number of resonant frequencies sat-
isfying k* = (22)? + (B2)? + (&)? becomes infinitely dense. Therefore,
uniqueness is not guaranteed if we put a source inside this infinitely large
box. To guarantee uniqueness, we introduce a small loss, which is equiv-
alent to imposing the Sommerfeld radiation condition.






CHAPTER 2

EXERCISE SOLUTIONS
by G. Otto

§2.1
Using uV X uy"'V X E —w?ucE=0,1et V=V,+V,, E=E, +E,,
and extract the Z component
(Vxu'VxE) =V, xu™ (VxE),,
=p" 'V, xV,xE, + 4"V, x V, xE,,
= —#-lszz + “-le (V. . E.) .

But V,-E, = —%V + - €E, in source-free regions. Hence
0 o
2 -1 2 -
V,E, + 326 —azeE, + wueE,; =0,
and by duality

0 0
2 -1 2 i
V,H,+azp azyH,-l-w peH, =0
-13

Since %e 3. €E; has to be finite and nonsingular, ! ga;eE, is continuous
and then ¢E, must also be continuous. By duality p'I%pH, and uH,
are also continuous.

§2.2
Given the Fresnel reflection coefficient for TM waves (2.1.14a):
T™ _ €2k, — €1k,
ezk1: + €1ks,

First, RTM vanishes when

€2ky, = €1k,
égkl COs 91 = 61]62 00302,
kycos; =k, cos 8,.

We also need Snell’s law k; sin 6, = k; sin6,. Combining these two equa-
tions yields sin26; = sin26;. The nontrivial solution is 6; +6; = . Then

6, = tan™! ‘/7’:12 is the Brewster angle.
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Next, |[RT™| =1 when k;, = ia with a > 0, then

Bo= k- -k,
=k} — (K, +k,); by phase matching
=k -k +K,
K, <k}-k3; since k3, <0
ki cos?h < ki - k3.
Then, 6, > sin~! (kz/k;) is known as total internal reflection.

§2.3
Given the generalized reflection coefficient for an N-layer medium (2.1.23)

Riiy1 = Rign + Tiiv1 Risrips T e¥hitrs (dina—dd)
g i 1—- Ry Ri+l.a'+2 eZikit1,s(diga—di)

Use T;; = 1 + R;; to show
R = Rijs1 — Rijpr Rig1iRigr iqae?iradion=di)
41 1— R‘+1,.§|+1,t+2eziki+’ 2(dip1=di)

(1 + Riip) (14 Rn+1,.) R..H’,.,_, e2tkit1,s(di41-di)
1- Ry R+1,.+2 e2kit1,s(dig1—di) )

Use R;; = —R;; to show

R Rii1+ Rg’.n i+2 e2tki41,s(dig1-di)
$’+1 - 1 + R‘,i+l R‘.+l,i+2 eziki+".(d..+l -d.) .

§2.4
(a) Given:

A= [1 — Ry Ros e2ik2:(dz—dl)] [1 — R Ras e2ik3,(d3-d3)] .
Use (2.1.24) for Ry;3 and Ry3 = —R3; then simplify,

A=1- R32 R:“ 62‘.“3:(43-42) — R?l eﬁkza(dz-dx) [R23 + R“ ezikaz(da—dz)] ,

2tk2, (d2—dy)
1 2ikaslda=dr)] |1 _ B, 2ikss(ds—ds) B3z + R €
= [1= R Ry #e87] [l o Ry Ry @)

= [1 — Ry Ry e2ik2:(dz-dl)] [1 - Rsz R:u ezik;,(ds_d,)] ]
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(b) For multilayered media, the generalized transmission coefficient is defined
by (2.1.28) and (2.1.26a).

N-1
A
Tin= H e JSJ'J+1 ’

i=1

N-1 N-2 T. .
S0 [ ——

=2 im1 1= Rjs1i Rjga g €385

where we define A; = k;,(d; — d;—;) and do = d,. Similarly,

N-1 N-1 T
T _— i8; J ~L . T .
™ (H : ) (H 1 - R4 Rjjr CM") ;

j=2 j=2

However, a change of variables results in

N-1 N-2

D 254 I I D 254
II (1 = Rjjv1 Ry e ’) = (1 = Rjs1i42 Rjsnje” ’“) '
=2 =1

Now, we can use the identity derived in part (a) to move the tilde

N-1 N=2
II (1 = Rjjs1 Rjjo €% ) =11 (1 = Rjs1542 Ripaj em"*’) :
j=2 =1

Also, for TE waves

N-1 N-1 N-1

2# ; k'+1 _ sz 1']
I I T . I I ) “Jri,z T
=1 i j=1 Bi kis1e + pisr ks pa ko =1 it

Therefore, we have shown

- kn: =~
Ty = BTy
KN K1z

§2.5
First we need to eliminate R'(z). Using (2.1.35) we find that

Ru——[ uw«wq o)1 - RiCe)] - Ry 1 )]
F AR [1 - Ro()Ro(z)]

Also using (2.1.35) we can show
-muﬂh—&uﬂ

1
1-R¥2)=
[1 - R a(2)]
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Substituting these two results into (2.1.33), yields
Ry(z) [1 - By(2)] = Ro(=) [1 - B3(2)]

+2ik,(2) [Ro(2) = Ro(2)] [1 = Ro(2)Ro(2)]

+ S [1 - R [1 - RG]

Now we need to differentiate (2.1.34a) to show
R(a) = 2XE2)/P(5)) e/ o)

[k:(2)/p(2) + kor/po]”

Using (2.1.34a), we can show
_ Ry = ks(2)/0() (ko /po)
L Rle) [k.(2)/p(2) + Koz /po]”

Finally, we obtain

~ _ 2zk,(z)

B = T mi |a(2) ~ Ro(2)] [1 - Ro(2)Re(2)] -

§2.6
Equation (2.1.36) can be approximated to first order accuracy in the
Runge-Kutta method (Hildebrand, 1976) yielding

-1-"1_%% [Ro(2) = Ro(2)] [1 = Ro(2)Ro(2)]

This equation is solved at sample points ?o(zm) = Ry(zo + mA) for
m = 1,2,...N with the initial condition Ry(29) = 0. The number of
complex operations per point (ignoring additions) is 7 (including the cost
of computing Ry(zy,). This method approximates the continuous medium
by a piecewise linear medium.

On the other hand, a finely layered medium is modeled by (2.1.24). The
number of complex operations per discontinuity is dominated by the cost
of the exp(-) function. This is machine-dependent and typically many
complex multiplications in a Taylor series expansion polynomial approx-
imation, or interpolation from table-lookup. In general, this method will
be less efficient computationally. Notice that this method approximates
the continuous medium by a piecewise constant medium.

Ro(z+ A) = Ry(2) + A

§2.7

For a normally incident TE wave in free space (z < 0) the field can be
described by

Ely = Cl (e"“” + e"“‘“R) ) ko = wzﬂoéo.
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For z > 0 we have the Airy equation solution
. . €o
By = DyAi(-n) + DaBi(-n), n(2) = (wmoa)'* (2 + 2).

Now we can introduce a small loss. In order to have an exponentially
decaying field as z — oo, it is necessary that D; = iD;. Finally, we must
match the boundary conditions at z=0.

e.g. Ely = E2w
d d
aEly = EE;,,.

This gives us a solution for R, the reflection coefficient,

— (w?noa)'’® [i Ai'(—no) + Bi'(—1o)]

R= 1—po
iko [iAi(—no) + Bi(—no))

14 po
and 1o = n(z = 0).

, where pg=

§2.8
(a) The general solution to Equation (2.2.2) in the exp(jwt) time convention

can be written ‘
8(p,t) = e [CLH{ (k,p) + CHS (k,p)|

By evaluating the asymptotic approximation of the Hankel Functions as
k,p — oo, the outgoing wave can be identified as exp(jwt — jk,p) so the
solution satisfying the radiation condition is

$(p) = C:HP (k,p).

To evaluate C,, integrate (2.2.2) over a small disk of radius § and take
the limit as 6 — 0. We find

lim / dsCV2H® (k,p) = —1,

=lim f diC, p - VH (k,p),
6’*0 C

. d
=1lim 276C; (B;Héz)(k,p))

=6

and using H (z) = —~HP(z) ~ -2j7~'z"" as z — 0, we find C; =
—-j/4.

(b) Using (2.2.5) and (2.2.6) in (2.2.1) we find

ayz + k2 - kz] & (k.,y) = —6(y),
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AR ——

so ¢(kz,y) = —Le""vh" is the outgoing wave with k, = \/k2 — k2. Then,
the pla.ne-wave expansion of the Hankel function is

eJksz-Jku Ivl

é(z ,y)——- / dk; -TjHS”(kpp)-

To introduce loss we let Sm[k,] < 0. Then the Fourier inversion contour
follows the conjugate path of the contour in Figure 2.2.2.

§2.9
(a) The raising operator acts on Bessel cylinder functions B,(k,p)e"*:

1[0 .08 ing
"% [a + 15;] Bo(k,p)e
L

=— B'(k ein¢[£+i_y]_iﬁgnk e"‘"[i+— :
(kop) PR k, (kop) PO

= — Bl (k,p)e ™% 1 T B, (k,p)ei™1)e.
kop
Using the recurrence formula (1.2.34) we find

‘1[0 ,.0
—E [a-l-z

-a_l;] B"(kpp)eiw = Bap (ka)ei(nﬂ)é .

(b) Using the raising operator, we know

Ikl =~ [a% + z-gy-] Tokop).

Then applying the integral representation (2.2.15)

(! i tkpp cos(a—
Jl(knp)e¢=—-2—7r/dae""’ (o=9)

{8 rite-o 3451}

x
- d ikpp cos(a—¢)+ia
o / ae ,

tol,_,

2
/ o e;kppcoc(a-¢)+la-tz
0
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Similarly, by applying the raising operator n times we obtain

2
Ja(kop)e™ = 51; / da eiteposla=d)tina=ing
0

(¢) A lowering operator acts on B,(k,p)e™ such that

118 ;@ iné . i(n-1)¢
& |5 = 1] Balker)e™ = Bucs(lypie-e.

§2.10
(a) In cylindrical coordinates let

z = pcos ¢, k; = k,cosa,
y = psin g, ky = k,sina.

Use k.z + ky,y = k,p(cospcosa + singsina) = k,pcos(a — ¢) and
dzdy = pdpd¢ for surface elements.

(b) Let f(p,4) = £ T fulp)e™*+F and F(k;,a) = T Fu(k,)e™. Then

o0 2r
had . . 1 & L
ha __ ~tkppcos(a—¢ ind+in
Y Fu(k,)e™ = / pdp / dpe™Horoled N 0 fu(p)emtHnE
1)

n=-~0co 0 n=-—00

From the plane wave expansion of the Bessel function (2.2.17) we can
show

2r
Jn(__kpp)el'nd’ = _217(_/ da e—ik,pcoo(a-¢)+ina—in§ .
0
Then the Fourier transform simplifies to

Y Rlklem= Y [ doptulp)e ™ ai—kp)e.

n==00 n=-00

This equation decouples due to the orthogonality of the harmonics n.
Using the identity J,(—=k,p) = €™ J,(k,p), we find

Fu(k,) = / dp pFu() (ko).
0

By symmetry,
falp) = / dhp b, Fo(kp)Jn(ky).
0
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(c) Using the Hankel transform pair we know

Fk) = [dopdu(ho) [ K EF.C)I(E),
0

0
= / dk, K. F (k) / dp pTn(kpp)Tn(ELp).
0 0

This implies that

2 o sK—k)
[ doontkpantip = L2
0

4
Likewise, by symmetry

/

oo (o' —
/dkP koJn(kop)In(k,op') = %'—p—) .
0

§2.11?et k, = ko + 6¢* and ko = |ko|e'*. To first order we can approximate
b, ~ (<2lkolbeie 0y
= (2lkol8) /2 45)
The Sommerfeld branch cut is defined by Sm[k;] = 0. In Figure 2.2.7,
point A: 0= —a— = sothat Sm[k,]=0 but Re[k.] >0

point C: §=—a+ 7 sothat Sm[k,]=0 but Re[k,] <0
point B: 0= —a so that Re[k,] =0 but Sm[k.]>0

Thus the points 4, B, C map from the k. plane in Figure 2.2.7b to the k,
plane as shown in Figure 2.2.7a.

§2.12

A branch cut can be defined by Re[k,] = 0 with the upper Riemann sheet
as Re[k;] > 0. This condition on (2.2.32) results in the hyperbola

Kk = Kok
k2 — k2> kg — ko’

The mapping is shown in Figure for Exercise Solution 2.12.
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a) Im [k,

V. 77
Bouom // op //

Riemann r/ Rlcmdnn g

Sheet ysy Re [k,]
// //
b) ke Imlk,}=0
\\“\ l‘ /‘/, '<_kn ; knz = k(l)l ) k:z
AN K
' \\ ‘\ ’ / ”
MERN 4—*——;————
s kokp =ko-ko_pek,i=0
: N ‘_ n
‘C ' — l\ B M—H—O—O—O—‘-M‘-b— k
A Lk, 7 \\ ‘
Rc Ikz] - 0 'l ’,,' \‘ \\\ )
‘s ] \\‘\
i ; .
Imik,]=0
Figure for Exercise Solution 2.12
point A: 6 = —a—2r sothat Refk;] =0 but Sm[k,]< 0
point C: 0= —a so that Re[k,] =0 but Imlk,]> 0
point B 6§ =—a -7 sothat Sm[k,]=0 but Relk,] >0
§2.13

(a) Any field can be written as a Fourier transform so that

..._1_ "~ 7 o iktlA
He2) = 5 / dk,$(z,y, k,)es .
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Then substituting in (2.2.19) and using (2.2.6) for 6(z) we find

227+ 3 + K| Bewk) = ~8()60),

where k2 = k3 — k2. The solution satisfying the Sommerfeld radiation
condition, see (2.2.4), is

t
¢($, Y, kz) = ZH(()I)(ka),
where p = \/22 + y2. Then

i [ :
baws) =g [ dEDEp),

so the spherical wave can be expanded in cylindrical waves by

:kr

= / dk, HYD (k,p)et*s* .

The inversion path is shown in Figure 2.2.2 (replace k. with k,) with
Smlk,] > 0 in order to satisfy the radiation condition

(b) Given the expansion (2.2.31) and the contour in Figure 2.2.5, Cauchy’s
theorem and Jordan’s lemma allow deformation of the SIP to a clockwise
integration wrapping around the branch cut (path containing points C,
B, A, respectively, in Figure 2.2.7), then

-— = _/ dk, kPH(l)(k p)e‘k‘lzl

By a change of variables k? = k% —k2, then the differential surface element
becomes dk,k, = —dk,k,. Now we have

eikr

Sy

where we require Sm(k;] > 0 to stay on the upper Riemann sheet. Finally

etkr

=2 / dk, ctk;zH(l)(kpp)

The modulus sign has been removed by a change of variables k., = —k,
for 2 < 0. Furthermore, the inversion path is described in part (a) above
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§2.14

(a)

(b)

For a current loop

I=—¢I8(p-p)(z - 2).

In cylindrical coordinates, the ¢ component of the vector wave equation
(1.3.44) is

d (wE, 6E¢)_ 3 (1 3 19E,

— — —— g S— — —— - - 2 3 ’ .
0z \p 04 Oz pOp PEs) P a¢) KBy = twpds

However, since the source is axially symmetric and radiating in a homo-
geneous medium, 3/8¢ = 0. Then

010 &

—_—— — KE; = —i .

appap(PE¢) + 322E¢ + ¢ IU)#J¢

Thus, the current loop excites only the ¢ component of the electric field,
that satisfies

919 82 . ’ ’
[”a—p;'é; tas+ k’] pEs =iwplpb(p — p')6(z - 2').

The above equation can be rewritten

8 19 1 92 . ’ '
[5-;2.+;-6_p—?+5z—5+k2] Ey=iwplé(p—p')6(2z - 2').

This equation resembles Bessel’s equation with n = 1. Therefore define
the Hankel transform of the field by

Bo= [ dby b, 5i(ky) ol 2)
1]

and use the identity for §(p — p’) derived in Exercise 2.10 (c). Then we
obtain

o & i
/dkp ko Jy(k,p) [52—2 +k - k:] Ey(k,, 2)
0

= iwuly 8(z = 2) [ db, k(R I(kyp)
0
By completeness of the Hankel transform we know

62 - - U ! | !
[a—z; ¥ kz] Bykp,2) = iwplp’ (ko - ).
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e e ———

This is the scalar Helmholtz equation with the solution given by (2.2.9)

. . ) - (ieikslz=='l
Ey(kp, 2) = —iwplp' Ji(ksp') oL, )

So the electric field is given by

Ip [, k e
Ey= “"‘2 4 / dk, 7c—:’J,(k,,,o')Jl(lc,,p)e"‘-' N
(1]

(c) For a current disk
J = ¢J(p) (2 - 2").

Using the idea of convolution, the current disk is equivalent to an integral
of current loops

o0
1= [ 4 3()6(0 - )80z - ).
)
The solution of part (b) above allows one to write

[» o] k . ' —z' o0 ’ ,
Ei(p,) = =22 [ dk, 22 y(kpp)etee! / dp' Tu(kot)I (),
0 0

e <]

k e
Eup,5) = =25 [ a2 Ikyp) Ik )1,

0

§2.15

(a) For a VED over a three-layer medium we can use (2.3.6) to find the field
in the slab region

o0
- k3 . .
I dk,—2 H{"(k,p)A; [e7* 4 RIM eika(a+240)]
87w ky,

-00
The amplitude A, is given by (2.1.26)

lez‘MAl eiklxdl

thaedy __ bt s
A2 = T RIM RN gead)

b—4

where we deduce 4; = 1 from (2.3.4). Also, R7M, = f:—:—:—%::—;—:%:—;i— and
oM =1+ RIM.



24 EXERCISE SOLUTIONS

(b) We can express the vector field as
E(r) = / dk,E(k,, ).

From part (a) above we know the z component

I K

8nrwe, kl

Ez,(kp, l‘) =

(l)(kpp)A [e-lka,z +Rg‘3M tkg,(8+2d3)]

From (2.3.17a) we can relate the transverse field to the z component

6E2z
-

Utilizing axial symmetry we notice 8/ 8¢ = 0 so Ezy = 0 but

Eg,(k,, l') = —

—Ie

8rwe,

p

/ dk k2 k2z Hl(l)(k"p)‘42 [e—ikg,z — Rg:,Me"k”(""“’)] .
Similarly, Ha,(k,,r) = k;%iwe; x V,E;,. Thus H, = 0 but

zIe -1t z ] z
Hyy = /dkpkp Hfl)(k,,p)A [e ikz, _Rg'M ik ( +2dz)]

§2.16
(a) For a VED embedded in a three layer medium, the field in the slab region
is
= (4
87we,

E2z =

/ dk, H“’(k p)[ thasle=| 4 gre=hst 4 By e"""]

where z’ is the source point and A; and B, are chosen to satisfy the
constraint conditions at both boundaries 2 = —d; and z = —~d; (see
section 2.4)

Ageitud = RTM [eilm(-dx-l') + Bze-ik’udx] ,
Bye~ihsds = RIM [eakz.(dm') + Azeikzxdz] .
These two equations can be solved simultaneously yielding

—tkz;z &I'M ikz: (2’+2d2)
Rg'MRg'Mez‘k?x(dz-dl) ’

. k3 2 TM —tkz (z'+2dy)
B2 - TM e2lkzgdz * Rzl *

3 1- R;;M R%M e2ikzs(dz=d1) *

R;'M -2ika; d;
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(b) When regions 1 and 3 are perfect electric conductors, |¢] — oo so RJM =
IM = 1. Then
e—ikz.z' + eikz;(z'-l-?dz)
1 -— e?l.kz,(dz—dl) 4
e"kzlzl + e-ikzl(z'+2dl)
1 — e2ikas(da~dy)

A2 —_ e—?ikz;d;

After simplifying we find

2eikzx (d2-d;)
— e2ik25(d2—d1)

[cos(|]z = 2’| + dy — d;3) + cos (2 + 2’ + dy + d3)].

§2.17
(a) Given a HED in free space

J = &Its(z — z')o6(y — y')6(2).
We know the TM component is characterized by (2.3.7a)
iIle 9 et
4rwe 020z r

Using the Weyl identity (2.2.27) the integral representation is
E, = i” / dk,dk, ko e*s = Wikyly=v)+iklal - 5 5
(b) Given a current sheet in free space
J = £6(2)J,(z,y).
Using the idea of convolution, the current sheet is equivalent to an integral
of HEDs
o0
J= :E/ dz'dy'§(z — 2")6(y — y')6(2)J,(2',v").

Then the TM component is

E, = / / dz'dy'J,(z',y')

Q% / dk.dkk etks (z=2')+iky (y=y') +iks 2] 2
87r2we

I\
o
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We can exchange the order of integration and recognize the
two-dimensional Fourier-transform J,(k., ky) of J,(z,y). Then,

/ / dkdk, k. J,(k, k,)e*k=stikovtikslel 5 5 0,

-0

+1

8n2we

E; =

§2.18 .
(a) Substitute (2.4.5) into (2.4.2) for source region m in Figure 2.4.1

F(z, z') — eikmzl""' + c_ikm'(z+dm-l)ﬁqn,m—lﬂm [e-ikm:(z'+dm—l)
fetbmildm—dm-i)fp eil:m:(z'+dm)] 4eitmletdmpp N

. [e+.-k....(,'+a,,.) + eibmilim=dm-)p e-ik,...(z'+d..._,)] .

Next, bring all the terms under a common denominator

F(z,7) = M,, { eikmsli=2'| _ gikmel=2If R elikmildm—dm_1)
+ Rmm ! e—Vkms(24+2'42dm-1) + ﬁm mt1 eikms(2+2'4+2dm)

+Rpm 1R 1 [ e—ikms(z=# ~2dm+2dm-1) o eikm,(z-z’+2d...—2dm-1)] } )
Now, we can identify 2 solutions in the source region m

Fy(z,2") = My, [e""”” + e’""’“"“‘""‘)ﬁm,m-xl

[e""""' ) +1] , z>2

F_(2,2)= M, [e"""‘” + e"""“(’“d"')Rm,mn]

N ’ — ] ™
[eckm,z +e tkms(z +2dm-1)Rvn,m-—1] , z2 < 2

(b) For regions n < m we use the generalized transmission coefficient and
constraint conditions as in (2.4.13) to arrive at

. o~ . -1 . - .
A: - [1 — R“"H.lR“'n_lemkvu(dn‘dn-l)] e"‘uxduTmne—ikm:dm—l A;.
By using (2.4.9), which should state (incorrect in the first edition)

-~

Al = [e-‘k'""' + e‘km'("+2d")Rm,m+1] M,,.
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Then the field above the source has the form
Fy(z,2") = MM, [eik,.,z + Ronoy e—ik...(z+2d,.-1)] giknsdn

. f’mne-‘km:dm—] [e'ikvrul' + R'n’m+leikm:(3'+2dm)] , z> ZI.
In a similar manner, for n > m we define A as in (2.4.10). From (2.4.6b)

we notice

A;‘ = [eikm,z' + e—ikm,(z'+2dm-1)}~2""m_l] Mm‘

Once again we use the constraint conditions and the generalized reflection
coefficient to solve for A;

= [1 —_ Rﬁ,ﬂ-lR'n,n-i-l eziknx(dn-dn-l)] - e-“‘nxdw—l TmneikmsdmA:u .
Finally, the field below the source has the form
Fo(z,7') = M. M, [ emiknez L R eik,.,(z+2d,.)] e—tknsdn—y

~ . . ’ _: ’ ~
. Tmnetkmxdm [elkmxz + e lkmx(l +2dm—l)R’n'm_l] , z < 2,.

(c) The reaprocal nature of the solution can be investigated by evaluating
Fy(z,7')
F_(z,2)°

Using the generalized transmission coefficient solutions (2.4.15) and
(2.4.16) we find

Fy(2,2') _ Tonn

F_(,2) Tum
We have previously shown in Exercise 2.4b that the generalized transmis-
sion coefficients for TE waves are reciprocal such that

N -~
klleN - sz
Then a TE ﬁeld is reciprocal such that
k F+(zz')— F(z z), 2€R,,z2€R,
mz

where R; stands for region i.

§2.19

Given an HED above an interface with d; = 0 in (2.3.9), then the field
above the dipole (z > 0) is

Ey = é%cos¢ / dk k2 HM (k,p)[e™1+* — RTMehis?),

H,. = Zffsuujs / dk, k’ 2 H(k,p)e1s* 4 RIE¢ihs2),
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Write
H(kyp) = [HO(k,0) H (ko) | H (k,),

where Hl(l)(k,p)/Hél)(k,p) ~ e~%*/2 a5 p — oo is slowly varying in space
and H{(k,p)et=* ~ (0.51rk,p)'% e'(=7/4tkeothiaz) a5 5 oo is rapidly
varying in space. Now the stationary phase point of the rapidly varying
part is given by

=0.

kp:'—kp‘

dik, [kpp + klzz]

Using ki, = (/k} — k2 and defining § = tan~'(p/z) we arrive at
kys = k1 siné.

We can evaluate the slowly vary part of the integrand at the stationary
part, resulting in

i H{ ) (kpup)

Ey, ~ S
1 Bmwe, °° Hél)(kpap)

paklzu [1 - R;rzhl(klz:)]
[ ok ikioz
: dkp;;Ho (kop)e™*,  p—roo

ire . HY(k,.p) "

Hy; ~ —sin¢
8 " HM (kpup)

(2] [1 + ngE(klu)]
. / dk,,i”—H((,l)(k,p)e"‘"‘ , p — 00

Finally, we use the Sommerfeld identity (2.2.31) to arrive at the leading
order stationary phase expansion

—iI0k? . BTM ethr
E;, Trooe, cos ¢ sin 8 cos 8 [1 — Ry,"(ky cos 9)] r
p—
. - tkyr
Hy, ~ =k sin ¢ sin 6 [1 + RIF(ky cos 0)] e—r-
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§2.20

(a) We can show the odd integrals (2.5.20a) vanish by a change of variables
t=—s

0 0 ©
2 - -
/ PRLt o PO VL P / g2mtlg—Al g o / gImt1 -2s ds,
o0 ~00 0

0 o
—_ (_1)2m+2 /t2m+l C-Atzdt + /82M+1 e—Aaz ds,
o (]

=0, form=0,1,2,...

The even integrals (2.5.20b) are found by integrating by parts m times.
Fortunately, the surface terms vanish as exp(—2As?) at s = +00. We also
need the indefinite integral

-1
/ze'“’zdz = —236_0'12 .

Then, we can show

o0 o0
/ MM ds = —(2m — 1) / g2m-2 (-2%) e~"ds,
-00

-0

_(@em-1)@2m-38) [
=T @y

-4 —)a2
s'hn 4e As ds,

-0

Recursively, we can reduce the above integral to the case m = 0 and we
can evaluate the Gaussian integral in closed form

oo

/e"\'zds= -}

-0

T !
/ sIme=re? I — a%—;@ ) for m=20,1,2,---

=00

Then,

(b) Given the Taylor series expansion (2.5.19)

o0

I, ~ Mt / &MY S FO(0)/nl ds, A — oo,

—c0 n=0
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We use (2.5.20) to find the asymptotic expansion

(2n)
I, ~ e*h(to) \/_ Z 5'2%(;)3 : A — oo.

n=0

where the leading-order term has a coefficient given by
) dt
F(O) =l f)3; -

However, as s — 0,t — t, and the first term in the Taylor series expansion
to h(t) in (2.5.12) dominates so we can approximate

)
lingsz ~ —(t to)zh (tO)
‘Then
dat -2

i % =\ Wy

Therefore, the leading-order approximation is

—2r

I, ~ e h(to) f(to ) VIR ) ,

A — oo.

§2.21
In order to derive (2.5.30), we need to change variables t = As

0 n4+o
[ ()8
0 0
1 ntlta
= (X) / e~ttntedt,
0

Now we use the definition of the Gamma function I'(z) from Abramowitz
and Stegun, 1965.

I'(z) = / t"letdt
0

Then, we obtain the formula

n#-a-1-a-2,-..

/ -As n+crd = F(n+1+a)
Antlta ’
o
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Applying the above formula in the Taylor series expansion (2.5.29) results
in the asymptotic expansion

Ia ~ eAh(a) i F(ﬂ)(O) F(n + 1 + a)

n! A\ntlto ! A= o0

n=0

where the leading-order term has a coefficient given by
. cap Gt
F(0) = lms™f(t) ;.

However, as s -+ 0, t = a and the dominant term in the Taylor series
approximation of h(t) yields

lir%s & —(t — a)h'(a),

and the function f(t) has a factorizable algebraic branch point at t =a
f() ~ (t - a)°B.
Then, the leading order term coefficient is

F(0) = [-h(a))™ - B - [-h(a)],

[l e
§2.22

The function s™ exp(—As?) in (2.5.19) peaks at

%(sne-,\ﬁ) = e—A [nsn—l - 2)\3“‘“] =0,

or

s=+/n/2) .
Similarly, the function s"** exp(—As) in (2.5.29) peaks at
d nda =As) __ _=As n—-l1+a nta|
ds(s e )—e [(n+a)s - s ]—0,
or
s=(n+a)/A
Thus, the radius of convergence of the asymptotic expansion (2.5.21) is
limited by the distance of the nearest singularity to the origin. Hence,
the truncation term n must satisfy

—n—<|s|
2\ Pl
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where |s,| is the distance of the nearest singularity from the origin on the
complex s plane. Similarly, (2.5.31) should have a truncation term n that

satisfies
! n+a

A

< |3p| .

§2.23
(a) Given an integral of the form (2.5.37):

I = i) / (s — s)*F(s)e™"ds.
c!

The saddle-point contribution is found by expanding (s — s3)*F(s) in a
Taylor series about the saddle point s = 0. That is

+...

=0

(s — )t F(s) m (—)* F(0) + s;% [(s - sb)"F(s)]

The leading-order term dominates as A — 00, resulting in
o0
I, ~ M) —g, )k F(0) / e~ ds, A — oo.
-00

Using the integral formula (2.5.20b) with m = 0 we find
I, ~ \/§ AR P (0)(—s3)*, A — co.

(b) The singularity contribution to the integral of the form (2.5.37) is found
by first transforming t = s? — s?, then
I = Mhlt)-25 / e~ M t* G(t)dt,
c

where C is an infinite contour, the image of C' on the complex ¢ plane.
This contribution is of the form (2.5.27) where G(t) is defined by

G(t) = (“‘t’“)kF(s)%,

- (S:Sb)kzr(s)%.

Clearly, the singularity contribution comes from ¢t = 0. The dominant
term is the first term in a Taylor series expansion of G(t), hence

I, ~ o)) () / Mt Ao oo,
SD
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where SD is the infinite steepest-descent contour passing through the
singularity and

G(0) = lim (sis )kF(s)ls,

= F(sb)(2s¢,)"+1

Finally, using the fact that h(¢) = h(¢o) — s? we arrive at

F(s, _
I, ~ Ah(tb) (28§)k3.1 e At tkdt, A — oo.
sD

As a word of caution, the integrand in the above equation is not analytic
for negative integers k. Special care must be taken in this case. Also,
the path SD is an infinite contour that follows the semi-infinite steepest
descent path, passes through the singularity, and then follows the semi-
infinite steepest descent path again. This path is also called Hankel’s
Contour [Abramowitz and Stegun, 1965 p. 255].

First .consider the case k = 1/2 (an algebraic branch point). Here, G(0)
assumes different values after the contour SD passes through the branch
point, that is

Ig ~ ) [G(0%) — G(07)) /c"’“ tkdt, A — oo,
0

where
k
601 -607) = (52) F) |35 5
_ F(s)
T gkgkH”

We can use the integral formula (2.5.30) to simplify

gy L (3)
Ip~e (’—LF(SI,), A — oo.
23/\38,,

We notice that this is ldentlca.lly equal to the second term in the umform
asymptotic expansion (2.5.54) since ' (2) = 1% and I' (1) = -2},

Next consider the case k = —1 (a single pole). In this case, we compute
the residue [Abramowitz and Stegun, 1965 p 255)

/ t~le~Mdt = 2.

SD
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Then

Ip ~ MW27iF(s), A — oo.
We notice that this is identically equal to the second term in (2.5.54)
when k = —1. Thus, we conclude that the uniform asymptotic expansion

(2.5.54) is a consequence of the leading-order saddle-point contribution,
plus the leading-order contribution of the singularity.

§2.24
(a) Given a VMD over a half-space when d; =0
A T B oy . 2k
Hy, = Ty / dkpk_leo (kop)e ot ko z>0.

e <]

For large p we can use the large argument approximation of the Hankel
function to show that the integrand

Hy, ~ eikortibiz p = 00
The stationary point is given by

i)

-an(ika ikaz)| =0,

kpa

ko = ky—b— .
!/P2+22

The steepest-descent path is then given by (2.5.13)

. ' . p . / P
—As —lkpp+1k1zz- (zklp—ﬁ'i—tklz 1_p2+22) ’

= tkpp + ik]zZ - ik]T,

where r = /p? + 22,

(b) On the SDP, s is purely-real. This path on the complex k, plane intercepts
the real k, axis at two points. For k, < ki, k;; is real so the SDP requires

ikop +izy [k} — k2 — ikyr = 0,

k, = k,f = k, sin6,

where we defined sin§ = p/r. Notice that this is also the stationary point
in this problem. For k, > k;, k,, is imaginary so the SDP requires

ik,p — ikyr =0,
h=h£=huma
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The SDP intercepts the imaginary k, axis when k;, is real and greater
than k,, so the SDP requires

izy[k2 — k2 —ikyr =0,
k, = ik,f— = ik, tan®.

(c) To find asymptotes of the SDP we must follow the integration contour.
Starting at s = —oo on the top k;, Riemann sheet (3m[k,,] > 0 to satisfy
the radiation condition), we must have k;, = —ik, for Re[k,] < 0. The
SDP asymptote is then

-As? ~ik,p+k,z, s— —00,2>0

ip—2
k, ~ As? =

8§ — —00,2>0

Eventually, the SDP will intercept the imaginary k, axis at ik, tané,
after which it will cross the k,, branch cut. Before the first real k, axis
crossing at k, sin § the SDP must once again cross the k,, branch cut since
k1sin8 < k;. Here the SDP is back on the top k;, Riemann sheet. To
maintain analytic continuity, the SDP must go below the real axis before
re-crossing the real axis at k;/siné. Clearly this point is beyond k; so
the remaining contour must stay on the top k;, Riemann sheet.

The final asymptote as s — oo is thus on the same k;, Riemann sheet,
where k,, = ik, for Re[k,] > 0

-As? ~ik,p—k,z, s— +00,2>0

k,,~,\szz—er¥, s — +00,2>0

The contour is drawn in Figure 2.6.1 (replace 8; with 6 = sin™ (p/r)).

§2.25

(a) Given a VMD over a half space, the reflected wave field has a branch cut
contribution (2.6.9)

RB ﬂ‘ /_2_ 3 tkoptikyz(24+2d1) k,,
le 27r i7|’p /dk,,k,e ——kg = kg R p — oo.
S,

Using a linear transformation as in (2.5.26) for semi-infinite integrals
around the factorizable algebraic branch point k, = k; we obtain the
steepest descent path at k;

—As = ikyp + ikra(z + 2d1) — ikap — in[K} — K}(z + 2d,).
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(b)

Then we have

IAC ‘ tkzp \/ k2(2+2dl)
n/2np k} -

where we have defined

RB
le ~

/ds eMsiG(s), A— oo

.sﬂG’(s) k,%kg, v

We have factored the s} term since we know that a branch-point singu-
larity exists at k, = k;. Near the branch point we can approximate

8 dk
s4G(s) = K /(ks — k)(ka + o) T2,

~ zks\/-(k - kz)l dk Py kp - k2

=0

Then we identify B = ik3v/2 and a = 1 in the leading order term (2.5.32)
and we can evaluate

dk,
ds

=0 ’P —i(z+ 2dl) 7,?'?

Now we can use the first term of the Taylor series expansion (2.5.31) for
semi-infinite integrals to find

iz
HRB ., TAe etkar=/E5 =K} (z+2d1)
1z 2,,,#

ik
kg -k}’

prz — 00

]
{p + kz k’ (Z + 2d1)

where we have used T’ (%) = %w% and A = 1.

This branch-point contribution is a conical surface wave propagating in
region 2 along the interface, while being evanescent in region 1. The
decay of p~2 as z,d; — 0 is due to interference near the interface.

§2.26

Given the transmitted field for a VMD over a half-space with d; =0

iIA T . K B |
Hsz == _87 / dk, -If- H(gl)(kpp) lez;E e~ thas ’ z<0
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(a) The large argument approximation of the Hankel function yields

(b)

(c)

sz ~ .._.z.I_‘é‘ ’”r / dk TTE lkpp-tkg,z p—00, z2< 0

The stationary phase point is given by

a—i—[z’k,p—i k2 — k2 2
14

SO
k,y = ky——2e— = kysiné.

‘The constant-phase path for this infinite integral is governed by

1
) . ol P ) P\ ?
—As? = ik,p — iky,2 — i (kz;) p+i (k§ - kg;;) z, 2<0

= tk,p — tky,z — tkor, z<0

where r = /p? + 22.

The asymptotes of the SDP must be on the top k;, Riemann sheet
(Smlky.] > 0) so ky, = —ik, for Re[k,] < 0. Then

-As? ~ik,p—k,2z, s-—00,2<0
zp +z

k, ~ \s? poant 8§ ——00,2<0

Similarly k,, = ik, for Re[k,] > 0, then the asymptote is

=As? ~ik,p+ kyz, s— +00,2<0

k~,\slp—z, 8 — +00,2<0
2

The SDP is shown in Figure 2.6.11 for &k, sin6 < k;. However, if k;sin8 >

k, a branch point contribution from k; must be included, (Similar to the

path drawn in Figure 2.6.7 around the branch point kj).

After regrouping the terms in (2.6.2) we can identify a slowly varying
part and a rapidly oscillating part
gT =4 / dk, ( TTEkzz) : HO (kp)e~v | 2 <.
22

J

llowly varying rapidly varying
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(d)

Using the stationary phase method this becomes

T
HZ: ~

_iIA [ k3sin® cos 8 Tf;%(kasin )
8n %2 - kZsin?6

o0 k . .
) /dkp’,;‘;Hél)(ka)e‘h'l ’

r— 00

3ain? TE : skar
. _TA k3sin®6cos 8T}, (k25inf) ™" = oo

4 Vi — KEsin’ 6 r’
Notice the spherical wave dependence exp(ikzr)/r.
The SDP path is given by

-As? =ikp—i\ [k} —k2z —ikyr, 2<0O.

Since s is real on the SDP, we have two crossings: one when k, < k; and
another when k, > k;. These two points can be shown to be k, = k;sin 6
and k, = k2/ sin 6 [see exercise 2.24(b)).

In order to deform the SIP to the SDP we must define a closed contour.
However, if k;siné > k; we end up on the wrong Riemann sheet of k,..
Here, we must include a branch point contribution about k;. This is given

by
; k3 .
B = ‘z;—f / dk, 22 B (kpp)TiFe e, 2 <0
$

where S, is a contour that wraps around k; and has an asymptote given
by k, = As?(ip + z) /r?, z < 0. (This contour is similar to S; drawn in
Figure 2.6.7 around branch point k3).

Now, the integration path S; on different Riemann sheets of k;, can be
combined to a single integral by noting that k,, assumes opposite signs
on the different Riemann sheets. This yields

LB+ TTE-
L k;’z kl-l

H.S = —18{7:? / dk k2H (k,p)etes! ] , z<0,
ky

iIA T . ot | —4kre
= ——é-;r- /dkpszg )(k,,p)e"’ Il m] y 2<0,

ky

o0

iIA V 2 ! % tkpp—~ikysz

27r i,rp k% —_ k? /dkpkp klze p — 00.
k

For this semi-infinite integral we perform the linear transformation

—Xs = ikyp — ikaoz — ikip +i(k; — kD)iz, 2 <0,
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We can factor the branch-point singularity in the integrand so that

5 dk
sEF(s) = ki \/(ky = )k + B,) 32,

~ ik3V2(k, — k)t dky .k, > k.
ds |,_o
Thus, we identify B = ik}v/2 and a = 1 in the leading order term (2.5.32)
and
A
ds |,.o tp+ izvéd_—k?

Now we can use the first term of the Taylor series expansion (2.5.31) for
semi-infinite integrals to obtain

—iIA B 1 1
21 K-k 3
A R Rk

Ske pd — 53
enk;pt k2—k3 2

HIE ~ I

p—oo, z<0

where we have used T (2) = %w% and \ = 1.

Physically, this represents a conical lateral wave. It is induced by a spheri-
cal wave in region 1. Hence, it is only observed for angles § > sin™!(k, /k,)
because it is a critically refracted wave from region 1.

§2Q27

(a) First, consider a HED J = 26(z)é(y)é(2) in free-space. The TE compo-
nent is characterized by (2.3.7b)

HHED d &*

* dydnr’

We can use the Weyl identity (2.2.27) to find the integral representation

H,HED = # // dk,,dkv _:_Il eik,z+ik,y+ik,|z| .
-00

Now consider a current sheet and use the idea of convolution to show

J = £6(2)J(z,y),

=z // dz'dy’6(m - z')o(y — v)6(2)J(2', y’)
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We can convolve the fields and exchange the order of integration to result
in
k

M Jz( k.z-, k”) eik,z+tk.,y+ik,|z| ,

1 o0
sheet __
P = / dk,dk, 7t

-0

where the two-dimensional Fourier transform .7,( ks, k,) is
Je(kz, ky) = / / dz'dy’e=*=="=*w' J (', ¢/).

(b) For a current sheet on a dielectric slab, we have d; = 0 in Figure 2.3.1,
so we can separate the TM and TE fields in region 1

E,, = ,//dk k Jz(kzv ,‘:v)e'kl N [1 RTM(k"" k”)]

81r2wel

1 k, = iky

where we have used the results of Exercise 2.17(b) and we have defined
ki -r = k;z + kyy + k1.2 and dk, = dk.dk,.

(c) For a dielectric slab backed by a perfect electric conductor as in the Figure
for Exercise 2.27, R™M and RTF are the generalized reflection coefficients

at thltiefmterfaoe (see 2.1.21) and we can use RIM = +1, RIF = ~1 to
simplify
AT _ RIM Tsz‘MT&TI'M p2ikast
= b2 Rg‘Mezik,,t !
TT E _2ikaat

T
E 12 —21
R R 14 R{Ee%kz,t

Here, t is the thickness of the slab and T;; = 1 + R;; as given by (2.1.13)
and (2.1.14).

(d) The stationary phase point in two-dimensions is given by

0 0

ak kl r=0 and ak k] r—O

z-—k—z—O and y—ﬁz =0.
klz 1z

These equations are satisfied simultaneously when zk, = yk, so
ks = kl-::% = ky siné cos ¢,
kye = k,% = k, sin 8 sin ¢.
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We can evaluate the slowly varying part of the integrand at the stationary
phase point to show

1 7 TM e"kl r
Bye ~ e Jelkens ko) [1 = B™ (kess b)) sk / / s,
Z,Yy — 00
= 7 ikyr
~ T;kl J-“(kzu ky:) [1 et RTM(ksn ky.)] cosasinacos ¢e - ,
z,y— 00
1 - TE " ekt
Hy, ~ o Ja(kens Fua) [L+ BT (ks k)] Ky [ [ dK, .
Z,y — o0
=tk ; TE . e
~ Jo(kzs kys) [1 + RTE(ky,, kys)] sin O sin ¢ —, 2,y 0o

In the above we have assumed that t is small so that we can detour the
contour from the Weyl integral path defined by Sm/[k,.] > 0 and Re[k,.] >
0 to the steepest-descent path, without containing any singularities. In
other words, if ¢ is small, then there can be no resonant modes in the
slab, (except for the T M, mode described in part (f)) and the dominant
far-fields are due to the direct fields.

(¢) In the far-field the rapid space variations are smoothed out and propa-
gate like plane waves. Expand 7 = #cos8 — 0sin 8 and ignore the radial
field component as it cannot describe a plane wave propagating in the 7
direction. In other words, E,, = —E;ssin8, H,, = —Hyysinf. Then

Eyg = —E,,/siné,
H10 = —le/sino.

Also, the fields of plane waves are related by the right-hand-rule such
that

— J —

H¢ ,77 H0 7’

Hyi=— Elz = anlz
14 msing’ 14~ “sing

Here the Pointing vector is

Sl = El X H; =7 [ElaH;¢ — E1¢H1‘0]
=# [0 |Ewl’ + m |Ho[*] /sin’ 6

2 2
L | Fo ko, ya) {|1-RTM(k,,,k,,)|’cos20cos2¢

. Mk
+ |1 + RTE(kzn kv:)r Sin2 ¢} 9 T,y — oo

- (47r)?
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(f)

Resonance occurs for TM modes in a dielectric slab when
1— R%M RaTsM g2kt — ()

One wall of this slab waveguide is backed by a perfect electric conductor
so RJM = +1. The other waveguide wall is open. In order to satisfy this
guidance condition RJM must have the form RIM = e~%%2_ Then

2kq,t — 2621 = 2mm, m=0,1,2,---

Using the results of Exercise 2.2 we find |RIM| = 1 when k;, = i, with
a;; > 0. In other words, the field must be evanescent in region 1 and
propagating in region 2. Thus

_ €ky, — 160,
S e——— ’
e1ka, + t€201,

RIM B < (2+E) <B.

Hence ¢, = tan~!(e20;,/€1k;;). We can rewrite the guidance condition
as

2

Cutoff occurs when a;, = 0 and the wave is no longer evanescent in region
1, that is k,,t = \/k2 — k¥t = mx. The cutoff wavenumbers are thus

= — . m=0,1,2,-

kom = )
- ty/1 — e/ pae;

Thus the T M, mode has no cut-off frequency for this waveguide, and RTM
always has a pole. This pole can be enclosed between the Weyl integral
path defined by Re[k;.] > 0, Sm[k;.] > 0 and the steepest-descent path
since €2 > €. In this case the pole will contribute a residue. The pole
location is given by

€1k +ie20q; =0,
1+ itan(kyt) = 0.

The roots of the above equation must be solved numerically for complex
values of k} = (k2 + k2) given t and complex k,.

Assuming the pole contributes, we evaluate the residue in the first integral
for E,,, resulting in

o0
Ef = L _e-stg-ap / dk. k,
-0

- 47“061
‘ ‘7.1: (kz, \’ kzp -— kg) A(kz)e"kss"'iy(ki,—kiv/? ,
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where the residue is

A(k,)= lim - (k,, - kg) [1 - R™(k,,k,)] .

k,—»\/k},—

§2.28
A VED in free space produces a field characterized by (2.3.4)

_ It

8rwe

E.

T k3 .
/ k22 Bk p)ee

When confined between two parallel plates, the field can be written

-re . K ) ikzs 2 —ikpez ikzez
E,. = Sroes /dkPE":Ho (kop) [l + Age=2* 4 Bpetast] |
-0
Applying the constraint condition at z = d; and z = —d,; we have

Ape=ists = RIM [¢ihakhil 4 B eibasti] |
Bpe~thirts = RIM [gihasl-dil 4 gyeihasta] |

For metallic plates RIM = RIM = 1. These equations are satisfied by

2tks,d
A —_ 1 + e 'k) 2 62”‘2:'11
2 7 1 — eikas(d1+dz) ’
2ikazd;
32 1 + e th2:01 2‘k23d2 .

= 1 = etikasldr1+da)

(a) We can collect the k;, dependence in the integrand and define the function

eikz,'zl+Aze-ik2;z+Bzeikzgz

eik2alel e—ik2sz (eﬁkzzdx + 6251‘2:(414-42)) + etkasz (ezikzxdz + c2ik2s(dx+dz))
i Fon (1 — b aa)) :

Consider the case z > 0 then we can show
e""kixz (1 + e-2ikzxdz) + e‘hz’ (e—ﬁkzsdx + e—2ikz-(dx+dz))
Tk, (1 — e-Bkas(dida)) ’
z2>0

f("'k2z) =

e~ k2:z (e2ik2:41 + e2ikzz(d1+dz)) + eikasz (1 + e2t'kzsdz)
ko (1 — e2ikas(di+dz)) ?

= (k)
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By symmetry we also find f(—k;,) = f(k2.) for z < 0. Since the integrand
f is a single-valued function of k,,, there are no branch point at k, = k;
and the only singularities must be poles.

(b) The pole locations are given by
1- ezikﬁx(dl"'d?) = 0’

ky(dy +d2) =nw, n=0,1,2,---

2
klm=\/kg—(dlrj:d2) , n=0,1,2,...

When (d; + d2) — oo the poles migrate from k,, = *ioco along the
imaginary k,-axis towards the origin. When nx/(d) +d;) < Re[k;] the
poles cross to the real k,-axis and approach +k;.

(c) By Cauchy’s theorem, the integral path can be deformed from the SIP
to C plus the enclosed pole residues. (The contour C is drown in Figure

2.2.3). Jordan’s lemma forces the contribution from C to zero. Hence the
fields can be written

o0

E;, = (1)(k,,,,p)2mAn ,

n=1

where the residue is

An = k,l-i-.lg,,,.(k’ ~ kon)f(K22).

§2.29
The reflected field for a VMD over a slab is given by

ZIA i z =
B = / dk, 2 B (k,p)e™-e+ 0 REE.

The above integrand could have a leaky pole k; near the saddle point
ky sin 6; if k) < k; where k; is a solution of (2.6.25). In this case we must
use the uniform asymptotic expansion to include the effect of the leaky
pole. For large p we find

I "
A [ R, e

The stationary phase point is given by

d

r (ke + ku(z+2))| =0,

kp=kp‘
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kpy = ky —m—te = k; siné;.

/p2 + (z2 + 2dl)2

For infinite integrals the steepest-descent path requires a change of vari-
ables such that

—8% = ik,p + iky,(z + 2dy) — ik, sin01p ~ iky cos 6;(z + 2d;),
= 1kpp + ik],(z + 2d1) - ikﬂ‘[ N

where r; = (p? + (z + 2d;)?)"/2. Then we obtain the approximation

HE ~ {Ai ‘1 ehrrs /(s — ) 'F(s)e ¥ ds, p—oo
2zwzp2 &

where C’ is above the origin if k;sinf; > k; or below the origin if
k1siné; < k;. This integral has the form of (2.5.37). Furthermore, s;
is the image of k; on the complex s plane and

F(s)=(s - 8») szE (k,,)

The two critical points are the saddle point at s = 0 and the singularity
at s = s3. According to (2.5.47) the leading-order uniform asymptotic
expansion is

—JAe't .

Hﬁ ~ —é—e; etkirr—o; [\/5‘70W-1 (\/535) +nWo (\/ésb)] y PyZ =00
87z pi

where the W function is defined by (2.5.45) and the singularity is

-8t =ikp+ i\/kf -k (z + 2dy) — ikyry.

We can simplify v evaluated at the leaky pole (2.5.40)
Yo = F (35) 9

. dk,
= Jim (s - )7 Rff(k,)—

- dk
= —=l— lim (s - s)RIE (ko)== ,
V- k,2 k,,-ok. P’ ds
k‘;‘
= s lim (k, ~ R)RIE(K,).

V= kf ke
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Also, 7 is given by (2.5.40)
_ F(a)-FO)
Sp
K

kl R{ZE(kﬁ

=8, Yo + hm

kp-‘kl un 0]

= 8; 9 + k} i‘:s Z RTE(k, sin 6;) lim (“Z: ) :

Moreover, the steepest-descent transformation is quadratic around k,, so

2 h”( k

)d.s’

-3 h(kp) — B (k, - k,,)*.

Then, the Jacobian is approxlmately

1
) dk, 1 (kp — kps)?\ 2 _ -2
in (%) ~im () = |

We can evaluate the quadratic coefficient in closed form by

n d2
K'(k,) =

= (ik,,p +iku(z + 241)) ,
[4

= —is +2a) L
R
Combining these results we find

_ 2 e~ F k2 sin? 6; cos? 0; - )
71 =3317%+ v2 (zl+ od ); d RTE(kysin6y).
1

Now we use sinf; = p/r; and cos8; = (z + 2d;)/r;

:
: g
7 =857+ V2e ¥K % RTE (ky sin6y) .
1
Finally, the leading-order uniform asymptotic expansion can be written

HE ~ 24 it -sirbiesai) (o3} 2/ — 14 ATF (k)

87ip
3 -
Wo(V28) + k7 (k3 /K] = 1) ATF (k)sy ' Wo(V2 81)
495 k3 sin® Glﬁff (kq sin 01)Wo(\/§ sq,)] , Py 2 = 00
where the residue is

AT (k) = ot lim (k, — K)RIF(ky)
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(b)

where 2z = d; = 0. For large p we use the large argument expansion of
the Hankel function. The stationary-phase point here is given by

d (zk,,p + 2zmk3,d2)

dk, =0,

kp=kpem
p

p :
k, k2 e, 2 k2 sin 6, p— 00

For an N-layer medium, one can show that there are branch-point contri-
butions from only k; and ky (see Subsection 2.7.1 for further discussions).
Therefore in the case k; > k; the saddle point can be close to the branch
point at k, = k,, that is there may exist an m such that

k,siné,, =~ k,

In the case of a branch point near the saddle point we must use the

uniform asymptotic expansion for the leading-order term. For large p we
find

HﬁmN 1IA ’”r /dk P ck,p+2thsmd3T Rgsm; T21 p — 00.

For infinite integrals the steepest descent path requires a change of vari-
ables such that
—8? = ik,p + 2iky,md; — ik sin 6, p — 2ik; cos 6, md;,
= 1kpp + 2ik2,md2 - ikgr,,, .

Under this change of variables we rewrite

Hm™ ~ ,EIA: ~etharm /(s —8)” =F(s)e “ds, p— 00
237 zpz

where C’ is above the origin if k2sinf,, > k; or below the origin if
k;sin6, < k;. Furthermore, s is the image of the branch point k; on
the complex s plane and we define

i
dk
F(s)=(s “Sb)’—lesz'éR"'l T2 %
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The two critical points are the saddle point at s = 0 and the singularity
at s = s;. According to (2.5.47) the leading-order uniform asymptotic
expansion is

i S et [y (V) -ty (484

p— 0o

where the W function is defined by (2.5.45) and the singularity is

-83 = 1k1p + 21\/ kg - k% mdz - ikg?‘m .

We can simplify v, evaluated at the branch point:

Yo = F(ss)
o
= lim (s — 35)2 -—TnR"' mRy 1Ty —2 dk,
k‘p:’,:l ds

G —a)} dk,
bk [ (k7 k2)E ds
kp—k; 1 P

= [k} Ty.RyR! sz]

Moreover, we can evaluate the Jacobian in closed form
d, _, %is

ds P

This allows us to show

’ p> mdg.
— k? [T, R R Tyy)

" ’2;’35 0> md
o —_— ——— . - 2'
ﬁ kp’—.kl p ’

Next, we can simplify v, given by (2.5.40)
_ F(sy) — F(0)

S

g
1 k?
-1 c T2 : m pm-—1
=3 —18 lim -2T,R RLT.
s Yo b Jm kss 12413 21 5

kp—'kz sin 0m

dk,
ds

5
_ 4 .| sin® 6,
=S8 Yo — 18y T T
Vk? — kZsin®6,,
Ty, RAR7IT, -lim dk,
) [ 12RpRy 21] lk p=kasinbm o0\ ds
Moreover, the steepest-descent transformation is quadratic around k,,,

SO Bk
—8% %(kp - psm)2 .
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Then, the Jacobian is approximately

1

. dk, ~ 1 (ko — kpam)2 ? _ —2
P-E% ds ~P-I»%( s? TV r(kpem)

The quadratic term h"(k,) is given by

& /. .
k)= G o+ k)
14

Combining these results we find

iz . 2 3
-1 evkjsin? 0, cos? O,

-1
Nn=8tp—8 —m———————
bW (mdz)} /K2 = K2sin®6,,

[Tl?R"z?sR;nl_lTN] Ik,,:k, $in O
Now we use sinf,, = p/r,, and cosb,, = 2md,/r,,

5
-1 i 2 k; cos 8
-1 1 ix, o p 2 m
T =8, Yo—$, *2%ev k;
m

7 TR aatss 1 RRRE ] ity i

Finally, the leading-order asymptotic expansion can be written

B~ it o T )Wy (VBs)
8wap 2
+2-% sﬁkam(kl)W% (ﬁ 3,,) _it s R ein®a,,

B (kasinga) Wy(VEs)| , po 0

V ki — k2 sin®6,,
where

Ton (ko) = Taak, ) R3(ko) Ry (K, )T (K )-

§2.31
Given a VMD over a half-space (2.6.35)

—il4 2 M H sk1ry cos(0p—
r

where I' is shown in Figure 2.6.13. The stationary point is given by

2 (om0

=0

a=o,
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SO
a, = 01.

The stationary phase path is given by
—)s? = ikyrycos(6y — @) — ikyry.
Using a change of variables we find

n_=idA [T o [
Hy, ax \inp e e~ F(s)ds.

C!

Here we have defined

F(s) = (kysin a)ng;E %% .

and we have assumed that the branch point is not contributing, that is
k,sin ) < k;. The leading-order term is given by (2.5.21)

R —tIA ok;n k
By ~ v inp zk1r1 F(0), = e

where the stationary phase contribution is

F(0) = (k; sina,)¥ RTE(k, sin o) lim (:iij)

-2
h”(t )
= (k; sin 67)% RTE(k, sin 6;)V/2.

= (k; sin 91) R (kl sin )

In the above, we have used h(t) = cos(6; — a). Finally, we arrive at

tk;r;

Hﬁ ~ iI—;A;(kl sin01)2R (k1 sin 01) y kirp— o0

and we have used p = r;sinf;. Notice that we have arrived at (2.6.6)
using the angular spectrum representation.

§2.32

A guided TE mode of an inhomogeneous slab satisfies the equation

[jzy :+k2 ]¢(z)=0.

where u,€, and k are functions of z and k, is the wavenumber for a TE

wave Sommerfeld integrand ¢(z) as in (2.3.10a).
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(a) We multiply the above TE wave equation by ¢*(z)u~1(z) integrate from
—o00 to 400 and find

/dz¢‘(z)a(—lz-y'l(z)diz¢(z)+ ‘/dzll_l(z)kz(*")lﬂ”(z)l2

-8 [ dn@er =o.

Now we can simplify the first integral term above using integration by
parts and ignoring the surface terms as we look for guided modes whose
field vanishes as |z| — co. Then, we obtain

- /dzp'l(z) ﬂ;ii)

+ / dzp! (2)k*(2) |6(2)I*

-8 [ 4z ot = 0.

For lossless pu(z) > 0 we deduce that the real part of the above equation
must satisfy the inequality

[ dat@Re () 6 > Re (1) [ deua) 180

These two terms have bounds given by

[ a7 @)Re () 18I < max w7 Re®?) [ azlgCa)P

Re(k?) / dzp=(2) [6(2)[ 2 Re(K?) min p~! / dz (=),

for Re(k?) > 0,

where min or max are the minimum or maximum of a function over
—00 < 2 < 00. These inequalities imply that

Re (¥2) min p~! < max p'Re(k?), for Re(k?) > 0.

The above inequality defines an upper bound on Re(k?) for positive

Re(k?2). Similarly, we can deduce that the imaginary part of the TE
wave equation for lossless u must satisfy the equation

[ @ @%m (B@) 18I = 9m(E) [ den @)1
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These two terms have bounds given by

[ dsu@)9m (#() 18 2 min w7 9m(e?) [ dalaa)P,

om(kg) [ dsu @ BEP < Im(kE) max™ [ dzlo(a)l

for Sm (k%) > 0.
These equations can be combined to yield
dm(k?) maxp~' > min p~1Sm(k?), for Sm(k3) > 0.

This equation defines the lower bound on Sm(k?) for all Re(k2) since
min p~'Sm(k?)/max ™! is a positive number for passive media.

Furthermore, the imaginary part of the TE wave equation has additional
bounds given by

[ du@om () 161 < maxu-iom) [ dalgia)P,

om(ky) [ o) (I 2 Sm(k?) min ™t [ d el

for Qm(k2) > 0.
These inequalities are used to show
Om(k2)minp~! < maxp~'Am(k?), for Sm(k2) > 0.

Finally, this equation defines the upper bound on Sm(k?) for all Re(k2).
In summary, the poles of the Sommerfeld integrand for a TE wave can
be located in the shaded region of the Figure for Exercise Solution 2.32.

(b) We can map the complex k, plane to the complex k2 plane by
k2 = (Relk,] + iSm[k,))’ = Re[k,)? — Sm[k,)? + 2iRe[k,]Sm[k,)].

Thus the line Re[k?] = constant on the complex k> plane maps to a

hyperbola on the complex k, plane given by Re[k,]*—Sm[k,]* = constant.
This hyperbola is centered at the origin and has foci on the Relk,] axis.

Similarly, the line Sm[k?] = constant on the complex k2 plane maps to a
hyperbola on the complex k, plane given by 2iRe[k,]Sm]k,] = constant.
‘This hyperbola is centered at the origin with foci along the line Re[k,] =
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Upper Bound Im[k,2] Possible Pole
for lmlk 2| A Locations

d

////////////////%— o

]
' - ~] 1l 2
\ > Rc.ll\p |

Lower Bound
for Im| kpzl

Figure for Exercise Solution 2.32

Qmlk,). The asymptotes for this hyperbola are the real and imaginary
axes.

Thus, the possible locations of the poles on the complex k, plane are
shown in Figure 2.7.4.

§2.33
(a) Given an integrand G(k,) with a pole at k, = kp such that G(k,) ~ 2=
as k, — kp, first evaluate

lim (k, — kp)F(k,) = Lim (k, — kp)G(k,)

kp—kp ko—kp

24kp  Jo(k,a)
— K Jo(kpa)’

o%kp Jo(k,a)) o
k,, + kp Jo(kpa) )

A

ko—kp

= lim A(l—

Thus, F(k,) has no pole at k, = kp. Then the integral can be rewritten

oL /dk k Jo(ka)G(kp)’

"'/ ko o(kpp)F (k) + ol / i, ® ’°"°”’)J°(’°v“>.
J Jo(kpa)
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(b) The second term above can be evaluated in closed form

P 2Akp /dk k JO(kPP)JO(kPa) .
Jo(kpa)

Recall the Bessel identity Jo(z) = 1 [Ht(,l) (=) + H((,z)(z)] then

_Akp_ / e FoH3 (ko) Jo(kp0)

Ir= Jo(kpa) k2 — K%

Akp 2)(ka)Jo(kpa)
Jo(kPa) / dk .

Now, use a change of variables in the second integral above such that

k, = —k/, and recall the Hankel identity H, m(z) -H (2)(—3) to unfold
the mtegra.l to

1 = _Ake / &, koHo" (kop)(Jo(kpa) + Jo(~ksa))

Jo(kpa) k2 — k%

Then, we recall the Bessel identity Jo(z) = Jo(—2z) and we find

k]

I = 2Ake_ / at, k Jo(k,,a)Hg"(k,,p)
Jo(kpa)

where the contour of integration is the SIP. Using Cauchy’s theorem and
Jordan’s lemma this integral is exactly equal to the residue at kp so

24Akp kaO(kpa)Ht()l)(ka)
Ip Jo(kp )21rz hm (k kp) kf, — k2P ’

Ip = 2ni Akp H(kpp) .

§2.34
(a) Assume ¢(r) = A exp(iwr(r)) then

V¥ = (wV?r - w*Vr . V1) ¢,
so the 3-D scalar wave equation can be rewritten

iwVAr(r) — w?Vr(r) - Vr(r) + ¥*(r) = 0.
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Now we use a perturbation series such that

7(r) = 7o(r) + :l)-r,(r) +eee, w — oo.
The leading-order terms compose the eikonal equation:
W Vry(r) - Vro(r) = k¥(r).
Similarly, the first-order terms describe the transport equation:
iV279(r) — 2V1o(r) - Vry(r) = 0.

(b) These equations are solved numerically by using a ray-tracing algorithm.
The ray path is given by the equation

where c is the velocity and ds is along a ray path. The eikonal equation
can be rewritten as V7o(r) = S(r)$ where 3 is a unit vector in the direction
of the ray at the point r and S(r) is the slowness. In the ray coordinate,
this is £7o(r) = S(r). When integrated along the ray we find

mm=¢/ﬂﬂa+q.

Similarly, the transport equation can be rewritten
—252n(r)+i£ZS = 0 and solved by

mg:%man+a,

§2.35

(a) Assume a TE incident wave ae~**:* from z = 4+00. Here, reflections are
generated by two features. First, the step discontinuity at z = d provides
a reflection coefficient given by

— ka - klz

- ka + klz .

Second, the smooth dielectric profile also produces reflections. For the
case kd > 1 the smooth dielectric profile resembles Figure 2.8.1 with

€1 > € > €;. Far away from the origin we can use the WKB method to
approximate the field using (2.8.33)

Ro,

¢1(Z) ~ 4 ’ii [A+eik1:z+ia + A_e—ilq,z-ia] : 20
1z
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where (2.8.32) gives the phase term
d
a= /[k(z') — k1.]d2’ — k(.
4

Now using asymptotic matching we find A;/A. = —i from (2.8.38).
Thus, the smooth dielectric profile is characterized by a reflection co-
efficient referenced at z = 0 given by

A, .
Rin = _6230 - _ie2m .
12 = 7
Finally, the generalized reflection coefficient due to multiple reflections
between the two features is

§01=R01+

To1 R12Tyoe? 124
14 Rg Ry e%kisd

(b) The transverse resonance guidance condition is 1 + Rg; Ry2¢*%159 = 0 or

1 _ ka - klz iezikl‘d+2’.a — 0.
ka + klz

§2.36
For a half-space the state vector in region 1 is given by (2.9.14)

V](Z) = Al_e°"‘“‘a1_ + RAl_e"'""al.,. = El . e'i" . [112] Al_ .

Similarly the state vector in Region 2 has to be of the form
Vi(z) = TAy_e™™+*a,_ =T, - s [3‘] A -

Because of the definitions of ¢ and ¥ in (2.9.1) and (2.9.2), they are
continuous quantities across a discontinuity. Then, we know

] 5 2]

If we normalize the eigenvectors such that at-a = 1 we can test the above
equation with &! resulting in

Rl 4 _ 0
1| T&& )
R _ 81_'_'&2_
] =7 i)
-1
R=a1+-a2- (a}_-ag..) ,

T =(al_-a;.)".
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§2.37

By writing (2.10.8) in the form (2.10.9) we know that the state equation
has matrix elements described the following operators

H); = (~i3 x &, - VKo x) = (12 x Kk, X K5,€2°)
Hy; = (miwi X &7,") + (tws X B,, - By, * Vaz) — (-Z—f— x k, X K,,,E,x) ,
with H2; and Hj; given by duality. In Cartesian coordinates we know

k, = zk. +jk, and we can simplify this expression using vector identities.
In particular we recall

s xk, x 3

I
1 &l

S(2-5) - 2(2-K,)
=k,

where we have used Z -k, = 0. Now we can rewrite the state equation
operators as

Hy; = (~iz x f,, - vk, %) — (k. k.7 - €,,°)

= c A e . i= . =

H,; = (—iwz x @&,") + (iwz X \,, - Ppy * V3z) — (;k,n,,z . k,x) .
Finally, in Cartesian coordinates we define the state vector as

V! = (E,,E,, H,,H,). With this definition the state equation operators
can be written in matrix form as

Hl =i —Hy2Vzz ky - kzKyz€:z, HyzVzs kz — kK., €zy
l -—
HzxzVzz ky - ky’czz €zz, —UzV, zzkz - ky Kzz€z2y

ﬁu =

iw Byz — ByzfzseVez + “_tsznzz km Hyy — ByzBzyVzz — é‘kznzzkz
—Hzz + BzzfhzzVs2 + “_tb'kynzzkw —I“.':y + ﬂzz#zyuu - ;lfkynz:kz )

Similarly, we can find H,; and H,; by duality.

§2.38
(a) Given two half-spaces, the reflection and transmission matrices are related

by (2.10.21) _
= . R;" =R, - _0
ai 1 = &z ,1:.12 .

Now we can multiply by & and solve for the two unknown matrices
Ri]_ (5.5 0
[ I ] - [ ] B [Tn} ’

o] 4 [ D .1 [0
D2l Dzz Tz |’
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(b) For homogeneous and isotropic media, one can show that the state equa-
tion (2.10.9) simplifies. In this case 7 = y;I and € = ¢I where I is the
identity tensor. Then, H;; = H,; = 0 in the state equation. Further-
more, for a k vector in the zz plane one can show

- 0 A
I'Il2=[h2 01] ’
= 0 &
H21=[h‘ 03] .

Here, we have defined the state vector as V* = (E,, E,, H,, H,). In this
case, the eigensolutions of (2.10.12) separate into TE and TM waves such
that the general solution is of the form

V(Z) = a [Alciplz + A3€-iplz] + a; [Age‘p” + A4e-—iﬁgz] ’
where a; and a, are orthogonal. It is appropriate to normalize the eigen-

vectors such that alal = a;ag = 1.

In the two region problem, the TE and TM waves are still orthogonal.
Thus, the matrices D,, and D,, defined above are diagonal, and hence
so are R;; and T;,.

(c) The reflection and transmission matrices in this case are given by

—  [RTE o —  [TIE o
Ru=[ (1)2 RTM] ’ T12=[ b’ TTM

§2.39
As a series we can write (2.10.30)

Riz =Ry + Ty - €949 Ry - P-4 . T,
+ Ty - ePead2 . Ry - eP2-% . R, - ePr4% . Ry5 - P2-% . Ty -

where we have expanded (1 — z)™ = 1+ z + 2? +.--. The physical
interpretation of the first term in the above is just the result of a single
reflection off the first interface. The n-th term above is a consequence of
the n-th reflection from the three-layer medium. Thus, the series above
can be thought of as a ray or geometric optics series, as a consequence
of multiple reflections and transmissions in region 2. Notice the differ-
ence between the above series and (2.1.22) is that the above generalized
reflection matrix incorporates both type I and type II waves.






CHAPTER 3

EXERCISE SOLUTIONS
By J. H. Lin and C. C. Lu

§3.1
The wave equation for electric field is

VxVxxE-FKE=0.
Using the vector identity
VxVXxE=VV.E~VE,

and the fact that in the homogeneous and source free region, V - E = 0,
we obtain

V2E + F’E = 0. (1)
Therefore, for the z component,
V?E, + K*E, = 0.
Now, forming the dot product of Equation (1) with p, we have
cos ¢V2E, + sin¢V?E, + k’E, = 0.

Since E, = cos¢E, — singEy and E, = sin@E, + cos §Ey, the above
equation becomes

os¢[cos¢ 0 ( BE,,)_ sing 0 ( 0E4,) cos¢

p Op p Op
cos ¢ O°F s1n¢ sing 8*E, 6 E,
p? a¢2p 7 Es - o7 042 +cos ¢ dz?
sing 0 cos¢ 0 ¢ OF, sin ¢
—s1n¢ ]+ [ p ( ap) p 3p(p6p)— p? E,

sin¢62E,, cos ¢ cos¢62E'4,
+ P2 B¢? p? Es+— p? 9 +si d’

&*E
Bz:] + k2E, =0.

+ cos.¢

After some arrangements of the above equation, we obtain

10/ 0E,\ E, 18&E, aﬁE
- £ k’E. =
pap( ap) gt g tEE =0,
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which is actually of the form

E
VE, + K*E, — % =0.

Same derivation can be applied for the ¢ component, and it leads to

E,

V'E, +FE;——2 =0.

So, the ¢ and p components do not satisfy the same equation as z com-

ponent does. Same arguments can be applied in the case of H field as
well.

§3.2

Since (3.1.2) are linear and second order PDE which can be decomposed
into three second order ODE’s by the method of separation of variables,
we then have two linearly independent solutions for every n.

So, owing to the linearity of Bessel’s equations, any linear combination
of two linearly-independent solutions is still a solution to the equation
for each n and since Bessel’s functions form a complete set, their linear
superposition is still a complete set.

§3.3

In a cylindrically layered medium, since it is translationally invariant in
the z direction, if one region has e*** dependence, the k, must be the
same in every region.

In order to satisfy the phase matching condition at each interface of these
cylindrically layers, e'*** dependence must be assumed in each region.

§3.4

(38.1.4) are
E, = 2 [ik.V.E, - iwpé x V,H,],
(4
H, = o [ik.V.H, + ivet x V,E,].
P

Consider the ¢ component,

1[., 10E, . OH,

E¢—- ﬁ [2’6,;&-1&0# ap ] N
[ l aHz + iweg_E_z.

p O¢ Op |
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Since E,, H, have ™ dependence, 3% operation leads to multiplications
by in. Thus,

1 nk, aHz
o= g |-em -]

1 nk, 3E,v
H, = W [ ; —H, +iw % |

Written in matrix form, it appears as

Hé 1 nk, Hz . 0 esa:; HZ
E¢] k’{ [E,]*""[_,,a% 0]E:])f"

For region 1

H,, 01 0 1|
[E:z] = H,(‘l)(klpp) [1 0] - &y + Jn(klpp) [1 0] R12 -aj.

Hyl 1 nk: .1) 01 nk,
[EW] = -kg_{ P H; (klpp) 1 ol a — —p_Jn(klpP)
[ ] Ru a + zwkl,, [ 61] H 1) (klpp) [0 1] - a
, 1
0] Jo (k1) [1 0] 'R-12°ax}
= o= 1
ko L —2H(k,,p) —zwmkxpﬂn (krpp) ]

iwerky,J,(k1,p) "—,’:‘J (k10p) ] }
) , R . . 1
[ =2k ] (k1pp)  —iwpk,Ji(kp) | T a1 M

For region 2,
H,, 0 1} =
[E:,] = H,ﬂl)(kgpp) [1 0] + Tz &y,
then
Hy| 1 [ nk,
Ew| KB, L »
iwky, | O 2| HO(ky,0) ‘Ty;-a
Wl lop O 20P 1 0 12° 8
X {[iwezthﬂ N(k2pp) "—k‘Hn(l)(ksz)] a}
=73 12° 8
(2)

1 0] T12 a+

~ B (kypp)  —iwopsH P (kypp)
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e e ——————————

(1) and (2) can be expressed as

Hl'#] -ﬂl)(klpp) *ay + Jn(klpp) R12 *ay,

1)
E2¢] = n (K2,p) - T1z - a4,

where

(k ) = iwe; ki p B, (kipp) _‘nszn(kipP)
n\tieP kz —nk,Ba(kipp)  —iwpikiopBy(kisp)

Here, B, is either H,l or J,.

§3.5
(a) Bessel’s equation is of the form,

2
P4 Py (1——)P 0.

If P, and P, are two linearly independent solutions to the above equation,
then

P"+-1-P'+(1-1‘1)P 0, )
1 z 1! 1=
n2

F,'+§P,'+(1——)P2 0. @

Multiplying (1) by P,, and (2) by P;, then subtracting the second equation
from first equation yields,

Pl”Pz - P1P2” + %(P{Pg - P]Pz’) = 0.

Recognizing that P/'P,— P, P} = (P|P,~ P,P}Y and let P{P,— P,P} = f,

we have
gt & _
z’ f z
Thus,
mf=-lmzte — f=20
So,
const.

HN(2)T,(2) = Ju(x)HIN(z) =

T
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(b) Since H"(z)J(z)— Ju(z)H, () = 2% holds for every z, welet z — 0.
Then we have

_ i =D! (Z)" [(3/2')"]’ _ (z/‘a:)" [__i(n ~-1)! (g)ﬂ]'
=l DAy e 2
o _ -

T T nr

So this constant is =2 "'

§3.6

(a) Since a guided mode exists in the cylinder without the external excitation,
a, in (3.1.6) can be set to zero. But there is still a wave existing in the
cylinder, which requires that determinant of R, be infinite.

For the case of (3.1.14), Tn should possess an infinite determinantal val-
ues in order for [E,, H 12)7 exists without a;. And judging from (3.1.16a),
Tn is related to R;, by some multiplicative and additive finite constants.
So R;; should have an infinite determinant.

(b) D is the same both in (3.1.11a) and (3.1.17a). So in order for R;; and
Ry, having infinite determinant, D ! should have infinite determinant,
i.e. D has zero determinant.

(c) Since both cases deal with the same structure of circular cylinder except
for different locations of external excitations, and resonant conditions are

independent of those sources, we obtain the same guidance condition with
(3.1.11a) and (3.1.17a).

(d) When a3 is zero, in order for a; to exist, from (3.2.17), the determinant
of I-Rys- Rzl) -1 should be infinite. In other words, I — Ry3-R,; should
have a zero of determinant value.

AISO, a = Tg; sy = Tg] (I R23 Rzl) T32 - az. So it is clear that
det(I R, - Rzl) = 0 is the guidance condition. Maybe one will argue
that T3z being infinte can yield the resonance as well, but an infinite Ry
ensues when we make the above assumption, which does not guarantee
that (I — R,3 - Ry;)~1 - Ts, is infinite.

§3.7
(a.) Let
e = ehred = N g6, (kp).

n=-=—00

Multiplying both sides of the above by ¢™¢ and integrating with respect
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(b)

(c)

to ¢ from 0 to 27, we have

2

oo 2
/eikpcocd:-i-im:ﬁ d¢ = z %Jn(kp)/ei(nhn)d’ d¢.
V]

0 n=-—=00o

The only term that survives in the right-hand side is n = —m.
Hence,

2r
/ ikp cos d+im¢ dé = a_mJ_m(kp) - 2.
0

2x
Invoking the fact that Jn,(kp)e'® - 2m = [eikocoss+imé gy the above
0

equation becomes

27" F Jn(kp) = amJ-m(kp) - 21 = a_m(~1)"Jm(kp) - 2.

{ BX 1 -t BE g.i13.8
Therefore, a_,, = (—-1)"e*z, an, =e™"e™"2 =¢'2.

Since the field transversed to z can be expressed as

1 . .
E, = m [ik,V.Ez —twuz X VaHz] )

1 . . A
H, = E—-{-_kg [tk,V,H, + twez X V.E,]

in terms of H, and E,, any arbitrarily polarized plane wave can be de-
composed into TM to z and TE to z plane wave.

For an arbitrarily polarized incident plane wave, from (b), we can char-
acterize it by E, and H, as

[I%] _ [IE;?;} eiksotikyytikas _ [ gg] gikopcon($—din)Fikez

;From (a), we can express this incident plane wave in terms of cylindrical
wave as

E, E S $8F in(d—din tksz
HEE ( 2 e )J"(k”))ek |

Then, for the n-th harmonic with e™#-%in) dependence, applying the
recursive formula (3.2.19) to obtain the generalized reflection matrix
Ry (n-1), we have the reflected wave

EZ 3 Eo|
[Hf]n = Hr(zl)(kNpp)RN(N-l) ’ [Hz] e,
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So, the total reflected wave is

[ ] Z Pk "‘("""")Hr(al)(knpp)ﬁN(N—l) . [Ilgz] e'Fs*,

n=-—0oo
Note that -R—N(N—l) is a matrix depending on n.

§3.8
(a) When n — —n, (3.1.9) becomes

E-n(kipp)

= 1 [iwe;k.-,,p(—l)"B;(k,-,,p) nk,(—1)"Bn(kipp)
k nk,(—1)"Bn(kipp) —twp;kiop(—1)" By (kiop)

_ (1) [iweikiopB,(kip) nk,Bn(ki,p)
- k?pp nk, B (kiyp) —iwp;k;,pB, (kipp)

2 (—1y By (ki,p)

where B is defined as the matrix whose off-diagonal elements are those
of B, by changing sign.

Therefore,

D= :3_,.(k1,a)H9,2(k2,,a) - ﬁ‘_‘,’,(k,,,a)J.,.(k,,a)]
= [(~)"T (kua) (1) BO (kyp0) = (~1)H (kaya)(~1)"Ju(k1p0)|
= [T (k1,0 HO (kay0) — B, (kzp0)du(krga)|

o -1
D7 = [T (ki) B (kp0) ~ B (knpe) ()]

whose oﬁ'-dlagonal elements are just those elements of the opposite sign
when D™ is the function of n.

Looking at these forms of Ry;, T2, —R—g_l and T, in (3.1.11) and (3.1.17),
which actually are similar to that of D, it is easy to verify that only the
off-diagonal elements change sign when n — —n.

When k, — —k,, it is readily seen that

Ba(kiop) = By, (kipp).

So does off-diagonal elements of R;;, T12, Ry and Ty change signs
when k, — —k,.

As for Rn, Rn, Tn, and Tn, since these matrices are constructed from
R ;41 and T;;4; whose off-diagonal elements change signs when n — ~n
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or k, — —k,, these generalized reflection and transmission matrices have
the same behavior.

(b) When p = a, from (3.1.6), a; can be expressed in terms of [E;, Hy,|T
as

= = -1 [E;,
a, = [HO(ky,a)T + Ju(kr,0)Rya) ™ - Hi] .
p=a

Then,

E,, =
HZ: } p=a = H'('l)(k2pp)Tl2 -a

— < = -1 [E.,
= B (ko) Toa- (B k)T + JoChryeBis] ™ | £ |
%2 ) p=a
s |G G12| E,.
“len an [Hiu) _c
But when n — —n, or k, — —k,, according to the proof in (a),
[E2. Hg,]T and [E,, HI,]T are only related by u —au] . There-

p=a p=e —an ax

E,, _ ankE,; - apHy,
fore, [Hz,]m B [-anEu +anfh: |

E,, contains a;1 E,, — a;2H,,, which means that odd symmetric TE wave
couples only to even symmetric TM wave; H,, contains —ag, Ey, +ay H;,,
which means that odd symmetric TM wave couples only to even symmet-
ric TE wave.

Also note that k, — —k, is equivalent to 2 —- —2, and n — —n is
equivalent to ¢ — —¢.

§3.9
(a) From Section 2.2.1, we have already known that the solution for

[V2+ k2] @(p,¢) = —6(p - p') = —&)—;—p'zw - ¢ (1)

is

t
& = 2H (koo — p'))- 2)
When p > p', we can express P as
& = Y auf(p', ) HO(k )™, (3)

and for p < p/,
&= bug(p', 8)Julk,p)e™. (4)
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(b)

But from the rotational invariance of the problem, & must be proportional
to (¢ — ¢’). Hence, & is of the form,

Y andu(k,p ) HO (kop)em®=#) | p> g,
d = » ) ,
Y an H k') Tnlk,p)e™4) | p < o,

where the coefficients are the same for both expressions (a, = b,) owing
to the continuity of @ at p'.

If we examine Equation (1) closely, it is a second order differential equa-

tion whose singularity comes from the discontinuity of the first derivative

of the wave function at the source point. Substituting the above two

expressions in (1), integrating from (p’ — €) to (p’ + €), where ¢ — 0 and
©O . ’ .

recognizing that §(¢ — ¢') =L 3 €™#-#), we obtain that

n=-=0oo

1
2np’”

Invoking the Wronskian property of Bessel functions, the term in the
square bracket can be simplified to = wk -. Hence,

ank,[Ju(k,p") H, D (k,p) — HO(k,p') L (K,p)) = —

" .

So,
b Ju(k, o) HO (K, p)em#=#) o > o,

H (k|5 - 7)) = o
Z (1)(ka')Jn(ka)em(¢_¢ he<p.

By using the raising operator given by (2.2.16)

1 3 . 3 § i(n
E [5‘ i 5;] Bo(k,p)e™ = Busa(k,p)ei+¢
m times on the addition theorem derived in (a), we have
112 01" gy - o
-z & +2]} mwp-p
S (k) (-4 [& +i8])" HO(kp)e™ , 5>,

}:Hv(zl)(kpp )e’"‘# (—- ks [% + 1%]) Jn(kpp)e‘w y P< plv
n
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~EQ (k- e
{ E Tu(kpp')e™"? H,(H?m(kpp)e'(ﬂ"'mw y P>

EH (1)(kpl’) ~ind' ] ,,+,,,(k,,p)e'("+'")" y P<p,
z: Tn-m(kop) H{ (K p)eimt=itn=m)é' | p 5 pf,

w - - '
—2 H'(.l_)m( kp pl) J. ( kp P) ené—i(n—m)é , p<p.

§3.10
(a) When & = 2, the operator I’ can be expressed as

D'=[k2+o£%

Then (3.3.6) becomes

o &
[ z] =4;I£€ Z en(6-¢") /dk [ k? + 575]

et =T, (kop ) HO (R ,ps),

%) -

. oo . n X . ’
[—,’-.:- Y o) | dk,(kz-ki)e'**“-*>Jn(kpp<)H,‘."(kpp>)]

o 0

(b) When & = £, and ¢’ = 0, D’ becomes
D = [GF+ =V - &
twea -z x V/
[ (2k* + & V') - (cos ¢ — sin $4) ]
=1; A oA 7.8 Al 3
iwe(cos ¢p — sin ¢4) - (8% — % )
_ [% (cos¢8 ; s1n¢1, >
—iwe (°‘;‘—,¢ 35 +sin ¢5’7) .

Thus,
[E,] _ 1I¢ COos ¢azlap E;L'é 8:’%! Z em
H, 4drwe ""‘7-* 55 — iwesin d=2 ol =
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o0
/ dk,e* =) ] (k,p ) H (K, p5).

ize [ T db(ik)e=) con ok, T (b, ) EE (kyp)

drwe | e io: sin ge'™? f dk, ek =)k J! (k,p") H (K, p)

- n=~—00

Ie °°S¢,.§,° et f dk,k ke =) (k,p) H (K, p)

dmwe wes1n¢ f: P f dk, k%= J! (k,p") HM (k,p)

n==0o

If p' > p, then

[H ] 41rwe
cosg 3O end f dk, k. k,e*s =) I (k,p)H:(k,p')

n==00

wesin ¢ f: e f dk,k et == ], (k,p) HiM(k,p)

n=-—0o0

§3.11
Substituting (3.3.11) and (3.3.12) into the expression

[Jn(kjpp<)Hr(ll)(kjpp>)i + Hr(ul)(kjpp)ajn + Jn(kjpp)-sjn] ’ ﬁ;
leads to, for p’ < p,
NEO (L. T 4 B IR, ..R®.17
Ja(k;pp")H Y (kjop)l + HP(Kjpp0) [I ~Rjj-- R5.5+1]
= ) NT ne - = = -1
Ry [H n (Kipp )L+ Ju(k;pp )Rj.j+1] + Ja(kjpp) [I -Rjn- ,-,,--1]
Rijjsr - [J,.(k,-,,p’)i + HO(k;,p)R; .1-1]} 5’

Since R; ;’s are symmetric, we define ﬁj* as

ﬁ it = (I RJ.J=F1 RJsJil)-l :
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Thus, (3.3.13) becomes

-

{FakippYED 3p0) [T+ M - Ry R
+ Hy(ul)(kipP)Hv(zl)(kipP')Mﬂ ’
+Ja(kiop)HY (k50p )M - Riir 'E’.j-l} - D;

= {J,,(k,-,,p')H O(k;op)Mj4 + HO(k;00) HO (k00 Mt - Ry

b

~

-1+ Jn(kjop) Tn(kjpp’ )Mt - R

¢}

&

+ Tn(kiop)Ta(kipt )M - R aa
+Tu(k30) HO (ki My - B jaa 'ﬁj.:'-l} . D}
= {EOkiupIMys - (Jnlkiod) T+ HO(kipp VR 501 )
+Jn(kjpp)ﬁj+ . ﬁj,jn . (Jn(k.‘ipp')i +HY (kij')ﬁj.:‘-l) } . b—}

—

= { [Hr(tl)(kjpp)i + Jn(kipp)ﬁ.i.jﬂ] “Mj,
: [Jn( ko)1 + H ,(;”(kjpp')ﬁj.j—x] } - D

Same derivation applied to the case for p’ > p yields

{[7nkio )T + HO(kipp)R 1] - M
’ [H,‘,"(k,-,,p’)i + Jn(kjpp')ﬁmn] } -b;

§3.12
(a) Since ain and a;, are the amplitudes of outgoing wave in regions ¢ and j
respectively, according to (3.2.11) these two amplitudes are related by

~
—

ajp, = Lji-ajn

if the ¢th region is the outermost region.
But generally it is not necessarily so. We have to multiply an additional
factor to account for the multiple-reflection. So, we modify the above

equation as

i+ * Tji - ajn

—

2

aip =
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(b) Using Equations (3.3.16) and (3.3.17) in Equation (3.3.15), we have

o0

E: zIZ . P T . '
iz | _ in{é—¢') k. ks (z—2')
Hiz] 4rwe; ”;w ¢ / dkse
[H,(,‘)(k.-,p)i + J,.(kapp)ﬁ-,e-n] My - Tji - ajn

E§ ginto-e) /dk,e""("") LSO

d7we;
n=-00

+ Jﬂ(kipp)-ﬁ'i.i+l]
M., T M, - [Jn(k: N+ HO(kjpp )R o1
( 3.18)
(c) Similar to (3.3.17), we identify
ajn =M, [H,‘,‘)(k,-,,p’)i + Jn(kjpp')ﬁj,m] .B;,

Thus, (3.3.19) becomes

o0
5], 5 v o

[InCkino)T + H,(})(k,-pp)R.-,,-_l] ‘M- Ty - M

(BT + Tulkid R - B (3.3.20)

§3.13

Note that (3.3.21) with (3.3.22), (3.3.23) and (3.3.24) can be simply ex-
pressed as the following form

Ex - 2L °° snd: thaz
e /dke Pa(o),

41re_, e

where
Pa(p) = [AnH'(ul)(kipP) + Ban(kJ'pP)] )

and A,, B, are the functions of Bessel Functions and Hankel Functions

and their derivatives whose arguments are radial distances of all layered
media or that of the source location.

For those layers other than the outmost layer, P, is a linear combination
of H{" and J, and remains unchanged no matter which branch of k;,’s
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is chosen since according to the uniqueness theorem, A, and B, adjust
automatically so that there is one and only one solution in this case.

But for the outermost layer N, P, is just A,.H,(;l)(kjpp), k;,’s of differ-
ent branches will yield different results some of which even exhibit the
exponential growth when p — oco.

So the solution of a source in a cylindrically layered medium has branch
points only at k, = +ky on the complex k, plane, where ky is the wave
member of the outermost region.

§3.14

(a) For a vertical electric dipole pointing in the z dlrectlon, we need only
consider the E, component. Since there is only one perfectly conducting
cylinder, from Equation (3.1.17),

J(k
21 = —'——'—(1() 2,,0) and Rza =0.
Hy (kgpa)
Then, from (3.3.11) and (3.3.12),
v = J+(k2—eiHl(al)(k29p,) and b, =0.
H(ky,0)

(b) Since from (a), H, ,(,1)(k2,,a) appears in the denominator in a,, the poles
on the complex v plane are the zeros of H.fl)(kgpa) . Since H(_l,?(z) =
e™ H)(2), if v, is a pole, so is —v,.

(¢) From (9.3.31) and (9.3.32) in the book by Abramowitz and Stegun,

M (v) can be approximated as

LA ;ﬂo pi(-YBa_ ‘f”ﬂo),

l/3 V3
where a = 0.44731, b = 0.41085 and Sy = 0.014286. Consequently, if v
is large, the above equation goes to zero. So the zeros of H.(,l)(k,,a) are
approximately at v =~ k,a.

(d) We can use contour integration technique to evaluate the integral over v.
For ¢ — ¢'+2n7 > 0, the integrand is exponentially small as Sm[v] — oo.
So we can deform the path to the upper half complex v plane and by
Jordan’s lemma, the integration for v over the contour in the upper half
v plane vanishes. Then, by Cauchy’s theorem, the integration over the
contour is the same as integration over the pole locations enclosed in the
contour. Similarly for ¢—¢'+2nn < 0, but the path has to be deformed to
the lower half complex v plane. Assuming the pole locations are denoted
by v, and the residues of the poles by f,, from (3.3.30), we obtain

/dk e*ks( (z-2') Z Zewp(¢_¢'+2mr)ﬂ

n=~-o00 p=1
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If we assume that v, has a positive imaginary part, for ¢ — ¢’ > 0, the
dominant terms are those for n = 0 and n = —1 since e*™*" is often
small for [n| > 1. Also from the distribution of the zeros of H,(.l)(z)
in page 373 of the book by Abramowitz and Stegun, it shows that the
zeros have larger imaginary part. Therefore, the above equation can be
approximated as

R o
Iz

-00

(e) For part (a), the equation corresponding to (3.3.30) can be written as

o0 oo oo
B = [dbent) T [ aueito-erime
-0 00

n=-—00

. [ "JV(k2pa)
H.(,l)(kg,,a)

The above equation can be approximated as

HO ko) O (kspp )3, -

Ef ~ / dkzeikz(z—z') [eik290(¢-¢') + eikZpa(z”—MW)]ﬁl(kzp), (1)

where
J, V(kzpa)

(1) NHM
Ty 15 et ] (kp0)]

p

and note that ky, = \/k2 — k2.

For a fixed k,, Equation (1) describes a wave propagating azimuthally.
The first term in square brackets corresponds to a wave emanating from
the source and the second term corresponds to that from the image source
at 27 + ¢', which can be viewed as a creeping wave travelling around the
circumference of the cylinder by a distance less that 27 and then radiating.

By = —2mik}, lil’;l [(u — ky,a)

§3.15
Assume
hll hl2 h13 h14
L TR hay has hos hy
HO) =\ by by hss o @
h4l h42 h43 h«
H is defined by (3.4.9) as
E, E,
d |E = | E .
:l; Ht = H(p) Hf (2)
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We can easily find from (3.4.7a):

ik,n ik
hy, =0, hy2 = 0, hia=— wep’ hiy = —iwp + e (3)
From (3.4.8a),
- . 2
b= B0 ciwe- R h=0,  hy=0. ()
wy w
. dE
Since % -:—p pEs = %E,; + 3%, so that from (3.4.7b),
1 X in? ink,
ha =0, ha = ——, has = wp — —, 24 = . ()
p wep wep
Similarly,
. in? ink, -1
hg = —iwe + L hy = ~wnp’ ha=0, hy = r (6)
To sum up,
H(p) = ' .
0 0 —ik jup+ &
1 . in? inkg
'0 —-7,2 we — 25 prop
% iwe — X 0 0
" L

(7)

§3.16

(a) In order to be clear, we denote the elements in a; (1 = 1,2,3,4) as,
a;1, a2, a3, Giq, such that

a; = (@1, ai2,ai3,ais)’, 1=1,2,3,4. 1)
We can see that
aj3 =az =azg =aq =0.
Vector b, is orthogonal to aj, a3, a4, this is to say
bj.-a;,=0, bi-az=0, bj-a,=0. 2

Assume that b} = (by; b12 b3 biy), and substitute into (2), we obtain
three linear equations:

bi1 -0+ b1z azx +bia-az+biy-az¢ =0, (3)

bi1-as + b12 - azz + biz - 0+ byy - a3q = 0, (4)
bi1:0+b12-ag2+bi3-ag3+ big-aq = 0. (5)
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This is an undetermined system, because its number of unknowns are
more than that of equations.

This means that one of the unknowns in (b1, byg, bi3, b14) can be arbitrary.
For simplicity, we may at first choose b,; = 0 (or b4 = 0, but we can show
this is not a solution). As a result, (3)—(5) become

bizazs + b4 a2 =0 (6)
biias +byy-az =0 (7
b13a4s + by a4y =0 (8)

The coefficient matrix for the above system is

. 0 a3 ax
A=lay 0 as|, (9)

0 ag ay

_nsz(l) + nk,

ke k2p

H,?’J,.} =0,
(10)

Equation (10) guarantees that (6)-(8) have non-zero solutions, since these
equations are homogeneous, we can choose any one of the unknown (say
bi14) to be a constant C,, therefore

lKI = —a3(a23044 — G43024) = —ag; - {Jn :

bu = Cl, (11)
b]] = —01034/031. (12)
bis = —Cray/ags. (13)

So that, we have solutions for by:

§=(-c_19ﬂ, 0, —Cp24, c,). (14)

asy Q43

The constant in b, can be determined by the fact that
b: ‘8 = 1. (15)

Hence,

Ci [—al‘;as4 + au] =1,

31

C, = T (16)

9
G1443) — (11034

1
bt = - 0. — .
1= G1eGa — G110 (—a34, 0, —ay4, as1) 17)
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In deriving the above, we have used the relation that a3, = a. By using
the Wronskian for Bessel functions [see page 165], we have

we twe

G14G31 — Q11034 = _J,(ka)H(l)(ka) - _Jn(ka)Hy(zl)'(ka)

1 € ’ '
T [k B kp) = Tullu) B (kyp)
twe 2i ] _ 2we

“k, |Twkp| wk2p’

(18)

(b) In the same way, we let
btz = (b21, b22’ b23) 624)1

with orthogonal relations:

bi.a; =0, b}-a; =0, bl -a, =0,

and choose
bys = 0, by2 = C,
to find
by = —Chasz/az, bz = —Chag/ays.
We normalize:
bi.a; =1.
Then - e e

Q22a43 — Q42G23 (._k,})
n

7rk2p nk ’
b, = (prﬂ) [— P 2HO(k,p), HO(kop), + ”H“’ (kop), ] (19)

Similarly,
—2we\ 1 iwe nk,

e (22)” [, 0
3 Wk%p kp ( Pp) k

.
b= () [FEEO0), Tk, +24 000, O

), "*"Hm'(k,,,,)]
(20)

(c) a™!, the left inverse of a is a=! = (b;, b,, b3, by)'. In detail, it is

034/A1 0 044/A1 _a3l/Al
a-l = as2/D2  —ags/d2  agp/d, 0
-014/A1 0 —024/A1 all/Al ’

a12/D2  —ax/A;  an/l; 0
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7

where

Ay = anazg — 631614 = —5—

Aj = azay3 — aagn =

P(p,p') = a(p)a™*(p')

ran(p) 0 am(p)
_ | a12(p) a22(p) asfp) 042(1’)
0 ax(p) 0  awi(p)
.014((6’)) 024(P) a.‘u(P) a«(P)
- aP I a ’
re) 0 s ‘A:(:')
saa(p’)  ses(p)  _saa(e 0
Az(p') Aa(p') Az(p')
—au(e) 0 sau(s')  an(e)
Ay (p) Ax(t") A ( ')
anz(g')) aza(ip )!
- Aa(p’ Az(p’ -
Paiond) Pialos) 363(,,,,,) Pi(p:d)
_ | Pa(p,p’) Pnlp,p) Pnlp,r’) Paulp,p')
Psi(p,p’) Ps:(p,p’) Pss(p,p’) Paslp,p')
L Pu(p,p') Pap,p) Pas(p,p') Palp,p')
a. a
Pu(P,P')=au(P)°A3:§Ip"; az(p) - A“Eﬁ;

= [an1(p)as(p’) — aar(p)ara(p’)] /A1(p'),
Piay(p,p') =0,
Pi3(p, p') = [an(p)aw(p’) — an(p)az(p)] / D1(F'),
Pu(p,p') = [—an(p)aai(p') — az(p)an(p’)] /As(F),

Pu(p, ') = Et—,)an(p)am(p') + 'Al—azz(P)

- -osa(Plas#) + z-aalPlans),
Ppa(p, p') = [a22(p)ass(p’) — aaz(p)azs(p’)] / Da(p'),

Palp, ) = | 3-au(plau(s) - -A-l;an(p)au(p )

~ & olohans) + el ans)|
Pau(p, ') = [~arz(p)an(p) + asa(p)ani(p")] / As(p'),

Pay(p, p') = laza(p)as(p") + ass(p)ara(p)] /A2(p"),
P3z(p, p') = [az3(p)ass(p) + aus(p)ass(p’)] / A2(p),
Py(p,p') = [azs(p)asa(p’) + a43(P)022(P')] /D',
P, 34(P ] Pl) =0,
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Pui(p, p') = [a14(p)azs(p") — asu(p)ara(p’)]

[8:1(p") + a24(p)asz(p’) + asa(p)arz(p’)) / A2 P,
Py(p, p') = [az4(p")ass(p") — aq(p)az(p’)] /Ba(p"),
Py(p,p') = [au(P)a«(P') — aas(p)az(p’)

[81(p") + [a24(p)aqz(p) + aua(p)az(p’)) [ A2(p'),
Pu(p, p') = [—a14(p") a1 (") + asa(p)ani(p)} / B:1(p').

§3.17
(2) Outgoing wave case:

From Equation. (3.4.10), we know that a; and a, are standing waves, aj
and a4 are outgoing waves. If there is an exciting source in region 1, it
generates an outgoing wave which on the one hand reflects in region 1,
and on the other hand, transmits to region 2 and 3. This transmitted
wave will excite both standing wave and outgoing wave in region 2, and
only an outgoing wave in region 3.

A2
-
K2:€2 I
Region 2\ -|le|"

H1.€| \ 0, o *-P
Reqionl\\\ l Z\F-3 e
' L\g r Region 3

- h\

a=p

Figure for Exercise Solution 3.17

Assume the reflection coefficients for the outgoing wave in region 1 are
R, (TM) and R; (TE), and also the transmission coefficients of outgoing
wave from region 1 to region 3 are T; (TM) and T (TE), respectively.
Hence, the state vector V in region 1 can be written as

Vi(p) = (a1R; + axR; + a3 + ay) 4,
R,
=g, R,

0 | A (1)



§3.18 79

(b)

Since state vectors are composed of tangential field components, they are
continuous across the boundary. Hence, using the propagator P(p,p’),
we have:

Vi(a;) = Va(a;) = P(ay,a;)Va(az) = P(a;,a;)Vs(ay). (2)

In region 3, there is only an outgoing wave which is the result of the
transmission of the outgoing wave in region 1. Therefore,

0

- 0
Vi(p) = (Tza3 + Tya ) A, = a3 Ty A, (3)

T,

Substituting (1) and (3) into (2), and eliminating the constant A,(# 0),
we have

R, 0

me)| oy | =P wm@ | % | @

0 T,
(4) has four equations which can be used to solve for 4 unknowns R;, R;,
T5,Ts. Knowing R,, R; and T, Ty we can analyze reflection and trans-

mission of an outgoing wave through layered medium. Furthermore, the
above process can be easily extended to multilayer problems.

Standing wave case:

In this case, the excitation is the standing wave in region 3. It will cause
reflection of outgoing wave in region 3 and transmission wave to region 1
and 2. We can write the state vector in region 3 as

1
V3 = (a; + a; + Rzaz + R,a,)A3 = a3 Rs As.  (5)
R,

In region 1, there will be only standing waves since the outgoing wave is
singular. The state vector for region 1 is

.

I;

Vi=(Ta+T:a;+0+0)A; =3, - o |4 (6)

0
V, and V3 are related by the propagator P such that

Va(az) = Va(az) = P(az, a1)Va(a1) = P(az, 1) Vi(a1). M



Hence, we have

T 1

F(ag, al) . 51 0 = as- R3 . (8)
0 R,
Solve (8), we can find T},T;, R; and R4, which can be used to analyze

the reflection and transmission of standing waves in a layered medium.
§3.18

v 1
—d;- = Z[V(pi.‘.l) - V(Pg)], A= Pi+1 — Pi

Substituting into (3.4.9), we have

2 V(pisa) = V(o] = Hip) - V().
This is equivalent to
V(pis1) = (& -H(pi) + I) V(pi) = T(p:) - V(p:)-
By using the above equation recursively, we arrive at
V(pn) = (AH(pn-1) +I) V(pn-1)
= (AH(pN-1) + 1) - (AH(pn-2) +T) V(pn-2)
= T(pn-1) - T(pn-2) - (PN-2)

=T(pn-1) - T(pn-2) - T(pn-3) - T(po) - V(po)
= P(pn, po) - V(po)-
Hence,
1
P(pn, po) = H (i'*' Aﬁ(PN—:’) .
=N
This is a numerical scheme to find P(pn, po).

§3.19
Considering (3.4.16), substituting A, = tk, = %$+ ik, Z into (3.4.16), we
have
~ dEg ¢ - — in - . ~
px —d? =wpg, -H,+8,, v, (%d} + zk,z) x E,

C— 1 fin. . in. ..
—zwu,p-up,-u,,,,H,-i-z’-(%‘-¢+zk,z)xx,,,, (%l-¢+zk,z)xH,

+ (%&Hz‘kz) X Kpp €pe * By (1)
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In the above,
(1;1$+ ik,é) x (%$+ik,2) x H,

B . . 2
- (ﬁa + ik,i) [ﬁa + ik,i] H, - [(ﬂ) + kz] H,.
p P p

Cross multiplying (1) by p, and using the following identities,

axbxc=(a-c)b-(a-b)c
ax[d-cJ=(axd)-c,

we can get

dE in -
- — = (wp X 1, -H,+‘x["’, X v (-— +ik,2)]-E,
dp ( P ”) P ”’p (4 P¢
.. - — K n_ .. -
—[zwpx(p”-p”) Vpﬂ]'H‘+[7£f' (7z_zk‘¢)'

(%‘& " ik,s)] H,- (pxIk})-H, (2)

Combining the terms involving H,(E,), we can rewrite (2) as

dE, -— =
dp =hy; -E,+h;;-H, (3)
where
hy=-px [’ﬁ” X ¥, (’—;'-Js + ik,i)] (4)
hy, = — iwp x B, + twv,,p X ('ﬁ,p . 'ﬁ”)
— Lo (‘—’35 - ik,&) (ﬂci + ik,i) +px Ik (5)
w \ p P
In the same way, we can find
d — —
.(-l—pH. = hy; - E, + hz, - H,, (6)

where
hy =iwp X €, — iwk,,p X (€, €,5)
Zee ('7':-2 - ik,&) (%& + ik,é) +pxIk? (1)

tw

-522 = - f) X [E,p X Ky, (%& + 1k,2)] . (8)
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42

H2:€2 <l
Region 2\ *l ] -
FI"' \ |ol !oz ’p

Region | ™\ \ ~ase
3:¢3
Y Region 3

v/

Figure for Exercise Solution 3.20

Hence

= . [hu hp
H(p) = [h2l hzz] )

§3.20

(a) Assume that Vy = V(pn), Vo = V(po). First divide the region between
po and py into N subregions, each has the same width A (this condition
is not necessary). When kA <« 1, or A <« A (wavelength), we can
approximate,

dVv 1 .
(Fp‘)m"‘Z[Vi-i-l—vi])z"oalaz,"'7N"'1 (1)

Substituting this equation into (3.4.26), we have
1 — C e
Z [VH-I - V,] = H(p;) . V,',OI‘V,'.H = (AH, + i) V;. (2)
Using (2) recursively, we can find
V= (AFyoy +1)- Vior = (AFyo +T) - (Awog +T) Vi = -
= (AHyo1 +1)- (AHn-2+ 1) - (AHN 3 + 1) - (AHo +1) - V,
= PN, Po) - Vo. (3)
Hence, we can compute P (p,,, po) numerically using the following formula

P(pn,p0) = [] (6HN-; +T). (4)
j=N



§3.21 83

(b) Knowing the propagator matrix in (4), we can study the transmission and
reflection of waves through the an isotropic layer. As shown the Figure.

In this case, the state vector (which is infinite dimensional) will still be
composed of standing wave harmonics ¢, and outgoing wave ¢o. Hence
if there is an outgoing wave in region 1, it will cause reflected standing
wave in region 1 and a transmitted outgoing wave in region 3. V; can be
written as

Vi=(I+R)) Vi

where, Vo is the outgoing wave in region 1, which is determined by the
source in region 1.

R, is the reflection matrix at boundary p = a;. Assuming the state
vector in region 2 and 3 are V, and V; respectively, and that T3 is the
transmission matrix from region 1 to region 3, then, we have

V3 = —T-3 . VlO'
Using the propagator matrix, we can relate V;, V, and V3 as follows,

V= E(Pz,m) . \_'1 2Py Vo,
V3=P;3 -V, =P3 -V,

Hence, we have — o
Py -I+Ry) Vie=Vy,
T:,VE =Py - (i_-l- -R-l) - V1o,
T3-Vio=P3 -V,

Solving the above equation, we can find Vy, R,,
T3 in terms of Vw, Pgl, Pag and P31.

§3.21
For ETE case,

ETE =V x r1,, = V,, xr, (because V xr=0), (1)
and

VXETE =V x [V, X 1]
=(r - V)Vam = (Vom - VIr + Vaa (V. .r) = (V- Vry,,),

VxVxE™ =Vx|(r: V)V, -V x[(Vry - V)]
+ V X [VAn(V -1)] = V X [~k?7 1) (2)
In the above, we have used the fact that

V21rm + k21rm =0.
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Furthermore, we can show that
Vx[r-V)Vr,]=0, Vx|[(Vr, -V)r]=0, Vx[Vr,(V-r)]=0.
Hence, (2) becomes

V x V x ETE = k*Vr,, x r + k*7,V x r = k*Vr,, x r = k2.

Since V x V x ETE = VV . ETE — V?ETE and V.ETE = V. (Vrr,,) =
we have ~V2ETE = 2ETE or

(V2 +k*)ETE =0, (3)
In the same way, we can show that if 7. satisfies
(V? + k), =0,

then
H™ =V x (rr.)
will satisfy
(V2 + EHH™ =0,
§3.22
(a) From (3.5.4a),
1
H=Vx(rr.)+ mV x V x (r7m), (1)
V x (rr.) =V x (fro.)
11 0 \a 10 .
= ; ;;-n—é a—¢'(1‘7l'¢)0 - ; 55(r7r,)¢, (2)

V xV x(rry,)
=V x {rsilne 6%;5(”"')9 21 i(r‘lr,,.)tzg}
= { T ("'”‘)] * g [ram 23] }

26
+ ror [ao(”’"‘)] o [smo 36" "”‘)] 2 (3)

Extracting f-component from (1), we have

(fwp)H, = ,suio { fe [su:O a("’"")] a¢ [rsllno a¢( 7’”‘)]}

-1 9
r2sin6 50 smoao(”'"‘)] r2sin? @ a¢2(r7r,,.)

r sin9
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Hence,
H, = on [arz(rwm)-i-kz(nrm) . 4)

Similarly, .
E, = —%; [g%(rw,)-i-kz(mr,) . )

Since 7, and 7., are the solutions of the scalar wave equation, their general
solutions are of the form

i eee=o {00}
g [ree] == - )

Therefore, for the n-th harmonics,

1 n(n+1)

In this case,

Hf - m?
wpy r
E, = _._I-M,re
we r

(b) Substituting (3) and (2) into (1), equating the i-directed components on
both sides, we have

H=—rxV7r,+uj”{ [ae(r )+ = oa¢(r1r,,.)¢]}

_ 1 (18 0~ a 9
_—rxV.We-l—;;—‘{r or ,.300+r rsinf 8¢ ] }

= —r x V,7. + - —1— ——(r VeTtm).

Likewise,
E,=-rxV,m, - —1- ——(r’V,m)
§3.23
' The matrix P, (cos ) is defined as
| S m 4 P™(cos §) — 30 P™(cos 9)
= 1| d6n
] Py (cosb) = [;;%P,’,"(cOSG) o cos 6) (1)
Therefore,

M= / d0 sin 6P (cos 6)P ™ (cos 6) @)
0
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is a 2 x 2 matrix. From (1), we have

[ .. [dPmdPm m? __
M11=M22—/d8sm0[ 29 a8 +sxn20P" n,] (3)
0
Changing the variable z = cos 8, we have
1
[ dP™ dP% m?
_ 2 m pm
Mn—-/dx -( )d dI +1_32P” n’]
2
3 [ d dpPm™ 2
— _pm__ (1 _ 2 n’ m m pm
_/dzL Pr—(1-a) =t 4+ P ,,,]. 4)
-1

In the above, integration by parts has been applied. Here, P} satisfies
the equation of

d 2 dP::" 1y ! m2 m __
dz(l—z)dz +[n(n+1)—1_1_2]Pn,—0. (5)
Using (5) in (4), we obtain
1
My, = /dz n'(n' +1)PI P
!
_ 2n(n+1) (n 4+ m) 6 = Ma. ()

2n+1 (n—-m)!

For the off-diagonal terms, we have

dPm LU . dPm
dd sin ™ ' sind ™ db

—zm/dz[d "’P"‘ dd ]
—im/dzi[P P™]
- dz

=imPl(z)P(z) |

My, =-My = /dG sin @ [

=0. (7
Since for m = 0, the above is zero, for m # 0,

P,':'(z) =




§3.24

87

Thus
PP (+1)=0.
Combining (7) and (6), we have,

[ mm  oom o 2n(n+1) (n4m)ls
/dOsmOPn (cos O)P,, (cos 8) = bpnr @nt1) (n- m)!I

In Equation (3.1.15), |m| should be replaced by m.

- §3.24
It is easy to show that:

(1) . . » .
[8 g] =[ao b(‘)‘]’ [21 (c)] =[c(‘)‘ do]'

The inverse of a diagonal matrix is still a diagonal matrix. The inverse

of an off diagonal matrix is still an off diagonal matrix.

2)
(a 0][z 0] [az O
_0 bJ bO Y| “ 10 by
(0 d] [0 r} _ (ud 0
K 0‘ | u 0_ - _0 cv |’
[a 0][0 d] _[0 ad
0 5|{c 0] [bc 0
(0 d][a 0] _[0 ac
c o|lo 5| =|a o

The product of two off-diagonal matrices is a diagonal matrix.
We first show that R;, and T, are diagonal matrices. First,

Eﬁc is diagonal = —,(,Z)(klg(ak)la) cidii:g:::_il}
=h{)".j,. diagonal,
B 4is off diagnal = -ﬁ(l) T off dia.gonal}
" Jnh : off diagonal
=>E;;jnh : diagonal.
Hence,

A= [“(l)' (k20)jpe(kra) — (kza)Juh(kla)] is diagonal,
B=

(B (kza)By, (kva) - “""(k2 JBua(kia)| s disgonal.
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Therefore, Ry, = A - B is a diagonal matrix.

In the same way, we can show T,; is a diagonal matrix. To find the
elements for R;, and T2, we denote that

+ _ T B_TW" z
A =hY (k:0)-Jne(kra), B=h" (kza) Jnn(kra),
— -] —
C =" (ko) B(kia), D=HY (k) Bl)(kia),
Ju(z) = zjn(z), H(2) = zh{)(z).
Therefore,
i 18 .11
=) = L orha (ko) ]
h, '(ksa) = ?
ne( 2a) [ 0 —h(])(kzr) —a
i/2 LB (k) 0
0 —h{ (kza)
_ 1 [iy/28(kae) 0
kaa 0 —HY (kya)
1 0 —i 2B (k,a
Bk = | S VEEY (ksa) ,
—H,. (k2a) 0
K3 1 ﬂj,', kia 0
Juc(kla) — 76__ 3] ( 1 ) 3 ,
a 0 bl ,.(kla)
0 —i Jad!(ka)]
Jnn(kra) = — - :\/: n(F19) )
a | — n(lcla) 0
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y gL [ w2 Ji (k2a)/ Y (kaa) 0 ]
" ha 0 Jn(kra)/ H(kza)
_ kz ay 0
= Tc‘ X
5_ ka [ (k,a)/H,‘. }(kza) 0
= r V22T (kra)/ B (ksa)
k,
C- 5— [ \ bz H ' (ky a)/H“’ (kza) ’ ]
kra AO(kya)/ B (kza)

-2[5 o)

ka [ B (kra)/ B (ksa) 0
= %a 0 /22 B (kya)| HO(kya)

Ol

k]d

_h[d o0
_kl 0 d2 ’

€2m

Ru--E-B©-Dl=- [ 0 |[*7% . °,]

0 0 ez —dy
a~d; e2=ba
-— a;—b; 0 — Rg‘zM 0
= ("0 =u[=[ 0 RE|
o a—d |52 (k) B (kea) — B (ki) B (ka)
R = =~

2 ay—b /“m J1 (kra)/ B (kga) = Ju(kra)/ B (ksa)

/o A (kya) A (kaa) — iz HEY (ka0) B (kya)
VeiizJn(k1a) B (kea) — feap HY (k2a)J!(k1a)

b

crmdy  AO(k10) B (ksa) — /22 ALY (ka)/ B (kya)
az — b, Ja(kra)/ BV (kza) — | /622 1 (kya)/ B (Kza)

_ VamAy (ka) B (kya) — /e A (k1a) A (kra)
NG J,,(kla)H,(.l) (k2a) - ,/elygf;(kla)ﬁ,ﬁl)(kza) .
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In order to find T,;, we define
E = J.. (h10)hQ)(kza)

1
_k (;, /5 Ji(kra) ] [ \/_H( Y (kaa) 0 ]
k2 L 0 1 Jn(kla) _H'(‘l)(kza)
_ k[ /228 (ka)/ Fi(Kra) 0 h [cl o]
k2 | 0 A CORACOI LR
F = (ki) - BS)(k2a)
o l . € ~ ']
k] 0 -m—;} [ 0 —i\[2 B (ksa)
ks _i:;i’;},’,(k;a) 0 —ﬁ,(})(kza) 0
_k [ B (k,a)/ Ju(kra) 0 k| A 0]
ks | 0 2B (kya)/ Ji (k1) 0 f
G =], (kia)hB(kya)
_ [BY (ka)/ Fi(kna) 0 1_[a ©
i 0 HO(kya)/ fa(kyra) | 0 g2]°
A -J,,,.(kla)i‘n (k1a)
_ THY (k10)/ Ju(kra) o0 1_[m 0]
| 0 H, (ka)/Ji(kia)] ~ 10 ha]’
k —h 0
=[E a-h 2 I 1
Ti= [_ FJ [— j [ ez_h] ¥k, [ 0 gz—hz]
k2 ex—fl 0 — T 0
k] 0 'EZL:_-’;: - 0 TTE ’
v f A (kya)/ Ji(kra) ~ B (kra)/ Ju(kra)
k am f1 (kya)/ Ji(kra) — B (kza)/ Ja(kra)

i€21 /flz

" Jefadn(k10) BN (kya) — G (kra) B (kaa)’

TTE = “2 2}

27 S (k) BY (koa) - Jeam It (kia) B (kya)

§3.25
Define that A R
In(z) = zjn(z), HM(z) = zh{)(z). (1)
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Then, P P
7' (£) = ~— 23 71 (2) = — [z
Jn(x) - dz [:c],.(a:)] ’ Hn (z) dz [xhn (x)] ’ (2)
0 . 0 . U
'a_a'[ajn(kla)] = 5;[“.713(“)] = Jy(k1a), (3)
0 (1)
‘a;[ahszl)(kla)] =H, o (k1a), (4)
1 -
Jn(kaa) = —J w(k2a), hO(kya) = 'E;I'H'(;l)(kza)- (5)
Substituting the above relations to (3.5.26a), we have
RIM — -k;‘i-; Ju(k20) T (kr0) — rer .n(kla)j::(kga)
135 Ju(k10) H (kya) — 32; B (kz0) T, (ko)
_ Vi Jn(kea)J (kya) — /e pzdn(kra) S’ (kza) ©)
VeRzdn(k1a) BY (koa) — JamHY (k2a)J! (kra)
Substituting (1)~(5) into (3.5.26b), we have
,m, 15 Ju(k20) B (kya) — 25 B (koa) 2 (Ka0)
w 22 Jo(k10) B (kaa) — 25 B (ka) Ji (ke
\/_ [J (kya) BV (kza) — J:,(k,a)ﬂs.‘)(k,a)]
= = . 7
,/elngn(kla)H(l) (kga) = V1 €2 ﬁl)(kga)J:‘(kla) ( )
Using Wronskian for spherical Bessel function, we have
Tn(@)HY (2) = To(2)H (=) = i. (8)
We find that
iél gl
Tt = NTRRY 104 Ve O radira )
VeipJn(kia)Hz (ka) — (€2 Hn* (kza)J(kra)
In the same way, we can verify (3.5.28).
§3.26
In region ¢, the Debye potential is of the form:
m = aif R0 (kir) + Rijyrjn(kir)] (1)

where R;;,, is a generalized reflection coefficient.
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Figure 1 for Exercise Solution 3.26

In regions ¢ 4+ 1 and 7 + 2

Tit1 = it [hf‘” (kigar) + Ri+1.i+2jn(ki+17‘)] s (2)
Tig1 = Qg1 [hf.l)(kinr) + Ri+2.i+3jn(ki+2r)] . (3)

Since an outgoing wave in region ¢ + 1 is a consequence of transmission
of an outgoing wave in region i plus the reflection of a standing wave in
region t + 1, we have

i1 = Ti.t"H a; + Ri+l,iﬁ{+l,i+2 * Bigy. (4)

Furthermore, the standing wave in region ¢ is a result of the reflection of
an outgoing wave in region ¢ plus the transmission of a standing wave in
region ¢ + 1, we have

-~

Riinai = Riinai + Tip1,iRis14420001- (5)
Solving (4) yields
ai41 = (1 = RipriRisrie2) " Tiinraie (6)
Substituting (6) into (5), and eliminate constant a;(# 0), we have

Ti.z‘+1 Ti+1,-'R-'+1.i+2
1 - Rit1,iRiprise

Riso1 = Rign + (7)

If we define
Tiis

1 - RipiRivrie2

Si,i+1 =

(8)

then
Qi1 = O4,i+1G5. (9)
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Figure 2 for Exercise Solution 3.26

For the standing wave case, the solution in the respective regions are

Region 1: 3
= [jn(k,-r) + R.-.,-_lhg)(k,-r)]a;. (10)
Region : — 1:
Tie1 = [Jalkicar) + ﬁ{-l.;—zhg)(ki-xf)]ai-lo (11)

By the constraint condition, a standing wave in region 1 — 1 is a con-
sequence of the transmission of the standing wave in region ¢ plus the
reflection of the outgoing wave in region 2. Hence,

aiy =T, 10; + R;-l,iﬁ.'-x.i-zai-l- (12)

On the other hand, the outgoing wave in region ¢ is a consequence of
reflection of the standing wave in region 7 plus the transmission of the
outgoing wave in region ¢ — 1. Therefore,

-~

Ri;10; = Rij1a;+ Tioy i Riy i20ims. (13)

From (12), we get

iy = (1 = RisyRic,io2) ' Tiima0i = S (14)

Applying (14) in (13), we have

Tii1Ticr,iRicyia
1-RiyiRic1i2

A generalized transmission coefficient is

Rijoy = Rij + (15)

TN: = SN.N--I : SN-l,N—z ce 532521-

Since 521 = T21,

Tn1 = SNy SN-1.N-2** SaaTi1. (16)
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§3027
To solve the following equation in spherical coordinates,

(V4 (1,0, ) = ———2b(c = £)60 ~ )6(4 — ), (1)

we assume ¥(r,0, ¢) can be expressed as linear combination of spherical
harmonics. That is

$(r,6,8) = 3 f(r)PT(cos8)e™. )
Substituting (2) into (1), we have

! m _tm ‘m¢ d dP:ln
g{ﬂ I FOIPTem fr(::na 6 [s‘“oﬁ‘]

m2e'me

r2 sin®@

———f(r)P™ + k? f(r)P"‘e‘"‘"}

= 6(r —r')5(0 — 6)8(¢ — ¢). (3)

r’smo
Since 14 P )
. w | | m m
m&?[‘ da]_[sin20 "("“)] B, (4)
(3) becomes

Z{dr [ d{z(r)] +[#r® n(n+1)1f(r)} PP (cos 6)™

__r=r) , '

==~ i 56— 818(6 - 4. (5)
Multiplying both sides of (5) by sin §P7¥' (cos §)e=*™'¢ and integrating over
0 and ¢ from 0 to = and 0 to 27 respectively, and making use of the
orthogonal properties of P, we have

®

. m m - 2 (n + m) | -1
/ sin 0P*(cos §) P} (cos 6)d = (e )'5m, = 2NI16,, (6)
0
we find that
2df (r n+1 m it
7‘2 dr [ d(r )] [kr2 - ng-?——)]f(r) = -NnmP,,m(cos 9’)6 4 6(7' -— 7")
Conn ,
=——36(r—r). (7D

r
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When r # r/, (7) becomes

For
r>r': f(r) = anh®(kr), (92)
r<r’: f(r) = bgn(kr). (9b)

Matiching the solution at r = r’, we have

anhM(kr') = b ju(kr') = 0,
an Y (kr') = bojl(kr) = —Cmn/k. (10)

Solving the above for a, and b, yields

1

a, = "'C"A—Cmnjn(kr’)
b = -k—lA—C,,.,.hf“)(kr'), (11)
where )
A = (ke Wk = (ke W) =~ (12)

Substituting (12) and (11) into (9), we get

hs.l)(kr)j,,(kr’) r>r,

Ok ialkr) 7 <. (13)

f(r) = ikCpp {

Finally, we have

¥(r,6, ¢) )
R
im(6=6") pm kr)jn(kr'), r>r',
_ZNMP (cos )OO, (cosa’){ l)Ekr');.i ((kr; r<ri. "(14)
mn LA 14
Denoting
r¢ = min(r,r’),
rs = max(r,r’),
we have
etkir—r'|

=] = 2 Nenda(kr )R (krs )PT(cos )P (cos )™ ¢).  (15)
mn
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§3.28
(a)
E = iwpy (i+ FVV) -allg(r —r')
= twp - k™2 [FPallg(r — ') + V x V x allg(r - r') + V?allg)

“"" { GIN[(V? 4 k*)g(r — £)] + IIV x V x &g(r — r')}
=g§Vxang(r—r) (r#1'). (1)

In deriving the above, we have used identities:
VxVxA=VV-A-V3A,

and

(V2+K)g(r-1) =0, (r#r).

(b) Reciprocity theorem says that (E,,J;) = (E;,J,;), where E; is due to J;,
E, is due to J,.

Assume

Jl = &6(7"), Jg = 1';5(7‘),
then

=CV x V x ag(r - r'), E; =CV' x V' x fg(r' —r),

where C is a constant.

Hence
F - VxVxéagr—r)=a-V' x V' xfg(r' —r),

i.e. (3.7.8) is equal to (3.7.7).
(c) Assumer—-r' =R, V'f(R)= —1—1 [V'R] = gﬁR then

skR
(r—r)- g(l'—l‘)——-R =

Therefore,

:kR
\vZi — )=V ’ —
X(r-r)g(r-r)= va[47rk]_0
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§3.29
(a) For an electrical dipole with & = 7,

E = iwp (i + lvv) -#Ilg(r —1')

k2
714 '
= fg(r — ). 1
wererg(r r) (1)
Then,
r-E=rE, = "—fér-v x V x fg(r—r)
e, _, ' ,
_-;’—e-r-V x V' x rg(r —r')
e, o, ' ,
=—f V'x V' xrg(r-r),
where
g(r - l") =tk Zjn(kr<)An(0a é, 0’, ¢’)'
Consequently,
rBe= T 0 XV ' Y alr ROk ) 4n(0, 6,0/, 8)
r we n <)y > n\Vy ¥V, ’
and

we

o WE IV XV xS D) (krs ) A,.
me= oy 1)an, ikIlF -V x V' x r zﬂ: In(kr RO (krs) A,

Since

H =V x fllg(r — 1'),

H=0 = x,=0. (3.7.5b)
Hence, we only need to know =, to find all the field components.

b) If a source is put into the j-th region, the Debye potention in the j-th
region is

n 07 ? 0, '
n; = D Z lin(kr R (krs) + anhQ(kjr) + bin(k;r)] - r(z(n¢+ 1)¢ )'
" )

Here, we have taken into account the additional reflected waves. We use
generalized reflection coefficients to determine a;, and b;,

The outgoing wave is related to standing wave by

ajn = Ryioy [R(k;r') + ba) . (3a)
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The standing wave is related to outgoing wave by
bjn = Rjjo1 [in(kir') + aja] - (3b)

Solving (3a) and (3b) for a;,, and b;,, we get

ajn = Rjj1 [hf.”(kﬂ") + ﬁ:‘mjn(kﬂ")] M;, (4)
bin = Rjj [J'n(k:"") + Rj;_1h{) (":’")] M;, (5)

where -1
M, = (1 - Rjj—lej+1) : (6)

Substituting (4) and (5) back into (2) yields
n=D;) {jn(k,-r>)h£,‘)(k,-r>) + Rjjs [hf.l)(kj"') + Rjj+ljn(kjrl)] M;

An(6,¢;6', ')

+Rjin [j,,(k,-r’) + ﬁﬁ-xhﬁl)(kj"')] M,-} nnt1) (M
or
m=Dj) {ju(kﬂ‘<)h9)(kﬂ”>) [1 - Rﬁ-—lizj.i-i-l]
+ Ry [hg)(kﬁ') + Rij+1jn(kjrl)]
+Rjin [jn(k:ir’) + Rj;— 1A (k,-r')] } M; Anr(l‘ﬁ(’;f;ﬂ;,)ﬂ) . (8)
Since

M; =1 - R;;_1R;j41,

m =D}y {j,.(k,-rf)hﬁ."(k,-r>) [1 - Rjj-lffjm]

n

+ Rjj [hf.l)(kj"') + Rjjﬂjn(kjr')]

~ . ’ 5 v An 0, ¢’ 0” ¢l
+Rjin [Jn(kj" )+ Rﬁ-lhs‘n(k"r')] } M; '(1(" +1) :

(c) In ¢(> 5)-th region, the Debye potential can be written as

An(6,4,6,¢')
nn+1) °

= D} Y ain(r’) [BO(Kir) + Risgaja(kir)

The wave amplitude in region i, D)a;y, is related to wave amplitude
in region j via generalized transmission operator Tj;. But T}; does not
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include the multiple reflections in region i. Hence, we must add a factor
M; to take into account the multiple reflection. Multiple reflections can
be represented by series of the form:

' 1

1- Rii—lﬁii-n ’

1+ Rio1Riip + (Rica Rin)* + (Riia Risa ) + -+ =

Therefore
. 1 ~ o~
D'a, = T = D'-a in — T-.-M,-D'-a ine
" 1- Ry Run 7 ’ 7
§3.30
The vector wave equation is
VxelVxH-wuH =0 (1)

Extracting the r component, we have

(V x €1V x H), = —— -a%smoe 1V x H), — a LR H),,]

But

(VxH)= = [Ea;rm ;H,] , (38)

(V x H)o = % [81111 . :¢H :rrﬂ¢] : (3b)
Therefore, (2) becomes

(V x 'V x H),

.
rsllno:qszH' + 1: aa¢H"]
= g?i? [ ::os‘“ez? B, - rsilnoa%zﬂ'
+1a£r ( ;’0 sin 0H, + ;H,,)] . @)

The above is the same as

(Vxe'VxH), =¢ [ -V3H, + —-—a-ar—r2V . H,] . (5)
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Since

3
=
i

10
—u —25;2 n.H,, (6)

we have
(V x €1V x H), = ¢! [—VZH, - :—2?36';#-1%7'2/‘1{"] , (M

and (1) becomes

VZH, + = ! 6ar “gr—rsz, +k*H, =0,

or
10 ,0 ,
2 - —_ 2 =
ViruH, + 61'# ar‘yI-I + k*ruH, = 0.
Define a 7, according to Equation (3.5.8), we have

Vim + pl?— -1 ir‘ir,,. + k*x,, = 0.

ror’  Or
By duality, 15 .8
2 10 0 2. _
Vime + € are arr1r., + k. = 0.
§3.31
To find a~?, where
1d,..; Q1)
=y _ |3 drin(kr) _ Ldppi(kr)
A g I hO(kr) |7

we first construct vector b; such that

btl c8y = 0, (1)
bl cap = 1. (2)
Assume that b* = (b, b3), then
buiaz + byzaz; =0, (3)
biiayy + bizayp = 1. (4)

Solving (3), (4) we get by = 32, b = =2 where
. A =anaen - apan
= [ Lrj k)| [rr®Re)] = 2 Lrn®(kr)| frin(er)]
pdr " " pdr ™ ¢ n

1 s . ' t
oF [J,,(kr)H,, (kr) = Ju(kr)H, (kr)] i
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Therefore
.\ -1
e (L ) _1d g
b (kp) [rhn (kr), pdrrh“ (kr)l .

In the same way, we find b, = (22) [—rj,,(kr), : :—,rj,,(kr)] , such that

bz'a1=0,
b2'82=1.
Hence,
a-1=1°_e[ rhkr)  —ra(kr) 1 _ _ [ B < Ja(kr)
i (22 2rhOkr) L driahr)] T T B ke)  Jier) |

where, jn(a:) = zjn(z), fﬂ(nl)(z) = mhg)(:t).






CHAPTER 4

EXERCISE SOLUTIONS
by R. Wagner

§4.1

The proof is the same as the derivation of the Kramers-Kronig relations
found in §§4.1.1

§4.2
(a)

Im [t)

—n

Figure for Exercise Solution 4.2

By definition P.V. f °"'" hm [ f e"‘" dt + f &t 4 ]

—00

The P.V. integral ca.n be computed by complex contour integration. Note
that the residue of 5-—- att=0is 1.
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Thus, o
lim < dt =-m1 -1,
=0 t

Ce

where C, is shown in the figure. For w > 0,¢e** — 0 as t — +ioco, and

| = € dt = 0 by Jordan’s lemma. Applying the residue theorem yields
C+

< it it et
P.V./ -—dt+lim/ —dt + —dt=0,
4 €—0 t
C+
or

3 :wt
P.V./-——dt_—(—m)+0—7rz, w>0.

-00

For w < 0,e"* — 0 as t — —ioco, and the integral over C5, vanishes.
Applying the residue theorem in this case yields

eiwt et'wt
PV/-—dt+hm Tdt+/Tdt=—2Wi'1,
Cx

or,

PV/—dt——(—m) 0 —27i = —mi, w<O0.

When w = 0, the positive and negative portions of the P.V. integral
cancel, so the total integral is zero. Combining these results,

2 twt .’ U)>0
/ { y w=0

-7, w<0

o | & i

-0

or

(b) Since g(t) = f(t)* (—1P.V.1), application of the Fourier time convolution
theorem immediately yields

9(w) = —isgn(w)f(w),

where f(w) is the Fourier transform of F(t) and g(w) is the Fourier trans-
form of g(t), the Hilbert transform of f(t).
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§4.3

(a) See the solution to problem 4.2 (a). The identity here is obtained from
the identity in 4.2 (a) by interchanging w and ¢, and taking the complex
conjugate.

(b) Equation (4.1.8) is
¢(w) = (o0) = ZPV. / W) 4, (4.1.8)

where €(w) = €(w) + i€"(w) is the complex permittivity. Taking the
inverse Fourier transform gives

l i ! —iwt __1_ i —iwt
27r/e(w)c dw 21r‘/e(oo)e dw

Evaluating the first two integrals and changing the order of integration
on the third,

€(t) — e(00)b(t) = %r. / dw'e"(w _71;

Let u = w — w'. Then du = dw and w = u + ', so the right hand side of
the above becomes

. 00 [ ] —iut
1 / dw'e”(w’)-l-P.V. / du S— . et
m n -u

o

2];r / '€’ (w' ) - isgn(t)e” W't _ g sgn(t)e"(t)

Thus the inverse Fourier transform of (4.1.8) reads
€'(t) — €(00) 6(t) = i sgn(t)e"(t).
Similarly, (4.1.9) is

w—-w

e"(w)=—%P.V. / g —de) g, (4.1.9)
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Taking the inverse Fourier transform,
/
—_ / "(w) -iwt dw —_ __ / dw —-twt | PV / 6’((-0 ) C(OO)

Following the same steps as for (4.1.8), this becomes
€'(t) = —isgn(t)[€(t) — e(00)é(2)).
(c) Using the results just established,
€(t) — e(00) 6(t) = €(t) — e(00) 8(t) + i€"(t) = isgn(t)e"(t) + i€"(¢).
Thus, €(t) — e(00) 6(t) = i[sgn(t)e"(t) + €'(t)} =0, t<O0.
So, €(t) — €(00)é(t) is causal if (4.1.8) and (4.1.9) hold.

§4.4

Suppose the singularities in (4.1.10) extend above the real axis. Consider
only pole singularities for simplicity.

From (4.1.10),

é(t) = 51; / du €= §(w). (4.1.10)

Consider a closed integration path consisting of the original Fourier in-
version contour C and the arc Cw, defined similarly to CY in the figure
for Exercise 4.2. Assuming ¢(w) — 0 when |w| — oo, then for ¢ < 0 the
integral over C, vanishes by Jordan’s lemma. Thus, applying the residue
theorem, for t < 0,

o / duwe™* $(w) = / dwe™ §(w) = §(t) = ZA e~iomt,

C4Coo n=1

where Re[wpn] >0, n=1,...,N.
Thus, if C lies below any smgula.ntles, #(t) #0for t <O.

However, if C is moved above all the singularities, then for t < 0,

/ dwe= §(w) = / dwe §(w) = ¢(t) =0,

C+Coo
and causality is not violated.
Now consider the solution for ¢(t) expressed by (4.1. 13),

b(t) = — Z Ajeiont +5n Z fi(t)eimt, (4.1.13)

t=l :—l
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If, for an active medium, any of the poles or branch points wy; or wy; have
an imaginary part greater than zero, say w = w' +1iw”, w” > 0, then the
corresponding term in ¢(t) will be e~ = ¢« +iw")t = g=i't . "t The
magnitude of this term approaches infinity as ¢t — oo, if w” > 0.

§4.5
The transformation between the complex t and s, planes is given by
t= s,z + (5 — 1)y, (4.2.7)
2
8y = -:;cos ¢ + sin ¢(s2 — % 3 (4.2.9)

where p = /22 + y2,cos ¢ = z/p,sing = y/p. U t is real and t > sop,
then

t . t? 1
z = F+isind(— — 82 2,
s p cos ¢ % ¢ sin ¢( e o)
So, {Res;]}* = % cos? ¢ and {Qm[s;]}? = (-’p—;— - sg) sin? ¢.

T Real) (omlsl) 8 (5-4)

cos? ¢ sin? ¢ p? p?

Therefore,
(Bels])? _ (Smlan])® _ |
(s0cos9)®  (sosing)® '

which is the equation of a hyperbola which crosses the real axis at Re[s;] =

socos ¢ and has asymptotes Sm[s,] = +tan ¢Re[s;]. The hyperbola is
shown in Figure 4.2.1.

§4.6

The source on the wire can be written as a linear superposition of impul-
sive point sources:

T 2
I(r',¢') = 31 / / 5(0") 6(=' — ") 6(t' — 1) d2"dt".
=0 2"=-¢/2

The response at p = a is therefore the integration of the responses due to
the individual point sources, i.e. an integration of the three-dimensional
Green’s function for the Helmholtz equation,

6(t -t —solr—r))

glr ir, ) = dzfr~v|

where (r,t) =observation point, and (r’,t') = source point. The effect of
a source at (r,t') is thus seen at ¢ = t' + so|r — r’|. The first arrival at
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E

p = a will be due to the point source at z' = 0, = 0, and will appear
at t = 0+ soa. The final arrival will be due to the point sources at
2! = x£/2,t' =T, and will arrive at t = T + s, /a2 + (£/2)3.

So, the field is nonzero for spa <t < T + sgy/a? + (£/2)2.

§4.7
Equation (4.2.20) states

. e i iw(ssp+as)z])
w,r) = é‘;“% / ds, / ds,i—s—z—-—. (4.2.20)

Interchanging the order of integration,

w\/sz -3 -3 12|
§(w,r) = 8 — /ds, “"""/ds,,

_y_y

Assume w > 0, real. Then for the solution to decay as |z| — oo, we
must have Sm(s3 — s — 32)§ > 0. Thus, there is a branch cut along the
contour S‘m(so —82- si)% =0, or s3 — s2 = s3. The branch points are at

s, =% — s2, which are located on either the real or imaginary axis.
A typxcal case is shown in Figure 1.

Integration Path

e

Y

» Re ISyl

Figure 1 for Exercise Solution 4.7

Since eV %= approaches zero exponentially as s, — +o00, the path
of integration can be deformed to the contour shown in Figure 2.
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purvwvEETes S SATRETITER - > Re (S
A AREA) l'_'l'l.. llllllll -
A

cl

Figure 2 for Exercise Solution 4.7

The deformation is permitted by Cauchy’s theorem, and the integral over
C! and CLV vanishes by Jordan’s lemma. This leaves only the integral
along the imaginary axis from s, = +i00 to s, = —ioo.

Changing variables: s, = —iq, ¢ =1s,, dq=1ids,,

dq 2 2 2’
N T

Changing the order of integration once again,
o0 o0
. w eiwlssptasizl)
§(w,r) = s / dq / ds, ——_s_,_’

;= 1/s} +¢% — 82 (4.2.21)

Recall that we assumed w > 0, real, to prove the above equation. A
parallel result holds for w < 0, real, which proves (4.2.21).

©0
§(w,r)=§::—2- / ds, e™rs*
-00

§4.8

The Green’s function for a line source satisfies

(V’ -3 g-) 9(t, ) = —8(z)5(¥)8(t)

[ <]

- / ~8(z)8(y)b(z — 2')6(¢)d=".

-00
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From (4.2.26), the solution to

(V2 -s? _gti?) h(t,r) = —6(z)6(y)6(2)6(t) is

h(t,r) = ﬁ(t;r%r)’ where r = /72 4 y? + 22 = \/p? + 22.

Applying linear superposition, the solution for ¢(t, p) is thus

t.0) °°5(t—80\/P2+2'2)d'
9(t,p =/-———-—-—-—- z
4r\/p* + 2"?

°°6 t—so PP +2 )d
ok =
J 47/ p? +zz2

The geometry is shown in the figure.

Observation
P Point

Line
Source

Figure for Exercise Solution 48

2
Make a change of variables: u = spy/p?+22, 2 = (;‘:;) - p2.
Then

soz’ u? — s2pdy
du = ————=d2' = 0
1/,,2_*_2'2 1/p2_'_z'2
So,
dz’ du

VAt JE-agp
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Thus,

(t,p) = l/ 6(t —u)du _ H(t — sop)
P = o Vui—sip?  2m\/tt—s3p?’
sop

which is the line source Green’s function (4.2.15).

§4.9

This problem is very similar to problem (4.7), the main difference being
the presence of the reflection coefficient RTM in the integrand. The so-
lution thus proceeds along the same lines, but we now must consider the

locations in the complex s, plane of the singularities of
P y P ‘
RTM _ €281 — €182,
12 = T T
€251, + €132,

where

Pos2~-82, 8= e, i=12

Taking the Sm[s;;] = 0 branch cut for ¢ = 1,2 gives two branch cuts
similar to that in problem (4.7). The cuts extend along the real and
imaginary axes of the s, plane.

Sz = S

All that remains is to locate the poles of RTM in the complex s, plane.
The condition for a pole is

€231: + €182, = 0.

In the Cagniard-de Hoop method, we are concerned with real, positive
permittivities, so €; and ¢; are both real and positive. Thus, to have a
pole, the real and imaginary parts of s;, and 33, must be opposite in sign.
The integral in (4.2.45 a) is carried out on the top Riemann sheet of s,,
and s;,, where Sm|[s;;] > 0, 1 = 1,2. So, there are no poles in the second
or fourth quadrants of the complex s, plane.

Thus, the contour deformation to the complex s, axis can be carried out
as shown in problem (4.7).

For more discussion of the poles and zeros of RTM, see §§ 2.6.2.

§4.10

(a) The problem geometry is similar to that shown in Figure 2.3.1, but with
an I oriented dipole located at z = 0 and a single interface at z = —d.

For a horizontal electric dipole, the primary field in the 2 direction is
given by
_ il @ e
' 4nwe 820z 1’
Il 8 ¢&*F

Ho=—-——— 3.
oy r (2.3.7b)

(2.3.7a)
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— . . ___ _ ____ 3

Using the Weyl identity,

tk, z4ikyy+iks|z|
-1 / / dk,dk, (2.2.27)

z

Ez - +1I1 / dk dk k esk,z+ck,y+tk,|z|
8rdwe
-0

Il T k ihszttkyy+iks|z
H,=§;3/ dk,dk,,k—:e Hikyydikelel

where the + sign in E, is for z 2 0.
In the presence of a half-space,

In 7
T / dkdk, k,

[:i: tkzrikyyt+ikyslz| _ Rg"zbleik,z+ik,,y+ik;,(z+2d)]
- // dk dky ll [esk,z+tkyy+tku|z| +RTE tk,z+:k,y+tk1.(z+2d)]
ki,

From (2.3.17a), E, = vy [m By, +iwpg f?u], where E denotes
the integrand in the spectral representation above.

So,
_ / / dk.dk, [ k2k,,
17 8n2 k24 k2 | we

[_ etk,z+£k,y+ik1,|z| + Rg'zhl eikgt+ikyy+ik1,(z+2d)] _

wﬂlky [ ikyz+ikyy+ik;z |z + RTE tk,z+nk,y+ak;,(z+2¢l)]}
klz

Combining some terms above, this simplifies to

I iy I 1PN Y
B =gt [[ ava, gre \['B Th

k? k1.

z tk,z+ak v | otk1z)z| D ik1s(24+2d)
87r2wel //dk dky ’ [ + Re ] ’

+ ( -k ki, RTM 4 14 RTE) eikx.(z+2d)}
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where
s 1 BERIF - BRI
k2 + kf, : k3 — k2

The reflection coefficients RTM and RIF are given by

e2klz -6 k2z

™ 272 -~ = 2.1.14
B &k, + e1ka,’ ( 2)
RTE = Hakis = pakas (2.1.132)

T pakys + paka,’

ki = K2 — K2 — k2.

When k; = ik, ki, = k; = \/pi€;. In this case,

/&uez
RTM — €2/ H1€1 — 61\/1_1262 Y ae«
2 T ay/mateayie [um

€1€2
- H1/H2€2 — H24/H1€61 — _RTE
B1/p2€2 + B2/ €1 12

Thus,
. =~ . 1 ksz + kfzk: TE
Jm R= lim K2+ k2 K-k Pz
ki

RTE, which is a finite number.

TE+R

Therefor, there is no pole at k; = ik,.
(b) We can write

= 2, O T ek mHky L el Bik(e424)
Bie=gre (k, + a_ﬁ) //dk,dk,—-’;———- |eietl + e .

1z

Let k; = B, cos ¢ — B, sin ¢, k, = B, sin ¢+ B, cos ¢, a coordinate rotation,
where ¢ = pcos ¢, y = psing. Then

oo

— iBsp . ~ .
E, = I (k§+ ?;2;5 ) / j dp.dB, [e"’"'" + Re'ﬁ;,(z+2d)] ,

8¢, wpi.

where

B 1 Ki(B:sing + B, cos $)*RIF — B},(B: cos ¢ — B, sin ¢)’RTM
g+ 8, k} - (Bz cos ¢ — By sin ¢)? ’
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ﬂlz=vk§"ﬂ3—ﬂ3-

2
)

(c) Let Bz =wsz, Py =wsy, 3iz=,/$

Then

-st—s2 =

=

o0

—_ -1 2 i eiwc,p iwsys|z| P iwsys(z+2d)
Bie = 8n2¢; (’cl t -0?) / / dssds, 1z [e +Re ] ’

Then, deform the s, integral to the imaginary axis, and let
8y = —tgq, so that

I, #\, . [
B = m (kl + b—;;) (-z) / dg

/ ds,

ewssp ~ .
ws) 5|z wsys(z4+2d
81 [c ’l I + Re 13( )] s
z

where
Siz = Vs?'l'qz—si’
~ 1
- J —
(s2-¢%)
_83(s-sin @ —igcos $)*RIF — s,(s: cos ¢ + igsin ¢)? RIM
83 — (s, cos ¢ + igsin §)? ’
RTE = H281: — 1822 RIM _ €231, — €182

12 — 12

, .
HB281z + p182, €2381; + €182,

For the direct field term,

o0 oo

eiw(a,p-f-.u,lzl)
Pom i [Lan [Jas St
812
-00 -0
Let
t ., £
t=38.p+81.l2|, s:= ;sxno:hcosﬂ [o:1 - o

where

6 = sin™? (E) y T=vV224+02, ay=4/s+ ¢

r
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“Re [S,]
Im [t]
A
0 A B
g | } > T
oyp oyr Re [1]

Figure for Exercise Solution 4.10



The mapping between s, and the real ¢ axis is given in the figure.
For the reflected field,

o0 o0 ~
Pp=—i / dg / dsz.ﬁe‘“(‘sﬁu;(zi—?d)) )
812
-00 -00
Let
t= Szp + 81,(2 <+ 2d),
=L ing, + cosd £
where

— 21 o2 —=ain- [P = /82 + ¢2
_\/(z+2d) +p%, 6;=sin (7'1)’ ay = 4/81+¢q%.

The geometry is shown in Figure 2.6.2.
The mapping is the same as in the figure, with 8 — 6;, r — r}.

(d) The direct field term has a branch cut only for s,,, so the integration
path is deformed from the SIP to Py and Pp as shown in Figure 4.2.5,
but without the excursion around s, = as.

ds; 1 ds, 1 it
”D"’/ 4 / ‘“[('d?;:)L (dt s,,),,]‘ ’

2+q2r

where ;
+:

[#2 = (3 + )r1)¥

ds. 1 _
dt slz—

So,

Pp(w,r) = 2/dq 7 dt (s + g?)r?)}

7 2
| oo

=%/mmajaﬂ5@¢
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Therefore,

 Polt,r) = %’-’H(t—slr).

For the reflected field term, there are two branch cuts, one for s;, and one
for s2., with branch points at +4/s2 + ¢* and +/s2 + ¢2, respectively. If
83 < 8; (i.e. the lower half-space is optically less dense than the upper),
then the integration path must be deformed as shown in Figure 4.2.5.

Then,
ds, ds, R iwt
/dq./dt [( dt 31:) (dt sl,) ]e ’
L v
=1/s3+ @ p+ /5] — s} (2 +2d).
As before,
%1 T " < /st +¢q?
ds, 1 " [('3“2)'%]
'E;— &i I #> /3'{’+q2 :
2
dEatid
Also,

+90 ~
ds, ds; R
Pp(w,r) = /dte /dQ(—i) [( 7 ;) (7{ ;;)u] ,

To = S2p + 4/ 83 — $3(z + 2d),

{[t—\/—:(z+2d)] —&2p }

Therefore

P =B [ aco| (% 2) - (%:2) |

=90

Then
“I(w)l fw? &
Bl = 5ok (4 25) 1Pole ) + Pa, ),
50,
—I(t)l 13 &
Ey(t,r) = Bt [—g 3t @] [Po(t,r) + Pg(t,r)].
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) & o 2 1 8
Since ( 527 + By + i Btz) Ey.(t,x) =

outside the source region, this can also be written as

I(t)l

Eu-(t l‘) =

ay’ aa: 2] [Pp(t,r) + Pr(t,r)).

§4.11
With d; = y =0, (4.3.3) is

o

—wu I .

Eﬁm = WUy / ds, 1 TuR,z,.sR;nl—lTzlesal[a,r+2mcgyd3].
4z 81y

Notice that there are branch points at s, = +s,,+s;, and +s3.

To make this look like a Fourier inverse transform, let
t =8,z 4 2m sy, d,.

The inverse of this transformation is

t t?\?
8z = — COS Py, + sin ¢ (sg— —) ,

m

where

pm = V22 +(2md;)?, and ¢, = cos™! (-z—) .

Pm

The contour P on the complex s, plane that is the mapping of the real-
t axis will look like Figure 4.2.3 with ¢; in the figure replaced by ¢,,.
Also, the hyperbolic portion of the contour P will meet the real s, axis
at s; = s;cos¢,,. If s; and s; are less than s;, as would be the case
for a slab wave guide, then it may be necessary to detour the integration
contour P around the branch points at s, = s, and s3.

Assuming for definiteness that s; < s3, one obtains

W#II /dt [(dsz T12R23R;"-1T21)
L

S1y

_ (i{i T RRRE Tn) | jiwe
dt S1y U !

where

T = min [32 €08 P, 812 + 2mdyy[s] — s';’] .
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Now, )
1 ds, i3y,

sy 4t 5, (2 — s3p2 )}
Also, Ty, R, R\ T5, takes on conjugate values on the different Riemann

sheets, so
ﬁ TuR;nsR;;-lTn _ ds, TlgRgsR';l—lTn)
dt 81y L dt S1y U
-oiom [t TR T
dt 81y L

Rm
Thus, the inverse Fourier transform of '.%f;)' is

M ds; TlgR;’,‘,R;"l'ngl]
=K @Sz H(t —
f(®) 27r8‘m [ = p i (t-r1),

where 7 is given above.

Then, 5
Efm - —EIU) * f(¢).
§4.12
(a) Using the transformation (4.4.7), it is easily shown that Tf':? %‘1 ;‘f = -1,

so that (4.4.11) maybe written as

F(t) = :ﬂ?_sm/ ds,,
C {(t — 81,

2)? — s2p7)4

where C is the image of the segment of the real T axis s;7 < < t on the
complex s;, plane.

First, note that F(t) = 0 for ¢ < s;r. This is because F(t) is an integral
to be carried out over the P contour defined by (4.4.7), with 7 real and
T 2 s r. This is also required by causality.

For t > s;r, F(t) can be written in closed form. Using s? = s? — s?_,

2 ds,,
F(t)=——8‘m/ 3 12 2.2\ 213’
LA (81,7 — tcos 8)? + (12 — s2r?)sin? 42
where

cosf = -z-, sind = e, r=4/p?+ 22,

r r
Integrating,

F(t) = -_;—2 . %%:.,n {Sinh'l [ 8,1 —tcosb ] r=t } .

(8 — s3r?)tsinf | =T
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From (4.4.8b),

1

T o . T2 2 2 \
1. == cos@ Fisiné %) - (4.4.8b)
So,

el 2 _ .2,.2\4
F(t) = ——2—8‘m sinh-? isin O(t% — sir 1)2
wr sin 6(t? — sir?)2

—sinh"l[ (817 —t)cos b ]}

(t? — s?r?)} sin6

= 2om {sinh"[—i] — siny~1 | {oar = t)cosf ] } .

(t2 — s2r?)} sin g
For t > s;r the second term is real, so
F(t) = =2 . Sm {sinh~}(—i)} = 1,
r r
since sinh™!(—i) = —#. So, we have
F(t) = H—(’E—:—f—‘-’i

To relate this to (4.2.25), note that

F(w) = % / ds,,iLHél)(ws,p)e“""". ' (4.4.6)
P

From (2.2.31), this is equal to %;L—'

According to (4.2.25), the inverse Fourier transform of the above is
ﬂt—:—'l'l, which is the result obtained above for F(t).

(b) The time-harmonic response of a VED on top of a half-space is given by

o0
—1Il k; (1) ikyg )z TM _ikys242i
1 = G, / dk, k—;Ho (kop) [e*1elsl 4 RTM eihrast2iind] = (9 3 5)
-00
where z = —d is the location of the interface, and the source is at z = 0.
Working with the reflected field only, and letting k, = ws,, k1. = wsy;,
we have
i T, 8
- w .
f = e [ s BPws pleeneetid RN,
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Deforming to the P contour, as shown in Figure (4.2.5), on page 226 of
the text,

Ef
~wi(w) - 1~ 8re

/ ds,—H (s, p)eiwns(+2d) . RTM

Here, the P contour is defined by

8,0+ 81.(2+2d) =1,

where 7 is real. Consequently,

T . T2 2 :
s, = —sinfr £ tcosb; -31)
L { T

2
1
2 2
T o T
812 = —cosf Fisinfy | 5 —s7) ,
rr T‘I

where r; = +/p*+ (z +2d)?, 6; =sin™? (‘,%)

The inverse Fourier transform of F(w) = % is then

F(t) = /d ﬁ RTM 3,) / dwe-iw(f-lu(z+2d))H(()1)(w3pp)

1 p ™ H(t - slz(z + 2d) - Spp)
YR ds, — R;;" - i
inle; s1c [(t = s1:(z + 2d))* — s207]*

Folding the P contour and combining the parts associated with Py and
P Ly

TM
ds, p Ry,

dT 31;

i
~ 81,2)° — 82p7]?

Assuming s; < sy, as in Figure (4.2.5), 7o is the value of 7 at the branch
point for sy,,i.e. at s, = sy, or

To = 82p + /8] — 83 (2 + 2d).
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§4.13
(a) Computing V3§(z,y,t) yields

.. 18 8 (2AH(ct-p)
Vij(z,y,t) == = p o | ———="

29(z,y,t) pappap( ’——'—cm—p?)

0 S(ct—p)  H(ct—plp

Vet —p? o (c2 - p?)}

—b(ct = p)’t | &t~ p)p
@ V=

2pc2t2 +p3
P on )

22490
p Op
24

p
6(ct —

» (c’t? +p%) | 8(ct—p)

-aa e S St

242 4 2
+H(ct — p) TP )]
(c2? — p2)t
Computing the time derivative,

1 82 24 0 | 6(ct - 2¢
,wg@y,ﬂ--a[< -]

2A —b(ct — p)cit + §'(ct—p)-c
(cztz - pz)z Jct? — p2
—8(et — o)e3 22 4 2
&(ct p)c§t+H(ct-p)c2 23t +p );:]
(42 — p)} (@t — )}
=24 [—5(ct —p)2ct  8(ct—p) )(2C’t2 + 7%
(

+ H(ct
242 — p2)§ Vit — p? (ct (c?t? — ) ]

Thus,
2_ii). _ 24 (-—c’t’—,o2 ) _
(V 2 52 i(z,y,t) = (@1 — g3 p '*szt 6(ct — p)
_ _2A8(ct—p)  (ct—p) _ —24éct—p) t-p

P (at+p)i(ct—-p)i (ct+p)
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(b) From the sifting property of the delta function,

—2Ahm/dp / dté(ct — p LI F 2
(ct+ +a)t

= —24%m [dp [ dubu=p)T=PFE gy oo,
= c (rprol

=—2A1im£/ 1 oammY¥e. L
a=0 ¢ (2p+a)2 a—0 (¢ \/a
__24
T ¢
(c) Thus,
2 _ _1._) _ bt —pWaT=p
(V 2at2 g(z,y,t) 2A (ct+p)2
= _iA ﬁ(i);(_p)’ in a distributional sense.
But from (4.5.5),
2 101, —_ —~8(p)8(t)
(V' pe 3t‘2) §(z,y,t) = —6(z)6(y)é(¢) = g
So,

~24 §(p)8(t) _ —6(p)5Ct) , 4 <
c P 2mp 4r

(d) Consider the general solution for §(z,y,t),

cosh (\/czlt2 - p2/2c'r)

§ is strongly peaked around p = ct, then tails off smoothly, as shown in
the figure. Now, look at the Fourier transform of §(z,y,t),

g(z,y,t) = H(ct — p)2A (4.5.9)

oo

g:](z,y,w) = /ﬁ(z,y,t)e‘“‘ dt.

e
3

For large w, e* is highly oscillatory, so the only contribution to é(x, Y,w)
will come from ¢ ~ £, where §(z,y,t) is rapidly varying. For ¢ very close
to &, §(z,y,t) reduces to
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£yt
'\

t=p/c

Figure for Exercise Solution 4.13

24
c2t? — p?

§(z,y,w) should be linearly proportional to A.

g(z,y,t) >~ H(ct - p) - Thus, for very high w,

Also, for a single frequency component w, Equation (4.5.5) reduces to

1+ 1); = —&(z)6
Va + ? + m g(zay’w) == (z) (y)’

or
(Vf + kz)g(z’ y’w) = —5(.‘5)5(;{),
where \
2w 1
k= @ Tiom
Thus, .
x i
§(z,y,w) = 7H" (kp).
w? 1 w 1 w 1
Note that k= -c—2+ yyem i :1/1 + e ks (1 - 8_w;_‘r_2)
=v__1 — 2 s -
T ¢ 8wer c’ w = oo.

Thus, for large w, §(z,y,w) should be independent of .

So, for large w, § is both proportional to A and independent of 7. This
implies that A must be independent of 7.
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§4.14
In four dimensions, g(r) satisfies

(62 * 3 &

T Bt 3+ o) 9() = —B0) =~ (as)i(za)

Taking a Fourier transform of this equation with respect to z,4,

(6::2 + & + 6622 Ty )g = —8(z)6(x2)6(z3),

where
00

§(z1, 22, 73, kz.)# / g(r)e”""lz‘dz4.

-00

The solution for § is the 3-D Green’s function,

e:l:i\ [k2—k3, rs

§= 41?1‘3 ’

1‘3_. :‘Bl +22+z3 ‘\’ —:B‘,

r? =23 4+ 23 + 22 + 3.

Assuming e~** time dependence, the ‘+’ sign in the exponent above
is the correct choice to yield an outgoing wave solution. Then,

o0

1 a tky, x
g(r) = o /9(31, T3, T3, kz, ) € kaq ‘dk,,

-0
oo
— 1 / ei(k"z‘-'-‘/kz-k;"a)dkz‘.
8n?ry
-0

From (2.2.11),

l(k,‘ -‘t‘+‘ /kz-— 1'3)
H(()l)(kr) - / dk,‘—-—’;—:—-,

T4

so, %Hél)(kr) = ;zr- / dkzgei(k“z‘+ V k’—ki‘ ra).
3

Thus,

o) = g e B (k) = o o

2 AP
akr (kr)- 6r
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Since
9 L),y = g Or 0 [aia_T
EEHO (z)_—HI (z) d6r3_6r3 1'3+.‘L'4—r,
_ k)
o(r) = g H{(kr).
§4.15

(a) Taylor expanding ¢(r,t),

1 8%
2! a2

9¢

#(r,t + At) = ¢(r,t) + = S Ottg == At? + .

Forward difference approximation:

dg(r,t) _ (r,t+ At)—(r,t)  BAt+ 4 TEAL +

o At - At
_9 1 %4 _ ¢
=5 T3ien At 4= (r,t)+O(At).

Backward difference:

O(r,t)  (r,t)— d(r,t —At) LAt L ZEAL +
ot - A

At
_0_ 1%,  _0%
Central difference:
8¢(r,t) _¢(rt+4)—¢(rt-4)
~ At
[¢<r D+ % (4 +H 56 + ]
At
o) - 2 (89 + 5 5 (4)" -]
- At ’
BAt+ 2T (A +... s 2 8% At )
2 31 a8 \2 e A T il ...-_.._ 2
=2 = =5 t3iae g T =5 TOlA]

(b) To get an error of O[(At)!], we can combine two central-difference ap-
proximations with different widths in order to cancel the first error terms.

$(t+4)-¢(t-4) 8¢ 28 A
At =5 t3e 8
d(t+5) -6 (t—4) 8¢ 2 8% At
At % tnor s

2

+ O[(At)!]

+ O[(At)).
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Thus,
8lo(t+4)—0(t-4)]-[6(t+5)-6(—45)]
At
=3 -aat—¢ + O[(At)Y).

So, a suitable differencing scheme is

00(t) , (4 4) +100+4) -0 -4 +is(-4)
o . :

§4.16
For a homogeneous medium with Az # Ay # Az, (4.6.10) becomes

1l -
Smino = 28mnp + Sromsp
1
= (At)2 cz {W [¢£ﬂ+l,ﬂ,}’ - 2¢£"i"1’ + ¢£"-lvn!p]

1
+ (Ay)? [¢£’I.n+l,p - 2¢£,.,,,,, + ¢£,,,n_1'p]

1
+ (Az)? (B mptr = 20mnp + Omp] } .

Inserting the discrete plane wave ¢}, , , = gletk=maz+ikynly+ikipds jnio this
equation, one obtains

(9-2+9"") btunyp

=4 [t (%3%) +

k,Ay 1 k.Az
-2 Ry 2 Kz !
sin ( 5 ) + By sin ( > )] Pmnp

=~ 4r3s?¢l,

'n’p ’

where

r=At-c, and

=L gp2 (kB2 + 1 in2 (Rl + 1 g2 (K82
~ (Az)? 2 (Ay)? 2 (Az)? 2 )

This is the same as (4.6.16), but with slightly different definitions for r
and s.

As before, the condition r2s? < 1 ensures stability.
Since s < ((T\'lz_)f + (le")’ + .(_Alz-)-f) in this case, the condition for stability
comes

1

c\/ ("A":,'_)z + ‘—(A:,)z + _(Al,)z'

At <
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1
1 1 ¢
@ Y am 2 vt Geny?

The generalization for n-dimensions is At < 7

§4.17
The lossy wave equation is

(12 Zz +I‘02) ¢(r,t) = pV - u~'V(r,2). (4.6.23)

For a homogeneous medium, using central differencing, this is approxi-
mated as

cz( At)z [¢’ mnp ¢l m.n,p + ¢m,n.p] + o 2 At [¢l mon,p ¢m,n,p

(A3)2 [(¢m+l,mp ¢mnp m—l,n,p) + (¢' mn+1,p
—2hnp + Bnc1p) + (Famprs = 28hnp + Fnpo1)] -

Assumng ¢m np =g ecmAck;+inAsk,+ipAck,’ then

9-2+97 +a(g—g7") = —4ar?s?,

2
a= poc At, r= (-A—t) c,

where

2 As

k:As k,As k.As
2 _oin2( Z 202 y s 02 z
8° =sin ( ; )+sm ( )+sm ( )

Multiplying by g,
F1l+a)+g(4r?s?-2)+(1-a)=0.

and

Solving for g,

_1-2r%s % \/a? — 4r2s%(1 — r2s?)
- 1+ a
_ 1-2r%8% +i4/4r2s2(1 — r2s?) — oz2
B 1+ a

Suppose that r2s2 < 1, which is the stability criterion for the lossless
wave equation. We want to show that |g| < 1 if this condition holds.

There are two cases to consider. First, suppose that a? < 4r?s?(1 —r2s?),
Then

(1 — 2r?s%)? + (4r%s%(1 — r2s?) — a?)?
(1+a)

_1-a? 1-a

T(14+aP 1+a

lg* =

<l
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Next, consider the case where a? > 4r2s?(1 — r2s?).

Then,
_1=-2r2% 1 /a? — 4r25%(1 — r2s?)
9= l1+a )

Since0<r%s?2<1,-1<1-2r%2<1,
Also, 0 < y/a? — 4r2s2(1 — r2s?) < a is this case. Therefore,

-1l~a l14a

< — <1.

Thus, if r2s? < 1, then |g| < 1 for all a. That is, the lossy wave equation
has the same stability criterion as the lossless wave equation.

§4.18
(a) Applying central differencing in time,

Onn 1
np 1-1

at - 2 At ( ,ﬂ'P ¢ nt?)

Assume a Fourier mode ¢}, , , = g'emasks+indsky+ipAsks  Then using cen-
tral differencing in space, V3¢l — (—gfi;s’qbﬁ,,m,p, where

k.As k,As k.As
b IR | T 2 Yy 2 z
$” = 8sIn ( 2 )+s1n ( 2 >+sm (———2 )

Then the diffusion equation becomes

—4s? -
——¢l TP 2At(g g 1)¢‘ mnp = 0

(As)2™™
* 8s2At
2 -1= = —f-—-,
9°+9 0, 7 ro(Bs)?
Solving for g,
g=2 + /72 +4
= 5 .

Since 4 > 0 for most (k;,ky, k), /72 +4 > 2, and —y - /72 +4 <
—v —2 < —~2. So, there is a solution

e ol Vi e . B
g= ) < 7 = 1.

Thus, there is always an unstable mode with |g| > 1.

(b) Using forward diﬁ'erencing in time,

0
a ¢£"v“o? (¢I 7P ¢’ l“iP) -1 )¢£" ™p?
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(c)

(d)

for a Fourier mode.

Then, with central differencing in space, the diffusion equation becomes

po —4 a2y
At (g )¢m n,p (A3)2 s ¢m,n,p'
The amplification factor g is
452 At
po(As)?
To have |g| < 1, we must have -iAAJ <2,0r At < ﬂ(;r)- Since s2<n
for an n-dimensional problem, the oondxtxon for stability is

uo(As)?
" 2n

g=1-

At < (4.6.25)

The given equa,tlon is a linear equation relating ¢4}, ¢4+, and ¢/l to
!, @ _,, andgl +1- Since this holds for all m, with appropriate bound-
ary condxtlons at the ends of the computation region, this can be written
as a matrix equation
X_¢H—l =§.¢l’
where A and B are tridiagonal matrices.

To step forward in time, A must be inverted to compute

P! = Al'.B. &'

Let ¢£n _ gleimAsk.
Then the diffusion equation becomes
At ids tAs iAs -ils
(9 —1)gL, = 2(A3)2ya [g(eAk 24 8% 4 (¢ _24 ¢ Ak)]¢£n
or
At As-k
—1) = — 2 —— 2 _ oin2
(9-1) 4Ls*(g+1), L 2(Bs)ips’ s* =sin ( 3 ) .
Solving for g,
1—-4Ls?
9= T¥4aLsr

Since Ls? > 0, |g| < 1, so the Crank-Nicholson method is unconditionally
stable.

§4.19

Equation (4.6.26) is the lossy wave equation (4.6.23) with ¢ = 7-—-

shown in problem (4.17), the stability criterion for the lossy wave equatxon
(using central-differencing) is the CFL condition (4.6.22), At < 5‘;.-.
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With ¢ = 7%%, the quantity 2 27- becomes At.

Thus, the requirement for stability is At < At. This would seem to
indicate a situation of marginal stability for any At. To resolve this

difficulty, consider ¢ = WKAT(’L]-T’ where € is a small positive number.

Then ﬁ‘; = At(1+¢), and the stability criterion is At < At(1+¢), which
is satisfied for any positive At. Thus, the central-difference approximation
to (4.6.26) will be unconditionally stable as long as the leading term is
multiplied by a constant factor (1 +¢)?, ¢ >0.

§4.20

(a) The finite-difference approximations of Maxwell’s equations (4.6.35a) to
(4.6.35c) on the six faces of a cube are

l+1 Bl—% _ 1 !
At z m.'n+2,p«)-'l T m,n+%,p+% - Az v m.n+%.p+1

-E:l m;n+§.p] - _A}E [Ei mat+lp+d T E’ mn,p+1] (1)

1 (g5 -B" E!
At |7y miimpsl v m+inptd Az E, "'+1’"-P+1 z mnpt}
1 l l
- -A—- [ Trm +§»’h?+1 E m+%t“|p] (2)

1 I+3 Bl—z El El
At |2 m+dnsdp z mtdntdp = A z m+intlp z midmnp

T Az [ v milntdp E, mn+l,p] (3)

1 143 1-1 1
—_— 2 - B ? —— i
At T m+1,n+§-,p+% z m+1,n+%.p+% Az v m+l-ﬂ+‘},p+l
_ o I .
Ey m+1.n+%,y] Ay [Ez m+l,u+l,P+% Ez m+l,u,p+%] (4)
1 [BH% _g-? R
At v m+dntlptd y midntrped]| T Az z m-l»l,n+l,p-l-'l
_ml - i !
z m,n+l,p+%] Az [Ez m+%,n+1,p+l E m+1 n+1,p] (5)
.L l+% - Bl-— - E’
At z m+%,n+§,p+l z m+1,n+1.p+1 Ay z m+%,u+lm+l
_m = ! _
E&' m+inp+l Az [Ey m+1,n+1,p+1 Ey m,n+%,p+l] : (6)
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The finite-difference approximation for the time derivative of the total
flux passing through the cube is

% / dsi - B ~ AyAz [LHS(4) ~ LHS(1)] + AzAz

[LHS(5) — LHS(2)] + AzAy[LHS(6) — LHS(3)],
where LHS (i) indicates the left-hand-side of finite difference equation
().

Replacing the left-hand-sides with their equivalent right-hand-sides in the
equation above, we find that every term is cancelled, so the sum is zero.

So, the Yee algorithm is consistent with

gt./dsﬁ.Bz-O or /dsﬁ-B:c, a constant.

From causality, there is a time before the source is turned on when B = 0,
which implies that the constant C' must be zero.

(b) Using the Yee grid, the total magnetic flux passing through an elemental

cube is
Lo ! - B
/dsn ‘B =Asly (Bz mtimtdorr ~ Be M+%vﬂ+%4’)
s
! l
+ AyAz (Ba: m+l.n+%m+% - B"' m.ﬂ+%.P+%)
! { =
+ AzAz (By m+dnt1,p4+d B,, m+§.n.p+§) =0.
So,
B! - B,
z m+int+dphl z m+in+dp
Az Bl Bl
= —A.'L' z milntdptl T T matlo+d
_ Az Bl — Bl
Ay \v mtiatiord T Py midnptd )

The above is a finite-difference equation which can be solved for B, by
space-stepping, if B, is known for some value of z such as a boundary
point.

§4.21

The finite-difference approximations of Maxwell’s equations (4.6.35d) to
(4.6.35f) on the six faces of a cube are

1 D - D! =L [y} g}
At {7z m-gme sm-dmp] T Ay [Tz m-intie im-in-1p

L B, L, o

Az ¥ m"%o“u”% y m—3.np—3 z m-%-"m
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1y -1 _ 1 -4
E [Dy m.n-%,p - DV mv“—%d’] - K; [ z mv"‘%yp"'l
1 Hz-g -1 ]
- -A—:L'. [ zm+in-ip -4 m—l.n—z,p
1 ! 1-1 1 -3
Z; [D‘ map-t Dz m.ﬂ.?-}] = E [H :s+,,n.P-1 -
1 -1 1-
T Ay [H’ mntho-d H, mm—%m-%] B

27 [P mtne = Pitsns] = 35
-1

-

At [D:l matdp T D:(-vln,n'i'%m] = Zl—z [

1 -
Az [Fe mineto

1 ] -1 1
—A—t- [D’ m'"t?"'% - Dz mn,p+1] - -A—; [
1-}.

z m.ﬂ+*.1:’+1

“ml

v m+§,n.p+§ -

z._
z m+§,n+§.p

1_
zm n+%,p+1

l..
v m+1 nptd T

-
z mm-§m+§] -

{=—
v m+§,n,p-§] -

-
z m-%.n-i-%,p] -

-3

z mn-4,p-1
-3
ymn-ip

-1 ]
2

y m— %1”-?"%

-1

2
z mnp—1%

-1
2
z m+%,n,p

I-

z mm+§.p—%]
-4

¥ mi““'%!?

-

v m-%.n.p+§]
-}
z m,n.p+% °

(2)

3)

(4)

(5)

(6)

The finite-difference approximation for £ f ds: - D, where S is the cube
3

surface, is

gt- / dsi - D ~ AyAz{LHS(4) — LHS(1)]

+ AzAZ[LHS(5) — LHS(2)) + AzAy[LHS(6) — LHS(3)),

where LH S (i) is the left-hand-side of finite-difference equation (i).

.
-
+ AzAz [JJ 2 mtde Yy m,n—%,p]
+azoy (1 pt

-1

Replacing the left-hand-sides above with the right-hand-sides of equations
(1) through (6), the terms involving H all cancel, leaving

-J, nzz,n.p-§] } )
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The right-hand-side above is the finite-difference approximation for

- / dsni-J,
where S is the cube surface.
So, the Yee algorithm is consistent with

%/dsﬁ-D:—/dsﬁ-J

which is the integral form of £V -D = -V - J, the continuity equation.

§4.22

(a) In three dimensions, the central difference approximation to the wave
equation is

(H£n+l.n P 2H£n Y p m-l,n,p) (Hzn.n+l.p - 2H£n,u P m n-—l,p)
(Az)? (Ay)?
+ (Hin.n.p-i-l — Hin.n.p + Hinm.r-l) __1_ (Hﬁ.}z P 2H,, np T H:.}u.p) =0
(Az)? c? (At)?

(b) To make the necessary manipulations more transparent, it is helpful to
use an operator notation for the central differencing. Let ., §,, §,, and
6, denote the central difference operators on the space and time variables.
Then, for example,

!
z¢m,n,p A (¢m+%,n,p ¢m—%,n,p) )
642:¢m.n,p ( A )2 (¢m+l,u.p 2¢l m,n,p + ¢m—l,ﬂ,p) .

The wave equation can then be written
(52 +62+62 - 62) H,,.,=0.

In this notation, (4.6.35a) becomes

= §,E! - §.E

1ﬂ+%vp+1 mn+1,p+1

Then, applying 6; to the above equation,

BEH, putont = —60E, p+d T OGE,

yma+d ptde
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(c)

To eliminate E, use (4.6.35 e-f):
6D, matdptd = =4 H matdprd T -4 H min+lp+}
6D, mntipei =6z H mntbotd ~ byH; mmitptd

Then (dropping the m,n+1,p+ 1 subscript, since it is constant through-
out),

p82H. = % [~6,6.H! + 6,6, H. + 6,6,H. — 6,6, H!]
1
= - [82HL + 82H. - 6,(6,H} + 6. H))]..
Multiplying through by € and adding and subtracting §2H!,
peb H, = (62 + &, + &) H, — 6:(6.H, + 6, H, + 6. H,).

The last term on the right is just the finite-difference approximation of
V - H, and is zero in the Yee algorithm (see problem 4.20).

Therefore, we have
-013531{; = (62 + 62 + 62)H., (4.6.22)

which is the finite-difference approximation of the wave equation for H,.

Since the Yee algorithm is equivalent to finite-differencing the vector wave
equation directly, the CFL stability criterion applies for the Yee algo-
rithm. For stability,

§4.23

At < 7 (4.6.22)
(a) Equation (4.7.4) is
o6t = g (1 - CA—AE) + cg‘ztda (4.7.4)

Substituting a Fourier mode, ¢!, = g'e**™4= gives

gq% = [(1 - FAA_t) CAt gk:Az] ¢0

= g=1- ﬁ(l sksAz) =1- a(l _ eik,Az),

cAt
Ar®

Then, |g|* = g9* = 1 — 4(a — a?) sin® (4:£2)

where a =
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For stability, |g|* < 1.

So, require

1 - 4(a — a?)sin? (k,zAz) <1
or
—4(a — a?)sin? (k,;kz) <0
or
(a — a?)sin? (k,2A:c) >0.

The inequality will be satisfiedif a —a? > 0,0r 1 > a.

Thus, (4.7.4) will be stable when ¢ < 1.
(b) Equation (4.7.7) is

At— A
5 = o1+ (SR ) (7 - 40) (817

cAt + Az
Substituting ¢* = gnetksm47,

965 = [e*4% + B(ge™2* —1)] ¢,

= cAt—-Az
where f = AtrAs.
Solving for g,
etksAz _ ﬂ ikoAz 1-— ﬂe-—ik.Az
9= 1" gkt = 1= Betiksbe

Since B is real, the last fraction is a complex number divided by its

conjugate, so the ratio has magnitude one.

Thus,
Igl =1,
so (4.7.7) is always stable.

§4.24

Expanding ¢(z,t) in ¢ about t = (n + 1)At, zo = mAxz,

1 9%

¢($0, t) = ¢(30,t0) + ‘aat_¢(t - to) + 5 ?

(t—to)2+---
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So,

e+ 1) =3 ¢ (soto+ 5) 49
(oo + 28 (8) + 352-(5) + )
(et (2) 550 (2) 4]

2. (é‘f) o= guth 1 Of(A),

NI N

=¢(zo, o) + 5

Thus, (4.7.6a) is second-order accurate for smooth functions of ¢.
Clearly a similar result holds for (4.6.11a) and (4.7.6b), for smooth func-

tions of z.
84.25
The Lindman absorbing boundary condition requires solution of two
equations,
d 10 =
s E] é(r,t) = — '; Bom(r, t) (4.7.19)
and
& o 02 , O
-5t';hm(l‘, t) — Bmc -a-i’;hm(l‘, t) = apc m¢(l‘,t). (4.7.20)

Let h,,(r,t) be defined one-half cell inside the boundary located at z =
0. Then using central finite-differencing, the above equations can be
approximated as

[ (B54611) (#2442 QJ
2 - 2

(¢ll,n - ¢é,n) _ _1_ — f: hl
Az c 2At I
and
(hf;,“ ~oM, A ) (hﬁ,, ~ohl, M, )
b (At;).; in) _p o\ The (A:),;
[g«ﬁ:,wgs,,.i,) —olfiatha) | (¢s.,-,A—¢s.,-,)] ~
=am¢:2 . : . ~ .

(Ay)?
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In the first equation above, the approximation

by~ (ﬁ%%—") has been used.

The first equation above can be solved for ¢;, while the second can be
used to time-step A/, -

§4.26
(a) The second order Bayliss-Turkel absorbing boundary condition is

# 28 40 1 3
(5ﬁ+zm+rar+zarz+;zat )¢< 1) =0 (4.7.29)

To remove the g;; term, we may use the fact that

L&, o

Vi - e 512

In spherical coordinates,
2 1 a9 /(,0 1 i ( o 1 _01
Vi= r? or ( or + r2siné 06 s‘noaa + r2sin®0 0¢?
8 29 1 7 ( d ) 1 8%
sinf—

=?37'5+;E+rzsm0 a0 80 +r’sin20%7'

So,
Pe_LZ (20, 1 0 (nel), L ¥
or? ¢ ot? ror rsn6dg\" " a0 r2sin®0 8¢2 ) °
Thus, the boundary condition can be written

3i+.2_i__l__£. 06 +._1__ai
Zot 7o risnd 96 \""%% ) T 7Tan?e 547

2 & 4 0 3
teoortrom T )W) 0.

(b) To implement this boundary condition in spherical coordinates, make a
finite-difference approximation of the above equation on a spherical grid.

§4.27
(a) Equation (4.7.34) states

N A
u(n+¢) = E A™ u(n) + ANu(n + ¢). (4.7.34)

m=1
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‘By definition,
Au(n+ €) = u(n + €) — u(n). (4.7.33)
Therefore,

Au(n+e)—u(n+e)+u(n) =0
Au(n +€) — Au(n + €) + Bu(n) =0
Adu(n+e€)— A%u(n+¢€)+ A%u(n) =0

ANu(n +€) — AN 'u(n + €) + AN"'u(n) = 0.
Adding these equations,

N
AMu(n+€) = u(n+e)+ Y AmMu(n) =0,

m=1
or
N
u(n+e) =Y A™u(n) + ANu(n +¢). (4.7.34)
m=1

(b) Assume that
#(z,t) = Z Z u;(ct — z cos 6;).
1

i
Then ¢(z,t+ At) = Z ua(na + €a),
i
na = ¢t — (¢ — aqciAt) cosb;, €5 = cAt(1 — aqcoséb;).

As before, we now approximate

N N
u(n+e)x Y A™u(n) =) (-1¥H*Cluln- (G - 1)d,
m=1 j=1
where C'J'-v = ;-,-(%-_'—JT,
So, the boundary condition becomes
é(z,t + At)

N
=) (-1 Clualna — (G - e

5, =1

N
=Y (-1Y"CF > ualna — (j — el

i=1 i,

- A
= z:(—l)"‘“C';V Zu;;[c,[t - (7 = DAt} = (z — jayciAt) cos 6;).
i=1 il
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If we choose the a; such that a;c; = a, a constant for all /, then the inner
summation above becomes

2 Uq [CI[t - (] - l)At] - (.’L‘ - jaAt) Ccos 9,] ,

i
which by comparison with the assumed form for ¢(z,t) is equa.l to
¢l(z — jadrt), (t - (j — 1)At)).

So, the absorbing boundary condition is

N
$(z,t + At) = Y (1Y Cgl(z — jadt), (t - ( — 1)At)].

i=1

§4.28
(a) We are given three values of ¢,

¢% = ¢(:L',t)
¢; = ¢(z - Az,t)
$3 = ¢(z — 2Az,1).

To derive a quadratic interpolation formula, assume that ¢(z + a,t) =
a + ba + ca®. Then from the data above, we have

1 0 0 a !
(1 Az (Az)’) (b) =(¢§).
1 -2Az 4(Az)? c é!
Solving for a,b, and c, '
a= ¢}
1
b= 7= (341 — 462 + 63)

say (4 - 26+ 4)).

Using these coefficients to compute ¢(z — cAt,t) yields the interpolation
formula

s —catt) = E= M= 1 051+ LoDt (a7.43)

_ <At
where s = vl

Equation (4.7.47) follows immediately from applying the above formula
withz = z—cAt, t =t — At.
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(b) By definition,
Qg(:‘: - CAt) = [¢g(z - CAt)a ¢§($ - CAt)a ¢§($ - CAt)]ta

where

¢7(z) = ¢lz — (i — 1)Az,t — (m — 1)At].
From (4.7.48a-c),
&(z — cAt) = [T' - #3(z), T! - #3(z — Az), T' - $(z — 2A7)]".
Since
() = [¢}(=), 3(=), 3],

P2z — Az) = [¢3(z), 63(z), 42(2)]’,
and &3(z — 2Az) = [¢3(z), (), 63(z)]°,

this can be written as

™ 0 0
&3(z —- cAt) = [ 0 T o ] - P3(z), (4.7.49)
o o T '
where
BY(z) = [$3(=), 43(c), 4(=), 63 (=), #3(=)]" - (4.7.50)
Hence,
™ 0 0
é(z —2cAt,t— At) =T [ 0 T } -®%(z) = T?-b3(z). (4.7.51)
: 0o o T

The general formula (4.7.52) can be established by induction. Suppose it
is true for some j, i.e. ¢(z — jcAt,t — (j — 1)At) = T? - #3,,,(z). Then
for j + 1, applying (4.7.45),

#(z — jeAt — cAt,t — jAL) = T' - & (2 — jcAt)
=T!. [¢’+l(z — jeAt), g3 (z — jeAt), ¢35t (z ~ jéAt)]t,

where ¢it(z — jeAt) = ¢(z — jeAt — (n — l)Az t — jAt)
=T ¢£3+l(z (n— 1)A$)a

by the induction hypothesis.



§4.28 141

Thus,

.

$(z — (j + 1ecAt,t — jAt) =T' - | T/ - #7},(z — Az)

AL ﬁﬁl(z) }
| T - ﬁ;{l-l(z — 2Az)
0o o0

-TJ
_ ; j+1
-m[3 3 o] et
=T 0;‘(?;1)“(3),
. . N . t
where ¢;(+j1+1)+1(z) = [ *(z), 43" (2),- - ,¢;E:,1)+1(1’)] ’
. ™ 0 0
and ™+ =71 [ 0 TV 0 ]
0 0 T



CHAPTER 5

EXERCISE SOLUTIONS
by J.H. Lin

§5.1
Assume u = (uj,ujuz), v = (v;,vs,v3) and w = (wy,wp, w3). It is
obvious that (5.1.1a) and (5.1.1b) are satisfied.

For any two numbers a and S, (5.1.1c)-(5.1.1¢) follow easily.

These relations also hold for real and complex numbers.

§5.2

If +gll = {f" +g", f +9)} )
= [(f )+ {0 + {85 ) + (g 9)]

= (1A + (F*,9) + (", 1) + llgllP]
#Ifll + llgll in general

So, ||f|l is a nonlinear real functional.

§5.3
{&, 9,2} is an orthonormal basis set. From (5.1.26), the identity operator
can be expressed as:
I=(2)(2)+@GNH) +(E)2)
Now we have two vectors a and b
a-I-b=(a,z)(,b)+(a,3)(j,b) + (a2)(2,b)
= azb; + ay b, + a.b;
=a-b.

So, the identity operator can be inserted between an inner product and
yet leaves its value unchanged.

§5.4

There are two different orthonormal basis sets: {#;,%,,%3} and
{#1, £5,23}. One vector a can be expressed in terms of either of the

two basis as:
a = g;f; = @&,
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The a; and a} can be related by a transformation matrix, namely,
a; = Tj;a;.
Consider another vector b and form the inner product of a and b.

(a,b) = a8l = Ty;a; by
= a;T;;Tucbe = a;6.bk
= a,-b,-.

The above equation is just the analogue of Parseval’s Theorem in 3D
vector space and also states that an inner product between two vectors
is invariant with respect to their representation.

§5.5
(a)

<e"m"rz fngs / dze'"-;n =

If n = m, then the inner product = 2a.

If n # m, inner product = Pl L}

? i(n-am)r -a
Hence, ¢4~ is orthogonal.

Let the basis be 7‘;:(:’"?, then we have an orthonormal basis.
(b) ¥

(- 1 inzx

= b, —e

f(z) Rl \/2_(-1.6
then
-"mrs —"mrs 1 inxz
b, —
()= L W™ ™)

= E bab(n — m) = by,

Therfore,

Assume that there is another square integrable function g(z) for —a <
z < a. Then,
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We can define an identity operator as
1

= inzz 1  ines
I=“;w—\/'§-;a'c e )(-Ee a
= Y fufr

i

-00

Now

(z*,Iz') = Z (z*, fn) (fa> 2")

- Zw fa(@) f2(=) = 51;_2;—"—’
= §(z — 2').

So é(z — z') is the coordinate space of the representation of I.
(c)

a

(f",9) = / dzf*(z) g(z)

~-a

- (&) (G )
. 5'_2 F(n) o(n).

§5.6
Assume that f and g are vectors and G a matrix. Then,

(f,Gg) = f:Gijg;.
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L

If G is symmetric, i.e. Gi; = Gji, then

(f,Gg) = f:Gjigj = 9; Giifi = (8, Gf),
which is the same definition as that of symmetric operator.

(b) _
(f*,Gg) = f; Gijg;

If G is Hermitian, i.e. Gi = G_", then

(,Gs) = f; Gji0j = 0 G3f; = (6 Gifi) = (&G,
which is the same definition as that of Hermitian operator.

§5.7
(a) The matrix representation of D is

(f,.., Dfa)
/ (@) 125+ ¥2)| Sn(a)d

=/fm($)a;_2fn(m)dz+/kz(x)fm(z)fﬂ(m)dx

= / {% [f,..(z) + df;f)] L i’df;} dz + / K(2) fn(2)fa(2)dz

_ ‘f{"‘ Teds +/ KY(2)fm(2) fal(z)dz

0

(since  £a(0) = n(a), f,..(z)f"f—;‘j-‘llz=0)
- / [ = (Ln) - AL / B (@) fm(2)fu(2)de

- ‘Pf""”)f..u)d + / F(2) fn(2) fule)dz

(1]
= (mefrn) .

Thus, the matrix is symmetric.

Case I. |m —n| > 2. Then there is no overlapping part of fn(z)
and fu(z). So (fm,Df,) =0.
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Case II. |m — n| = 1. Without loss of generality, we assume m =

n+1.
d 1/4, (n-1)A <z <nA,
Note: &n(2) = { -1/A, nA<z<(n+1)A,
dz .
0, otherwise.
Hence,
(fmsDfn)
(n+1)a - (n+1)a (n s 1A A
= 2y =2 2, s+ -z z—-n
- [ @Fue+ [ P 2 4z
na nA
1 (n+1)A A 2
A+ / k(z)[l ( 7y )]dz.
nd
Case I[Il. m=n.
(fa: Dfn)
nl nA DA 2
=2 / (1/AYdz + / ¥¥(z) [i‘—‘—(-'-‘A:—)—] dz
(n-1)A (n-1)A
(r+1)a DA 2
+ / k(z) [g’l"'_)__:ﬁ] dz
A
nA
2 f (n—1)A1?
— ; 2 r—\n-—
=%t /k(z)[——-——-———-A ]dx
{(n-1)A
(n+1)A

+ / (<) [f—‘—('-'Ail)—ér dz.

nA

Therefore the matrix assumes the following form

[ Du Du 0 0 . o cee 1
D21 Dgz Dga 0 cee
0 D3y Diz Day 0

... ... ... ... Dn-inN-2 Dn-aN-1]

where Dpn = Dym. State vector g) can also be represented in this space.
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If
N-1
g) = Z b, f, n),
n=1
then
N-1
(fm>9) = Y (Fms fu) b
n=1
N-1
We can solve for b, to get this representation. Let f) = Y a, f,). Then the
n=1
differential equation becomes
N-1
Df) =) _ axDfa) = g). (1)
n=1

Forming the inner product of (1) with f,,, we have

N-1

Z (fmsDfn) @n = (fm,9) -

n=1

This is a matrix equation:

D-a=g,

where D is the matrix representation of D we have just found, and g =

[91’ >, 'gN—l]ta gi 4 (fi,g)'

(b) Assume k(z) is a constant. From (a) when |m — n| =1,

(n+1)A

'
3
I
+
Y

nd

A —

+
o

A? 3

Dl= D= D=
+
=
—
{
I——'——l
i

When m =n,

-2

[1— (z —AnA

1 (z —nA)® (n-l-l)A]

nA

nA
D, = — 4+ Kk / (M

A

(n-1)a

(n+1)A

+ (z - (nA+ 1)A

nA
-2  2k’A
=X + 3

)]

)'e
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So .
Dy D, 0 0 ... ...

D, Dy D, 0 ...
D=|0 D, D D, 0

D; Dl (N-1)x(n-1)

where D, = -2+ 2"23"2 , D=1+ ”‘2—3A-2-. The matrix equation becomes
D - a = Ag. Using finite difference

d*f(z) |~ f(nA + A) = 2f(rA)+ f(rA - A)
7 Ina ™ A7 ;

then we have

f((n+1)A) - 2f(nd) + f((n - 1)4)
A2

+ B f(nd) = g(nd),
F((n+1)A) + (A — 2)f(nA) + f(n — 1)A) = A%(nA).

Expressed in matrix form, this is

- —2 4+ A%k? 1 0
1 -2 + A%k? 1 0o ...
0 1 -24+A47%%2 1 0
: : : 1
L 0 1 -2+A2k2 (N-l)x(N-l)
- f(4) 9(4)
: _ a2 :
Lf((N -1)4) g((N -1)A)

These two matrix equations from two different schemes are very similar.
The bandwidth of two coefficient matrices is 3.

The only difference is that the right-hand side vector g of the finite-
element matrix equation has to be calculated by the inner product (i.e.
involving some integration); but for finite-difference, we obtain the vector
by having g(s) evaluated at the discretization points. But the latter one

may cause some problem if g(z) has some singularities or is not continuous
at those points.

(c) Judging form the band structure of these matrix equation, it exhibits the
local nature of the differential operator.
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(d) When £(0) # 0 and f(a) # 0,

N
f(@) = anfal2);
n=0
A== Og<z<A,
folz) = { 0,A otherwise,

f~(z)é{ (BN (N-1)A<z<NA,

0, otherwise.

Note that in order to satisfy boundary conditions, ap = f(0) and
anN = f(N A)

The matrix equation becomes

"Dy Dy 0 ... .. .1 [ a1 [ 90 -
Dz Dl Dg 0 cee  ees ay g(A)
0 Dz Dl Dz 0 . :

:. : DE Dl Dg anN-1 g((N—l)A)
Leee oo e 0 Dz D3-NxN | an | L g(NA) J

where'D3=—1+g:$2—.

Although ¢(0) and g(NA) are not defined in our case, it does not matter
since ap and a, are known from the boundary condition. So we can
rearrange the above matrix equation as follows:

-Dl Dg 0 cee  een a)
D, Dy, D, 0 :
0 :
[ cee  see e Dz Dl (N-1)x(N-1) LGN~
9(8) — Drao
9(24)
9((N -2)4a)
Lg((N - 1)A) — Daan |

So the solution depends on the specified boundary conditions.

§5.8
(a) We already know that

(fi, fJ) =0, t # ja
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and
[(fi, fi)| > 0.
N
Trying to prove Y a; f;) = 0 implies that a; = 0,¢ = 1,...,N. Forming
=1
N
the inner product of ) a; f;) = 0 with f;, we have
i=1
N N
<fj,zaife> =0 — Y a{f,f)=0
=1 =1
N
- afi, )+ Y alfp, fi)y=0.
iF1
i1=1

The second term is zero since (f;, f;) = 0, when i # j. Also owing to
I (fis [5) | # 0, a; has to be zero for any j. So, f;) is linearly independent.

(b) Let
Y 1
a=:c+zy=(i).
Then,
at=(1 —i). a'=(1 i),
and

at.a=(1 -i)(})=1+1=2¢o,
at-a=(1 i)(})=1-1=o.

Therefore, for a noncomplex inner product, a nonzero length vector may
have zero self inner product

(c¢) Hermitian operator is defined by introducing the complex inner product.
Since (f*, f) 2 0, the equality holds only when f = 0. Hence, the problem
that exists in symmetric operator does not occur here.

(d) (1) K ¢),i = 1,---,N, is a set of mutually orthonormal vectors that
spans an N dimensinal space, then by definition, any vector g) in the
space can be expressed as

N
g) =D ge:)

where g; = (e}, g). If e;) is not complete, then there exists a vector h) in
the space such that (e;,h) = 0,i = 1,--- ,N. Such a vector can also be
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expressed as

N
h) = hje;),

i=1
where h; = (e}, h). But h; = 0, implying that h) = 0.

(2) Since the eigenvectors of a Hermitian matrix are linearly independent
and orthogonal, from (1), they form a complete set.

(3) A set of orthogonal vectors can be obtained by Gram-Schmidt proce-
dure. First we find out f;)’s which satisfy G f;) = Af;). Then, let ¢;) = f3).

Next,
g2) = fa) — a1){gi’, f2) /{91, ).
Continuing this process, we have

0o = Fa) = 3 0idats Fu) 605

i=1
Thus, these g,) vectors are orthogonal to each other and they are also
eigenvectors of a Hermitian operator.

§5.9

Wave equation in an inhomogeneous and unbounded medium can be ex-
pressed as

V x 71V x E —w?%E = iwl,

where E satisfies the radiation condition. Expressed in terms of an oper-
ator, we have LE = iwJ.

(Eq, LE;)
=/drE1 (Vx u™'V x E; —w?eE,)
v

=/dl'E1 -V x p"V X E2 - /drEg-wzeEl.
v v

The first term of the above equation is
/drEl -V x p'IV X E2
v
=/drV-(—E1 xVxpulVxE)+p 'VXE;-VxE,
1%

=—fE1xp“Vng~r‘zdS+/drp"1Vng-VxEl.
S v
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When S — o0, the ﬁelds, which are produced by sources of finite extent,
become plane wave in the far field. Hence, V — tk, which is the case
for plane waves. Consequently, the integrand of the first integral in the
above can be written as

-lEl X (!k X Eg).

Using the fact that k-E, = 0, the above can be reduced to zy “k(E; -E,).

Hence, the integral is symmetric about E; and E,. So, £ is a symmetric
operator.

If E,’s are independent vectors with respect to the inner product,
then the matrix representation of £ can be expressed as
(Ey,LE,) (E,LE;) .- (E,,LE,)
- (Eg,LE]) (Eg,[.Eg) .. e
<Em L:E;) . e (Em ACEn)
Since (E;, CE;) = (E;,LE;), L = L', which is a symmetric matrix.
(b) Since

(Em, LE,) = (Ep,iwd,),
(En, LE,) = (Bp, iwdy) ,

and in (a), we have already proved that
(Em,LE,) = (En,LEn),
the following equality holds:
(Em, Jn) = (En, Im)

which means that the medium is reciprocal.

(c) When the medium is lossless and bounded, y = u* and € = €*.
(Ey, LE,)
= /d!‘E; . (V X p"‘V X EQ - U)2€ Ez)

= /drE1 -(V x y“V x E — wzeE;)]

= /E;-(VXp“IVxEl-—wzeEl)] :

=(E3,LE,)*, so L is Hermitian.
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When the medium is lossy, p # u* and € # €. We are not able to get
(E3, LE,) = (E3, CE,)" since (E},LE;) = (E3,L°E,;)", but £ # L*. So
L is not Hermitian when medium is lossy.

§5.10
Given the functional

I= (f.’Lf) _(f.’g) - (g‘,f)a

its complex conjugate is

Ir'=(fLf) = (f9) —{g".f)".
If L is self-adjoint, then (f*,Lf)" = (f*,Lf).

Therefore,
Ir=(fLf)— (¢ f)—(f"9)=1I
So, I is a real-valued functional.

§5.11
Equation (5.2.10) is

I=at.L.a-at.-g—g'-a.

Let a = a, + 6a., where a, is the solution to L - a, = g.
Then,

I=(a. +é6a)!-L-(a + 6a) - (a. + 6a)! - g — g' - (ac + 6a)
=(al-L-a.—ae'-g—g'-a]
+[al-L-6a+6a'-L-a.—6al-g—g'. éa
+[6a'- L - 6a].

Since L is self-adjoint, the second term of the above equation becomes

(6a'-L-a.)t +éat.g—ébat.g—gt-ba
= (éal-g)t —g'-6a=0.

Hence, _ _
I=(al-L.-a.—al-g—g'-a)+éa'-IL. 6a (1)
for any a = a. + éa.

(a) H L is a positive definite matrix, then éa'-L-6a > 0. So from (1), I has
a minimum at a,.

(b) I L is a negative definite matrix, then éa!-L-6a < 0. So I has a maximum
at a..
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(c) ¥ L is an indefinite matrix, then §a'- L - §a may be positive, negative or
zero. So, for some a,,, I is a minimum but for some ay, I a maximum.
The picture of I in 3D is like a saddle and a, is the saddle point.

§5.12

A linear functional u = (h, f). Consider an expression of u = W,

where £ is a symmetric operator and Lf = g, £Lf, = h. Now let f =
fe+6f, fo = fae + 6fa, where f. and f,. are exact solutions to Ef =g
and Lf, = h respectively. Then,

_ (U + 86, 0N(fu + 85), )
((fae + 6fo)$ ‘C(fe + 6f))
= [(faer 9) + (6fas 9))[(fes B) + (6f,B)]
(faes Lfe) + (faes LEF) +(6fa, Lfe) + (6fa, LEf)

u can be expressed as u = u, + 6u + 6°u + - - -, where u, = (h, f.)
Thus,
(e + 8t + 8u + -2 ) [(faes Lfe) + (faer LEF) +{6Fas Lfe) + (6o LES))]
= (faes 9){fes h) + (fae, 9){6 1, h) + (6fa, 9)(fe, B) + (6 fa, ) - (6F, ).

Considering only the first variation, we have

te ((foe) LES) + (8far Le)) + Su(faes L)
=(fae, GH6S, B} + (6fa, 9)(fe, B). (1)

Note that

(fce)g) = (fae:‘cfe) = (['fan fe) = (h’ fe) = U,

and
(faes LEF) = (L fae, 6F) = (b, 6f).

Hence, (1) becomes

Ue ((h, 8f) + (6fa,9)) + 6u ue = uc ((6f,h) + (615, 9)) -

It follows that ubu=0 or éu=0.Sou= W is a variational
expression.

§5.13
(a)

- / dr p|Vé(r)? + / dr K2p|g(r)[? — 2Re / dr ¢*(r) s(r).
v v \ 4

(5.2.43)
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(b)

is a variational expression.

N
Let ¢(r) = Y anda(r), where ¢,(r)’s are known basis functions and a,’s
n=1

are unknowns to be determined.
Then, I can be expressed as
I=a'.L-a-2R[a'-g],

where a is the column vector which contains a,’s,

[f]mn == drPV¢:,. ¢ V¢n + drk2p¢',',.¢n
/ /

[%=/hﬁMﬂﬁ

In order for 6§I = 0, from (3.2.26), one requires
L-a=g
Consequently, the solution a to the above matrix equation is the optimal

. N
values of a,,’s in the expansion formula, ¢(r) = Y anda(r).
n=1

The variational expression for u = ¢(ro) is
é(ro) J dr¢;S
— [drpV;-Vé + [drk?péié
v v

u = ¢(ro) =
Let

N
¢(l‘) = z an¢n(r),

n=1

N
$a(r) = Y _ bmdam(r).

m=1
Then u can be expressed as
v bf.ghf.a
~ bt-L-a’

where b and a are column vectors containing b,,’s and a,,’s respectively,

[&lm = | dré;n(r)S(r),
/

[h]. = ¢ (ro),
and [Llmn = — [ drpV4;,Vés + [ drk’pg.,.¢.
/ /
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In order for §u = 0, (5.2.33) to (5.2.36) shows that a and b must satisfy

L.a=g,
L-b=h,
and after solving for a or b, the optimal approximation can be expressed
as
u=h'-a or u=b-g.
§5.14

Let the inner product be expressed explicitly as

(EX(r),V x B - V x Eqr)) = / drE:(r) -V x fi! - V x Ex(r).
\ 4

Applying the vector identity V- (A xB)=B-V x A - A -V x B, the
equation above can be written as

-/drv-[E;x;r‘-VXE,]+/drﬁ—‘-VxE,.VxE;
\ 4 v
=—/dSr‘z-E;-'ﬁ“-VxE2+/drﬁ"-VxE,-VxE{
S v

In order for the first term to be zero, i X E; =0 on S or
AXE?! VxE;=0 — #AaxiwH;=0 — VxH,.
So,

(Ei(r),Vx @' -V x Ey(r)) =/derE;-ﬁ“‘-V x E,;
v

ifAixE=0o0r#xH=0on S (a surface enclosing V).

§5.15
(a) Original equation is

Vxa! .V x E(r) - w'e. E(r) = iwJ(r).
The linear operator in this equation can be identified as
L=(Vxa! Vx)-uw¥e
The adjoint operator L* satisfies
(E} - LEy) = (C°Ea)',Ea).



( ;a£E2)
=/drE{-VxTFl-Vng—wzfdrE;'E-Eg

='/derE;ong-Vng—w"’/dr(E*.El)‘.Ez,
v

The reason why we obtain the first term as such has been discussed in
5.14 and appropriate boundary conditions,n X E=0oriaxH=00n S,
are satisfied.

The first term in the above equation can be written as

/dr(ﬁ"_l -VxE))*"-VxE,
v

- /dsﬁ By x (B9 .V x Ey)" + /drV x (@499 .V x E,)" - E;.
v

Vector identity again is invoked to derived the above equation and recall-
ing those boundary conditions mentioned above, the first term is zero.

Hence,

E;, CE,)
/dr(V x @™V x E,)'-13,-&:2/01»«3*-El)'.E2
v

—((caEl) ,E2),
where £2 =V x &t™ - V x —wet.
So the auxiliary equations is
V x (B! - V x E,(r) — w¥et - Ey(r) = iwd,(r).

(b) We want to find a variational expression for u = & - E(r).

From (5.3.8) - (5.3.10),
(E;,iwl){(aé(r —ro),E)

(E;, LE)
(iwfdrE; . J) (@ - E(ro))
_ v
"~ JdrE; - Vx @ '-VXE - [drE: - w% - E,
v v

a- E(l‘o) =

iwd - E(ro) [drE;-J
v

T JdrVxE; -V xE —w? [drE; -€- E(r)
v \ 4
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where the boundary condition 2 x E, = 0 or i x H = 0 on S are imposed.

§5.16
A partial differental equation is given by

V¢ +a-Vé+k¢=5(r),

where a is a constant real vector and k? is a constant real scalar.
(a) Linear operator is recognized as
L=V+a -V+Ek.
i (83, Lo2) = ((L1)", $3), then L is self-adjoint.

Now,

(87, Ld2) = [ drgiV3i¢s + [ dréta -V, + [ dréik*é..
[werees [aie-vent |

Consider the second term in the right-hand side:

/ dréia- Ve, =a- / dré;V
v \'4

—a- [ !{ $162dS — V/ dr¢2V¢;] .

If =00n S, then

a- dr¢;V¢2 =-a- dr¢2V¢;'.
[ ]

Recognizing that there is a minus sign in the right-hand side, this £ cannot
satisfy the condition of self-adjointness. So, £ is not self-adjoint.

(b) We want to find a £* to satisfy

(61, La) = ((L¢1)", 62).

It is well known that (V2 + k?) is a self-adjoint operator, where boundary
conditions ¢ = 0 or gn = 0 are imposed on S.

So from the fact above and (a), we can directly write down £° as
L°=V?—a -V+Ek.
Therefore, the adjoint equation is
V2o - 8- V4, + K, = S,(r).
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(¢) For a non self-adjoint problem, a variational functional I can be expressed
as (from (5.3.3))

= (¢:,£¢) - ( ;»S) - (S:7¢)
- / drgz(VP6 +a- Ve + k26) — / drgzS / drS:4.
\'4 v v

§5.17

(a) Maxwell’s equations can be shown as follows:

VxE-wg-H=0
VxH+iwe-E=1J.

These two equations can be written in the matrix form:

0 Vx)[E],. [e O1[E]_[J

vx o ||H|T%]|o -g||H|T|0]|"
Let £ be defined as | & VX | +iw | & . Then, th

nedas g, +w 0 en, the matrix equa-

tion is of the form £Lf = S, where f = ] and S = [ ]
(b) ¥ L is self-adjoint, (f;,Lf) = (f;,Cf;) . Now,

(. Lf) = / dr[E; H]] - [ Vox VOX 11_31: ]
|4 :

i V/ aerm)- 5 5] =] e

The first term of the above equation can be written using vector identity
as:

/ dr[E; Hj] - [Vx ] 32]
= ._i,/dr[V-,V‘] [H{ X E%X] [g;]
/ dr(E; Hy] - [Vx ] f‘l:]

S/ds,-,. i %] B+ fonmama- [, %] 3],
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HE=0o0r4#xH=0on S (or vice versa), then the first integral is zero.
Therefore, we are left with

[omm: [ 9 5] (8] -
| 4

{v/dr[E; IE [ﬁ]}

Next, considering the second integral of (1),

in/dr[E{ R [g _oﬁ] ' [IE-:IZ]

. e (20 J[EL
={““’/ sy ) [Hil} |
v
If € = —€ and it = —f, then the operator in braces is the same as
. € 0
o3 2

So, L is a self-adjoint operator if E = 0 or i x H = 0 on S (or vice versa)
and € = —€, 5t = -7

In order for £ to be symmetric, (fy,Lf2) = (f2, Lf1),
(fr,Lf2)

— 0 Vx Ez . € 0 Eg

——/dl‘[E]Hﬂ [VX 0 ] [H2] +zw/dr[E1H1]- [0 —ﬁ] [H2] .
v v

Similar manipulation as above applied here, we obtain

(fl’ £f2)

_ [ 0 Ex][E 0 Vx][E
== [asn [ ] (2] + [eema- [0 ][R ]
S v

+in/dr[E2H2] [f; _‘;‘4] : [g“] .

Therefore, if E =0, or ix H = 0 on S (or vice versa), and € = €, &' = 1,
then £ is a symmetric operator.

(c) When L is non-self-adjoint, we first have to find out its adjoint operator

L° such that
(fl.’ £f2) = (f;’ D'fl).'
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From (a),

s { [ [, ][]

—iw [ arE;H3)- [f,' _‘.:.i,] [f;} ] } - G,
| 4

where we assume E=0or i x H=0 on S (or vice versa)

Thus,
[0 = 0 Vx] . Je o
=lvx o |™%|o @]
The adjoint equation L%f, = g, can be written as
0 Vx][E.]_. [ 07 [E]_[J
Vx 0 ||H,] "o -@| |’ |{T|o]"

A variational expression (5.3.3) is then
I= (f;’ Lf) - (f:’g) - (g;’f)

iypein DS INERRITES
_V/dr[E;H;]- [g] -V/dr[J.'.'Ol- [ﬁ]

(d) Assume that J = 0 and £ is symmetric. Then, Maxwell’s equations’

N ER IR

which is of the form £f = ABf, where the eigenvalues ) is the resonant
frequencies w in our cavity case.

Hence from (5.4.4a), a variation expression for w can be expressed as

_hen _JEEH v ][]
-l Il

§5.18

(a) (5.4.2a)is A = %%%.
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N
Let f = Y_ anfn, then the equation above can be represented by

n=l

N N
(2 anfm £ 3 anfn)

A = m=1 n=]
N N
('El a:nf;n B "2=:1 aufﬂ)
N
_ m?i;-‘-l %o frs LSn)n _ at.L-a
f: ay,(fm:Bfn)an al-B-a
mn=1

Consequently, it follows that

Jdal . B-a=al-L-a.
Taking the first variation of the above yields
6dal-B-a.+A[sal-B-a, +al -B-éal
= [6a'-L-a, +a!-L-é6a].
In order for 6A =0,
6af-[A§-a,]=6af-[f-a,],
[al-AB]-6a=[al-I]- éa.
Since éa is arbitrary, we have
MB-a,=L:.a, and la!-B=a!-L.

Also invoking the fact that B and I are Hermitian, the above two equa-
tions are equivalent.

So, the matrix eigenvalue equation is of the form
L.-a=)B-a,
where _ _
[L]m‘n = (f:m cfn) and [B]mn = (f;u Bfn)

As to (5.4.4a), A = %%, the same procedure as above can be applied
here to get

L-a=)B-a,
where [Llnn = (fm:Lfa) and [Blma = (fm, Bfa) -
(b) When £ and B are non-self-adjoint, a variational expression for ) is

_nLh
=5 Br) (5:46)
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with an auxiliary equation
Lfo = 2B f,.
Let
N N
f = Zanfn and fa = angn-
n=1

n=1

Then (5.4.6) becomes

N N
( 21 brgm, £ 2 an fn)

n=1

-~ N N
(2 b:"g:"’B,,}-_.:l anfn)

m=1

A

N
b‘ .,C n n —

- N
E b:n(g:m Bfﬂ)aﬂ

mn=1

— Ab!'-B-a)=b!.L-a.

Taking the first variation of the above yields

§\b}-B-a,+ A[6b!-B.a.+b}-B-éa]
—6b'.T-a +b!-I-ba

In order for 6\ = 0 and since éb and éa are arbitrary, we require that

Aﬁ c8e = f * e,
b!-XB=b! L.
Therefore, we have _ _
L-a=)B:-a,
and
T'-b=xB.b,
where

[-I:]mn = (gm,Lfn) and [—E]mn = (gm> Bfn).
A completely analogous procedure as above applied to (5.4.9) leads to
L-a=)B-a,

and

T'-b=)B'.b,

where

Clnn = (g £fa) 29d Bl = (grms Bfo)-



164 EXERCISE SOLUTIONS

(c) Yes, the above matrix equation can be obtained using the method of
weighted residuals.

For the eigenvalue problem
Lf = ABf,

where £ and B are self-adjoint operator, we choose basis functions f,’s
and approximate f by

N
f= Zanfn-

n=1

Then,
: N N
> anlfa =2 anBfn

n=1 n=1

Forming the inner product with testing functions g,,’s, we obtain

N N
Z n{gm, Lfa) = A Z(g:m Bfn)an.
n=1

n=1

Written in the matrix equation form, the above becomes
L-a=)B-a.

But we do not have the knowledge of how to choose the testing functions if
we use this scheme. On the other hand, when using variational method, it
is guaranteed that choosing testing function g, as f, will yield a stationary
value for A whose error is second order.

Same reasoning applied to non-self-adjoint problem give us the best choice
of g,’s, which turns out to be the basis functions of its auxiliary adjoint
problem. But for the method of weighted residuals, we are given no hint
to this choice.

§5.19

For a uniform waveguide loaded with inhomogeneity, € and u are functions
of p. In this structure, the field can be assumed to have e**** dependence.

First, consider V-¢E=0,and let V=V, + 2%. We have

.8 o
(V'+ZE) -¢(E, + 2E,)=0

— V,-¢E,+V, - e2E,+¢€Z- -agE, +eaiE, =0
\—“o,—-/ r4 A

o
— V,-€eE, +iek. E, = 0.
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Therefore, .

iek,
Next, the wave equation governing electric field is as follows:

VXxu'VXE-wiE=0

a -1 -~ a -~
— (V +zaz) X @ (V,+zg) x (E, + Z2E,)
~w?e(E, + 2E,) =0

E, =

V, - €E,.

- (V +z—) x p~? (V.xE,+V,x£E,+2x§Z-E,)
—w?€(E, + 3E,) = 0

. 2 component
z component

-

- V,xp'V,xE,+V, x u"'V, x 3E, +V x pu~1z x -é(?—

+p"“x-aa—V x E, +p“‘x§-V x 2E,

Sy

0

+u"z’x-§;zx aazE —w?e(E, + 2E,) = 0.

Applying p2x to the above equation, we have

péxV,x;i“V,xE,+£x2x-a%V,x§E,

+zxzxzx6822 —w?uez xE, =0.
Using vector identity a x (b x ¢) = b(a:c¢) — c¢(a-b), we obtain
2 x Vs x “VxE—EV x 3E, — zx—az—E —-k¥:xE, =0,
p I‘l s az L] z 62 z =

where k? = w?pue.
Substituting E, = ;—;—,‘;V. - €E, in the above yields

pz x V, x 7'V, x E, — ik, V, X g - eE,

1
k l
+ k22 xE,—k:xE,=0.
So,
pExVyxp 'V, xE, - 2x V'V, -€E,
—k: XE, +k23xE,=0. (5.4.19)
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§5.20
(a) An extended operator is defined by
L=V pV ~A(S)pi-V + kp. (5.5.9)
Then,

(¢l ’ £¢2)
= /dr $:1V -pVé; — /dS¢1pﬁ -Vér + /dl'¢1k2P¢2
v 5 v

- / dr [V - (6pVs) — pV s - Vo] - / dSupi - Vs + / dré:k’pds
\ 4 S v
dSh - ¢.pVey — [ drpVe, — [ dSéipii- Vs + [ dréik?pé,
/ Jave-| /

- / dr (Véy) - p(Vea) + / dr Kp 16, (5.5.10)
\ 4 v

without imposing any boundary conditions on ¢, or ¢,.
(b) Another extended operator can be defined by

L=V-pV —V-pal(S)+ kp. (5.5.13)

Then, (¢1,L¢;)
- / dré,V - pV, — / dS$:V - pidy + / dré,kpés
v S v

- / dr [V - ($19V82) — (V1) - PV ]
v
- ]dS¢1V-pﬁ¢z + /dl'¢1k2P¢2
s v
= / dSi - ¢,pV, — / dr(V¢y) - pVé,
S v
- [4SIV - (4rpiss) ~ V1 -hpi] + [ drerkns,
S v
- / dr(Véy) - pV s + / dSh - (brpVba) + / dSV ¢, - pidy
v S s

+ [drkpsig, - S/ dSV - ($1phds).
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The last term can be expressed as
Jim, [V (4ipiga),
dv

where dV is the volume of a shell along 5 whose thickness is At. Invoking

Gauss theorem, we have
Jim, [ drv - (4upigs)
dv

= i - $191P2|x on 5 + (—11) - G1PAP2lr on s-sAL-

Since ¢,pfi¢; has to be continuous in V and on S, the above is zero. So,

(61, L) = — / dr(V) - p(V2) + / dSh - ($10Vds)
v A

+ / dS(Vy) - pis + / drkphids.  (55.14)
S v

§5.21
(a)

I=- / drp(V¢)? 4 2 / dSp¢ + / drk?pg? — 2 / dr¢s.  (5.5.17)
v s v
Taking the first variation of the above yields

6I=—-2 | drpV¢.-Védp+2 [ dSPéP + 2 drk2p¢e6¢ —2 [ drséé
JEROy ey p——
— 2 / dr[V - (§4pV4.) — 66V - (pVe)] + 2 / dspss
+2 / k*pp.6¢ — 2 / drsé¢
=2 / dS[B6S — - (PV4:)69] +2 / dr[V - (pV4.) + Kpd. — s]56.

Therefore, in order for 6I = 0, the optimal solution must satisfy
fi-(pVe.)=p on S
and the wave equation V - (pV¢.) + k?pé. = s.
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)
1=- [arp(voy+2 [asn-(s-1pvs

v

s

+ /drk’p ¢ — 2/dr¢s. (5.5.18)

v v
The first variation of the above can be written as
I =-2 /drpV¢, -Véo + Z/dSﬁ - (¢e — )PV
s
2 / dSh - 6¢pV ¢t +2 / drk*po.bp — 2 / drséé.
s 1% v

By vector identity and Gauss theorem, the first term of the above equation
can be expressed as

2 / dSh - (PV )66 + 2 / dr64V - (pV4.).
s v
Then, 61 becomes

§I=2 / dSh - (¢ — r)pVég + 2 / dr [V - (pV4e) + k’pd. — 3] 6¢.
S v

Since 8¢ is arbitrary, the conditions for 6I = 0 require that
¢.=r on S,
and ¢, is the solution to V - (pV4é.) + k’pd. = s.
(c)

I= —/drp(V¢)2+/d5a¢2+/drk2p¢2-—2/dr¢s. (5.5.19)
v s v v
61, the first variation can be expressed as

6l =2 / drpVe. - Vég + 2 / dSag.bd + 2 / drk’pg.6¢ — 2 / drsé¢
v S v \ 4
=—2 [ dSi- (pV¢.)6¢ +2 | drV - (pV¢.)6¢ + 2 [ SdSad.6¢
/ / /
+2 [ drk*pd.6¢ — 2 | drsé¢
[ srte=2]

=2 [dSlag.~ - 0V4N1 66 +2 [ dr [V (604 + F'ps — o] 69,
S v
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So, the conditions that

ft-ppe = a¢d® on S

and
V. (PV¢¢) + k2p¢e =S
make
6I = 0.
§5.22

(a)

I=(VxE,E™" VxE)-w*E.,¢- E)
— iw(E:, ) + iw(I2,E), (5.5.24)

where E and E, satisfy
LE = iwd

and
L°E, = wl,
respectively, and
L=(VxaE' Vx)-[AS)h xE ! Vx] -w
Therefore,
L0 = [V x (@1 - Vx] — [A(S)h x (@) - V] - e,
The first variation of I can be expressed as

61 =(Vx6E, @' - VXE.)+(VxE, !V x éE)

- w*(6E;, € E,) — w*(E,,, €- 6E)
- w(6E;, J) + iw(J:, 6E).

The first term of the above is written explicitly as

/drvXeSE;-;rl-vXE,
v

=/drV-(6E;x'ﬁ“-Ver)-}-/dr&E;-Vx(ﬁ"-VxE,)
\ 4 14

=/dsa-6E;xﬁ-l-VxE,+/dr5E;.Vx (@' VxE.).
S v
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And the second term is

L

/derEf,,-ﬁ“-Vx&E:
v

/ drV x 6E° - (A") 7 - V x E,,
\ 4
=[/drV- (6B x @)™ v x E..)
v
+ /dr&E‘ Vx (@) vx E,,]'
\ 4
=[/d$ﬁ-6E‘ x (7)) V x E,.
S
+ /dr&E‘ Vx (@) vx E]
v
Thus, 6I becomes

61 = /draE;. [V x (B8 V x E,) —w’-E, —iwl]
v
+ {/dr&E‘ . [V X (74"‘)-'1 .V x Ege — w?€ - E,. — inG] }
v

—/dSeSE;-r‘zx;T‘-VxE,— [/dS&E'-r‘zx(ﬁ*)'l-VxEu] .
S S .

So, the conditions for 6] = 0 require that the optimal solutions satisfy
Vx(g?-VxE,)-w¥-E, =iw],
V x (7"-1’)“1 -V x B, — wet . E,. = wl,,
and
AxXxE ! VxE,=0 on S,
Ax (@) - VxE,=0 on §.
(b)

I=(VXE,E™" VxE)+(E,AS)AxE" VxE)
+ (A X V xE: -5, A(S)E) — w¥E:, € - E) — iw(E?, J)
+ w32, E). (5.5.39)
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Then,

61 =(V x 8E;, VxE)+(VxE“,p -V x 6E)
+ (6E;, A(S)n x @ - VE,) + (E;,, A(S)a x @' - V x 6E)
+ (i x V x6E;- @, A(S)E.) + (A x V x E,. - &}, A(S)SE)
- w? (8E;, EE,) — * (E.,, € - 6E) — iw (6E;, J) + iw (I3, 6E).

Expressing the above explicitly and using some vector identities and
Gauss theorem, we have

61 = /SdSn SE: x ! VxE,+/dr5E;-Vxﬁ-‘-VxE,
\'4
-1
+[/d$ﬁ-6E*x(ﬁf) .V x Eq.
S
-] -
+/dr6E‘-Vx(Ti") -VxE,,,]
1’4
+/d56E‘ Ax@T. VxE,+/d.S’E;¢-r‘z B!V x6E
/dSnxVx&E' n!-E, +/dSn><VxE TRl )
—w /drbE‘ €-E.—u? [/draE'-zf-E,,,

—iw /dr6E; I+ iw[/dr6E‘ : J]

Notice that the first and the fifth terms cancel with each other and so
do the third and the eighth terms.

The sixth term can be written as

/dSan' B! Vx&E-—[/Vx&E‘ @) AXE,.| ,

and the seventh term as

-—/dSVx&E;-'ﬁ“-ﬁxE,.
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Hence,

51=/dr5E;- [Vx@E? VxE, —w%-E, — iw]]

+ {/dr&E‘- [V X (ﬁf)_l -V x E.,,—-w’?*-E“—in,]}
\'4 .
—/dSVx&E;-ﬁ“-ﬁxE,— [/dSVx&E‘-(’ﬂ"‘)"l-ﬁxE“] .

Consequently, the optimal solutions which make 6I = 0 satisfy the fol-
lowing conditions:

Vx';T' -V x B, —w’- - E, =],
VX(TI") .V x E,, - w¥ - E,, = iw],,
and

AxXxE. =0 on S,
nxE,=0 on S.

§5.23
(a)

I=(VxE,E™" VxE)-w*E€-E)
—w(E;, [J - A(S)a]) + w([J; — A(S)a],E). (5.5.41)

The first variation of the above is

61 =(V x 6E;, i ' - VE.) + (V x E.,, B~ - V x 6E) — w? (6E;, € - E,)
- w? (EL,, eaE) — iw (6E;, [J2 — A(S)al],SE)
iw ([J7 — A(S)al] 6E)

=/SdSﬁ-6E; -V xE, +/dr5E' Vx@E! - VxE,
+ {/dSﬁ.sE'x @)™ -V xE,.
S

+/dr6E‘ -V x (@) v x E.,,}
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[ a7 B [ /d,sE.a.E..,]
1 %4 \'4

—iw/dr&E;-J+iw/d56E;-a

_ [,-w V/ drSE" .J.,] - + [iw / dS6E" - a.] ‘

S
=/dr5E;- [Vxa? -VxE, -w'%-E, —iw]]

+ {/drb'E‘ . [V x (@)™ v x E,,,-—w’?"'E,,—in,]}

v

+/d.S’5E;-[—-1‘zxﬁ‘l-VxE,+£wa]
5

+ {/dS’&E‘ [—fz X (ii')_l -V xE,. + iwa..] } .
s

Therefore, §I = 0 requires that E, and E,. satisfy the wave equations
respectively, and the boundary conditions:

a=—axpg ! -VxE,=axH on S,
iw

and

a——nx(p) ‘VxE,e=fixH, on &
(b) (5.5.43) is

I=(E;,LE) - iw(E;,J) + (VX E,,A(S)E™" - B)
+iw(3;,E) + (A(S) (B") - 8:,V x E)
=(VxE, 7' VxE)+(E, AS)Aix &' -V x E) — iw(EZ, J)
+(V x E,, A(S)E™ - B) +iw(3;, E)
+(A(s) (8" - B;, V x E).
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Taking the first variation of the above yields
6I=(Vx6E;,'ﬁ'l-VxE)+(Vwaﬂ' -V x 6E)
+ (6E:, A(S)ax @™ -V x E,) + (E.., A(S)R x 5! - V x 6E)
+ (A x VSE, - @7}, A(S)E.) + (A x VX E], - _l y A(S)SE)
— W (SE:, € E,) — w*(EZ,, € 6E) — iw(SE., )
+(V x 8E}, A(S)a - B) + (3, 6E)
+(A(S) (&) - B:, V x 6E)

=/dSﬁ-6E;xﬁ“~VxE,+/drb'E;-Vxﬁ"-VxE,
)
+ {/dsmE; x (") - VE,. + /dr&E,‘, Vx (@) v x E}
/dS&E' AxEVxE, +/d5’nxVxE @1 6E

/drE x F? -anE+/dSﬁxanE;-ﬁ-l-E,

-—w /dréE‘ €¢E.—w {/drb'E‘ € E.,,} —iw/drb'E;.J
v
+‘/‘d.S'V><¢‘)'E:-7.Tl {zw/dr&E' }
J _
+{/dSAx6E‘-(E) -ﬁn} .
s

Notice that the first and the fifth terms cancel with each other and so do
the third and the sixth terms. Thus, §I becomes

6I=/dr5E;- [VxE™!.VE, -w'-E, — iwl]
14

+ { / dréE" - [V x ()™ - V x Eqe — w?et - E,, — in,] }
v

+/d$Vx5E;-[ﬁ-‘-ﬂ—ﬁ-‘-ﬁxE,]
S

+ { / dSV x 6E° - [(7;*)“ -@)" A ]} .
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Consequently, the optimal solutions satisfy the boundary conditions:
nxE. =8 on S,

nxXE, =8, on S,
as well as the wave equations.
(c)
I=(VxE,,E! VxE)-uw}E[e— A(S)T)-E)
- w(E;,J) +w(J;,E). (5.5.44)
Then,

61 =(V x 6E., 5" -VXE,) +(VxE.,, 7"V x 6E)

— WSES, [+ A(SF|E.) — w*(E;. [ + A(S)F) - 6E)
— iw(6EZ, ) + iw(32, 6E)

=/dSﬁ-6E;x'ﬁ"-VxE,+/dr6E;-Vx';T1-VxE,
5 v
+ {/dSﬁ-&E'x @)V x E,.
5

+/dr6E‘ Vx (@) v x E}
v

—w2/dr5E;-E-E,+w’/d56E;-f-E,
14 S

—w? [/drb'E" e -Eae} + w? [/dS&E' o'f"-Ec,}
v s
- iw/dr5E; J - [iw/dr5E' -Ja]
v v

=/drbE'- [Vxﬁ'l-VxE,—wzi'E,—-ina]
14

=

+ {/drb'E‘ [vx @)™ vx Ea,—wzif-E,,—in,]}
v

+/dS6E;- [-AxE"-V xE, +w’F-E.]
S

+ {/dSb’E‘- [~ % (@)™ V x Bae + 7F' - o] } :
S
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Therefore, 61 = 0 requires that in addition to the wave equation being
satisfied, the boundary conditions are as follows:

Axpg ! . VXE,=w’f-BE, —axH,=-iwrF-E. on S,
A x ()7 V X Eqe = 0F - B, = x Hye = —iwF! -E,e on §.






CHAPTER 6

EXERCISES SOLUTIONS
by C.C. Lu

§6.1
(a) Let ¢1(z) and ¢(z) be two different functions. By definition,

dz
dos d
d d¢, d
($2,D¢1) = [¢2P-l—d%]ro - /r“ [p’l-éél-—g;—z - k’p’1¢2¢1] dz .

If D is a symmetric operator, then (¢1, D¢3) = (¢2, D¢, ). From the above
equations, it is easily seen that the condition for D to be symmetry is

[¢1 12y, "f’-ﬁ] =0, 3)
Co

(61, Dés) = /r b1 [ﬁp-‘iwp"] bodz

(1)

dz

where T’y stands for the end points on I'. This is the general case. In
particular, we have

¢

=0  (Dirichlet),
Co

or =0  (Neumann).

dzlr

In the same way, we can show that B is always symmetric.

(b)

dz dz
000 = oo 28]~ [ [prBh oy ]

(63, Dés) = 6} -l‘fi‘i’]r - /r [p'lﬁ%—kzp—IQS;d’z] dz,

dz dz
0w =] - [ o PR -wrran] e
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From the above, we can see that D will be Hermitian if ¢ satisfies

$ip~1i2 =0, ¢, Lp-l%x]‘ =0,

p~! is real, k?p~! is real.

§6.2

Suppose ¢, and ¢, are two different eigensolutions of Equation (4) [Chew,
p. 328]. The corresponding eigenvalues are k¥ and k3, respectively. Their
inner product

(61,86) = [ $1Buc. 1)
Since ¢, ¢ satisfy (4) we have
- D¢, = kB¢, 2)
D¢, = k2B¢,. 3)
Multipling (1) by ¢, and (2) by ¢,, and subtracting the resultant equa-
tions, give
$1D¢; — $:D¢y = k3¢:B¢2 — ki8¢ (4)

From Exercise (1), we know that B is always symmetric, when we inte-
grate (4) over 2. Then using the relation

/¢1B¢2dz = /¢23¢1dz,

the result is

/ (6:Dé; — $:Déy) dz = (2 — K2) / $1Béadsz. (5)

Since D is also symmetric, the left hand side of the above equation van-
ishes, resulting in

(kg - k%) /¢23¢2d2 = 0.
Since k? # k2, we have
/ ¢13¢2d2 = 0.
This means that ¢ is B orthogonal.

§6.3

(a) Tot}a.l field consists of a source term ethizlz=7 /k1z, an upgoing wave
Ae*1:2 and a downgoing wave Be~**1:*, Therefore,

1 . ’ . .
F(Z) — Ketklxlz-z | + Aetk;,z + Be—gkl'z. (1)
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The constraint condition at z = z,,z is

. - 1 . ’ .
Be""klzzmas — leaz (k_e‘klzlzmoz-z | + Ac'klzzmaz) . (2)
1z
The constraint condition at z = —d,
‘ Ae—ikud: = Rl2 (k_l_eikuldl-i-z'l + Beikud;) . (3)
1z

Solving for B and A from (2) and (3) yields

Be—ikl:zmoz — leuz [eikh‘zmu-zll + e“‘l:(d!+2m¢z)Rlzeiklxldl+zl|] _Aﬁ,
klz (4)

-~

Ae~hisdt = R, [e"‘""‘”"' + e“""'("‘+""“’le,,e"‘hkmu—z’l] ——2’1‘.
1z (5)

o ~ = . -1

M, = [1 - Ry le“e%ku(zmu-l-d:)]

After substituting (4) and (5) back into (1), we have
F+(Z,Z’) = [e—ikuzl +eik1;(z’+2d])R12]

) [e"“" + e~ tk1:(2-23mas) lew] %4_1’ z> z’,
1 (6)

F. (Z, 2’) = [eikhz’ + e—ik;,(zl_zm.,)leaz]
. [c—iklgz + eik1,(z+2d1)R12] EAﬁ, z < Z’. (7)
1z
In this problem, 2,4, — d;, dy — 0.

(b) In the above, the total field consists of the source term, the upgoing wave
and downgoing wave. When we change the sign of k,,, it follows that
the upgoing wave will change to the downgoing wave, and the downgoing
wave will change to the upgoing wave. From the uniqueness theorem, the
reflection coefficient will be changed to its reciprocal. That is

R(=k1.) = 1/R(ky.) (8)
Using this formula, we can easily show that
Fi(—k1;) = Fi(ks2) (9)

Hence, Fy(z,2') are branch-point free functions. In fact, from a mathe-
matical point of view, we can also show that (8) is true.
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(C) From (9)’ when z = Zmazx) Roz = -1, and F+(Z, zl) =0,

1 + Rlzeziklz(lm¢:+dl)
1 + Rlzeziklz(zmos—dl) -

§6.4

(a) Since ¢(z) = A (e'"‘"z + Rlze"‘"‘), the guidance condition is
1+ Ryge¥hsd =

(b) From Equation (2.1.21) [Chew, p. 51],

1+R ezih.d;
f(ks) = —= =<

R,y + eZikizdr ’

where -
Res = Rug + T12Ry3 T €5+
12 — 12 1—- R21R2362ik1'd’ 9

Ryz= -1, Ti2=14 Ry, and T =1+ Ry,.

(2.1.21)

P2k — prkys 1
Rp=022 P po k)= -
27 pakiz + prkys 12(—k1s) Ry,

Through algebraic manipulation, we can obtain

Rl2 — e2ik23d2 1/R12 — e?ikz,dg 1

Ryp = - Ry —k z) = _ = -
2T 1= Ryje?ikasda = Ria(—Fk..) 1- R—l,;ez"‘"d? Ry’
flkyy) = L Rkt Rg(kig)etird £1
z Rl2(_klz) + e~2ik1zd e2ik1zdy + ng( k]z) 12/:

This demonstrates that f(k,,) is a branch-point free function.
(c) The zeros of f(k,) is the root of the following equation
14 Rlze%k“dl =0.

This is also the guidance condition in (a). Since there is the periodic
function e**1#%1 involved, the root of the above equation is discrete. Also,
from Exercise 6.3, we can see that the above proof can be generalized to
any enclosed layered slabs.

§6.5
(a) Wave expressions in region 1 can be solved to be

#(2) = a; (e—ikuz + Rlzeikuz) (1)
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where, a, is the amplitude for the downgoing wave

Ti2T2a Ty e2ik2ez

R12 = R12 + 1— R21R23€2‘k"d2 . (2)

At boundary of z = d,,

#(z) =0, (for TE wave),
¢'(z2) =0, (for TM wave).

This is only possible when

1+ Rfe*™ 4 =0 (TE), (3)
1 — RTM¢2ikizds — o (TM). (4)

The above are the guidance conditions for TE and TM waves respectively.

(b) In order to solve for the location of the modes, we first simplify (2). Using
relations between T, Ry,, T5; and Ry, we can arrive at

.- R + R eZs'kz.dz
Ry = ———= 2ik2.d (5)
1+ RaaRyze¥kade

Rox = —1, For TE wave
2711, For TM wave

Rip = p2k1: — prka, _ {/,t.-, for TE
12— 7 b=

"~ pakie + pika,] €, for TM
Substitute Ry, of (2) into (3) and (4), we have

(1 —_ R1262£k23d2) + (1212 — ezik:,dg) ezik,,d, - 0, (TE), (6)
(1 + Rlze2ik2,dz) _ (R12 + e2ik3,dz) e2ik1,d1 = 0’ (TM) (7)

In the above, k%, = k? — k2, ¢ = 1,2. To solve (6) and (7) for k., we note
that k. must satisfy

0< kz < min(kl, kg)

Therefore, the guided modes k,; are located on the real k. axis and limited
by 0 < kz; < min(ky, k2),7 = 1,2,.... The number of guided mode will
increase when d; or d; increases, as shown in the Table (¢, = 1,¢,, =

2.6, TE).

k. /ko table
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dl = 0.5/\0 dl = IOAO dl = 2.0/\0
0.976 0.9962 0.954
d; =1 0.390 0.8310 0.848
0.317 0.653
0.246
0.847 0.907 0.970
d, =2 0.463 0.783 0.894
0.400 0.647
0.334
0.786 0.878 0.964
0.446 0.774
0.391

Table for Exercise Solution 6.5

(¢) When the medium has some small loss, then, k. should have a small
imaginary part which corresponds to wave decay. Hence, the location of
the modes will be slightly above the read k;—axis. For TM cases, we have
a similar result.

§6.6
(a) Eigensolution are of the form
¢TE(2) = An (eik,,z + R'{zzeak,,z) ’
$™(2) = An (eik,,z +fz¥'2Meik1,z) ’
where ki, satisfies
1+ RTEe¥hh = TE,
1~ RTMe2ikizds = o, TM.

(b)
dy . . . e - -
Nmm - / A?n. (e—thgz + Rnenkuz) (e"klxz + R-{zezk“z) p'ldz
1]
dl
= A2
0

e2ik1,zd1 - 1

42 -1 5 12 7
= A.,p {dl (1 + |Ryq| ) + Ry, 2Tk

- 1- e—2ik;,zd;
. = L 1
+R12 2iklx } ]

L s L sinkLd o (s wan]1
An = {P [dl (1 + | Ryl ) + h Re (Rlze 1 ‘)]}
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(C) When K1 = l2, 1 = P2, R12 iez"‘"d’ (TE TV[), and
k1od i
An =/ {2::11 + smk 129 14 cos 2 (ky,dy + kz,dg)]}
12
Note that A,, — oo, when d; — oo for the ideal case without loss.
§6.7
(a) Maxwell’s equations are
V x E =1iwB =wuH, (1)
Vx H=-wD+1J, (2)
V- €E = p, (3)
V-B =0, (4)
V-J—iwp=0. (5)
V x [Equation (1)] = V xV xE
= 1wV x uH
=wVp x H+wpV x H
. Op . .
=iwa—£x H + iwp [—iwD + J] (6)

(from Equation(2)]

Oe

Equation (3) = Ve-E+eV-E=p = V-E=¢"'p-¢! —E,.

0z

. 0 0 40
z-[VV-E]:E(V-E)=-a;( p—¢ la—eE)

£ VE=VIE + 5 (5 <D.)

0z \ 0z
0 o 0 O}
=< V.D, aze ('3.=:Dz + 0z (D' 0z ) ’

ez- [both sides of Equation (6)] =

€:-(VV.E)—e 3-VE =wueD, + iwpeld,
: , S
[Equation (8)) {Equation (9)]

ez-(VV-E)—e5- VIE

2 0 (a0
=155:° eaz( Ez&)]

0
i) 1 i, i) Oe?
[v D +e ( a—zD,) tep (D,WM,

(7)
(8)

(9)

(10)
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Since 5 Be-1 5 5
-1 _f_ -1 ._e. - —2_6 =
E, * 5, +D,— . =€ E,az D.e = 0, (11)
and
i & o2
2p. — (9 _ ;2
ST (. PRI ) PR
Equation (10) becomes
0 _, o? 0 _,0 2 12 :
€3¢ P~ [ay2+eaze az—k’ D, =k*D, + iwped,.

It equivalent to

lia 0 _,0 : a, _
(8y +eoe la— + k- kf_.) D, = —iwpeld, + 65'2-(6 1p). (13)

This is Equation (1) in the book (page 335).
(b)
Vx Equation(2) = VxVxH=VV.H-VH
=—wVxD+4+VxIJ, (14)

VxD=Vx(eE)=Vex E4+c¢VXE

= Ve x E + ¢[iwB],
-V x D = iweB,. (15)
From Equation (3),
0=V.-B=V-yH=Vu-H+uV-H = V-H=—'16#H
9 (16)
. _ 9 _ 0 14 OB
z-(VV-H)_az(V H) = 62( Haz> (17)
o (90
s Y = 4102 9(9
2-V'H=p V,B,+az(azp B,)
d? 0 0 0 ou~?
-1 (& g2 9 a9 9
=# (d2 k)B‘+az" Bsz+3z(Bz 32)’(18)
- VxJI=V,xJd. (19)
Since -1 5
B2t 4 uH,ZE =0,

0z * 0z
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the Z component of Equation (14) becomes
d? 0 0
{8 2 _9 195 2
u (dy’ k,) B, az“ asz w’eB, +V, x J.
Multiplying both sides of the above equation by (—pu) yields
d? 0 _,0 2 13 _
(dy2+“5“ Bz+k —k,)B,——pV,xJ. (20)
This is Equation (6.2.2) in the book (p. 335).
§6.8
(a)
3 = 2105(y)8(2), (1)
= lV J = —I£6( )6'(2) (2)
P=ie’ T T W
de! dp de ' [It I¢
e ) = e b e = e | ’ i "
oo = e + = T 60| + LW )

From the above equation, we can see that the source is composed of three

terms. Thus, Equation (6.2.1) becomes

d? 0 ,0 ., .,
[dy’ + €3¢ 3 + k* — k2| D.(y, 2)
: de ! It , Ie "
= — twpells(y)é(z) + € P E&(y)& (2)+ ;,;6(y)5 (2).

Suppose, D, has an eigenmode expansion

D.(y, z) = ) an(y)$e(n, 2).

=1

On substituting (5) into (4), one obtains

z ['};5 + ke — k:zc] an(y)de(n, z) = Source.

n=1

In the above, we have used the fact that ¢.(z) satisfies

d ,d ., _ 12
(e T € o +k ) Pe(n, 2) = k;, dc(n, 2).

Also, we know from exercise (2) that ¢.(n, 2z) are e~! orthogonal.
multiplying (6) by e"'¢.(m, z), and integrating, we have

(d% ¥ km) am(y) = fmb(y),

(4)

()

(6)

(7)

On

(8)
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(b)

(c)

where,

= /dze‘1¢e(m,z) [-iw#d“(z)’*'fdd: 'Iﬁ‘s'( )+ 6”( )]

— _iwpltg(m, 0) + ] im, ) [z 6'(z)] &z

= —iwpllp(m, 0) + —(k,,.u k*)ge(m, 0)
= '~I_e'kmac¢¢(m’ 0)

we

The solution to Equation (8) is as follows:

fm . el'kmullll ____I€¢¢(m, 0) ikmyelul

am(y) = 2k e 2iwekmye ) 9)

Substitute (9) into (5), we get the final solution to (4):

D(y, 2) =) [—-&—] etmig (n, 0)ge(n, ).  (10)

2iwekny.

As for B,, its source = —u(V, x J), = 0, implying no B, component.

To use the Fourier transform method to solve for a,,(y) we multiply (8)
by e~**¥ and integrate over y from —oo to co to obtain

(K2, - a’)a,,.(a)= fms (11)
am(a) - k2 _ fm(a)’ (12)

where,
on(y) = 3= [ am(a)eirda= 5 / S, (13)

and f,, is as before.

The integrand in (13) has two poles located at o = *kpy. Since the
medium has a small loss, so that k,, has a small imaginary part to shift
the poles off the Re(a) axis. On the other hand, in Equation (13) the
integrand satisfies Jordan’s Lemma. We can close the integral path in
the upper half plane when y > 0. Then, using Cauchy’s formula, we have

1 fm iapl Um ke
am(y) 271 - Res [2 me y] =§Eu—y:e veltl,

mye a=—kmye

Substituting this into (5), we get exactly the same result as (10).
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§6.9
By definition

eisz — Z _:_l_!(iI_(’Mz)n — Z (z:)"‘ (KM)" .

n= n n=1
kr
Gor |k
=2 &
n=1 Tl' 3
"Xy - .
P ﬁ(‘klz)"
n=1
00
= E:l ;1-!(”622)"
n=
.ei_kxz
eikgz
i eikuz

Therefore, eXM* is a diagonal matrix. Its elements are

e:ku, e:kzz, en etk,.z, e ezkuz.

In the above, Ky is a diagonal matrix of order M x M, since each elements
in the above will converge into a finite number, it is valid for any M.
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§6.10
From Maxwell’s equations in source free region with time dependence of
e—iwt,
V x E = wpH, (1)
V x H = —iweE. (2)

Since E = ¢~'D, H = u~1B, the above equations can also be written as

V x €D = wuH, 3)
V x u™'B — iweE. (4)

To extract transverse component of the equation, we let V = V, 4+ V,,
and A = A, + A,, where A stands for one of E, H, B, D. Then we have
for (3)

(V,+V,)x (D, + ¢'D,) = iwuH, + iwpH,. (5)

Extract the § component of the above, we have

V,x €D, +V, xe'D, =iwuH,. (6)
In the same way, we can derive from (4),

Vex u !B, +V, x u"!'B, = —iweE,. (7
Multiplying (7) by —iwe and making use of k? = w?ue, we have

FH, = —iwV, x D, - iweV, x E,

= —twV, x D, — wV, x eE,, (piecewise homogeneous).
Substituting (7) into the above for —iweE,, we have

FH,=-wV,xD,+V,xV,xu'B,+V,xV, xH,
0 2

= ~-wV,x D, + ;r‘b-;V,B, — 3 (8)

Substituting (Is:2 - %) H, = k% H, into the above, and dividing both
sides by k2, yield

. iw

H, = E“_la—zv’B‘ - xy V, x D,. (9)
In the same way as above,
1 ,0 w
E, = kf“e an,D, + EV, x B.. (10)
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§6.11

(a) We first write field solutions for both regions, and match them at the
discontinuities. Finally, we use the orthogonal relation to solve for the
reflection and transmission coefficients. The solutions are:

Region one:
A = 3“1(7") [ kal ?s *(0) + e'h(ﬂ.d) R, - 'kld‘ﬁa—(o)] (1)
= [Ma(2)- BM - 4,4(0) + Ny - B0+ . Ry, - Fidg,_(0)] .

| (2)
Region two:
A,, = B}(2)- e~ alv+d) [T, . oikad ¢,-(0), (3)
A, =N,_- e~ a(v+d) . Tz - e'kad . ¢.-(0). (4)
Tangential components of the field are continuous at y = —d, that is
E; (2) #}() [+ Rig] = E; (2) - F(2) - T, (5)
N;- + Ny, -Ryp =Ny - Ty, (6)
where _ (0
Ei(z) = {et(g) y.—(z)] ; (7
S.ince 3: are €; ! orthogonal, multiplying (5) by 31(2) and integrating
ive
: I+Rp= <31(z), E;l(z) . 3;(2)> Ty = By - Tha. (8)
Multiplying (6) by @,(z) -ﬁ;, and then integrating over z give
H.,+H, Ry=H, - Ty, (9)

where B,; = <31(z), E.(z) 3;(2)>, Hi; = ($,(2)E;, Ni3). Solving (8)
and (9) for R,; and T),, we have

Ri. = —(B, - H;. -Hiy)™7 - (B, - H;! - Hy),

Tiz2 = By, - (I+Ry).

(b) This solution is not identical to that when source is on the left of the

junction, the reason is that the field is not the same on different sides of
the source.

§6.12

Since {Si(z)} is a complete set with orthogonal property, a function in
the same space can be expanded by {S;} such that

F(2)= 3 anSulz) = 8(2) - . (1)
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Multiplying the above equation by S,.(2), and integrating over z give
/ £(2)Sn(2)dz = 3 an / S5a(2)Sum(2)dz = Gmbomn.

Therefore,

o = / £(2) - Sn(2)dz = (Sm(2), £(2)),
a=(S(z), £(2)).

Substituting a into (1) gives f(z) = S*(2) - (S(z), f(z)). As for Equa-
tion (23), let

1, , 0
2) = P )2 Sn(e),
we have
p"‘(z)-é%s,,.(z) = S'(2) - (S(z), p‘l(z)%sm(z)).

In vector form, the above is

P ()5:8(2) = S(2) - ((2), P 5eS(2).

§6.13
From Equation (6.3.33) we have
T2 = ﬁ: : Rz : By, (1)
Em = —B-; : le : ﬁg. (2)

Left-multiplying (1) by B - ﬁl, and using Equation (6.3.29) where
B, P - B, = i(k. — k),

and the relation
6(kzy k) : f(k2) = f(k2),
we have

B, P Ti2=Ru2: B,. (3)
Again, right multiplying (3) by P} -ﬁ; yields
§12=§1'5{'f12'§{'§:- (4)
In the same way, we can derive the following from (2):

Ty =B; P}t - P} - B, (5)
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§6.14
(a)
N o
¢(z) = Zansn(z) = (51(2), SZ(Z)’ ST SN(z)) ‘ : = St(z) ‘a
n=1 an
where Si(2) a
S(z) = 5252) a= 0:2
SN(Z) an
(b) From (6.7.6), we have
Lin = —{(Sm(2), p7'Sa(2)) + (Sm(2), k?p7'Sn(2)). (1)
Using the result of (a), we have
(Lmiy Lz =++-- Lon) = —(Sp, P_lstl) + (Sm, kzp‘lst)-

L = (Lma) = —(S', p7'S*) + (8, K*p~'S!)
= - /S' p~YS'Ydz + /S - k*p~1S'd:
- [s-p7'(8Y)] /S [ "——+k2 'lS] dz

= /S - L(2)S'dz

= {S(z), L(2)S"),

= (Pra) = (S, P7'S").

(c) By direct integration, we can see from (1) that

/ p“S’dz+/S k’p~1S,dz
—(Se, PS5 + (Sny K*p71S0) = Lom.

Therefore, _ _
(L) = L.
In the same way, (p’)! = p’, so that L and P’ are symmetric matrices.
§6.15
(a) Assume that b; and b; are eigenvectors of (6.4.7a); that is

 L-b;=kp’ - by, (1)
L b;=kp b;. @)
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Multiplying (1) by b%, and (2) by b}, respectively, and then subtracting
the resulting equations, we have

kbl -p'-b;—k?-bi-p’-b;=bi-L-b;—bi-L-b; (3)
Since p’ and L are symmetric, we have

b:-p’-b; =b}-
bt L .b;=bt-

I bj,
b (4)

i

i =]

Substituting the above into (3), we can find that the right hand side of
(3) equals to zero, so that

(k2 - k)bt - B! -B; = 0.

If i # j, then k? # k?, then b!-p’ - b; = 0. That is to say, b; are p’
orthogonal.

(b)
(86,2), #7186, 2) = [ 36,2067 80,2)ds
=/S‘(z) -b;p~'S* - b;dz = /bf - S(2)p~1S(z) - bjdz
—bt . {/Stp_ISdz} bj=bt-Bl-b; =0, (i# )
§6.16

N
#(i,2) = Zb;,.S,,(z), i=1,2,---,N.

n=1

(q;,(m,z), (% 6_1% + e'lkz) $¢(n, z))

N N
=() bmiSi(2), £(2) D b3 Si(2))

i=1N N Jj=1
=3 bilSi(2), £(2)Si(2))bs
j=1 =1
N
= E Z bmg[:.'jb,,j = b:n N f * bn- (1)

j=1 s=1
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Also, L - b, = k2, -p’ - b, from (6.4.7a). Substituting into (1), we have
b! -L-b,=b! k%P b,
= k7, b, - ﬁl - b = k:u6mn- (2)
L
orthogonal property of by,

§6.17

For metallic boundary of symmetric cylinder, there is no TE and TM
coupling, so that Ry3 = Ry = 0. Therefore,

EN. = b [Hv(zl)(kNpp) + RllJn(kNpP)] 3 (1)
Hn. = bya [HM (kn,p) + RaaJu(kn,p)) - (2)
For TM to z wave,
EN:lpmppes =0 (3)
For TE to z wave -
a"‘ =0. (4)
p P=Pmax
From (3),
Hr(zl)(kNmex) + RuJa (kNmeax) =0,
"‘Hf(ll)(kNppma:)
Ru = .
Jn(kNppmax)
From (4),
Ry = —HY (kN"pm“).
J,’;(kNppmax)
Therefore,
"Hsll)(kNeru) 0
oY Jn(kNmeu)
R—N.N+1 = -Hﬁ.l)l[kn pemax)
0 Jv’s(,‘Nanal)
§6.18
(a) Maxwell’s equations in a source region are
VXE=iwpgH-M, (1)
VxH=—-weE +7J. (2)

puV x u~! operating on (1) results in

pV X p 'V X E = iwuV x H — uV x u~'M. (3)



194 EXERCISES SOLUTIONS

Substituting (2) into (3) yields
pV x p"! x V X E = wp(—tweE + J) — uV x u~ M.
Since k% = w?ue, the above becomes
pV x 'V x E —k’E = iwpd — pV x p"'M. (4)

To extract transverse components of the above, we let E = E, + E,, and
V =V, + V,. Substituting into (4), the left-hand side becomes

pV x p" YV, +V,) x (E, + E,) - k*(E, + E,)
=u(V,+ V) x u ' (V,xE,+V,xE,+V, xE,
+V, x E,) — kK*(E, + E,)
=uV, x u~ 'V, x E, + uV, x 4"V, x E, + uV, x u 1V, x E,
- k(E,+E,)+upV,x p7'V, x E,
+uV, x u 'V, xE, +uV, x 7'V, x E,. (5)

Extracting the s-component, we have
uV, x p IV, xE, +uV, x u” 'V, x E, + uV, x 4!V, x E, — k’E,
= iwpd, — p(V x p7'M),. (6)
Since u is a function of r,, we have
&
822

Also, we have V .- ¢€E = p. From this equation, we can relate E, with E,
yielding

uV, x u" 'V, xE, =V, xV, xE, = ~—E,. (7

(Vo+V,) (E, + €E,2) =V, - eE, + ea—Ei = p.

0z
Multiplying the above by V,e~!, we obtain
0 _ 4 -1
~V.E =V.L_v.v,. ., (8)
The second term of the left hand side in (7) can be written as
V. x p 'V, xE, =V, xV,xE, = -BQV,E,. (9)
z

Substituting (8) and (9) into (6), we finally get

. 2
pVex p IV, x E, = V,e 'V, - eE, — [ k* + —Q— E,
0z?

= wpJ, — uV x u~'M), — V,-E. (10)
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Follow the same steps as above, we can derive that

eV, xe 'V, xH, - V,u" 'V, - uH, - (k2 + —39:_2) H,

=iweM, +€(V x ') — V,pT':—. (11)

(b) If u and € are functions of p only, and 5% = in, n is an integer, we can
further expand (10) or (11) into two scalar equations. To do so, we first

write

1 6 16E¢ 1 6 in

Ve Bi=-zpE,+= 52 ==pE, + —¢, (12
190 in )

V,XE,-—(;-a—p'pEd,——p—Ep) z, (13)
in of -

V, x [f(p,$)3] = —fp — =—. : 14
(f(p, 8)3] pfp 9 (14)

We consider Equation (10) first. Its left hand side has three terms, two
of which need to be simplified. The first one is

_ 10 in .

=9 | (5 gpeBe= 55) o
in 410 Lin )‘

= —_— -—2pE, — —F
Moo (# S apPEe 1 B )b

p
9 1 9 0 in )~
—|p=—+—~—pE, - y~— —E . 15
| ("ap o Dp" e T Hg, T ¢ ( )'
The second one is
- V,e1V, - €E,

.0 -9\ _,(10 in
- (pap * ¢;53) ‘ (; 2"l t 76E¢)
({0 1 9 0 in ~fin O n?
(Gt 5 5 E) -3 (e 5) (16)

Substituting (15) and (16) into (10), we get a vector equation, which can
be sorted into two scalar equations: one is for ¢ component, another is
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for ¢ component, i.e.,

8190 2 0*E, 2in »
<8ppeappeE E+kE+62>+—-E’¢-—0 | (17)
din in 0 19 n*2 , &
(2228 n (A Ser ) nns

(18)

Substituting € = €€,, 4 = oy, into the above two equations, and making
some mathematical changes in the form, we get

1 o 1 n? 02 ) 2in
— | pe, — - — k+— eE,+ —E4 =0, 19
per (p dppep P P P (19)

. 0 1
[zn 5_1; (le‘rer)] perfly

1 8 1 8 n? 8
_M‘r(p,u,_---————ﬁ—wc2 az)pE.,;-—O (20)

In the same way as above, we can derive equations for H, and H,. They
are

2 2
——}—(per—?-i'?--l+k2+?z—)pH¢

Per
. 0 1
+ [m % (m)] pu-H, =0, (21)

g, L, 212
p? pus \'" " Op ppr Op
2

i
-— + k* + 'a_z) pu-H, =0. (22)

§6.19

(a) Let P = (A + AB). The eigenvalue of P is the solution of the following
algebraic equation.

P-1y=o.

This equation can be expanded as
|f5 - i/\l =AM+ SAT E SAM T+ S A+ (1) |F| =0

where Sy, = (=1)™- ) MY MY is P’s m-order principle minor.
all
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(b)

Since all kind of principle minors of P and P’ are the same, so that
P-IN=P -1}

This means P and P share the same set of eigenvalues.
Let \; and A; be defined as

(A+;B)-a; =0, (1)
A& + 1B -b;=0. (@)

Multiplying (1) by b} and (2) by a}, and then subtracting the resultant
equations, we obtain

(bi-A-a;+Abi-B-aj)—(a}- X -bi + \ia}-B-b;) = 0.
This can be simplified to '
(A= A;)bi-B-a; =0.
Since A; and A; are not identical, we have

bf‘B'a,-=0.

To show the orthogonality, we first consider two sets of solutions to
Maxwell’s curl equations:

VxE; = wuH;, (3)
V x EJ' = iwaJ‘. (4)

Dot multiplying (3) by H; and (4) by H;, and subtracting the resultant
equations, we get

H; VxE;-H;-VxE; =0, (5)
Likewise,
E;-VxH;-E;-VxH; =0. (6)
Adding (5) and (6), and using the following identity
V- (AxB)=B-VxA-A:-VxB,

we have

V-(E,'XAJ'—EJ'XH;)=O. (7)
The Z-dependence of E; and H; are exp(—ik,;z). Thus, Equation (7) can
be written as

0=v,'(E;XHJ'—EjXH,‘)-l-f%'(E;XHJ'—EJ'XH,'),
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or

V, - (E.‘ X H_,' - Ej X H,’) = i(kz.' + kzj)2 . (E.' X H_,' — Ej X H.') (8) '
= i(k,,' + kzj)2 . (E,,' X H,j — E,j X H,;).

(9)
In deriving (8) and (9), we have made use of the fact that
- (ExH)=2-[(E,+E,) x (H, + H,)]
=3-E,xH,+E,xH,+E, xH,+E, xH,]
=z E, X H,. (10)

Applying two-dimensional form of the divergence theorem to (9), we get

/ V,'(E,'XHJ'—EJ'XH;)dS=fﬁ'(E;XHj—EjXH,’)dl
S C

= i(ksi + kyg) / / 3. (By x H; — Ey; x H,)dS
. (11)

Extending the contour C to infinity, since E and H satisfy radiation
condition, the contour integral vanishes. Hence,

(ku+ k) [[ 2 [Bux Hy =By x Hdds =0. (12
S

Now, reversing the propagation direction of mode j to —z, by the same
way as the above, we have another equation

(kz,' —_ kzj) /:/2 . [E,,' X H,J' - Esj X H,,'] =0. (13)
S
Adding (12) and (13), we get

J[#BaxBs =0, G#i), (14)
S

thus proving the orthogonality of (E;, H;). Since the above process does
not depend on k(r), (14) is valid for inhomogeneous media.

§6.20
(a) Matrix L is defined by (6.5.20a) as

L=(5,c-§,
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(b)

where S 0 . |
Q — 1 — 11 12 )
= [ 0 Sz] ’ Lle) [121 122]
l;; can be found from (6.5.13). They are

1 /018 n? 2in
lu =\ Q" — 5 kz) ’ lyp = -
per (3p pedp T BT

(8 1 ) 1 ( 8 18 n? ,)
= —in ( o= , = v =+ k)
" (ap pPerpir 2= on \P¥ 8 pmop P

Hence,

Pmas
= (S, 0 In Ip][St o
L—/Lo s,]'[z21 1,,“0 sy | 9

_ S1- 1S} Sy 1S} dp— |1t Lz
| S2-InSY  Sa- 12285 Ln Lg|’

where, L;; are block matrices of L. They are defined by

Pmas

(-f‘n),,.,.: /(Sl)mll2(s2)ndp (1)

0

while its symmetric element is (L2 )nm

Pmasz

(-I_;2l)nm = / (Sz)nlzl(sl)mdp- (2)

0

From (1) and (2) we can see that for L to be symmetric, we require l;; to
be a symmetric matrix.

As for R, it is a block diagonal matrix, its two blocks are

Pmasz Pmazx

Ry, = / S:-m1Sidp, Ry = / S; - r22Shdp
0 0
Since ry = 1/pe,, roo = 1/pu,, they are symmetrical operators. Hence,
R1;, R,; are symmetric matrices, therefore R = [Ron ﬁ() ] is also a
22

symmetric matrix.

The operator 6%/0z* in (6.5.14) will yield a solution of z-dependence of
e'*:*, Hence, (6.5.14) becomes

£4(p) - H(p) - ¥R -H(p) = 0, &)
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where .
pilg
pl‘rHP . (4) '

In order to solve (3) for H, we expand H in a basis set, such that

|

N
H(p) = [pﬁflﬁp] - %Z:Zi:: _ .-: [Sd': S(;] [2 ] -§.b
(5)

where S;; and S;, are basis functions that can approximate pH,; and
pu.H, respectively in the region of 0 < p < ppa.. Using (5) in (3), we
get

Li(p)-S'(p)-b—kR-St-b=0. (6)

Multiplying the above by S(p), and integrate over p from 0 to Pmazy WE
have

(S,L'S*) -b—k¥S,R-S) -b=0.

The short notation of the above is

L' b—kR-b=0 (7)
where, )

L' =(S,C-SY. (8)

We can see from the above process that Equation (7) is just the transpose
of Equation (6.5.19) in page 356.
To derive Equation (6.5.22), we first choose two eigenvectors for (6.5.19)
and (6.5.21). One is a; for (6.5.19) with eigenvalues k2, another is b; for

zt
(6.5.21) with eigenvalues k?;. Hence, we have two equations

f-a.--—kf,-ﬁ-a,-=0, (9)
—t enma—
L -b;—k}R-b; =0. (10)
Left-multiplying (9) by b} and left multiplying (10) by a}, we have
b;--f-a.-—kﬁ,-b,--ﬁ-a,-zo, (11)
al-L'-bj—k%al-R-b; =0. (12)

Transposing (11) and then subtracting (12), and using the symmetry
property of R, i.e., R' =R, we find

(k2 — kgj)aﬁ ‘R+b; =0. (13)
If i # j, then k% # k?;, we have a! R -b; = 0. If i = j then a! - R - b; =

constant (related to iﬂ. To summarize, we have

al-R-b; = §;D;. (14)
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§6.21
When the source is a vertical electrical dipole, such that

3 = :I¢5(r) = zzeis-(i;—”'—)m — $)8(z — "), 1)
then,
(7 x ), = ~417E2LL506 — )6z - 2
*Iea(‘(" ,)2” Ao =P gig — 48z - ). )
The ¢ variation of the source could be expanded using Fourier series as
Ho— )= = 3 e, ©

Hence, the source term in (2) can be expanded in terms of e"*harmonics. By
linearity of the field equation, each of these harmonics will excite a field with
'™ dependence. For the n-th harmonics, Equation (6.5.8) can be written as

£(p)- Hip,2) + 25R(p) - H(p,2) = S(p,2) = {S‘(”’””)} (4)

52(1)’ z)
where
inll N —ind
Si(p2) = Sotle = F)6(z = ) - e, (5)
1 / ’ N —ind!
Sa(p,2) = —5;,5 (p—p)o(z — z")e™™?, (6)
and -
_ ) piy
na{h ). -

The unknown field, H(p, z), can be expanded in terms of the eigenfunctions
Hp(p) such that '

2N
H(p,2) = ) Hp(p)bo(2). (8)
p=1

Substituting (8) into (4), we have

2N
3" £4e) - Holo) - bo(2) + 25 Z'R(p) Hy(p)- ba(z)—[ ] O)

g=1 f=1
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Multiplying the above by E!(p) and integrating over p, we have
2N 2 2N

S(EL £ Haby(2) + o5 O (B, Rp) - Holbo(s) = Bubz — &), (90)

p=1 =1

where 17
B = oo™ [ 2 Buls) + ELals)]. (10)
Since

Eu(p) = S'(p) - aq,
Hy(p) = S*(p) - by,

we can show that

(BL, L' -Hp) =al-(S,L'-S" -bg=a, - (S',£-S)-by
=[by-(S',L-S)-a,]' = [bﬁ L-a,)
= [k2,bs - R - a,) = k2,6, (11)

In this way, (9a) can be transformed to

d?
-d—z-;bp(z) + k?,(z)bp(z) = B,6(z — 2). (12)
Solving (12) yields
eikg,lz-—z'|
ba(‘z) = BaTka:—- (13)
Hence, (8) can be written as
2N
H(p,2) = ;Hn(l’) Bosy e . (14)

Using vector notation, (14) becomes

H(p,z) = HY(p) - ¢X:b=71. §(p"), (15)

where H'(p) = [Hi(p), Hy(p),...,Han(p')] is 2 2 x 2N matrix, K, is a di-
agonal matrix containing ks., S(p') is a column vector containing Bg which
embodies the characteristics of the source alone. For sources that assume
different value for 2z 5 z’, we have general solution

H(p,z) = H(p) - ¢K:l-71. 8, (), 257" (16)

§6.22
In source free region, Maxwell’s equations are

Vx E =wuH, (1)
V x H = —weE. (2)
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Decomposing V and E, H into the sum of transverse and Z components, i.e.,
V=V,+V,,, E+E, +E,, H+H,+H,.
Substituting the above into (1) and (2), we have

(V,+V.) x (E, + E,) = iwp(H, + H,), (3)
(Vs+ V.) x (H, + H,) = —iwue(E, + E,). 4)

Making the § component of both sides equal, we get
V,xE,+V, x E, =wuH,, (5)
V,xH,+V. xH, =—iweE,. (6)
Again, making the Z component of both sides in (3) and (4) equal, we have
V,xE, =iwuH,, (7N
V, x Hy = —iweE,. (8)

Now, multiplying both sides of (7) by (iwu)~?, we have H, = (iwu)~'V, x E,
and substituting this relation into (6), we arrive at

(iw)™'V, x p 'V, xE,+V, x H, = —iweE,. (9)
Since V, = 25"’;, the above can be rewritten as
—twZ x -a%H, =V, x p~'V, x E, — w?¢E,. (10)

This is (6.5.39) on page 359.

We can further simplify (10) into a matrix form which relates H, and E,.
To do so, we make use of the following identity in cylindrical coordinates:

10 n
ooxbms (A2, in) .
papp ¢ p 4 ( )
¢ xH, = x (pH, + ¢H,) = $H, - pH,, (12)

where we have used é% = in.
In this way, (10) becomes

6 - 0 pH¢
mw [ ; ] [Pﬂrﬂp]

az Plir

| i apPE¢+ L E, w?e¢ E,
= ——3-——pE¢+—ﬂE w? E./|°

8p pu p

bl.—-

8¢ pu
In short, the above matrix equation can be written as

2 R(e) - H(p,2) = M(p) - E(p, 2),
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where,

L 0 pH . E
R = | per , H= ¢ ; — PEr Ly
o=1% 1] m=[ak] =[5

Plir

n? kzn in 3
M(p) = [Pst‘rfra: —'P“rCr’ s I;zilr;r .a—; 42 ] . = 1
~% Puc’  Gourop Tamd WhHo
§6.23
Equation (5a) is
— o = — = -1
D, = [I -R,- ele.(dx—dz) . Rza . etxaz(dn—dz)] . (1)
For the sake of cla.rii;.y, we denote
A = R,, - eKnldi-d2) R, . ¢Karldi=da) (2)
Then, we can set
ﬁz_=(T—X)_1=i+01K+02X2+a3X3+GnX“+... (3)
where a,,a;, -+ ,a,, -+ are expansion coefficients.
Multiplying (4) by (I — A), we have
(I-A)-D,_
=T+ @A+ @A +aA%+--+aA" +....
A 0K e — A=

=f+(a1 - 1)-A_+(ag -—al)Xz-i-(aa—ag)Ka-i-°--+(an—aﬂ_l)K"+--- .
The above results in
(ar — 1)K+(a2—a1)K2+(a3—ag)K3+---+(a,.-a,...l)_A—"+--~ =0

This equation is valid for arbitrary full rank A, that is [A| # 0, it is only
possible when

a—-1=0, a3—a; =0, az—a;=0, -+ an—ay1 =0,
This means a) = a3 = a3 = -+ a, = 1, hence
D, =T+A+A" + X+ +A " +---. (4)

Substitute (5) into (6.6.8), we arrive at

ﬁ'n = ﬁl? + T21 . Ciﬁz’(d‘ —dz) . ﬁza . eifzx(dl-dg) . le
+ Tn . eiﬁz'(d’ =d2) , -ﬁqa . ciEZx(dl-lb) . K . Tl2
+ Ty - ¢ K2:(d1-dz) Ry, ¢ Kas(di—da) ‘X2 . T,
+ oo, (5)
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This is the series expansion for R;,. It has a very clear physical meaning
as it stands for multiple reflection. We give explanation in the following.
The incident wave meets the first boundary. Then it reflects and trans-
mits. The reflected part is Ry, [this is the first term in (5)]; the transmit-
ted part is T2,. This part will go on travelling until it meets the second
boundary. After this travelling, it has phase shift of exp [iKj,(d; — d))
at the second boundary. It also reflects and transmits (we will omit the
transmitted part, because it will never come back again). The reflected
part is
Ty - etiz:(d:—dz) ‘Rys.

This part will go upward until it meets the first boundary after a phase
shift of e'¥2:(41~4%2)  after which it reflects and transmits. Consequently,

we have
Transmitted part: T, - ¢'Kas(di-d2) ‘Rys- 'Kazld1~d2) - Tha,
Reflected part: T, - ¢ Kae(di = da) Ry - eKeuslhi-da) . R

The transmitted part will add to the field in region 1, forming the second
term in (5). The reflected part will repeat the above process.

§6.24

In Figure 6.6.2, when each region is planarly layered, we can find the
generalized reflection operator in the same way as §§6.6.1. In this case,
the field in region 1, using the similar compact notation of (29a) but
changing the coordinates to that in Figure 6.6.2, can be expressed as

Ay, = B(y): [T gu(y) + Rl t) Ry Rukhi=s g (y1)]

In region 2, the field is @
Ay = 3t‘z(y) . [e-‘m‘('-d’) + eiKasle=da) . ﬁza] - Ba,. (2)

In region 3, we have only downgoing waves, or
Aqy = Ty(y) - e Fo:t=4) . B (3)

B; and B3 are constant vectors, which can be found by using constraint
conditions. That is, the downgoing wave in region 2 is a consequence of
the transmission of the downgoing wave in region 1 plus the reflection of
the upgoing wave in region 2, or

e—i-ﬁzx(dl —dy) | B,

=T12 . eiﬁ;,ld;—z'l . ¢,—(yl) +ﬁ21 . el.ﬁzx(dz—dl) . ﬁn . B2. (4)
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Solving the above for B, we find,
B, = e Earlh=8) . §,_. T, - eFrslii=r1. (), 5)
where _ _ -1
D,. = [i R, eKulh-b) R, . eexa.(dl-dz)] . (6)

Similarly, Bj is just the transmission of the downgoing wave in region 2.
Hence,

B3 = Tza ° B2- (7)

In region 1, the reflected wave is the reflection of downgoing wave in
region 1 due to the discontinuity at z = d; plus a transmission of the
upgoing wave in region 2. Therefore, at z = d;, we have

ﬁ126"3(-""’“#““f’a—(y') = Klz'eii”ld‘-z'l'¢a-(y')+'—f21'C‘E"(d‘_d’)'_ﬁzs'Bz-
Substituting B, of (5) into the above yields
ﬁ»12 =Rz + Ty - Cii"(d‘_d’)ﬁza . 'Kl =da) Dy - Thy. (8)

This is the generalized reflection operator as it incorporates subsurface
reflections.

§6.25
(6.6.13) and (6.6.14) can be rewritten in the following form:

-~

eiKmxdm . Cm —_ ﬁm,m+l . e‘iKm:dm . —D-m

=§m.m+l : eif(-m,ld,,.-z’l . sm—(p,)’ (1)
—_ ﬁ"l."l—l . eiszdm—l . Cm + e—ingdm_l . —ﬁm
=ﬁm.m-1 . gKmeldm—1-2'] Sm+(p'). (2)

Left-multiplying (1) by ﬁm'm_, . ¢Kmsdm-1 and left-multiplying (2) by
e'Emsdm and then add the resultant equations, and making use of the fact
that ¢’K9 is a diagonal matrix, we have

-~ -~

[eisz(dm‘dm-l) _ R'm,m-l . ﬁ_"-"m_'_le—'.xmx(dm“dm—l)] . Dm

=_R—'1n,m-l R ﬁ-m.m+l . eixm(dm—l"i'ldm-z'l) . Sm_(p’)
+ ﬁ-m,m—leiKm(d"'.*-ld'"'l =D Sm+(pl).

Multiplying both sides of the above equation by e=Kmsdm and defining

= — = =z = = -1
Mm— = [I _ R‘m,m—l . e'Km:(dm—l"dm) . R""m+l . etxmx(dm—l -dm)] , (3)
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we get

t

=

= = = o
e--K.,,,d,,._; Dm = m— R-m,m—l . [eiszIdm-l 2], Sm+(p’)

ei.k-ms(dm—l —dm) . ﬁm mtl * ei—fmxldm"zl' . Sm_(pl)] .

+

This is (6.6.16b). In the same way as above, we can derive (16a) to be

N

¢EmedmQ = Ry - [emm.ldm_,q  Sm_(p)

4

m<4 °
e"Kmx(dm—l —dm) . _R m—1 . e‘Km'ldm-l —z‘| . Sm+(p')] .

+






CHAPTER 7

EXERCISE SOLUTIONS
by Irsadi Aksun', Caicheng Lu?, Greg Otto® and Rob Wagner*

§7.1
(V2 +K) g(r) = —6(r), 1)
4 eikr B e-ikr
g(r)=A—+B—.
since only outgoing wave is possible, B =0 , and
eikr
o(r) = A= (2)

Substitute (2) into (1) and integrate around the origon,

r r

eikr eikr
/va dV+/k2A dV=-/6(r)dV
v
Second term on the left handside goes to zero for r — 0 . Hence,

eikr
lim [ VIA——dV = -1.
r—+0 Tr

&V
But ) .
etkr elkr
lim/V-VA dV=lim | VA -dSs,
r—0 r r—0 r
1% &S
or k ke ik
. atkre’™ — e
11_1.1(1’44 4rnr — = = 1,

1 Exercises 1-12
2 Exercises 13-19
3 Exercises 20-26

4 Exercises 27-30
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or 1
A = G.
Hence, |
1 e , 1 eiklr—r’
g(r)—4_7r_' = g(r l‘) I;lr_r,l
§7.2
V2A + k2A — V(V- A) = iwpeVe — pJ, (7.1.9)

V.-A =0, (coulomb’s gauge).
By using the definition of the electric field given in (7.1.7)

E = iwA —~ V¢, (7.1.7)

then
V.EziwV-A-V.Vg=2

R
€
and

24 P
V¢ = .

is obtained, which corresponds to (7.1.12).
From Equation (7.1.9),

V2A + kA = iwueVe — ul. (1)

Since V¢ is an irrotational field, it may be canceled by the irrotational
component of J:

J=J+J,

where

UxJ, =0 V.J,=0,
VxVxJ=V(V.J)-V],
VI =V(V-I)-VxVxJ.

First term on the right hand side is irrotational part while the second
term is the solenoidal part of the current density. By using the fact that

ViG(r,r') = —6(r - r')

has the solution of !

4r|r —r'|

G(r,x') =

'
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the irrotational and solenoidal components of J is obtained as

vV/(V'-I(r))
4njr-r| ’

V' x (V' x 3(r"))
drr—-v| °

e ! V'J(r’) / I[ ! 1 ] ‘-,
3, = / 'V [ perseer] Rl Ko mmr] [EEEY
v 4

where the vector identity gV f = V(fg) — fVg is used. Moreover, by the
use of the gradient identity for the first term on the right hand side

o VOIE) 1 [, 1 .
Jir = 'fdr dnjr—r| 4= /d" [V41r|r—r’|] (V'-J).
S v

The first term is zero because the source J is only supported in V. There-
fore

3, = G(r,r') +[-V(V-3)] = — / dr’
v

J,=G(r,r)*[Vx(VxJI)]= /dr’
v

o ) Swp(f) _ _,
Jir = V/dr v e weV .
v
Hence, Equation (1) is written as
VA + kK3A = —pd,

which corresponds to (7.1.11), and the final electromagnetic field would
not change with this gauge.

§7.3
For
1
0
= { logy; ¥ #

s@={"F 7,
lixtx,x_ f(z) = lir(t)x+ f(z) = f(0) = 0 continuous at z = 0. Holder condition
requires,

|f(z) — f(O)] < AJz|*, Vz, z<c

where ¢, A and a > 0. Therefore, we require

< Alz|%,

log ﬁ_—'

or

1 1
—| > =g~
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or 1
@ > —.
|z|°[log || 2 y

This is not true for z — 0, because

a1"_in‘1){|:1:|"|log |z]]} =0 for a>0.

Therefore, for any ¢, we cannot find A and «a satisfying the Holder con-
dition, that is, f(z) doesn’t satisfy the Holder’s condition.

§7.4

v

E(r) = twp [ dr'g(r,r)I(r') = — - [ dr'g(r,r)I(r).
! twe V/

The second term can be written as

= ‘}imo vvVv. / dr'g(r,r')J(r') + VV . / dr'g(r, r')J(r')]
’ V-V Vs

= lim / dr'VVg(r,r') - J(x') — J dr'V'g(r, r')-J(r’)]

Vs—0
V - Vs
= ‘;imo dr'VVg(r,r’) - J(r') = L - J(r),
vy,
where
L-Ir)=-V / dr'V'g(r,r’) - J(r)
Vs—0
=-V / dr'[V’ - g(r,r)I(x') — g(r, ")V’ - J(r'))
Vs—0
=-V /g(r, r')J(r,x)-AdS' + V /g(r, r')V' . J(r')dr
és v
= / [V'g(r,v)]I(r') - 2idS' - / [Vig(r, e )]V’ - I(r')dr,
és v
and

Vig(r,x') = V' et
’ 4rir — v|

kR _
—(ik—-1—>e——RE— R §V =0, R=r'-r,
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because the fields become static when the exclusion volume goes to zero.
Therefore,

= : -R . : -R
L-J(r)= }11510/4“}{23(1-') - AdS' - ‘1213/ ypy-7 V' J(r')dr'.
: és v

The volume integral vanishes with R — 0 provided that J(r') is piecewise
differentiable, because

. R ’ [} 2
b el 30 e o
Hence X
T.3(r) = -J( )./ "R s
=—or 47 R?
&S
4
Z
fi,R
r
r y
c
z
Figure for Exercise Solution 7.4
In the figure,

Ai=R= Zsinfcosd + §sinfsing + Zcosd
AR = £ sin® § cos? ¢ + §ijjsin® Osin’ ¢ + 33 cos® 6+
(29 + §%)sin®@sin @ cos ¢ + (£2 + 2%) sin 6 cos O cos p+
(§% + £§) sin 6 cos fsin 6. |
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Therefore,

u x 2% " A
AR R%sinfRR
/ 4T R? ds = / 47 R? dédb
S 00

Note that the vector components zy, y&, £Z, Zz, and y2, Zy are zero.

Then,
7 ’f sin® 6 cos? ¢ 7 f sin®6sin? 6
// yy “w=// T
o 0 00 :
T 2x
sin @ cos? @ 1
=//—77—Mw-§
00
Therefore, _ _
= | = 1
LIr)=-3-30) = E=3

For other exclusion volumes, the same procedure is applied to find the

corresponding L.

§7.5

—k x k x G(k, ') — K2G(k,r') = e
T-kk .,
B¢
V x V x E — E2E = iwuJ(r),
V x V x G(r,r') — B2 G(r,r') = I§(r — 1).

G(k,r) =

For (3)
._.L_J_=p, v.E=2 vV.E=23
w € iwe
For (4) _
v.§= 2 X-r)
wp(iwe)

G(r,r') = —l— / dak_a_(k r)e*r,
v. G=—/d3k [k G(k,r)] e

A I5(r — 1) k-1 ey
k3 8#3/d3k[ ] E

ey
2

(3)
(4)
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k-Gk,r') = —75 K i

k?
From (1),
(~k-G) k- (k- WG - kG = T
!(_]_‘_ —ik-r! + (k2 kg)'é' = ie-ik-r"
7hs
= ik‘2 - kk kv
no__ 0 —-tkr
= G(k,r)--———kg(kz_kg)e .
§7.6

F(z) = 7dzf(a:)e""".

When k; — oo, most of the contribution of the above integral will come
from around  — 0. Therefore, we have

F(k.) ~ / drz®e-ite=

where we have replaced f(z) by the approximation z°. Letting tk;z = s,
the above is

1 . o- Tl+a)
F(k;)~W/dsse =W’ kz — oo.
0

The singularity at the origin of f(x) is integrable if a > —1. It is more
singular when a is smaller. But for smaller a, the more slowly would
F(k.) decay when k, — oo.

§7.7

G(r,r) = = / / dk, s (remri)+ikos|s=2'] Ik = k°k°] Zs(r-r).
87l’ 22 ko, ko (7 1 34)

For z = 2/, the integral becomes

Jaco-oliics).
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— Kokg eike(rmrl)
k2 kE, °

/ / eheiter)

is divergant because the integrand > A—n- for k, = oo. (7.1.34) is
devergent for z = 2’ because the integrand i is the Fourier transform of the

dyadic Green’s function

integrand = for k, > ko.

G= (I+Zk,Z go

which is not the Fourier transformable as it is as it is not absolutely
integrable.

§7.8
G(r) = [1+ F Jote.r)
= [I ]8 2 /_/ i )+"'"""',

[ o elrlemrtikales F . ik, k5 i
v / / dk, T =V / / dk.__'__k_’_elk.-(r.-r,)+sk,|:-z'|

o oo
=V //dk‘z’lc(_’e‘ka-(lc—l"u)+ik:|8—z’l + V//dk‘isgn(z - z')e‘k"("‘"'a)"'"":h-z'l

/ / dk. E, 2(ik, % ik,2)e’* (Famr)bikale—2l] / / dk,(F2)k, e’ (Femraltiksls—2'|

//dk (-k ii)e'k' (ro—rxy ) +ikslz—2'| +z//dk £326(z — )e“‘"(""'-)+"‘z|'-z'l
, I:(keak. (ra=r))+iks|z~2'| + 225(2 _ zl) 12/ dk,e"" o(To=t")4iks|2~2']

iStTS(; -r})

ko (Pa—rl)4iks|2z=2| 270 _ !
=3 / dk,e ~KE 2 é(r —r').




216 EXERCISE SOLUTIONS

§7.9
P.V.%i = / dzsgn(z)e™™ = f(y)

f@) =sgn(z),  fulz) =sgn(z)e 7,

faly) = / dosgn(z)e~ Het

= - /dmene"”+/d:ce ne'®

12y

=_%+zy —;l;+zy=l+y2 = ).

nllrgo fa(y) is a generalized function. Choose a testing function ¢(y)

lim (fu, ¢) = lim / dy,z’” 2 4y)

—hmhrn{/dyl ciJ(y)+‘/‘dy1 ¢(y)+/dyl s6(v)

n—o00 e~0

Ny

v

—

#(0) f ’: =0

k - " y

T [ 2 I
_hﬁyﬂ{/dywtﬁ(y)*'/ 1+ ,4’( )}

= Im (PV.T2s, ) = (PV2,4)
Nn—+00 —; +
Therefore,

Png-z- = hm fa(y) = / dzsgn(z)e™v.
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VxVxF—kF=0, (7.2.1)
(V2 + k) =0, (7.2.2)
M(r) =V x c¥, (7.2.3)

N(r) = %V x M(r). (7.2.4)

From (7.2.1), VV . F — V?F - k*F = 0, and substitute with (7.2.3), we
have

VV-(Vxcy)—Vi(Vxep)—k(Vxcyp)=0
-V xc [V — k'] =0.
=0
The above implies that M(r) is the solution of (7.2.1). Furthermore,
21{1lg 21
-V sVxM |-k |{-VxM)=0
k k
-V x (VM + k¥*M) =0,
s
which implies that N(r) is the solution of (7.2.1).

% = 0 on S implies that i- M = n X N = 0 on the sidewall, and
n X M =n-N =0 on the end caps.
M=V xcv,
A-M=n-(Vxcy)
=V -(cy x )
= V- ()

fi-M =0on S in because ¢ = 0 on S . Furthermore,

3
X
2
]

x[%VxM]:%ﬁx[Vxch:/:]

—— e &

i x [VV.cp — Viey], where V) = —~k%y
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\
]
J
[
!
|}
\
|}
'
!
!
-

Figure 1 for Exercise Solution 7.11

Since ¢y =0 on S, %=Oon S, then

inxN=0,

AxXxM=nx(Vxcy)=1x (V¢ xc),

on E{:
-
* 7 el
—ax|(2e, 9| ;
- [(an el * Bn, ,.r"') X ]
—ax |2 - 2. O
_nx[an. nrn.xc]- B rd_m,(n c)—cld n'én_,,d.)'
Therefore,

AXxM=0 on  (excluding T),

il
q
!
2
X
~ 1
+
|
2
4
X
S
]
L
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r
n,
S..
: Tc

Figure 2 for Exercise Solution 7.11

where the following vector identity is used:
V.- (AxB)=B:-VxA-A-VxB.
§7‘12
If ¥(k,r) = ¢’*", then

M(k,r)ik x ze*T,
N(k,r) = —%k x k x ze*T,
L(k,r) = ike’*™,

(7.2.28) = / / dzdydz (k,r)p(-k',r) = / / / dzdydz e*Te~k'T

= / dzdydz e*-¥)* = (27)38(k — k). (7.2.28)
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(7.2.29) = /7 dr M(k, ) - M(~K, r)
= /}/ dr V(K x 5) - (K x £)

= / / dr &) [, . K] = k2(2n)? 6(k — K).
/J. (7.2.29)

(7.2.30) = / / dr N(k, r) - N(~K', )

= /7 dr [—%k x k x 2 e"‘"] . [—-;—,(-—k' x (—k’ x 2))e"‘"""]

_ /]" o ity [OX (e X )] [k X (K x £)]

kk’

[ areteorre Qb= 80 K -
kk’

- / 7 ./ dp ik-k)e Kekik K — k2K — KK2 + k%%
kk'

= B (2n)* 8(k — K). (7.2.30)
(7.2.31) = / / / drL(k,r) - L(-K' 1)

= / / drik e*T . (—ik')e~ " = k*(2x) 6(k - k).
Js (7.2.31)

§7.13
(a) The n-th order Bessel function J,(kp) has the following integral repre-



(b)

sectation [p. 82, Eq. (2.2.18)].

2% .
Ja(kp) = 2% / dae'*reosatin(a=F) (1)
0
Thus
2x
To(-kp) = 5 [ daeisemeriniar) (2)
27
0
Let a = 7 — o, then &' = 7 — a,da = —da’, the integration range of o/

is [+7, —x]. Hence

J‘ﬂ(—kp) = él;_’ /(—da')e""k"“"'("’-a')-i-in(a'—-g-)
+r

i
= _“Z_W/daleikpcoca'+in(a’-§ . (3)

Since tkp cos o’ +in(a'— %) is a periodic function of a’ with period T' = 2,
its integration over [, 7] is the same as over [0,27], i.e.

2x
J-n(—kp) = 511_‘-_ /daleikpcooa'+iu(a'-§). (4)
0
Comparing (1) and (4), we conclude that
J_n(—2) = Ju(2). (5)
From (7.3.32) o
Yn(kp, koo ¥) = Ju(kpp)eiss+ind, (6)
Likewise, o
Yont (=K, =KL, ) = Jn(—k,p)e " Fs2=iné, (7

Using the conclusion we have proved in part (a) of this problem, we have
Tow(=kyp) = Ju(Kip).
Therefore,
Yn(ko, ks y D)Y_ni(—kp, —k; 1) = Jn(ka)Jn'(k;P)e“k'-k")zei(n—"'w- (8)

Since
P14

/ ei(n-nl)¢d¢ = 26y, (9)
/ e'bs—k)2dy = 2n(k, — k'), (10)

~00
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and

[ denttp)ttin) = -5k, - K), (11)

we obtain

2=

/ d¢_£ dz o/ p dp Pulky,kuyEipw(—k,, —K,,T) =

0

-]

2x o
t(n—n’)¢d¢ o(k.—k,)zdz P dp n(kpp)"n’(k P)
Jorona J e |
=(27l')26m|’6(kz - ).L—k——kl—)- (12)

This is equation (7.3.37). It is the basic orthogonal relation which can
be used to prove the other three orthogonal relations for the vector wave
functions M, N, and L. We shall prove them as follows.

By definition, M = V x (24,). Hence,

M., (k,, k., x) =V x [2¢,(k,, k., 1))

=[p§’,1J,.(k,p)—&kﬁ:(kpp)]e**ﬂ*‘“. (13)
M_,..(—k,, ~F,,r) [,,__J_,,,( kip) — G(—KL )T (=K, p)e=thsz+in's
=[p— Jnl(k p) — k. JL (K, p))ekemtin'e, (14)
In the above,
J,’,(ka:) 2 d—(‘;z%l (15)

Hence,
M., (kp, ke, r) - M_(=k}p, —k,,x)

[nn Tn(kop) s (K,p) + kK, T0(K,p) Trs (K, p)] ei(ks—kL)z i(n=n")¢
(16)

Using the identity J;(z) = Jn-1(x) — 2Jn(z) we can write the right hand
side of (16) in the summation of the following terms multiplied by
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eitks —k\)z ei(n-—n')¢:

n(ka)Jn'(k P),
k, k' ﬂ‘l(kpp)‘]r’n-—l(k P),
= k,k,J, n—l(kpp)k, Tu(k,p),

= ko Jua(Kpp) 2= Ep Ju(k,p),
ko k,nn'
(kop)(Kpp)

The integration over ¢ results in 27é,,,. Hence, when n # n’, the to-
tal integral will be zero. Therefore, we can get rid of the terms involving

Jn(kop)Jn-1(k,p) and Jn (K, p)J,._l(k,,p) The first and the last terms are of
the same form but of dxfferent sign, and they cancel each other. Finally, we
get

Ja(kop) (K, p).

bk, / Tner(kpp)Twr(K.p)pdp = k,6(k, — K1), (18)

The integration over z is once again 27é(k, — k.). Thus

2r (-] 0

[ a8 [ ds [ Mtk o) Mon(=E,, =B o dp
-c0 0

= (27)?k,bnneb (k. — K,)6(k, — K.).
(19)

Before proving (7.2.39), we look at (7.2.40) first. By definition,
Ln(kpa kz, l‘) =V¢n(km kz’ l‘)
~ -1 a2 tkxz4in
=[pko T, (kop) + 8= Ju(kep) + 2k) Tulkpp)le ™=+,

L_,,i(—k' N —k;, l')
= [B(k})Ta(kpp0) + $—— Ju'(k p) — Z(ik})Jw(k,p)]e*e==i""¢,

Lu(k,, kzy 1) - Lope(=k;, — K., ¥) =[k, K, T, (K, p) + ,.(k,,p)J,.,(k p)

+ koK, n(k,p)J,.'(k p)) - elts—tilatilnnte,
(20)
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Again, the integral over 2 and ¢ are 2x6(k,—k,) and 27é,,, repectively, where
we are only concerned with terms including Bessel functions. Comparing (20)
with (16) we deduce that

2r o oo
/ do / dz / dpLn(kp ks, T) - Lns(—K,y —EL, )
0 -0 0

2
(27 ke b(ks — KL)S(k, — K) + (21r)2%-6,.,,.6(k, — K)6(k, — E.)
(4

5("9 - k;)

= (27)2 k26 b(k — k)
k,

(21)

In the above, we have used k? = k2 + k2. Finally, we prove (7.2.39). Since

N, =%V x V x (3¢,) = i—[V(V < Ethy) — V23¢,] = %[(ikz)wn + k%)
=i:‘ L, + ki, = ig—[pk,J'(ka) + ¢i7"1u(kpp)]e‘*”+‘“"
+ 2k,) - ik 5, + Sk,
we have

Nalkyr ks, F) Nk, —K,) = ZE2 KT (K, ) T4 (o)

: . g | K2
+ %J,.J,,,] s S R

Using the previous result, we can easily show that

2

[as [a [0 dputhn bt )Nw(=ty,—Eeir)

o 0

= (27) 2k, Bk, — K,)6(k, — K.). (22)
§7.14
(a)
Yo (6, 6) = \/ ) preos )eins, 1)
(n+m)(2n+1)

Ya-m(8,0) = P7™(cos §)e™"™¢. (2)

(n = m)4x
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P ™(cos8) = ( )' +———= P™(cos §), (3)

(n+m){(2n +1)(n — m)! o
(n-m)dr (n+m)! i

_ [(n=m)(2n 4+ 1) —im

= \/ (n + m)lir P™(cos§)e~im¢

= Ym(6, 9). (4)

Yo-m(6,6) =

™ (cos §)e*™*

The above formula is limited to m and n are integers and 6 is real. For
the orthoginality of Y,,,,(0, ¢) we first note that

/ d¢ eflm-m')é _ 276 mm, (5)

2(n 4+ m)!
2n+1)(n-m)" (6)

/ P (cos8) Py} (cos 8) sind8 = 6,

Thus

2r x

/ / Yam(6, $)Yor,—me(8, ¢) sin 6d8d¢
00

t A different formula is sometimes used here. See for example A. Messiah.
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2x

= / e'tm-m")dg / P™P;™ (cos §) sin 8d6
0 0

[(r—m)l(n' + m")! (2n + 1)(2n' + 1)1}
(n + m)i(n' — m)! (an)?

=27 bpmm’ / P (cos 8) - P;™(cos 6)60d6

_[@@n+1)(2n' +1) [(n'+m)Y(n —m)!
(4r)? (n' - m)i(n + m)!
_ (n' + m)(n — m)! (2n 4+ 1)(2n’ + 1)13 /(0 — m)!
=27 b [(n’ —m)(n + m)! (47)? ] ((n’ + m)!)

. / P,"(cos )P, (cos 0)8d6

0

(n' + m)(n —m)! (2n + 1)(2n' + 1)] r(n' - m)!]
(n' — m){(n + m)! (47)? (n' + m)!

e 2 (n+m)

"2n+1(n—m)

=8 mmOnns . (7)

=27 6,,.,,!

(b)

¢nm(k1 l‘) =jn(kr)Ynm(0’ ¢)’
Ynt,—m!(K', ) =5t (k'r)Yor —m(6, 6)-

Therefore,
[ bom e 5 = [ drein(h i)
0

/ Ynm(ea ¢)Yn’.—m'(07 ¢)dﬂ
Q

= bl [ A5k (K') = b6k = ). (®
0

In the above we have used the relation (7) and (7.2.46) on page 396. For
(2.7.48), we have
Mun(k,r) = V X [£ia(kr)Yom(6, 8)]
=V x [r¢ppm(k, 1)),
Mnm(k, l') : Mn',mr(k', l‘) =V x [l‘tﬁc(r)] -V x [l'l[)b(r)],
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where
Ma é Mnm(k’ l‘),
M, 4 M_,.f'_ml(k', l').

Using the vector idenity V- (A xB) = B-Vx A - A -V x B with
A =r9,,B =V x (ry), we have

A B

N prm———
Vx [rpa(r)] - V x [rhe(r)]
=V [rh(r)] x V x [:/)»(r)] + rsb:(r) ‘VxVx [:¢o(r)],
A

and

/ drM,(r) - My(r) = / drV - {ra(r) x V x [ri(r)]}
v \ %4

+ / drryy(r) -V x V x [ry(r)].  (9)

v

The first term on the right hand side, using divergence theorem, can be
converted to

/ drV - {rip,(r) x V x [rp(r)]} =

v
/ dsfi - {rip,(r) x V x [rypy(r)]}
S

where S is the surface enclosing V. If we chose V to be a sphere, then
7t = 7. Hence, this integral vanishes since the quantity ry,(r) x Bis a
vector perpendicular to r. As for the second term on the right hand side
of (9), we note that

r-Vxertp:r-Vx{ 10 %( ¢)-—g%("¢)}
6 o -0
=r-Vx{-———é-5$¢—-¢55 }

= r{rsinG [%(—Sine)ﬁ) B % smO 3¢)] }

B [smo 30(s n930) + s1n03¢2] ¥
=n(n + 1)y. (10)
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In the last step of deriving the above relation, we made an assumption
that ¢ = j,(kr)Y,m(0, ¢), i.e. PP satisfy

1 9 opPm _ _
v prlCLle )+[n(n+1)— o]P,‘ (cosb) =

As a result,

/ drM (b, v)Mp e (K, 1) = n(n 4+ 1) / Ar (kX)W — e (K, 1)
v

= n(n + 1) nn'émm’s(k - k’)
Now, consider [ drNpm(k,r)-Npr,—m(k',r') £ Iy. Let No(r) £ N, (k, 1),
\ 4

Ni(r) £ N,/ (K, r'). By definition,
N.(r) = -kl—v x Mo(r), Ny(r)= —v x My(r),

and

! VxM,-VxM,

Na.Nb:kkb

IM,).
Hence,

Iy = /dr ——V - (M,(r) x V x My(r)) + — /dl‘M - M,

o ks
. kakb EJdrMa . Mb.

The first integrand vanishes since M, or M, satisfy either homogeneous
Dirichlet or the homogeneous Neumann boundary condition on surface
S. As for the second integral, it is just -"I M. Hence,

Iy= / deN, Ny = n(n + 1) bumbamb(k = ¥).  (12)
Finally, consider I, 2 fdvL, - L;, where
v

Lo(r) & Lon(k,r) = klw.,(r),
Ly(r) £ Ly ~m(k,r) = 'I:_bv'/’b(r)'
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Again,
L. L= —V, - =V
a b = ka a kb b
1
= (V- [¥.Vh] — ¥V - Vi }
k.k,
1 ks
= kckbv : w)cv'/’b] + E'l’dbb’
1 ky
L, - Lydr = drV - [, Vpp) + — [ dripayps
k.ky k,
v v v
1 - T '
= Tk /dSn . [1/)¢V¢b] + 5};5,,,,,:5,,,,,,:6(’0 -k )
s
Neumann boundary conditions. Therefore,
.
/L,.,,.(k,r) . Lnl'-ml(k', l‘) = ﬁanm’amm'a(k - k')'
v
§7.15
(a) Dyadic Green’s function G(r,r') satisfy
V x V x G(r,r') - k3G(r,r') = I§(r — r'). (1)

In cylindrical coordinates, we expand G(r,r') by cylindrical vector wave

function M, N, and L such that

Grr)= Y / dk, [ dkk,[Mo(k,, k., 2)an(k,, k)+
0

n=-—00_

Nu(k,, k2, 1)bu(kp, k) + L (k,, k2 T)en(kp, k)]

(2)

Substituting (2) into (1), and noting that M, N, and L satisfies the vector

wave equation V x V x F — k’F = 0, we have

> / dk, / dk, k, {(k* — k2)[Mo(k,, ks, *)an(k,, k;)
n=—oo_°° 0

+ (k2 - kg)Nn(km kz’ r)bn(kpa kz)
— k3L (kpy k2 r)en(k,, ky)} = 16(x - 1').

(3)

Left dot multiply the above equation by M_./(—k), —k,r) and integrate

with respect to r over space, the right hand side becomes
RHS = /i&(r —r') - M_p(=k, —K,,r')dr
v

= M_p(=k,, —K,, 1),
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As for the left hand side, we note that M and N, M and L are orthogonal.
Also,

/ AEM (=, K ©) - Moy, Fiy 1) = (272K, Bpmr(k, — K)S(E, — K0).
v

Thus,
LHS = E / dk, / kodk,(27)*kybnnr (k. — K.)
R=E=®_00 0
- §(k, — k;)an(km k. )(k?* — k3)
=(27I’)2k:,an'(k:,, k'z)‘
Hence, ko)
_ 1 M_n(“kp’ —Nzy
mbok) = oy BE-R) “

In the same way, we can find

1 1 l
b, = (27!’)2 kg(kz — kg)N—ﬂ(—kp, —k.,r ), (5)
; - L""(—km '_kz, r’). (6)

“= e

Using the coefficients in (4), (5), and (6) in equation (2), we obtain

= S [ [an o fMalke ks, IM_n(=K), K, 1)
Gy = 3 [ ab, f it { @r PRIk, — )
ET 00 o

Nu(ky, ks, ))N_u(=K,, —K,, 1) Ly(kp, ks, 1)L n(=FK., —K.,1’) }
(7)

(27)2k2(k; — k3) - (@m)2k2(k, — K2)

In spherical coordinates, we expand G(r,r’) in terms of spherical vector
wave funtions:

G(r,r) = i Z / dE[M (K, T)anm (k)

n=0 m=-n o

+ Num(k, 1)bpm(k) + Lam(k, r)cnm (k). (8)

Since G(r,r’) must satisfy the vector wave equation, we can put this
expression in

V x V x G(r,r') — k3G(r,r’) = I§(r — 1),
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to obtain

>y / QR{( = 3 Mo (k,E) (k) + (K7 ~ B Mk, ) ()

n=0 m=-n
= k3Lnm(k, F)cam(k)} = I8(r — r'). (9)

Left dot multiplying the above equation by M, _,,» and integrating over
r in V, we have

Z Z /dk(kz— kg)/Mn' -m'(k, ) Mpm(k, r)anm(k)dr

n=0 m=-n 0
= Mn',—m’(k’) ,)
Using the orthogonality property of M,,,,(k,r), the above becomes

n(n + 1)(k* - kg)(zk) an,-m(k) = My _me(K', ¥'),
o 2., Mu_n(k,r)
Bum(k) = (B2 — E)n(n+1)
Similarly,
No,—m(k, )
bom(K) = CF T Bym(n 4 1)’

2 k2
Cam(k) = —;k—gL,.,_,,,(k,r').

Therefore, G(r, 1) is
Ble o\ _ 2 i 2 [ Nom(E,*)Nn,_m(k, ')
Grr)==> Y /dkk { i)
0

'"”(k’ x.)Mﬂ.--m(kv l") 1 ’
(k2 —E)n(n+1) gLam(k.r )L,.,-,..(k,r)}(.m)

(b) Inspecting (7.3.5), (7.3.7), and (7.3.8), we find that G(r,r’) is constructed
by the superposition of the terms such as M,(r)M;(r’), etc. Hence, we
only need to show that .

M,(r)My(r') = [M(r')My(r))!, b= —a. (11)
First, we can easily show that '

(AB) = (BA). (12)
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Hence,

[M.(F)M_.(r)] = M. ()M, (r"). (13)
However, in general, M_,(r)M,(r’) may not be equal to M,(r)M_,(r').
But what we need is that

Y Mo (r)M,(r) = Y M (r)M_(r). (14)

In the above, Y, stands for the linear superposition of M_,(r)M,(r')
over index a. It can be a summation or integration. In order to show
(14), we consider different coordinates:

(i) Cartesian Coodinates

[ adtcscitecn ] e e

e w

(ii) Cylindrical Coordinates:

-n(_km k., r)Mn(kpa k., rl)
poy / o / Gl e - )

— T n(kp, k,, r)M-n("km"kz’ l'l)
- Z /( dk,)/ —k,d—F, D

n=ER 00 0
T T Mk ks, E)Mon(=ky, ks, )
- dk, / d, &, Mnlke: ks, e . (1)
Zwl | T RE =R

(1ii) Spherical Coordinates:

i M, ()M (r) = i M (k, r)Mp —m(k, T')

m=-n m=n

i Mum(k, r)My (K, ). 17

m=-n

Thus, we showed that (14) is true in three kinds of coordinate respectiviely.
Combine (14) and (13), we see that

[EMM(r)] = T MM ().



As stated previousely, G(r,r’) is constructed by the superposition of the
terms M,(r), M_.(r’). Hence, we conclude that

G(r,r) = [G(r,r)}",
provided G(r,r’) is given by (7.3.5), (7.3.7), and (7.3.8).

§7.16
By definition,
N(k,r) = %V x M(k,r) = %V x V x z2y(k,r)

- %[ik,V:/a(k, r) — 5V2y(k, )]
- %L(k, r) + k2p(k, r).

Hence,

F(k,r) & N(z‘,;:' )_leg“),’; r) . e '“_2 e L L=k r)
k?

+ (—kz—:—km;sstp(k, ryp(-k,r).

As a function of k,, F(k, r) has poles at k = +kq and at k¥ = 0. We are going
to consider the contribution of the pole at k¥ = 0:

L= f F(k,r)dk, = k—;rk—L(iks,r)L(—-iks,r’). 1)
(k=0) o
On the other hand,
_ L(k,r)L(-k,r) __e*(r—r)
L= }{ [ k2k? ™ ]

(k=0)

= ——L(iks,r)L(~iks,r). @)
K3k,

Thus, Il - Iz = (0.
§7.17
(a) First, assume z > 2/. Then,
y(k,r) = eik-r, k=kz+ kyg + k.2,

M(k,r) = V x [59(k, )] = (ik x £)p(k, r),
M(-k,r’) = (—ik x 3)p(-k, ).
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Consequently, we have

M(k, r)M(=k, ') =(ik x 2)(—ik x £)(k, r)p(-k, )
=(kzi + k2§ — kok, 29 — kyk-9%)
')b(k’ l‘)t/l(—k, l"), (1)

N(k,r) = —V x M(k,r) = —zk x (ik x 2)y(k,r)
= —(kok = B 2)0p(k, ),

N(k, r)N(=k, ') = %(ko,k — K22)(kosk — K23)(k, r)ob(—k, ')

= [ °’kk kosk3 — kos £k + k’ii]z/:(k,r)z/;(—k, r'),

and

M(k, r)M(-k,r’) + N(k,r)N(-k,r')
=[k22% + k2§§ — k.k, 29 — kyk-9% + I;cz kk
— ko, kZ — ko, 2k + k223)yp(k, r)p(~k, r’)
. k2 » " 2
={2&(—k2 - TC‘-;-'-k:) + Z§(—k.k, + k k,—’-) + 23(—kok, + k., kos

2

+ §a(—kyk, — k ks k—"‘;’)+ (K k°’k’) + §3(=hyk, + kyk, 02
k2
+ 58(—kacke + ok, 2o Kaa) 4 5i(—koek,)(1 ~ ﬁ
+55 4 (% — 2k2, + k?)}o(k, r)p(~k, )
=(k’I —- :—zkk)zp(k, r)y(-k,r")
=k3(k2.ll;2— kk) ke r-rhikosle=s) 55 1 (3)

where k, = &k, + k,§, ko, = \/k? — k2. For z < 2/, we can show that

k2
M(k,r)M(-k,r') = =2

k2 (BT — kk)e'ketr-r)-ikoslz=2) - 5 < 57 (4)
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§7.17
Combine (3) and (4), we obtain
Y {M(k,r)M(-k,r) + N(k,r)N(—k,r)}
%:EE e (r=0') ikos (7). (5)

This is the integrand of (7.1.54) where
k = &k, + gk, + 2ko, sign (z - Z'),

k2 =k — k2.

(b) First, we have
V- E(r) = iwg / v.G(r,r')- I(r)dr.

But
G(r,r)= — / / dk, e (re=E)Hikoslo=2'| [Ikokzk:)“"‘f'] fk-j-a(r -r'),
z 0

8n?
-0
Tk, + gkm dk, = dkzdkw ko, = V kg - k2 — k?nra = %z + Jy,

k, =
and
ko = kK, + 2ko;,2—2'>0
- k, — 2koz,z — 2’ <0,
is a function of z. Therefore,
. e 8 a
.G(r,r) = — korZ3;2 koko £ O
V- Gr,r) = o / / dhyeer B <80 (e - ).

But

ikoko = 2% - [ko26(z — 2') + 2kob(z — 2')] ko,

= 2ko, k0.2 + kolb(z — 2)

or
X ,
)——2_8 ( _r)

vV-G@,r) = / / dk, e ('-’Ckaz (£ko:2 + ko) (ko2 t ko) g _

e / / dk,e ik, 6(z — ') — ——6(r )
k—gV6(l‘ -r )

=-—k—é6(r r') - k’& 6(r—r)
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Therefore,

V.E(r) = z:)_e / drVs(r - r') - J(r')

_V-3@) _ plx)
twe )
§7.18
(a) We have
R Y N () (L)
L =PV; /dk,, i (1)

In the integral, there are poles at k, = +ko, and k, = 0. In this problem,
we will find the residue at k, = 0:

_ L f Inlkop)HO o) 1, J(kep) B (K ,p)
Iig = kf (k2 — k2) dk, = 22#13:{11’0 k3+kf—-k§) .
p=0
At k, =0,
k,p — 0,k,p' — 0,
1 k,p I‘(n) k.p'\ "
(1) -2
Tnlksp) = s (5 2) HO(kyp) —» —i—2 ()

Hence,

i I'(n)

Tulksp)HO ko) = ~ 25 +1)( )" (0

Therefore,

i iy L) H ko) 1, o Ta(kop) B (Kop')
ho=m o s k(=) = M T p R

=T 1 kgﬁi?(ﬁ)” = -nig, (ff')n'

Note that Ig is the residue of the integrand at k, = 0, but we are only
integrating on the half circle. Hence the contribution of the pole at k, = 0

is only half of I;¢ or
1. 1 P\"
g0 = 2nkgp(p’) ' 2)

This is the last term on the right hand side of (7.3.19).
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(b) We consider I, first. In part (a) of this problem, we have derived the
contribution from the pole at k, = 0. Now we consider the pole at
k, = tk,. For simplicity, we express I as

1
L=5L+ ‘2‘110 (3)

where 11,4 is given by (2), and

_1 [ Tu(k,p)HE (k0
=g [, RI-R,) )

In (4), we have replaced k* — k3 by k% — k3,. In practical cases, ko has
an imaginary part due to loss in the media. Hence +ko, will be off the
real k, axis a little, as shown in Figure 7.3.2 in the book. As a result, we
expect to close the integral path. In doing so, we have to consider the
behaviour of the integrand at k, — co. When k, — oo,

n(kpp) " [ t(ka—Znﬂx) + e-t(k,p-Z..ﬂ.,r)]
(1) ,(k pl_m_]_’)
Hy(k,op) — 1 / Wk,.p P

Ja(kop) - Hf,l)(k,,p') — -

Hence,

a,e*oe) 4 bneikp(p'—p)]

1
ko/pp
jantl

where a, = €% *,b = 1. Since p > 0, p' > 0, the term e*»(»+¢) _, 0
when k, — co. Another term, e'*#(*~#) will be dependent on the sign of
(p' — p). It is easy to see that when p' — p > 0 or p’ > p, we can close
the path by adding an integral along the upper infinite half circle without
changing the value of I;;. Now the pole k, = ko, lies inside the closed
path, and residue theorem gives

_ l e g n(ka)H'(tl)
Iu = 2 271 kpll'IEOP(k kOp) k Z
T
= ék_wJﬂ(kOPP)Hr(ul)(kopp)’ Pl > p. (5)

Thus

1
L = Iu + '2'110

2 k w(kopp)H, (l)(kOpP

lkgp (f,-) P> p. (6)
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For the case that p’ < p, since the integrand of I; is symetric for p and
¢’ [see Equation (7.3.16a)], we can do the same analysis by change the
position of p and p’ in each equation to get

= T NE® SR S A
b = spdabo B k) = o (5) ) p<o @)

If we denote p, = max(p, p’) and p. = min(p, p'), then we can combine
(6) and (7) into one expression

b= Gl JEOW) - o (B), nt0 @

The reason for the requirment of n # 0 is that, when n = 0, the Hankel
function has another form of small argument approximation. Now, we
consider I,:

_ i In(kop)In(k,p")
h= [ ®

Comparing with I; (see 7.3.16a), we find that we can almost do the same
analysis to I, except that we have one more pole at k, = +ik,. The
contribution from pole at k, = ikz is

Jn(k P<)Hﬂ (k P )
Ip 2 f k"k,(k2 k;’) 22dk,

—lg

Lo g . Tu(kep ) HL (kop>)
= 3(2mi) lim (k R s + k), — k) (K2~ R3,)
i

= 2K2K2 Tn(ik:p<)HD(ik.p5). (10)
Thus
I = 2k, Tn(kopp<)HI (kopps>) + =z 2k2k2 Tu(ikp OHO(ik, p5)

1 P<\™
" onkikE (p>) » p#0. (1)

Finally, as for I3, we only have pole at k, = *ik,. In similar manner as
deriving Equation (10), we can find

i . .
L= WJ,.(zk,k)H,?)(zk,b). (12)
0
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§7.19
(a) From(7.3.7)

G(r,r) = > / dk, / k,dko[M"(k"’k”')M‘“("“»’-knﬂ)
~J

(27)? el (k? — k3)k?
Nn(k,, k2, x)N_, . (—k,, —k,, 1) _ La(kpy kzyr)L_n(—k,,— k,,r’)]
R (¥ = KR @
Since
Ln(k,, ksy¥) = pik,pu(k,, k,yr), when Kk, = oo, (2)

the term involving L, in the acove integrand will tend to constant when
k, — oo (in this case, k* — k? for fixed k,). In order to perform the
mtegral over k,, we first extra.ct the singularity in the integrand. The
resulting expression for G(r, r’) becomes

G(r,x') = Z / dk, / kpdkp[M"(kp’k"r)M"‘("km —k.,1’)
-0 h

1
@r)? £ (k2 — k2)k?

Nn(kpa kz’ I‘)N_n(—kp, -kzv r') - (Ln(kpa k,, r)L-n(_km —kza l")
(k% — k3)k? (k% — k3)k2

- %%(km ks )Y—n(—kp, —k:, r'))]

2 dk, [ dkok, 2ok, ke ) pn( =gy =k, ). 3)
oy 5 [ o Jant

n=—m_

The last term in (3) is easily identified to be

Loste-n). @
By definition,

M., (k,, k; 1) = V X [Z¢pn(kpy k2o 1)) = (V % 2)n(k,, k2, 1) (5)
Non(kp, kzyx) = —V X V x [2tpp] =(V X V X 2)u(k,, kzor)  (6)

Lna(k,, k1) = thn(k,, k.,r).
The differential operator is with respect to the space coordinate r and r’,
while the integration is over the spectral variables. Hence, we can change

the order of differentiation and integration. At this point, we are only
interested in the integration of k,. We can see that the integrateion of k,
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can be classified into the following three types:

T Ju(k,t')n(k,p) |
= 7
he [ 7
T o Jallkp)Ia(ksp)
_ n\Kpp )JIn\Kpp
T Tk, (k
L= / dk b, 22 ";’c,)k,( eP), (7¢)
° 0

In Exercise (7.18), we have derived the closed form expression for I, I,
and I; [see (7.3.21), (7.3.22) and (7.3.23)]. Now, we can substitute the
closed form of I, I;, and I5 into (3). Before doing further derivation, we
note that the intagrand involving N, has two terms. One of them is

(k; Vb )(—ik, V4 (ky, ks, 1) = K2L,L_,.. (8)

The integration of this term will be cancelled by the third term in (3).
To see this, we note that the integration of (8) corresponds to the multi-
plication of k? to the second term in (7.3.22), i.e.,

Tt ) .
& [ nikep JHD ik )
1) ] .
'Z_kTJn('kzP<)Hg)('kzP>) = Is. (9)

Hence, after this cancellation, it will not appear in G. Now I; and I,

are expressed in Jo(kopp< ) H (kopp> ). In order to write G in a compact
form, we will define a new form M,, and N,,. That is to say, we replace
Bessel function in M,, and N,, by Hankel function if p > p’. Similarly, we
replace Bessel functions in M_,, and N_, by Hankel function if p < p'.
After this replacement, we can see

Yn(kop, k-, r)'/’n(kom k., ") = J,.(ko,p<)H r(;l)(kOpP> )e‘k'(z-z')“n(é-é’)-

This is to say that we can replace

In(kpp)Ju(kop)
in (3) by .
Jn(kOpP<)Hy(. )(kOpP>),

to get the same form (accordingly, some coefficients will change). The
coefficients for M, M_,, is
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Thus,

—, P = % 1
G(r,r) = > / dk,;c-g[M,.(ko,,, ke o ®)M_n(—kop, —kz, )

n=-00_,

+ Nn(kOm kz, r)N—n(kOpv —kz, rl)] - %6(1" l").
0

(b) For n = 0, the expressions for I; and I, [Equations (7.3.21) and (7.3.22))
is not valid. The problem is caused by the nonintegrable pole at k, = 0.
In fact, this is caused by interchanging the order of dlfferentxatxon and
integration. If we use the integrand of I; and I, by 2 35 Or £ ~, then Jn(k,p)
will be changed to k,J.(k,p). The factor k, will cancel the k, = 0 pole.
This is to say that kp = 0 is not a pole when n=0 In substituting I
and I, in the expression for G, just ignore the last term in (7.3.21) and
(7.3.22).

§7.20
(a) For spherical coordinates, the first term in (7.3.8) has the form (7.3.32)
Jn(k")Jn(kr')
/ dk k? — .

Use the identity jn(z) = %[hs.l)(a:) + h?(z)] and two terms arise. In
the second term we change variables such that k' = —k. The identities
D (=z) = (=1)*h)(z) and ju(~z) = (=1)"ja(z) are used to unfold the
integral

/ dk k,],,(kr)h(l)(kr')

Notice that poles exist at £k, which are on the real axis for lossless media.
But with the introduction of a small loss, these poles are displaced from
the real axis as shown in Figure 7.3.1 (replace k, with k) and the integral is
well defined. When k — oo we can use the large argument approximations
to show

cos(kr — 5(n +1)) ek'=if(n1)

kr krt
etk(r '+r) eik(r'-—r)

@ k2rr! +b k2rr!

In(kr)hQ (k') ~

k— o

R k — oo.



242 EXERCISE SOLUTIONS

Thus, for ' > r the integrand becomes exponentially small in the upper
half-plane of complex k-space. Consequently, by virtue of Jordan’s lemma
and Cauchy’s theorem, the integral along the real k-axis can be deformed
as in Figure 7.3.1 and then vanishes, leaving a residue contribution at
k = ko. Hence

I1 = 271 RﬁS[II(ko)],

where “Res” stands for resxdue of” and I, is the integrand of I,. We
can simplify

(1) ’
L= 21!’1-2-k2 lim (k ko)Jn(kT)h k(zkr)
= .2_k° In(kor)RD(kor'), ' > 1.

When r > r’ we can use a similar technique to show

L= -2'ko Jn(kor<)hP (kors),

where ry, is the larger of r and 7’ and r is the smaller of r and . The
second term in (7.3.8) has the form (7.3.33)

I / aptellislr)

Jn(k")Jn(k’")
w*/“ e
- -,:g / dk ja(kr)ju(ks"),

L / Turt (k) (k)
-%- PR S

The second term in I; above can be found in closed form [Abramowitz
and Stegun, 1965]

/ di v(kr)J (kr') 51_(_) _

So, we arrive at
I 7 re

L=2
TR 22+ DRI




(b)

and we have already shown this above to be

L= 1<
37 2(2n + 1)kZ 12

The spherical dyadic Green'’s function (7.3.8) has a term due to the irro-
tational vector wave function L(r) which can be written

Gi(r,r') 2 :,,‘i 3 /dk o Lom (ks ’):;.-m(k )

m=-n

*lt'o
aul"‘

/ KV (k)Y oum (8, 8)V " 5u(kr') Yo o (8, ).

After exchanging the order of integration and differentiation,

GL(r’ "'2
w

o»l Lol

f‘, Z VV'Yam(0, $)Yn,-m(6', ¢ / dk I(k),

where the integrand is

I(k) = [jn(kr)j,.(kr’) _ COS(k;r 6 )cos(kr —6,)

+ cos(kr 0,) cos(kr’' — 6,)
kr kr’ ’

where 6, = J(n + 1). The third term above arises from the large argu-
ment asymtote of the spherical Bessel function. Notice that the terms
between the brackets of I(k) cancel each other as k — oo and is analytic
everywhere in k-space. By Cauchy’s theorem and Jordan’s Lemma, this
term is equal to zero. The remaining term in I(k) can be expanded such
that
tk(r+r')  o=ik(r4r') ec'k(r-r') etk(r'=r)
T(k) ~ 4k3rr + 4k?rr + 4k*ry + 4k2rr'’ k— oo

However, the stationary phase point occurs at

etklr=r') eik(r’-r)
I(k) ~ 4k2rr’ + 4k2rr'’
cos(k(r — 1))
~ 2k2rr!

k— oo -

k— oo
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Next, we unfold (2.2.6) to show

8(r — 1) = 2lw / dk &M=,

1 7 ,
=2 o/ dk cos(k(r — r)).

We can use the above Fourier expansion of the Dirac delta function to

show
vV / dk°°s(k,§:r , / dkv, V" m(:ifr:,")),
0
i / apcos(kr =)
2rr!
~ %%6(1‘ -

Notice that the above derivation has replaced VV’ by V,V!. This is
justified by the 7 dependence in the integrand. Each factor of V, was
shown to create a k factor, canceling the » dependence. This term
dominates as k — oo because Vy and V4 are both O(k°). After collecting
together the above information we show

Bulr,¥) ~ — blr - LSS Va6, 6)Yaon(®, ).

n=0 m=-n

Then we use the completeness relation (Wyld, Mathematical Methods for
Physics, p. 99)

i Z Yom(6, $)Y;2, (8, ) = =016 = ¢)

sin @’

n=0 m=-n

and Y, _,.(6, ¢) =Y (6,¢) (see Exercise 7. 14) to arrive at

~

~ -—6(r— r).

Finally, we use (7.3.35) and (7.3.36) to write the dyadic Green’s function

G(r, r)—zkoz Z

n=0 m=-n

n( + 1) [Mum(ko, r)Mn,-m(kO’ r’)

+ No(ko, F)No o (ko, )] - Z8(r = 1),
0



§7.21 245

where we define
Mum(koyr) = V X 7 ju(kr)Yom(8, 4),
N (ko, ) = %v XV X 7 jal(kr)Yam(6, 8),

and the spherical Bessel function j,(kr) should be replaced by a spherical

Hankel function h)(kr) for the greater of r and r’. Notice that the
static term in (7.3.36) does not contribute because it arises as a residue
near k = 0. Similarly, I3 has a residue at k = 0 given by (7.3.37) that
will cancel the second term in (7.3.36). On the other hand, the Dirac
delta function arises from I due to the “high frequency” stationary phase
point as k — oco. One can see that I, does not have a stationary phase
point as k — 0o because the integrand varies as ;,—*_37‘3"“ Kr-r) altering

magnitude of the spectral content.

rr!

§7.21
(a) First, we use the vector identity (A.7)

V. (AxB)=B-VxA-A-VxB,
to show
V- [(u7(r)V x E(r)) x G(r,r') + E(r) x (4} (r)V x G(r,1"))]

=V x u~}(r)V x E(r) - G(r,x') = E(r) - V x p~}(r)V x G(r, r').
Then we integrate (7.4.3) over all space r

/drV . [(p“(r)V x E(r)) x G(r,r') - a
v
+E(E) x (47 (6)V x G(r,r)) -a
= iw / dr J(r) - G(r,r') -a— u"(r')E(r') - a.
v

Next we invoke the divergence theorem [drV-A = §dS7i-A
v s

f ds - [(y‘l(r)V x E(r)) x G(r,r') - a
Seo

+E(r) x (1~ (r)V x G(r,r)) - a]

= iw / dr J(r)-G(r,r') -a — u~}(r)E(r) - a.
14
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At So,V — ik since all fields look like plane waves. Thus the surface
integral vanishes by virtue of the radiation condition. So we have

E(r') = iwpu(r') / dr J(r)- G(r,r'), forr#r'.
v

(b) The reciprocity theorem states
(EhJZ) = (E% Jl)’

where J; and J; are the sources at r and r’ and E; and E; are the
measured fields at r and r/, respectively. Using (7.4.4) and the definition

of the inner product (A,B) = [drA - B we find
/ dr'(iwp(r’) / drdy(r) - G(r, r’)) L Ja(r)
= / dr(iwp(r) / dr'3y(r') -E(r',r)) - Jy(r),

/dr’ /dr iwp(r')J;(r) - G(r,r’) - Jy(r')
= / dr / dr’ iwp(r)Iy(r) - G(, 1) - Io(r),
where t denotes transpose. By uniqueness, we find that the following

identity must be satisfied
G(r,r)u(r') = (¥, r)u(r)

§7.22
Maxwell’s curl equations in source-free regions are
V x E = wB,
V x H = —-wD.
By writing

D =D, +:D,,
B =B, + 2B,.

and letting V = V, + 258;, we find that the Z component of Maxwell’s curl

equations are
2-V,xE =iwB,,
2' V‘ X H = —itzo



We can use the following identity

Vo xE=V,xz2E,+22-V,xE,

and the constitutive relation to show
V,xE =V x 2D, +iwiB,,
= iw [,—l—v x 3D, + iB,].
TWe
Then, we operate (V) on the above equation to show
VXV, xE=iw ,—l—VxinD,+Vx£B,].
twe

At this point we note Vx V, x E, =V, x V, x E,. Also, for plane waves
V, — ik, and ik, x ik, X E = k?E. Finally,

E=f-[.-I—Vxwa,+szB,].

2
k2 |iwe

§7.23

By comparing (7.4.82) and (7.4.8b) to (7.4.9) one notices (8a) is due to
a field generated by B,, while (8b) is due to a field generated by D,. Hence
M(k,,r,r’) and N(k,, r,r') are the TE and TM fields in cartesian coordinates.
For this reason, the Z propagation in layered media is given by Fi(z,2') in
Section 2.4. The TE and TM forms differ only by reflection coefficients (e.g.
RTM versus RTF).

However, in the transverse directions, the mefiium appears homogeneous
so the propagation is described merely by e+ (r=r%). Furthermore, orthogonal
dyads are necessary in each layer of the stratified medium.

For these reasons we can write the vector wave functions as
M(k,,r,r') = (V x $)(V' x £)ek =TI FTE(2 2",
'N-(k.,r, ) = (V x V x z) (V x V' x z) eik,.(r.—rz)Fi'M(z’zl)‘

we, — Wk

Note that €, and u,, are in the denominators of the first two factors of
N(k,,r,r") because the source at r’ is in region m and the field at r is in
region n.

§7.24

Given the integrand of the homogeneous dyadic Green’s function in cylin-
drical coordinates

-_— N-—n -k a"kza !
Cn(kz’r’ rl) = %[Nn(km kz’ l'), Mn(kp’ kz, l')] . [ ( g r):l .
P

M_.(=k,,—k,,r')
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Using the vector wave functions (7.2.33), we can write

— 11 X =V'xV'x 32
Cn(ke,r,¥) == |-V xVx2Vxs|.|k
kp Lk V'x 2

: '/’ﬂ(km kz, r)'ﬁ—u(—km "‘kz, r')-

Note that the Bessel functions above are to be replaced by Hankel functions
for ps (the larger of p and p’). This is because the “static” term has been
cancelled in (7.3.26). With the aid of the identity J_.(—z) = Ju(z), we can
show

Yn(ko, koo T)Y_n(—k,, —k.,x') = Jn(kpp<)Hf(ul)(kpfb)emw-é')ﬁh(b")'
Consequently, we can write

— 1

Ca(k,,r,1') = =D, wIn(kop)HY K,y p5 Jein@-¢ ikl |

(kk )?
where the operators are defined by
D, =[V x V x 2,iwuV x ],

=
=[V' x V' x 3, —iweV’ x 2].

§7.25
(a) For planarly layered media, the dyadic Green’s function is given by (7.4.14)

Cr,r) = 55 / / o (M) + Nk, 6)] - 75 8 - ¥),

for r’' € region m and r’ € region n. Accordmg to (7.4.5), reciprocity
implies G(r, r')u(r') = E‘(r’, r)u(r) (Exercise 7.21). So for this case

’ _ 2 o
Hm //kmzkz [M(knl‘ r)+ N(knl‘, 9} k’?n}lma(r r')

//k k2 [_‘(k"r r)+N'(k,,r, ")] I‘n6(r r'),

where ¢t denotes transpose. Notice that the singularity terms are non-zero
only at r = r’ where n = m_and these terms cancel each other. Due to
the orthogonality of M and N, the remaining equation is true when

M(k,,r,r') 3 = =Mk, r)k—"—,

N(k,,r, r') k == ol r)f—'—
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From the definitions in (7.4.12) and (7.4.13) we find

:m X E)Cik,.(r,—r',)Fi'E(z’ zl)

= FL[(V' x 2)(V x 3)[te~ e i r ) (FIE (2, 2))",

Hm (V x V x 2) (V' x V' x é)e“‘"('-"'-)FfM(z,z')

twe, —1Wty,
(e e

Now we observe (Fy(2',2))* = Fy(2',2) because F(z,z') ~ e*=#-*I, So
we find

HBm F};E(Z, zl) — ﬁF;'E(zl’ Z),

kmz kﬂ’
€m €n
Kms FgM(z, ) = E‘FgM(z'v z),

where the + case is used when z > 2’ and the — case is used when z < 2.
When n and m are two different regions, we can use (2.4.15) and (2.4.16)
to show that the above equations reduce to

Hm FIE _ Hn Hn pTE

kmz mn knz am
€m_sTM €n ATM
k Tmn = k Tnm M
mz nz

(b) For cylindrically layered media the dyadic Green’s function is given by
(7.4.24)

G(r,r') = Z / k. * (ksk; )zD'u Fn(pap')fu(z ¢; 2, ¢')

n—-oo
=" pp
‘ D,jc - F&(l‘ - l"),

2

for r’ € region j and r € region i. According to the reciprocity relation
(7.4.5), we know

o]

2 /dk * (ks )sz Fﬂ(P’P)fn(z $;2',¢') - Lﬁ’ I;; p;é(r —r')
= pi Z /dk Tk, )2[DJ“ Fa(dsp)fa(2', 452, 9) - Du]'
pp
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Once again the singularities cancel each other at r = r’ (where i = j).
By othogonality of e™* and e¢™¢, the remaining terms are equal when

= t
G0 Falo,d)alz,6:7,4) - D'
‘l

(k k”)gD“ Fn(p ,P)fn(z ¢, 2, ) D, »*
Since fu(z,¢;2',¢") = e™M$-#)tik(=7) we know f.(z,9;7,¢') =
(2, ¢'52,8). So

t t

—Fi =B, -Fup,¢)- D'}, = =D, -Fy(0,) - D'},

(k; k.p)’

The operator D, = [V x V x £, iwuV x ] acts on Fy(p, p'), which involves
Bessel and Hankel functions B,a(k;,p). In general,

V x V x 2By(k;,p) = (lg— + 6622) B.(kiyp),
=z [ 1)] By (kipp),

V x 2By(kipp) = -d’_‘Bn(kipP)'
Op

Since the TM to z waves and the TE to z waves are orthogonal when
acted upon by Dw, the two waves decouple. The two waves can be written

kT“IZ?_ié (k?p aln = 1)) ( n(n 1))Fu(P1P)

= f"' 23(1;? _nn-1) (kz. _._p,_z_ll)ﬁ(p',p),

6 8 2 a a U
k2k2 ¢¢w I“teja ap, n( ’ ) - k2k2 ¢¢w2“16t5’;-a7’;ﬁ(p 7P)-
Note that F,(p,p') is smooth with respect to p and p', so if %F,.(p, p')

is continuous, then Fn(p,p) is continuous. We can condense these two
equations with new notation

k,k, w717 B Falp,0) - = kzkz S HCAON

3 Nip t P

_ 1 0]1_ _[1 o
Bi=1o w|9T |0 —€|°

where



§7.26 251

(c) For spherically layered media, the dyadic Green’s function is given by
(7.4.32)

Bl ) = ik Y- k(e ) + B )] - 6= ),

n=0

where r € region : and ¥’ € region j. According to the reciprocity relation
(7.4.5), we know

N1 / M= . sr — o
I‘JkJ;n(n_'_l)[‘nn(r’r)'*'nn(rar)] ”’k?a(r r)

=ik S = [ (¢, 1) + 0l (1)) — (- 1
= ”lkl ; n(n + 1)[mn(r )r)+ n,,(r ,I')] Hi k?s(r r )'

The singularities cancel each other at r = r’ (where i = j). By orthogo-
nality of m,, and n,, the remaining terms are equal when

my,(r, r')kj”.i = :u(rla r)kil‘h
n,(r,r')k;p; = nb (v, £)k;p;.
From the definitions (7.4.30) and (7.4.31), we find
(V x r) (V' x ¥)F{5(r,") An(0, 6 6', ¢ )15
= [(V' x ¥')(V x ) FTE(r',r)AL(6', 65 6, ¢ )kipsis

VxVxr\/V' xV' xr'\ _ru ’ 8 ANy,
( "'iwe,' ) ( iwll: )Fﬂ (r’ r )Aﬂ(e’ ¢10 ’ ¢ )k,’l,

=[(V’xV’xr’)(Vxer

—WWE;

) RIMG ) A0 6, ki

Clearly A,(6,¢;¢',¢") = A (6',¢";6, ¢) from (7.4.25¢) and Exercise 7.14.
Now we can simplify

kip; FTE(r,v") = ki FT E(r', 1),
kjejF,?M(r, 1") = k;QFzM(T', T).

When ¢ and j are two different regions, we use (3.7.27) and (3.7.28) to
show that the above equations reduce to

k_, p,TTE = k. #.TTE

3y ?

k; e,T ™ = k; e.TTM.

§7.26
(a) Given the cylindrical reflection matrix (7.4.38a)

Tjix1 = H; - RJ.Jil €;.
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By examining R ;41 in (3.1.11a) and R ;-; in (3.1.17a), they both are
the product of two symmetric matrices so they can be written in the form

]

-==s |5 Y

1 ce—-bf cf—bg
ac—b’[af—be ag—bf |’

In general, Ry, is not symmetric. In fact, for the case R;;;,, we can
use (3.1.11) to specify

. €; €; ’
a=iw [k—f'Jl(kjpaj)ﬂ,(‘l)(kj-u.paj) - o-HY (k,-+,,,a,-)J,,(k,-,,a,-)],
2P

3+1,p
¢ = —iw [ﬁJ:.(k,-pa,oH,?)(k,-“.pa,-) — LI GOV (ki 41,005)Ta(k3005))
ka kJ+1.p

b= k [kz Jn(k;pa; )H( (kj41,005) = Hr(ul)(kjﬂ.paj)"n(kjﬁaj)] s
J+1 WP

€= zw[ St g (1)'(k,+1,pa,)H (l)(kapa ) = H (1)'("7:0“1 HY )(ka+l.paz)]

J+1.p
g=—iww [:J“ H(l)'(kﬁl »aj )H(l)(k paJ) - '&H(l)‘(k paJ)H(l)(kJH p4j )]
J+1.p .w
f=—k [ 7 HM (kjp1,005) HO (kjp85) — kTH,?)(k,-,a,-)H,(,‘)(k,-H,,a,-)].
P 41,0 o

However, for T; ;41, we can write
Tis1 = B Rjju - €,
(1 0] _ 1 Jlee—=bf cf—10g 1 0
ol ) R bk At PR
1 [ ce — bf —¢;(cf — bg)
ac - | pi(af —be) —pjei(ag — bf)

In order to show that this reflection matrix is symmetric, we must show

pi(af — be) = —ej(cf — bg),

or equivalently ;
pi(a) + €i(c) = ?[#j(e) +€i(9)]-
For the case T; ;;, we can use the matrix elements defined above and we

can show
b J n(kj00;)

7 (1)(k_,,a,)
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. 1 '
#i(a) + i) = iw[—pjeis + €ipinls pH,?) (kj+1,0a5)In(kj0a;)

I+1s

) 1 '
pi(e) + €i(g) = iwlpjejrr — €jpja) 0 HY (kj41,00;)HP (kjpa;)

7419

Hence T;;4+; is symmetric. Similarly the case T;;—; is symmetric, but to
show this, one must redefine elements e, f, g from (3.1.17) and show that
the off-diagonal terms are equal using the same steps above.

(b) Now examine t; ;4

tiiv1 2 By Tijn €,

= 1 0 2w ﬁ—l €; 0 1 0
0 I‘j+1 1rk 0 "5.1' ’

_ 2w Dy Dy
7k2,a; 0 F:+1 Dy Da 0 l‘af:

= 2wej | Dn #;D1a

wkjpa; [ Bi+1Dn  piapiDa |’
In the above derivation, we have used the definitions (7.4.38b) and (3.1.12).
Next examine t;4, ;

B Tip- e.1+1 )

- sl [ ) )
0 #: +1 »%i 0 —pin —€j+1

1 0 ] .Du Du] . [6_,.‘.1 0 ]
Ic:J 1,8 10 Hi D31 Do 0 it

- 2we;yy | Dy pi+1D12 ]
wk?,, 0 [#iDn  pipjnDa |’

l|>

b

In the above derivation we used definitions (7.4.38¢) and (3.1.17b). Also,
if one examines the elements of D given by (3.1.11c), one can see that

D is symmetric. So D lis symmetric and hence D;; = Dj; as defined
above. Then the following symmetry is elucidated

Sing _S7
2 T
1+1 3P

§7.27

From Chapter 3,

Rjin = Rjjp + Ty Riprger - (T= Ry - R je2) ™! - Tijna. (3.2.8)
Thus,
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Fig = #iR; €5 = ign + (ting€ih) - (B3] - Frrrgse - €541)
I = (858 Tivrg €5) - (M54 - Firrgez - €)1 - (B854 - tig)-
In the above, use has been made of the relationships in (7.4.38). The proof
of the symmetry of ¥; ;41 is by induction. Using the result of Exercise 7.26,
FN-1,N = rn-1 N is symmetric. To prove the general case, assume the sym-

metry of 41,42, and show that ¥;;;1 must also be symmetric. Transposing
the above expression for ¥;;41,

<t — ot t -1 -1 g <1 V. (e7! gt ..
Fige1 = T + (G501 B540) - [T — (€550 - Figrgaz - B501) - (€541 " Timaj
-1 -1 -
i 1= - (554.1 £ 41,542 I‘,+1) (5 ,+1,;)
Note that €~ and pu~? are diagonal, and hence symmetric.

Now, using (7.4.39), the result of Exercise 7.2(b) and the induction hy-
pothesis ( itlj+2 = Fir1542))

~;J+1 = rji+1 + (ti45 - I‘,+1) - (5;+1 ¥ 41,542 I‘,+1)

(€j+1 Fjt15° F‘j+1)]_1 (55+1 j+1,j+2 l‘j+1) (EJ+1 tji+1)

= pt; - Ryjaa€5 + (15 - Tigng - wi) - L= (€511 - 41 - Ry juz - €540
”J+1) (€;+1 iR - €41 I‘J+l)]_l

(€j+1 iR 542 €541 I‘j+1) (€,-+1 #;11Tj 41 - €;5).

: — -1
Defining x = €;41 - #341,

i = MR - €4 g5 Tigag - x- [T — (x7 Rypagea) - Ry - %)
(x7' - Rjse2) - Tignr - €5
The fact that p;,€;, and their inverses are all diagonal and hence commute
with one another has been used above.
At this point it is helpful to consider the following identity,
I-AB] ' =[A"'-A"'BY|=[A"'-B]'=[A"' - BAA"|"!
= A[I - BA]™.

Setting A =x"1. ﬁ.,-“,,-.,.z,B = Rj41, * X, yields

Fijer = #i Ry - €4+ - Tiprj X xRy jsa
I - Rjs1i - xx"'Rjpiaa] - Tijan - € .
= ;- {Rjjp1 + Tisrj - Risrgez - I = Rypa - Rypajaa] T} - 8
=Tjjt1-
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A similar result can be proved for ¥;;41 using Equation (3.2.19) and the
induction hypothesis ¥;_; j_2 = ¥;-1 2.

§7.28
By definition, ~ _ _
M;s = (I-Rjjs - Rjjna) ™"
From the defining equation (7.4.42) we have
mt =F; - (I- Rjjm - Rijun) ™ - &

=8 -G @ T G (B Tin - §) 5]

= (7' —P;' Tiggr P} Figa - 95 )
Thus, using (7.4.40) and the fact that ﬁ;l is diagonal and hence symmetric,

~

=t —— — —_1 = ——1y\e-
m;, = [(le -le *Tji-1°Pj ' Tji+1 " Pj D) 't
=(B;' —P;" Tij#1 B Tij1-P; )"

= m_,-_.

§7.29
(a) A simple way to verify the equality is to invert both sides, then expand
ﬁga and ﬁ32 using
Ry = Rys + Ty Raq - (I— RggRs0) ™ - T,
Ra; = Ra2 + Tas- Ry - (T~ RosRat) ' - Ty

The above expressions are from Equations (3.2.8) and (3.2.19). After
multiplying out all the terms, the inverses of the left- and right-hand-
sides are found to be equal, with

(LHS)™* =(RHS)™!
=Tx-'zl {T;:«;l - _T-;alﬁazﬁu = ﬁzxﬁzsf;;
+ ﬁzlﬁas'-fz-; ﬁazﬁu - ﬁnfszﬁu}-
(b) The generalized transmission coefficient is given by (3.2.21) and (3.2.22),
%uv = Tno1v - (T~ Ryoanv-z2 - Ryaan) ™ - Tvcan-1(I — Ry-an-s
: ﬁN-Z,N-—l)-l TN-3N-2°"*"" (I-Ra- “ﬁz:'.)"1 - Ty
Applying the idea of part (a), the tilde signs can be shifted to give

Tin = T _(_i_ - -ﬁN-l,N-—z'_ﬁN-—l.N)_l . T:N—ziv-l(i ~Ry_an-2
‘RN-2N-1)"' - Tn-aN-2-+ - (I =Rz - Rps)™! - Tho.
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Using the definition p; = %&; - €;, we can write

~

tin =y - Tiv-§
- — ~ —_1 - -1 T
=tN-1.N(PN-1 —FN-1,N=2°*'PN-1° l‘N-l,N) -tN-g.N-1°
- — = =1 = \-l T
....t”.(pz_rzl.pzl.r”) 'tlz'

Now, applying (7.4.39) and (7.4.40), and since P; is symmetric,

=t 61’63‘, - ézkg -
tiy = ——)t AD) = Foz - P - T -1.( P)t .
IN ezkf,, 21 (P, —Fa3-P; - Ta1) & kg, 32

2
eN-2kN_y o \T - = =1 -1
PP (_E-r—'.)tN-l.N-.z . (pN-l — rN...l’N . pN-l . rN—l'N-z)
CN-I N-zvp
(EN—lksz

tnN-1
enky_,, p)

€1k2 — — - = = ._1 =
= (kf,,:’;) % [T - (I-Ras-Ray)™' - Tan

o T N-2- (T~ Ry v - Rycan-2)"' - Tan-1] - &N
Comparing with Equations (3.2.21) and (3.2.22), the term in brackets is

T N1, so we have

=t _ lelzvp =
IN = (kngN)tNl,
which proves (7.4.46).
§7.30
From Equations (3.5.21), (3.5.22), (3.5.27) and (3.5.28), we have
Tg" _ ek
T211'M - €1k1
and

T5E _ mke
Tg;E #1"1

From (3.6.7) and (3.6.9),
T = (’i:f Tiin ) Tyoin
1— Ris1iRipriv2

i=1

while

Toy = (Ii:f Tl'+1,.'~ T
1-R;jn1R;iq

=2
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Applying the idea of Exercise 7.27 we are free to shift the tildes in the ex-
pression for Ty,

Tin = (li:f Tisna ) Inanwn
1 - Ri1iRi1i42 ’

=1

The proof is exactly the same as for Exercise 7.29a, except the matrices of the
cylindrical case are replaced by scalars for the spherical case. Next, changing
the order of the subscripts on the T;;,, factors,

N-2

Foo = Tip150is1, T

IN= II = NN-1GNN-1,
i1 1= RinrivaRiag

where
a =.€.‘_"i_"lﬂ TM case
t+1,8 e,-k.- [}
LT R
#-‘k.‘
Thus,

Tiv = (ﬁ O!i+l.i) (Iﬁ Tiizt ) TNN-
i=1 w2 1 — RiiaRiia
= (N-1 Q41 .') (ﬁ T‘“"~ ) I
i=1 ' im2 1 — RiiqaRiia

N-1
= aiy1,i | Tma.
=1

The first factor is Eﬁfl for the TM case and E‘f:—’;f- for the TE case. So, we
have the result

kw,fflf =k~u~f‘§f, (7.4.49a)
klelflrlcl =k~€~f§{". (7.4.49b)



CHAPTER 8

EXERCISE SOLUTIONS

by
J. H. Lin!, G. P. Otto?, R. L. Wagner?®,
Y. M. Wang* and W. H. Weedon®

§8.1
(a) Equation (8.1.3) is
(V2 + E)gi(r,r) = —6(r — 1)
where r,r’ € V;. One of the solutions which satisfies the radiation condi-
tion is given by (8.1.8). It is

, eik;ll‘—l’q
gl(r,r) = |l‘ _ l‘" . (1)

This solution satisfies both the singularity property at r = r’ and the
radiation condition as r — oo. If we add another term such that it
satisfies Equation (8.1.3) and the radiation condition at infinity but does
not have any singularity for Vr € V), then this new solution is also a
solution of (8.1.3) in V;. In the light of (8.1.8) with any vector A € V;,

we have . i
etkl e—r'} etk je~Al

/ ’ —_ .
gl(r,r) Ir_r,l + |l‘— Al (2)
(2) satisfies Equation (8.1.3) in V; and the radiation condition at infinity.
(b) Suppose that Siy is a sphere surface with radius r — oo, then,

I= / dS - [g1(r, )Vs(r) — $a(£)Vas(r, )] (3a)
sinf
- / r2d0di7 - [g(r, )V i(r) — bi(r)Var(r,r')].  (3b)
sinf

! Exercises 8.29-8.35

2 Reviewed Exercises 8.36-8.43

3 Exercises 8.19-8.21

4 Exercises 8.1-8.18 and 8.36-8.43
5 Exercises 8.22-8.28
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i From the radiation condition at » — co, we have

, 'klll'l _
gl(r7 r )|r~oo ‘ I (43')
ik
¢1(r)'r—'oo — 31 |lr||rl’ (4b)
A and B are constant. From the above two relations,

lk; Itl
Vgl(r, r,)|r-—~oo — ikl l | (58.)

. tk] Il'l
Véi(r)rao — zk,B r. (5b)

Ir|

In the above, the higher order terms O(|r|~?) have been neglected. Sub-
stituting Equations (4) and (5) into (3b), we have,

e2iklrl 2tk: Iel

I= / ridfdys - 7 [zklAB i ik A | P ] =0 (6)
Sinf
§8.2
The geometry of the problem is shown on the right. Equations (8.1.2)
and (8.1.4) are

(V2 + k})¢a(r) = 0, (1)
(V2 + k3)ga(r, ') = —é(r — r'), (2)

where r € V; in Equation (1).

On multiplying Equation (1) by g(r,r’) and Equation (2) by ¢2( r), sub-
tracting the two resultant equations, and integrating over region Vb we
have for r € V3,

/ AV [ga(r, ) V3a(r) — do()V20s(r, )] = $o(r), T EV2.  (3)
Va2

Applying the relation of
gV4 — ¢V’ =V - (gV4 - $Vy),

and Gauss’ theorem, the volume integral on the left-hand side of (3)
becomes a surface integral over S. Thus,

/ dS - [g(r, 1)V o(r) — bo(E)Vas(r, )] = do(t), T EVa  (4)
S
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If ¢ € V4, the right-hand side of (4) would be zero. Finally, we have
Equation (8.1.11) which is

e Kf: ¢2(()r)} - / dS'n - (g2, ) V'$a(r') — $2(x') V' gafr, )] . (5)
S

In the above, g;(r,r’) does not need to satisfy the radiation condition.

(b) First, suppose that a homogeneous Dirichlet boundary condition on S is
imposed on g(r,r’), that is

 ga(r,r)=0, res. (6)
Then, Equation (8.1.11) becomes

reVs, du(r)= - [dSh- (40P 0ale, ). ™
5
For a homogeneous Neumann boundary condition

%gz(l‘, r)=0 res, (8)

Equation (5) becomes
reVe, a(e) = [dS'h- [oalr¥)V'ga(e)] (9)
5

In these cases, go(r,r’) is only defined in V5. It is completely undefined
beyond S, the boundary of V;. Thus, the lower part of (5) does not hold

anymore.
§8.3
(a) An unbounded homogeneous-medium dyadic Green’s function satisfies
V x V x G(r, r') — K*G(r,r') = I(r - r'). (1)
We can write G(r,r’) in terms of a scalar Green’s function g(r,r’)
G(r,r') = (T + Ykzz) g(r,x’), (2)
where, g(r,r’) satisfies
(V2+ k) g(r —r') = =§(r - r'). (3)

(From (2), we have

V x G(r,r') = V x Ig(r,r') = V' x Ig(r, ). (4)
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Thus, we have
[V xG(r,r)]" = (V' x D)g(r,r') (5)
P D o) = e 26 (e
{(V X f) g(r,r )}ij = €jim az;&mg(r)r)
a '
= Ejua—zig(r, r)
9 '
= —faua—ziy(r,r)
0
= —euk'a'?ltskjg(l’, r')
=—{(V' xI) ¢(r, )}, (6)
Thus, we have
— (V' x ) g(r,r') = V' x Ig(r, ). (7)
Using (5) in (4), we have
[V x G(r,r')]" = V' x Ig(r,r') = V' x G(r', x). (8)
(b) Equations (8.1.15) and (8.1.17) are
V x V x Eg(r) — w?pse2B5(r) = 0 (9)
V x V x Gy(r,r') — w?u2e,Go(r,r') = I§(r — r) (10)

On post-multiplying Equation (8) with G, and pre-multiplying Equation
(9) with Ey(r), subtracting the two equations, and integrating the result
over V,, we have

/ dV [V x V x Ex(r) - Ga(r, ') — Ea(r) - V x V x Gao(r,r')]
12
= —Ey(r"), r eV, (11)
Using the fact that

V - {[V x Ey(r)] x Ga(r, ') + Eo(r) x [V x Gy(r,r')] }
=V x V x Ey(r) - G(r, ') — E3(r) - V x V x Go(r, 1), (12)

we have
E;(r') = - /dSr“z- {[V x Ey(r)] x Ga(r,r') + Eo(r) x [V x Ga(r, )]} .
s

(13)
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Using (8.1.22) and (8), we have
- [V X Ez(r)] X _éz(l‘, l") =nX [V X Eg(l‘)] '62(1‘, l‘)

= iwﬂg_G-Q(l", !’) ‘1 X Hz(l’), (14)

and
71 - Eo(r) x [V x Ga(r,r')] = 7t x Eg(r) - V x Gy(r, ')
= - [V X -(-;-2(1',, l‘)] -1 X Eg(l‘).
(15)

Using (14) and (15) in (3), finally we have

reV,, Eyr)=- /dS' {iwp2Ga(r, ') - 7 x Ha(r')
5

- [V x Gy(r,1)] - &2 x Eg(r')} . (16)
when r € V], we have the left-hand side of (11) is zero, therefore,

r E V’ E t . 3 (AW /
re ‘/z, gél')} = - /dS {lWﬂ2G2(r’r)n X Hg(r)

s
- [V X 62(!', l")] ‘7t X Eg(l")} (17)
(c) In deriving (13), the radiation condition is not applied. Thus, Gy(r,r’)
need not satisfy the radiation condition at infinity in this case.

(d) In deriving (8.1.28), the volume integration is over ;. Thus, we can

choose Gy (r, r) satisfy Equation (8.1.16) but with inhomogeneous medium
in V,.

§8.4
(a) The identity in Equation (8.1.37) is _
V- {[#" -V xEy(r)] x Gy(r, 1) - b
+Eqy(r) x [(B)™! - V x Gy(r,r') - b] }
=V x (A7 - V x Ey(r)] - Gy(r, )b

—Ey(r)-V x [(;z:)“ LV x Gy(r, ') - b] . (1)
Using the identity of
V-(AxB)=(VxA)-B-A-(VxB) (2)

for the first term on the right-hand side of (1), we have
V{[AT" - V x Ei(r)] x Gy(r,r')b}
=V x [g7! - V x Ey(r)] - Gy(r,r) - b
— 11V X E(r)- V x Gy(r,r') - b, (3)
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for the second term on the right-hand side of (1), we have

V. {El(r) X [(i'i‘l)—l .V x Gy(r, 1) b]}
=V x Ey(r)- (&)™ - V x Gy(r,r') - b

—Ey(r)- V x [(ﬁ;)“ .V x Gy(r,1') - b] (4)
Notice that .
V x Ey(r)- (@) = (@) - V x Ey(r) (5)

Using (3), (4), and (5), Equation (1) follows.
(b) E,(r) and Gy(r,r’) satisfy

Vx;! - VxEr)—w'e E; =0, rels, (6)

V x ()7 -V x Gy(r,r') — w?& - Gy(r,r') = () I8(r, ).  (7)
On post-multiplying (6) by G(r,r) - b, we have
V x 13! -V x Eg(r) - Gy(r,r') - b — w?€; - E3 - Go(r,r') - b =0, (8)

where b is an arbitrary constant vector. Then, after pre-multiplying (7)
by E;(r), and post-multiplying it by b, we have,

Ey(r) -V x ()7 V x Gy(r,r') - b — w?Ey(r) - G - Go(r, 1) - b
= Eq(r)é(r — ') - () - b. (9)
Next, integrating the difference of (8) and (9) over V;, for v’ € V,, yields

/dV [V X ;" -V x Ea(r) - Go(r,r)b — Ey(r) - V x (@) ™" - V
14}

xGy(r,r) - b] = =Eqo(r') - (ﬁ;)"1 -b. (10)

Using the identity of Equation (8.1.37) and Gauss’ theorem, we have

Bur) = - [ dSh- (@)™ - ¥ x Bale) x G, ¥) -
S

+E(r) x (7)™ - V x Gy(r, v) ﬁ‘,] , rEV, (11)
For r' € V}, the right-hand side of (11) is zero. Thus, we have

reV,, Ey(r —
re V:, 02( )} = -S/d.S" {iwﬁ x Ha(r') - G(r', r) - mi(r)

+4 x Bo(r) - [ - V' x Gor, 1) - B} . (12)
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Using lower part of Equation (8.1.40) and (8.1.41), we have the integral
equations (8.1.42a) and (8.1.42b).

§8.5
The wave equation for E-field is

V x V x E(r) — kK?E(r) = iwud. 1)

Applying the identity of

VxVxA=VV.A-V2A, (2)
(1) becomes
VZE(r) + F*E(r) = —iwpud + VV-E (3)
Since,
V:-D=p (4)
and
D =¢E (5)
we have
V-E= %. (6)

Substituting (3) into (2), we have
V?E(r) + K2 E(r) = —iwpd + vf (7)

using (8.1.43) and (8.1.44), and noticing that k? is only a function of z
and y, we have for the z component of (4),

51; / dk, [V? + k* — k2] E, (p, k.) ¢+
— L . . P thez
=5 /dk, [—zpr, (py k) + zk,:] e (8)
Then, we havef
. 1k,
[V2 + ¥ = K] By, k.) = —iwnlu(p, k) + Zp(p, k) (9)

Similarly, the wave equation for H-field is

VxVxH-kH=VxJ. (10)

t The last term on the right-hand side of (8.1.46a) should be ke o(p, k.)
instead of % e,



§8.7

265

Using the relation of (2) and V - H = 0, we have
(VP+kHH =~V xJ (11)

The z-component of (11) is

§8.6

(V2+K)H, = —(V, x J,).. (12)
Using (8.1.43) and (8.1.44), we finally have
(VP+ K —K)H, = —(V, x J,).. (13)
In region 2, the wave equation is
(V3 + k3, )Ea(p) = 0 (1)
(Vi +k3,)Ha(p) =0 | (2)
since region 2 is source free. Assume that G2(p, p) satisfies
(V2 +£3,)G2(p, 0') = —6(p — p). (3)

"After multiplying Equation (1) with G, and Equation (3) with E,,, sub-

tracting the two equations and integrating over region 2, we have for
PEV,

/ dp[Ga(p, ') V2Ezs(p) — Era(p)V3Ci(p, )]
Va

= En(p'). (4)
Using the identity

$:1V3d2 — $2V3d1 = V - (61V 2 — 6,V ) (5)
and Gauss’ theorem, we have
pEVs En(p)= / dS'# - [Go(p, ')V, E2e(p') — Ens(p')V'Ga(p, )] .
s

(6)
For p ¢ V2, we have E,,(p) = 0. Thus

€ Vs E z /- / ’ / /
pev (p)} = / dS'#-[Go(p, P)V' s B2:(p) ~ E2a(0')V',G2(p, P'))-
pE ‘,1’ 0 S

(7)
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Similarity, for H,,, we have

P € V2’ H2z(p)

pEVR, O }= ! dS' 2+[Ga(p, ')V’ s Hao(p')— Ha:(p)V' . Ga(p, p')}.

(8)
In deriving (7) and (8), the radiation condition of G; is not imposed.
Therefore, another choice of G, is

i
Galp, p') = 7HS (kalp - ) + Ado(kaslp — £')) ©)
which satisfies Equation (3) and the singularity property at p = p'.

§8.7

The transverse components of the electromagnetic fields are related to
the z-component fields by

E, = Elg[k,V,E, —wpi x V,H,], (1)
H,=- [kVH +wei x V,E,]. (@)
Thus, we have
E,, = 'é‘;[kzvaElz —wmZ x V,Hy,], (3)
E, = {?[k,v,Ez, — wpat X V,Hy), @
H,, = {;—lkiv.Hl, +wet x V,Enl, ®)
H,, k%,[k 2 VsHa, +weaz x V,Ey,). (6)

The boundary conditions are
ﬁXE1,=leE2,, ﬁXH1,=ﬁXH2, on S. (7)

i From (7), we have

[k \% Elz UJ[IIZ xV HI,] =1 X k2 [k v Egz wygz xV sz],
(8)

. d A o
X -E-g[k,V,Hu +wez x V,Ey,] =1 x k’ [k V,H,, + wez x V, Egz(]g)

k%.
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Regrouping (8) and (9), and using 7t x 2 x V,E = (7 - V,F), we have
k2, R . o
éﬁ[k,n X VB, —wpy3(fi - V,Hy, )] = ki X V,E,, — wppz(i - V,Hzi)o,)

2

%[k,fz X V,Hy; + wei2(fi - V,Er,)] = k.t X V,Hy, + we3(fi - V,Ey,).
. s (11)
Taking the dot products of Equations (10) and (11) with Z, we have

-I;—%i[kzé A X V,E, —wmni - V,Hy,| =k,2-fi X V,Ey, —wpsfi - V,H,,,
1s (12)
k—g‘[k,i ‘i X V,Hy, +weii - V,Ey,| = k.2 -7 X V,Hy, + wehi - V,Hy,.
k3, (13)
Since n X V,E, and 7i X V,H, are on S, and
Ey; = E;,, Hy.=H,, on S, (14)
we have
nX V,Hy,=0xV,Hy,, A xXV,E, =0xV,E,,. (15)
Using (15), (12) and (13) become
it V,Hy, = "“’Ez— (k_% - ) (272 x V,)Ey, + #1k§,ﬁ - V,Hy,.
wpz \ ki, p2ki, (16)
f - VsE,, = - (k_z‘ - 1) (2-7axV,)Hy, + elkg’ﬁ - V,E;,.
wep \ k2, €2k, (17)
The above two equations can be combined as
(3 3mm ] =w [pe] o [ 9]
where Myj; = My = N1 =Ny =0
M12=;";2-(7':§t-1)2-ﬁxv,, Ny = 25, .
My = -2 (B -1)2-4xV,, Np= 44 (a8

§8.8
The second equations of (8.1.10) and (8.1.11) are

bine(r) = / dS'A - [gi(r, F) V' (r) = 41 () V'gu(r, )], re Vs, (1)
s

0= / dS' - [g2(r, ¥)V'alt’) = o(D)V'ga(r, )], r € Vi, (2)
S
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Figure for Exercise Solution 8.8

Due do the singularity in 7 - g(r, r’), the above equations are not defined
when r € S. But we can let r — S from the two regions. For the first
equation, we can deform the S as shown in the Figure.

The semi-sphere surface is denoted by Cj, the other part is the principle
integral in which there is no singularity. Thus, we have

binelT) =][ dS'# - [ga(r, ) V'(F) — 61(c) V'en(r, 1)
S

+ / dS'7 - [a(r, F) V() = () V(e ). (3)
Cs

The first term in Cj ai)proaches zero when § — 0, since it only contains

1 singularity and dS’ = §?sin6d@df. For the second term in C;, we look
at the equation for gy(r,r’)

Vigy(r,r') + Kigi(r,r') = ~§(r — 1'). (4)
Taking integration over {V : |r — r'| < §}, and let § — 0, we have
}sirno dVVig(r,r') = -1,
Jr—r’|<6
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};imi, /dVV,Vgl(r, r)= }111(1) /dSﬁ - Vai(r, ') = —1. (5)
s

Therefore, in the second term in Cs, we can take ¢,(r’) out of the inte-
gration, since ¢;(r) is a continuous function on S. Meanwhile, C; is a
half-sphere surface. So we have

/dS’ﬁ - [g1(r1, ¥ ) V1 (r)) — $1(r )V qa(x, )] = %¢l(r) resS. (6)
Cs

Consequently,
Bie(s) = 31(5) + 45" - [a( X )V (F) = () V's(e,F)] 7 €S,
s

(7)

For Equation (2), S is deformed as shown in the right. Since 7 is in the
negative 6 direction. We have

[ 45l )96 = 4a()Via(e ] = =30 (®)
Cs

Thus, we get

0= %452(1‘) _][dAIF‘ - g2(x, )V §ao(r') = ¢2(x')V'gy(r,¥')], reS. (9)
s

§8.9
First, the Green function g;(r,r’) has the following properties.

gi(ra r’) = gi(ra l"),
Vigi(r,r') = —Vgi(r,r') = —=Vgi(r',r) = = V'gi(r',r). (1)

To prove L;;’s symmetric properties, we need to operate L;; on same
function f(r'). Thus, for Ly;, we have

In(r,¥) - f) = [ dSm,1)f() @)
s
:From (1), we have .
Ly(r,r')- f(r') = / dS'g(r', r)f(r') = Lu(r',r) - (') (3)
s

So, Ly;(r,r’) is symmetric with respect to r and r’.
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Similarly, we have
Lay(r,r') = L (', r'). (4)

For L,,, we have
Lu(r,r') - f(r') = / dS's - V'gy(r, Y (r'). (5)
5
Using (2), we have

Lua(r, 1) f(r') = — / dS'h - V'gy (', ) ()
S
= —Ly(r,r) - f(x'). (6)

So, Ly;(r,r’) is skew-symmetric with respect to r and r’. Following the
same argument, L,; is also skew-symmetric respect to r and r'.

The matrix element of L;; in Galerkin’s method is
{Lii}pm = (fa(r), Lij(x, ') - fn(r)). (7)
-For Ly;, we have

{Lu}am = (fa(r), Lu(r, ') - fm(r'))
= /dS’f,,.(r’)/dS’gl(r,r.')fm(r')

- / dS" fou(F') / dSg(r, ") fulr)
(f,,.(r),Lu(r r')- fu(r)) = {Lu} - (8)

So, {L11},,, is symmetric with respect to m and n. Similarly, {Ls,},_ is
also symmetric.

For {L2},,,, we have

{L12} 1 = (fa(r), Lyg(r,r') fru ("))
= /de,,(r)/dS’r‘z-V'g,(r, r') fm(r))
/ 4" (' / dSi - Vgs(x', 1) fulr')
= —(f,,,(r) Ln(l‘ r)fa(r)) = — {L12},,, - (9)

So, {L12},,, is a skew-symmetric matrix. So is {L22},,.
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§8.10
(a) Equation (8.2.14) is

I = / dS'G(r,r') - i x H(r) 1)
S

To prove its continuity, we only need to prove that the contribution from
the singularity is zero. From the Figure,

Figure for Exercise Solution 8.10

I, = ][ dS'G(r, ') - & x H(r') + Res 2)
S

][ ds’
S

denotes a principal value integral, which is the integration on S excluding
Ss, while,

where

Res = %in;x) /dS'G(r, r')-n x H(r')
Ss

=4 x H(r) lim / dS'G(r, r'). 3)
Ss

Recall that -
G(r’ xJ) = (I + -kT) g(r, l',), (4)
we have

A v\ . [ _ eiks
Res = 72 x H(r) - (I + ?) hm//52 sm9d0d1/):1—7r—6
0

§—0

0

. VV). 1
=nXH(r)-(I+—k-2->}l_I.I(1)-2-5—0. (5)
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Since “Res” is zero and the principal value integral is continuous, I, is

continuous.

(b) Using Figure 1, we can write eq. (8.2.18) as
AxD= -][ dS' x E(r')is - V'g(r, r') — Res
s
where
_ TN AR . ! /
Res-}sx_{%/dSn x E(r')n - V'g(r,r")
Ss
=7 x E(r) }Sir% / dS'n - Vg(r,r').
Ss
Applying Equation (8.2.11), we have

Res = —n x E(r)-;-

Substituting the above to (5), we have

nxI;= —;-ﬁ x E(r) -—J[dS’r‘z x E(r')n - V'(xr, ).
5

§8.11

(a) From (8.2.23), 7 x H, on the n-th patch can be expanded as

3
it X Hp = [RitnNitn + hiznNizn]
=1
3
hi n
= [Niln, Ni2n] [ ! ]

h .
i=1 12n

where
N:u = [NlmN2mN3n], h:; = [htlm h;m h:tsn]’
and

Nt'n = [Nilm Nt'?n]! hﬁn = [hilm ht'?n]-

It is clear that the dimension of h,, is six.

(6)

()

(8)

(9)

(1)

(2)

(3)

(4)

(8)
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(b)

(c)

(d)

From (a), we know the expression of 7i X H on the n-th patch. Thus, for
a surface S which is approximated by a union of N triangular patches,

we have
N

AxH= N h, =Nt h (6)

=1
where N* =[N} N;,---,Nk], and h*=[h} h},---hj]

Since h; is a column vector of length 6, h is a column vector of length
6N.

Figure for Exercise Solution 8.11

From the Figure, for patch P, there are two component on [, ,, which
are hp n,, Rp,n,. Similarly, for patch P, there are two component on I,,,,,
which are hpn,, hpn,. In order to maintain the normal component of
it X H across ln,,, continuous. We need h,n, = hpynyy Bpin, = hpgn,-
Thus, for edge l,,n,, there are two independent component left. So, the

total independent unknowns will be 2M, where M is the total number of
edges on S.

For each patch, there are three edges. If all N patches are disconnected,
there will be 3N edges. However, S is a continuous surface, for each
patch, it has to share one edge with another patch. Consequently, the
total number of edges M < 3N. Thus we have 2M < 6N.

From (c), we know that there are only 2M fundamental unknowns in h.
Thus there are 6N — 2M components which are given by continuity of
normal components of 7 x H, given which is a column vector of length
2M containing the fundamental unknowns, by a matrix M,

h=M'-n. (7)
where M is a 2M X 6N matrix. So, we have

AxH=N'-h=N'-M!.qg. (8)
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(e) Equation (8) can be interpreted as that 1 x H is expanded on the basis
N! . M* with unknown vector . Thus for [dS'G(r,r’)-# x H(r'), the
5

matrix representation is
(M N, /dS’G(r, r)-N*. M‘)
s
=M (N, / dS'G(r,r) - NY) - M. (9)
s

The dimension of the above matrix is 2M x 2M.

§8.12
gn can be also defined as

0 91n(P) ]
[g2u(p’) 0 (1)
which forms a complete set. In this set, (8.2.27) becomes
N
E,, _ 0 gln(p') Qp |

[Hl,] = [ gm(p) O | |pa] = BT (2)

Ey. = ﬂngln(p’) (3)

Hy, = anan(pl)' (4)

n

§8.13
(a) Since e~**#<>*¢ is regular at the origin, we can expand it in terms of

{Jn(kp)e™}. This is

etkpeosd — anJa(kp)e™. (1)
Equation (2.2.17) is
2r
Ta(k,p)e™® = % / da eikoeos(a—d)+ina—ing 2)
0
We can rewrite Equation (1) as
o
gTthpooed an(—1)*To(~kp)e™. (3)

R=-00
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Applying (2.2.17), we have

oo
e—ikpcoc¢ = an('- 1 )n % / dae-ikp cos(a—¢)+ina—ing

n=-—0o0

/ dae-—;kp cos(a—cS) el anein-%eina. (4)

n—-oo

In order to make the right-hand side of the above equation equal to the
left-hand side, we need

= @, = §(a). (5)

n=-—00
;From the complements of {e"*}, we get
a, = e—'."%. (6)

Finally, we have

e-ikpcoc ¢ _ Jn(kp)einé-in z . (7)

n=-oo

(b) Using the relation of

(=]

1 t . :
o(p—p)=JH (ko= p) =7 Tlkp)HP(kps)e™#=9), (8

n=-—o0

and Equation (7) in (8.2.31), we have
Jn(kp)einda-ing-

[ <]

Il
.

2x
Ja(kp)e™ H(ka) / doe 7. V'y(r'), p<a. (9)

n=-—0o

M . : ’ -.
(c) Substitutingi-V'¢;(r') = Y. ane™* into the above equation, we have

m=-M

o ) ) i M
Jn(kP)e"w—'"% = Z .

ns=—00 m=-M

Im(kp)e™ HY) (ka)2rayn,. (10)
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We test (1) with p = a by multiplying the side of (1) by e~*** and inte-
grating over ¢. Then

T (ka)e % = in(ka)H,Sl)(ka)%rap. (11)

(d) At the internal resonance, J,(ka) = 0. Thus, the both sides of the equa-
tion in (c) are zero. Therefore, a, is undefined.

M
(e) Applying (2) and 7t - V'¢y(x') = Y. ane™* to Equation (8.2.32), we
m=-M
have

/dS’g,(r, )i - V'éy(r')
5

oo 2r M
= Hu(kp)e™Jo(ka) / dgemm gy
0 p=-M

p=—00

= H,(kp)e’*J,(ka)2rna,. (12)

4

Here, a, is the resonant sources. From (c) we know that

Jp(ka) = 0. (13)
So, we have

/ dS'gy (5, E')h - V' (r') = 0, (14)
S

for the resonant sources.

Using the relation in (a), we have

S

. . 2x
= Ju(kp)e~n% / dg'e™* &P,
n=-00 o P
= p(kP)eiP” 2may, = (—l)pJp(’CP)‘gip’r i2na,
P P
=0. : (15)

In the last step, J,(kp) = 0 for the internal resonant case has been used.
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§8.14
From Exercise 8.13. the combined field integral equation can be written
as
[Jn(ka) + AkJ.(ka)jemt—n%

2x
=i- [Jn(ka) + AkJ(ka)] e™ HM(ka) / d'e™ ™ 7 . Vo, (r'),
n o (1)
where ) is complex or pure imaginary. From the above, we can see
that the right-hand side of the equation will not be zero even at internal
resonances, J,(ka) and J,(ka) cannot be zero at same point. Therefore,
the indeterminacy in Exercise 8.13(d) due to internal resonances does not
exist for this integral equation.

§8.15
Using
M
AV (r') = ame™ (1)
m=~-M

in the integral equation of Exercise 8.13(b), we have

*® I3
Jn(kp)e-ww-m-;-
n=—00

oo

2x
i Jo(kp)e™ HY (ka) / de'e™? ame™. (2)
0

n=-—oo

From the above, we obtain

Ja(kp)e™*"7 =

n=-00 n=~-M

Ja(kp)e™ H Y (ka)2ray,. (3)

e

Testing Equation (8.15.3) with 6(p—a)e~?* and §(p —a+ A)e~"**, where
p=~M, ---, M and A < a, we have

J(ka)e~?% = i {ka)H((ka)2ma,, p=-M, ---, M, (4a)

Jp(k(a~ A)) ™% = %J,, (k(a — &) HY (k(a - A)) 27ay,
p=-M, -, M. (4b)
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The above is a set overdetermined equations with 2(2M +1) equations but
only 2M + 1 unknowns. A least-square solution can be obtained from the
above equations. At the internal resonant frequency, where J (ka) = 0,
Equation (4a) is zero on both sides when p = ¢, but Equation (4b) is still
well defined for p = q. Thus, a, can be solved for even at the internal
resonant frequency. However, if both Jy,(kae) and J, (k(a — A)) are equal
to zero, then a, will be undefined. The above conditions are exactly the
resonant conditions of the annular region bounded by a and a — A. Since
A < a, the resonant frequency of the annular region will be much higher
then the internal resonant frequency.

§8.16
In two dimensions, the scalar Green'’s function for a homogeneous medium
is .
. n_ ¢ H(l) k 7
g(p.p) = ;Ho (klp - p')). (1)
Using the addition theorem of Equation (3.3.2), we have
i < in(d—g'
sop) =5 Jnlkp ) HO(kpy)e ). )
Define
(- fH“’(kp)e'“, p>p
'(/)ﬂ(ka p>) = 4

—_HW(kp)e ™', o'>p

2\/'

Ja(kp’ )e—m¢ y p>p
Rewn(k, p<) = | M

—=Ja(kp)e™®, o' > p.

\2\/'

Then Equation (2) becomes

9(p,p') =ik Yk, p> ) Revn(k, po). (5)

n=-—oo

In three dimensions, the scalar Green’s function is

o = —1— etklr—r’l
iFrom Equation (3.7.4), we have
g(r,r') =ik In(kr )B(krs ) Yom(8, $)Yn,-m(€,8).  (7)

n=0 msen
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Equation (7) may be written as

g(r,r') = ik ¢ (k,r5) - Repu(k, re) (8)

n=0
if we define ¥ and Rev properly. Hence, we let
RO (kr)Yom(8,4), r>7
[¢n(k’r>)]m = { hs;l)(krl)yn,_m(o', ¢/), > (9)
| ia(kr) Yo (8, ¢ >
etaorol = { LGNGO 3 (19

where 1, and Rev are now vectors of length 2n + 1.

§8.17
(a) For r € W, using the extinction theorem of Equation (8.1.11), we have
0= / dS'R - [ga(r, F)V'$s(t) — o) V'gs(r, T')]. (1)
5
Applying the boundary condition ¢2(r') = 0 on S, we obtain
0= / dS'gx(r,V)AV'da(K), T E Vi, @)
s
Now let -
92(r, ') = ikg Pa(k, r)Repn(ks, ). (3)
Here,r € V}, ' € S, and [r| > |r'|. Substituting (8.17.3) into (8.17.2), we
have
0= iks ks, ) [ ARk, )3V '0a() @)
i s
Since {¥p,n = —00,- -+ ,00} is an orthogonal set, we have
0= / dS'Repo(ks, 1)R-V'go(r'), reWi, foralln. ()
s

At the nonresonant frequencies, the above has only a trivial solution for
- V'¢y(r'). This means that {Reyp,(kor’), n = —o0,---,00} is complete
on S, except at the resonant frequencies of the cavity.*

(b) Similarly, if we impose the boundary condition

fi-@a(r)=0, on S. (6)

* This proof, due to Waterman, may be flawed.
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then, Equation (1) becomes

0= / dS'$y(t)s - Viga(r, ), T € WA 7

Using (3) in (7), we have

0 = tky Y, (k2,r) /dS’¢2(r’)ﬁ - V'Rep, (ks, 1) (8)
" s

Finally, we obtain

0= / dS'$a(r )i - V'Repu(ky,r'), TEW, foralln  (9)
S

At the nonresonant frequencies, (8.17.9) has only a trivial solution for
¢2(r'). This means that at the nonresonant frequencies, the only func-
tion that is orthogonal to {7i - VRetn(k2,r), n = —o00,-:-,00} is zero.
Consequently, {# - VReyn(ke,r'), n = —o00,:--,00} is complete on S,
except at the resonant frequencies of the cavity.* The boundary condition
in this case is 2 - V'¢(r') =0, for ' € S.

(c) For particular geometries, the resonant frequencies for the Dirichlet and
the Neumann problems may coincide. For example, in a rectangular
cavity, the fields for the Dirichlet and Neumann problem are given as

#o(r) = dopsin (7=~ ) sin (’-‘%’i) sin (”%) (10)
&n(r) = don cos (m;rz) cos (P—:—y-) cos (%) (11)

The resonant frequencies in both cases are given by

w2 (B E B w

§8.18

F(r'y = V' [Repn(k2, ') V'Retpm( ko, 1)
—Retpm(k2, v')V'Re, (ko r)]. (1)

Since Reyn(k2, ') satisfies the wave equation,
(V2 + k3) Rewpn(kayr') =0, for all n, (2)
we have F(r) = 0.
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Now, we integrate (1) over a volume V bounded by S and S,, we obtain
/ dVV' - [Repa(ks, v')V'Retpm (K2, x')-
v

Retpm (k2 r')V'Re, (k)] = 0. (3)
Applying Gauss’ theorem, we get
/ dS' [Retbn(ky, ') - V'Retpm (a, T')

S+5;
~Retpm(kz, )7 - V'Rep, (ky, x')] = 0. (4)

On S, the above the integral is zero due to the orthogonality of spherical
harmonics on a spherical surface. Finally, we have

/ dS' [Repa(kz, ')t - V'Retpm(ka, 1))
S

- / dS [Retpm (K2, ¥)f - VRewa (ks t)]. (5)
S

§8.19
(a) From Equation (8.3.7), with the boundary condition ¢,(r') =0, r' € S,

an = ik /dS’z/),.(kl,r')ﬁ V' (), Vn.
5

Expanding 7 - V'¢y(r’) as in (8.3.10),

- V'é(r) = apfi- V'Reyp,(k,, '),

m

yields the equation
an = tky am /dS’zb,,(kl,r')ﬁ - V'Repm(ky, v').
m S

This has the form

a, =1 Qnmama
m

where

Qo = oy / dS"pa(ky, ) - V'Reprm(ky, 1),
S
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(b)

(c)

As discussed in Exercise 8.17, the set {fi - V'Rem(k1,r')} is incomplete
on S at the resonant frequencies of the cavity formed by S, with interior
wavenumber &, and boundary conditon 71 - V'¢(r') = 0, ¥’ € S. That is,
there exists a non-zero function ¢(r') such that

/ dS'$()h - VRedm(ky,r') =0, V.
S

If the set {tn(k1,r’)} is complete at such a resonant frequency, then ¢(r’)
can be expanded as

¢(l") = cn'»bn(kl,r’)'

Then,

Cn /d.S"d),,(kl,r')ﬁ - V'Ren (k1,r') = 0.
" S .
From part (a), this is

1
E chnm = 0.

Thus, Q has a nullspace, and is ill-conditioned.
If A - V'¢(r') is expanded using a compete set {um(r')},

fi - V'é(r') = amum(r’),

m

then the elements of Q are given by

Qum = by / dS"pu(ky, ©Yum(r').
S

The matrix Q is singular if and only if one of the following is true. Either

Qnmﬂm = /ds't/’ﬂ(kl’r,) [ ﬁmum(r’)] = 0, vn’
S m

m

with B, not all zero, or

YnQnm = / dS'[
S

with 7, not all zero. The second case above cannot be true if {un} is
a complete set on S. The first case corresponds to the incompleteness

of the set {¥,(k1,1')}. So, as long as both {um(r’)} and {,(k;,r’)} are
complete on S, Q will be nonsingular.

7n¢n(kla l")] ‘U.m(l") =0, Vm,

n n
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(d) For a penetrable scatterer,

Qun = ky / 45" [t (s, ¥ - T Retpm b, r')?
1
S

—Siet,b,,.(kg,r’)ﬁ-V':/;ﬂ(kl,r’)]. 6316)
3.1

For most object shapes, the two types of resonance (with homogeneous
Dirichlet or Neumann boundary conditions) do not occur at the same
frequency. Therefore, from the results of Exercise (8.17), the sets {f -
V'Repm(ks,1')} and {Reyp,(k2, 1)} do not ususally become incomplete
simultaneously. Based on parts (b) and (c), we expect Q to be well-
conditioned in this case. However, for some shapes, such as a square
scatterer, it is possible for the two types of resonance to occur together.
In this case, Q may become ill-conditioned.

§8.20

For a metallic cylinder ¢(r') = 0, r' € S, so the integral equation (8.3.1)
becomes

Pine(r) = /dS'gl(r, )i - V¢ (r'), rev;.
5

In two dimensions, the Green’s function is
3

. o0

)

/ : in(¢p—o¢’
g(r,r') = zHél’(kn lp—p'l) = Tu(k1p<)HV (ky ps Jeim(#=4),

n=-~00

e |

Expanding inc(r) as in (8.3.4), with 1, = H{)(k,p)e™, the integral
equation becomes

anJa(krp)e™ =" 1 w(k1p)e™® / dS'H (k1 p)e™ ™ i - V', (r'),
S

n n
re S21

where S; is chosen to be a cylindrical surface inside of S. For a circular
cylinder of radius a, the integral on the right is

2
aHM(kya) / dg'e™™' 7 . Vg (r').
0

Then, from the orthogonality of the cylindrical harmonics on S, we have
the equivalent of (8.3.7),

2%
an = iaH,(ll)(kla) /d¢'e"‘"¢'ﬁ - Vg, (r').
o
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Note that in the above step we were free to choose the radius “b” of the
testing circle S; such that J,(k;b) # 0, thus allowing the cancellation of
Jn(k1p) from both sides of the equation. This equation is easily solved by
expanding 7 - V'¢(r') in a Fourier series, 74 - V'¢(r') = 3 a,e™*'. Then

we have
2x 2x
/ dé'e ' V'é(r') = am / d¢'e’ ™" = 2xq,
0 m 0

so that .
a, = i—aH,‘,‘)(kla) - 2ma,.

Clearly, the internal resonance problem of Exercise 8.13, which occurs
when J.(kia) = 0, is not a problem here.

§8.21
The dyadic Green’s function can be written as
rod N o = 1 ’
G(r,r') = :1::) D [M,.m(ko, )My - (o, ')
, rr
+ N (ko, ©)Np (Ko, )] = Z58(r — ). (7.3.40)
0

The vector wave functions M, and N,,, are defined in Equations (7.2.42-
43),

Mo (K, 1) = V X £ju(kr)Yam(0, ), (7.2.42)
N (k, 1) = %V X V X Tja(kr)¥um(8, 8). (7.2.43)

In (7.3.40) it is understood that the spherical Bessel functions in M, (ko, r)
and N,,,, (ko, r) should be replaced by the spherical Hankel functions when
r > r’, and similarly for My, _(ko,r’) and N, _,(ko,r’) when r < r'.

To write G as in (8.3.19), we must reorder the double summation over

n,m as a single summation. For example, we can construct a vector of
vectors, ¥P(ko,r),

i MOO(kOar) 1
NOO(kOar)
-¢1(k0ar)- M1,_1(ko,l')
¢2(k07 l‘) Mlo(ko, l‘)

: = | Mun(ko,r)
¥i(ko, 1) Ni,-1(ko, r)

. Nio(ko, r)
S Nii(ko,r)

E(ko, l‘) =

b . o
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where the Mpm(ko,r) and Ny (ko, r) are defined as in (7.2.42-43) but with
spherical Hankel functions instead of spherical Bessel functions, and a small
change in normalization. Then a typical element of ¥ is '

1
¢I(k0a l‘) = mv X rh,,(kor)Ynm(O, d))
or
Pi(ko,r) = —V X V X rhp(kor)Yom(6, 6).

\/n(n +1) ko

Furthermore, if the operator Re is defined so that

Retﬁ;(ko,r) = V x rjn(kor)yn,-—m(oa ¢)

1
vn(n+1)

or

Retpi(ko,r) = \/—(nTk V X V X rjn(kor)Ys ~-m(6,9),

then G(r,r') may be written as

a(l', l") = tko ¢l( ko, r>)£e¢l(k0a l.<)’ rs # g,
{

where r, is the larger of r and r/, and r. is the smaller of r and r’ in
magnitude. In writing the above, use has been made of the fact that, by a
simple reversal of summation order,

n n

Mnm(koa r)Mn.-m(kOa l") = Mn,-m(kOa r)Mnm(kOa l"),

m=-n m=-n

and similarly for N,,,. This expansion for G(r, ') matches (8.3.19), and the
vector wave functions ¥,;(ko,r) and operator Re are defined above.

§8.22

Substitution of Equations (8.3.19) and (8.3.20) into Equation (8.3.17)
gives

a.Re(Y)n(k,r)

= ik, / dS" [iwpytba(kr, s )Ren(kr, 1<) - 7 x Hi(r)

-V’ x 'l/)n(kl,r>)%e¢n(kl1 l‘<) ‘7 X El(r')] ’
reV, rs#re. (1)
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However, the above applied for r < r’ which means that ry =r/, rc =r.
Equation (1) becomes

anRePn(kr,r) = iky Repn(ky,r) / dS' [iwpy P k1, ') - 72 x Hy(r))
n S

—V' x YPu(ky,r') - 12 X E\(r")], re V.. (2)

Then applying the orthogonality property of the vector harmonics, we
have

Ap = 2k1 /dS’ [iwp;qb”(kl,r') ‘7l X Hl(l")
s
—V' X pu(ky, ) - i x Ey(r')], re€ Vs 3)
Substitution of Equation (8.3.19) into Equation (8.3.18) gives
0 = tky /dS' [fwpapn(ka, rs )Repn(ka, re) - 2 X Hao(r')
5

-V’ x ¢n(k2yr>)§te¢n(k2a l'<) -7 X Eg(l")] , FE Vlar> # l(.<)
4

But Equation (4) applies for r > r’ and hence r5, =r, r< = r'. Equation
(4) becomes

0 = iky u(ke,T) / dS fiwpsRewa(ks, ) - 2 x Ea(r))], T €V, (5)
S

n

and application of the orthogonality property gives
0= ik2/S'[iwp2§lie¢n(k2,r') -1 X Hg(l")
d
— V' x Reyp,(kg,¥') - 2 x Eo(r')], r e Vi (6)

§8.23

For a cavity filled with a material of wavenumber k;, AxEy(r') =0, € §
for a perfect electric conductor (PEC) and 7 x Hy(r) =0, ' € S for a

perfect magnetic conductor (PMC) cavity. For the PEC case, Equation
(8.3.22) becomes

w/dS'?Rezp,.(kg, r')-ax Hy(r') =0, Vn, (1)
s



§8.25 287

which may be rewritten as

w / dS'[ x Rewpn(ks, )] - Ha(r') = 0, Vn, @)
S

Except at the resonance frequencies of the PEC cavity where Hy(r') = 0,
Equation (2) is an orthogonality relationship and tells us that the only
vector H,(r’) that is orthogonal to {# x Reyn(k;, 1)}, n =0,1,...,00is
the zero vector. Therefore the vectors {fi x Retp,, (k2, 1)} form a complete
basis set inside the PEC cavity.

Similarly for the PMC cavity, the relevant equation is

w / SV x Retpn(ko, )] - 7 X Eq(r') =0, Vn, 3)
S

which becomes

w / dS'Ti x V' x Re(ky, )] - Eo(r) =0, Vn. (4)
S

By a similar argument, the only vector Ey(r’') that is orthogonal to the
set {ft X V' x Reypn(ke,r')}, n =0,1,...,00 is the zero vector. Hence the
set {fi X V' X Reypn(k;,1r')} forms a complete basis set inside the PMC
cavity.*

§8.24

I= / dV'V' - {[V' X Retpm(kz, )] X Retbn(kz, ') + Retbm (ks, 1)
\ %4
X [V' x Repn(k2, 1)} (1)

- /dvl{%e"/’n ' V' X V' X gte‘l/"m - Retpm ) V, X V’ X 8261,[),,} (2)
\4

= k2 / dV'[Retp,, - Rewp,, — Rehy, - Rewpy] = 0, 3)
1’4

since the vector harmonics satisfy the source-free wave equations
V x V x ¢(kg,r') — k39, (k2,r) = 0. (4)
Application of Gauss’ divergence to Equation (1) gives

I= /dS’ﬁ {[V' x Rerpn(ka,1')] X Repn(ke,r') + Reypm(ka, r')
s

x [V’ x Retpn(ks, r')] = 0, ()

* These proofs may be flawed.
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which is the same as Equation (1). This results in ay = —fn.
§8.25
If
(V2 + k) ¢y(r) = —=6(r — 1)), (1)
(V2 + k*)pa(r) = =§(r — 17), (2)
then
#:(r) = ZHS (ke = r{)) + 9'(r0) - T - an, 3)
¢a(r) = ZHS (I = ) + (o) - T - cxon. (4)
where ro =r — 1y,
ety = HL (ki — elf)e", )
[#(ro)l, = HI(kIr — rgl)e™*, (6)

and ¢y; is the angle the vector r} — ry makes with the z axis and ¢, is the
angle the vector r — ry makes with the z axis.

Reciprocity requires that ¢,(ry) = ¢2(r}). The first terms in (3) and (4)
clearly satisfy this. In order for the second terms to satisfy this, we need

PH(ry — 1) - T - aoy = 9*(ry — rp) - T - cxoa. (7)

The above is the same as

oy T ag =aly-T- ae, (8)
where _
[@tiol,, = H(k|r} — rp|)e™ . 9)

Notice that [ao]_,, = (~1)™ [0i],,. Taking the transpose of (8), we have
ol T -ap=a,y T am (10)
The above is the same as

[a01]m Tnm [a20]n = [alolmen[aW]m

nm nm

= [a@o1]m(—1)"T—m,~n[20]n(—1)".
nm (11)

Therefore
Tom = ('1)m+"T-m,—n- (12)
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The above is not exactly symmetrical because we have used ¢"™¢ expan-
sion in the cylindrical harmonics. If cosn¢ and sinn¢ are used, we will
get a symmetric T. In this case, S will be symmetric too.

§8.26
(a) When k is real, we have the two wave equations
¢ (V2 + k)4 =0, (1)
#(V? +k¥)¢* =0. (2)
Subtracting the above,
6"V’ — ¢V?¢") =0 (3)
from which we have
V.-[4'Vé - $V¢] = 0. 4)

We now take the volume integral of Equation (4) and apply Gauss’ di-
vergence theorem to obtain

/dSr‘z (¢"V¢ — ¢V$") = 0. (5)
s
(b) To solve this problem we need the Bessel function identities
H{(-z) = —e™ HP(2), (6)
h(=z) = e™h{P(2). (7)

Also, we break 1, into cosinusoidal and sinusoidal components as

¢’n(ka p>) = ¢f;(k, P>) +'l'¢’:(k’ P>)- (8)

For the 2-D case, we have

n(k, p) = \/—H ()(kp) cos(ng), (9)
s (1) sin(n
Yk, p) = 5 \/—H V(kp) sin(ng), (10)
and for the 3-D harmonics,
wm (ks T) = R (kr)Y 0. (8, 6) cos(mg), (11)
sm(k,E) = RD(kr)Y.(6, $) sin(mg). (12)

We now redefine the harmonics so as to take care of the phase factors
appearing in Equations (6) and (7). For the 2-D case, we let

Ya(k, p) = Y2(k, p)e™i*/2n+1/2) (13)
ik, p) = Y3k, p)e~i™/Hn+1/D) (14)
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and for the 3-D case we let

Wik, 1) = =™ /2e (k, ) (15)
Pk, r) = ™25k, x). (16)
It then follows that
r(=k,r) = Wik, )" (17)
Ya(—k,r) = [Y;(k,r)] (18)
when the medium is lossless for both the cylindrical and spherical har-
monics.
(c)

S

nm

- / dS% - [V — Vibntm]
S

/ dS# - [$aVm — Vibntbm] (19)
S+Sing

because the surface integral at infinity vanishes by the radiation condition.
Using Gauss’ theorem, we have

Apm = f dVY - [$a Vi — Vibnom]
\'4
- / AV [n Vo = Vipathm] = 0 (20)
v

where V is the surface bounded by S + S;,;.
(d) From Equation (8.4.12),

8(6) = 31 (~ki, 1) + $(ks,r) 8] - (21)
Then,

$V4" = 7at [$(hy,¥) + 8- $(ky, )
[Vt (=k1,r) + V! (k1 1) - S - &7 (222)
(V4)$" = ga' - [Vah(~h1,1) + S - Tah(h, )
[$'(—k1,r) + ¥'(ky,r) - S7] - @ (22b)
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and hence

894" — 64 = 72t {[$(—hki, IV (=ky, 1) = V(— b, 1) (s, 1)

+ St - [¢p(k1, r)Vep! (= ky, 1) — Vp(ky, r)ept (—ky, 1))

+ [(=k1, £)Vi(ky, 1) = Vo(—ky, r)3p! (ky, 1)) - S*

+ S* - [¥( k4, r)Vzp*(kl,r) — Vy(k,, r)‘!/)f(kl, r)]-S*} . a*.
(23)

If we let 9 denote either %° or ¥* and perform the integration

/ dSh - [$V " — ¢°V4], (24)
S

the second and third terms in Equation (23) integrate to zero by virtue

of part (c) of this problem. We can use the result of part (b) to rewrite
Equation (23) as

¢V¢- - ¢.V¢ = :ll'at{["/"(kl, r)V'l’t(kl’r) - (V'/’.(klv r))‘»bt(kl’ r)]
+ 8% [(k1, 1)V’ (k1  v) — (Vi(k1,T))9'(ky, 1)) - S7} - 2

(25)

which gives the desired result upon integration.

()
A = { / dS - [$ V" - (V¢')¢‘1}
S nm
= [ asi- (69%m = Viunl (26)
s
When n # m,

Aum = [ dSH- [ %m ~ Vit (27)

S+So

because the integral over So, which is a spherical or circular surface, is
zero because of the orthogonality of 1, on such a surface. Using Gauss’
theorem to convert (27) into a volume integral over the volume bounded
by S + Sy, we can show that it is zero as in (20).

When n = m,

Ao = / dSh - [V n — Vbl (28)
S
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which is a pure imaginary number. Therefore
Anm = bamic. (29)

(f) The second bracketed term in Equation (30) is just the conjugate of the
first bracketed term. The integral becomes

~ = = — _]; t y _Il_ T, _'.1_ st ._. .' -
/dSn-(¢V¢ ¢'Vo) = e [z (kp)l z(kp)S S] a*. (30)
s
In order for the integral above to vanish, we must have

ot

S-S =1 (31)

§8.27

(a) For the impenetrable scatterer with a homogeneous Dirichlet boundary
condition, Equation (8.5.3) becomes

[anRepn(kr,v) + futpn(ks,r)) =0, reS. (1)
Testing Equation (1) with # . VRem(k1,r) and integrating over S, we
have
[an [ d5 Ren(kr,r) 5 VRl )
" S
+ / dS $alks,T) # - VRetpm(ky,1)| =0 @)
s
or
anReQnm = annm (3)
where
Qun = [ dS $ulbr,1) - VRep(ha, ). (4)
s

Equation (3) is the same as Equation (8.5.8) and so from Equation
(8.5.11),

=—(@Q@)" ReQ’ (5)

When we apply the EBC method to the impenetrable scatterer, Equation
(8.3.7) becomes

o, = ik, / dS' $a(kn,t) A - Vigo(r'). 6)
S
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(b)

Then, similar to Equation (8.3.10), we expand the normal derivative of
the field as

it V' (r') = apit - V'Repn(ky, ')

from which we have

an = iky am / dS"Pu(ky, ¥ - V'Reto (kr, ). (7
m S

The above may be written as

a, = iky aanm (8)

m

where Q.. is defined in EQuation (4) above.
From Equation (8.1.9),

¢sca(r) = - /dS’g,'(l', l")fl . V’¢1(r’), re V, (98.)
S
= —ik, /dS’ Yn(ky, r)Ren(ky, ¥') amit - V'ReY,, (ky, r')
3 n m (9b)
= ( —ikl amﬁchm) "/)n(kl, !‘) (9c)
= fabalkr ). (9d)

Rewriting Equations (8) and (9¢) in vector notation,

a=ikQ-«a (10)
f=—ik,(ReQ) - (11)
or — —0
f=—(ReQ) Q- a. (17)
Since from Equation (8.4.5)
f=T-:a, (13)
T=-(RQ)-Q" (19)

which is the transpose of Equation (5).

The method of Rayleigh’s hypothesis and the EBC method are approx-
imately equivalent. The same basis functions are used in both meth-
ods and the only difference is that the Q matrix used in the method of
Rayleigh’s hypothesis is the transpose of that used in the EBC method.
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Therefore, if the same number of terms are used in both methods, we
should expect that the errors in the two methods are of the same order.

§8.28
(a) We define the cylindrical harmonics as

Ym(k, po) = HY(klp — pol)e™* (1)

where ¢o is the angle from p, to p defined with respect to an arbitrary
reference direction. The translation matrices may then be defined as

[@iolmn = Hom(klp1 — pol )%, -
[310] mn Re {[EIO],,"'}
= T2 (klp1 = pol)ei—m%0, )

where ¢y¢ is the angle from pg to p;. Using the above definition, we may
write the addition theorem as

Repl(k,p1) o, [P — ;1] < |p1 — pol
t _ ’ %10y 1 ol
¥(% po) ‘{ ¥k ) B lo-pil>lr—pol D

(b) Similarly, we may define the spherical harmonics as
Yim(k, To) = h{")(K|r — ro|)Yim(6o, o). (5)
The addition theorem for spherical harmonics may now be written as

Reyt(k,r) - & ir —ry} < |y = ro|
; _ ,T1) : o, 1 1— 7o
Yim (ks T0) = { Pi(k,r1) - Bio, Ir — 11| > |ry — o ©)

where the dot product indicates a double summation over I’ € [0,00) and
m' € [-U',!']. The translation matrices are then given as

[ <]

Qi tm = 4TI DY (010, $r0)hSD) (Kry — ro]) A(m, I, —m!, I, 1),
=0 (7)
Brrms im = Re{atrms im }
o0
= 47ri(l’+l”—l)Yl”,m-m'(alm ¢10)j1(:})(k|l'1 - l‘ol)A(m, l’ ""m,s 1'7 l”)
=0 (8)

where

A(m, 1, —m/ U, 1") = (=1)™[(20 + 1)(2I' + 1)(21" + 1)/4x]'/?

l l’ III l ll l”
'(0 0 0)(—m m' m—m')‘ (9)
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The angles 60 and ¢y in Equations (7) and (8) above are the angles from
ro to r;y in spherical coordinates.

§8.29

The dimensions of matrices T,-(,.), ﬁ,-o, and @; 4 are M X M, M x P, and
M x M respectively. Recognizing that the number of operations required
to multiply an M X P matrix with a P x M matrix, or an M x M matrix
with an M x P matrix is equal to M?P and that an M x M matrix with
an M x M matrix requires M3 operations, the number of multiplications
of Equation (8.6.17) is (2n + 2)M? + (2n + 3)M?P for n-th iteration,
and that of Equation (8.6.18) is 4M2P. Note that for the inversion of an
M x M matrix, it requires M? operations approximately. Hence, in total,
for n-th iteration, we need (2n + 2)M? 4 (2n + 7)M?P multiplications.
When there exist NV scatterers, the number of multiplications amounts to

N
(2n + 2)M® + (2n + T)M?P = N(N + 3)M> + N(N + 8)M*P.

n=1

When N — o0, it is easy to see from the above equation that the number
of multiplications is proportional to N2.

§8.30

Since the field is incident at the interface form the inside, we can have
two integral equations similar to (8.3.5) and (8.3.6).

an’/’n(’“h l')

n

= iky Yo(kr,T) / ds'[Rewn(ky, ')A - V'ohy (1)
n s
— ¢1(r) - V'Repn(ky, 1)), r €Sy, (1)
0 = ik, Revn(ko,r) /ds’[t,b,,(ko, )i - Vga(r')
n S
- ¢2(r’)ﬁ : V"d’n(ko’ l’)], re Sl- (2)

By the same argument given in Section 8.3.1, the solutions can be found
as follows:

$o(r) = ambm(ko, ') = ¢1(r')

m

A V'éy(r') = amt - Vip(ko,r) = —# V'4,(r)

m
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where a,, can be solved for by the matrix equations

ay = 2 amg?vnm

m

R = ky / ds' [Rep (ky, 1) 2
S

Py
= fi - V'Repn(k1, r')bm (Ko, r')}.
Hence a = —iR - a. Since the field external to S can be expressed as
¢a(r) = ¥'(ko,r) - @ = %'(ko, 1) - (—iR) - a,

we can define a transmission matrix

n. V'tpm(ko, l'l)

TIO = —26.
For the scattered field inside S.
Peea(r) = —tky amRey(ky,r) /ds'[z/:,,(kl,r')r‘i . V'th,,,(lco,r’)p2 ;—
1
nm S
- ¢m(k0v r,)ﬁ ¢ V,"é’:(kl’ rl)]
= —iReyp!(k1,r)-P -«

where

P=k /dS’[z,b,.(kl,r’)ﬁ . V'z,bm(ko,r’)ﬁz; — Ym(ko, )7 - Ve, (ky, 1))
s

Therefore

¢sm = —isee"pt(kl’ I‘) * ? . (—16) - a,
= Rep'(ky,r)- (=P -R) - a.
We can define R, = ~P - R.
§8.31
(a) (8.7.23) can be expanded into a geometric series.

Mis1,- = I+ Rigi - Bigrivz - Rivrisz - By
+ Rigri s Biprive  Rirnivz  Bigair - Rivni - Bigager - Rivniz - Bigain
+...

The first term I represents pure transmission from the field outside. The
second term means that the wave bounces back and forth one time be-
tween surface :+1 and ¢ +2. The third term just represents that the wave
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bounces two times between the two surfaces. So H,.H — accounts for the
multiple reflections between (i + 1)-th surface and (i + 2)-th surface. The
same explanation applies to the expanded terms of M .. ’

(b) a;y; is the amplitude of inward field at (¢ + 1)-th region and it can be
related to a;. First, we express a; in the coordinate of (i + 1) th surface
by B; +1,i - & and then multiply it by transmission matrix T; i+1. Hence
the resultant vector T4 ﬂ,ﬂ ; - a; represents the initial inward wave
and in order to find out the final inward wave, we have to take multiple
reflections in (i +1)-th layer into account. To achieve this simply multiply
the vector by M4, we discussed in (a). So,

a1 = Mi— - T - Bipr,i - & (8.7.25)

Since ¢;(r) = Rey'(k;,r;) - a; + ¥*(ki,riz1) - b;, by addition theorem, it
can be expressed as

¢i(r) = Reyp! (ki Tip1) - Bigryi - & + ¥ (ki riga) - b;

Hence,
bi = Rijs - (Bigrs - 2)- (8.7.26)
where ﬁ,-,,-ﬂ is the generalized reflection matrix at the (i 4+ 1)-th surface.
§8.32
(8.8.3) reads
[V p(r)V + K(0)]gi(r,r) = =é(r — ') (1)
N
Let gi(r,r') = Y anfa(r), r,r' € V; Substituting the above in (1) yields
n=1
N
a[V - p(r)V fu(r) + K} (£)fa(r)] = —6(x — 1)
n=l

Multiplying the above equation by f,,(r) and integrating over the region Vj,
we have

_ a,.[/ dr f(r)V- p(r)Vf,,(r)+v/ dr fr(r)k3(r) fu(r)] = — /drf,,.(r)G(r—r)

(2)

The first term on the left-hand side can be written as

/ eV - (O 1u(6)) = [ 46V fule) - OV £ole)
A Vi

= f; ds fm(r)p(r)h - V fulr) — / drV fm(r) - p(r)V fu(r).
1%
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Since we impose the boundary condition 7i - Vgy(r,r’) = 0 on S which implies
that the basis functions can be chosen to satisfy 7 - V f,(r) = 0, (2) becomes

N
an / dXV fn(r) - POV FulE) + / defn(E)EAE) ()] = —Fin(E).
v Vi

n=1

So, the matrix equation appears as

N
Lyn@n = b, m=1,...,N
where
Linn = —(V fm (), 5(r)V fa(r)) + (fm(r) - K (x) fa(x)).
and
bm = — fm(r')
§8.33

(a) At the resonant frequencies of the cavity, there exist non-trivial solutions
satisfying
(V- p(r)V + ki(r)]h(r) = 0 (1)
and the boundary conditions
n-Vh(r)=0, on S
As in the Exercise 8.32, the above differential equation can be converted

to a matrix equation

N
Lypna, =0, m=1,...,N.

n=1

In order for non-trivial solutions existing in the matrix equation. L must
be a singular matrix.
—t

SinceM=A-L <A,
M'=@&Y"L-A'=(@A")r-L-2a7"
fL-a=0, for some a#0, then
M ' A.a=R&')-L-a=@A"')-0=0.

In general A - a # 0; therefore, M'isa singular matrix as well.

The fact that there exist non-trivial solutions to Equation (1) is equivalent
to that there are no unique solutions to

[V p(r)V + ki (r)lar(r,r') = —6(r — r').
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(b)
(c)

Suppose gz(r,r’) is another solution to the above equation, then
[V - p(r)V + k3(r))é6g(r,r') =0, where ég(r,r') = gi(r,r') — go(r,x').

Multiplying the above by §¢*(r,r’) and integrating over V3, it becomes

/dr&g'(r, r')V - p(r)Vég(r,r') + /drkfl&g(r, r)*=0

The first term of the above equations can be expressed as

/ drV - [6g7(r,r)p(r)Vég(r,r")] — / drp(r)Vég*(r,r") - Vég(r,r’)
= de«Sg'(r, r)p(r)i - Vég(r,r') — /drp(r)lVég(r, r')|2.
s "

Since gy(r,r’) and g,(r,r’) satisfy the Neumann boundary condition, the
above surface integral is zero.

Hence,

- [ drptwvag(e, P + / drk(r)lbg(r, ') = 0.

Vi

Taking the imaginary part of the above, we obtain

- / drSmip(r)||Vég(r, =) + / drSm{k(r)]|6(g(r, ') = 0.
i

W

For a lossy medium, the imaginary parts of —p(r) and k?(r) have the same
positive sign (for example, in a two dimensional problem, V-(¢"'VH,) +
w?uH, = 0), so the above equation is only possible if §g(r,r’) = 0 every-
where in V.

So the unique solution only exists in a lossy medium and for lossless
medium, it always imposes a singular problem on L.

Sinced = ~M " -F-c, when at the resonant frequencies, M M'is singular,
in order for a finite d, ¢ must be infinite.

Assume a is an eigenvector of L and ); is the corresponding eigenva.lue.
In the singular value decomposition method S = S soL=58.X.§
ca.nbewnttenasS L=2X:S. Then,S.-L-a=S§- Aa—,\S -a, which is
equal to X-S-a. Hence, J; is an eigenvalue of X and since X is a diagonal
matrix, its diagonal elements are just );, the eigenvalues of L.
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(d)

(e)

Since M = A-L ' -A' and A is an invertable matrix, M ' = (A )t -
L. (X—l). At the resonant frequency, assume that L has an eigenvector
a with zero eigenvalue. Then,

M' A.a=(A")-L-a=0-a,

which implies that M~ has zero eigenvalues. In other words, M has
infinite eigenvalues.

By setting the zero eigenvalues of L to a small nonzero number,
M =@&")-E-X7.85).@&,

where the singular value decomposition is invoked. The matrices on the
right hand side of the above equation are all invertable, so M is com-
putable. Since condM ') < cond(K_l)%ond(X), and X is almost a
singular matrix, we can expect that cond(ﬁ-l) is quite large.

§8.34

(a)

(b)

When the internal resonance exists in a cavity, there is no unique solu-
tion to this problem. But we know that if the medium is lossless, the
uniqueness of the solution is not guaranteed at any frequency. Therefore,
the internal resonance poses a problem only for lossless media in S. Since
for lossless media, p(r) and ki(r) are real values in Equation (8.8.9a),

L is a real symmetric matrix (assume that the basis functions are real).
Therefore, for a real symmetric matrix, L, its eigenvalues are real.

A new L is defined such that T = T + 161, where i6 is a pure imaginary
number, Assume that ) is one of eigenvalues of L and its corresponding
eigenvector is a. Then,

(L +i6I) - a = da + ida = (A + ib)a.

Therefore, a is an eigenvector of L and the eigenvalue is A + i§ , which
can not be zero since A is real and 6 is pure imaginary.

§8.35

(a)

Let us impose the impedance boundary condition 7 - Vg; = Zg, on S.
Then, from Exercise 8.32, the elements of L can be expressed as

Lom = f dS fn(F)p(r)Z(r) fa(r) - / dEV f(x) - p()V fo(r)
S Vi

+ | drfa(r)k3(r)fa(r).
/
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(b) Since Z is complex, L is a complex matrix, which requires its eigenvalues
to be complex. Therefore, the problem can be treated as a lossy cavity
problem in which the internal resonance does not exist. '

§8.36

For the field in V}, we write ¢1(r') = @ine(r’) + Psca(r’), where ¢,., is the
scattered field due to the inhomogeneity in V;.

(a) The Green’s function g,(r,r’) satisfies (8.8.3)
[V p(r)V + E{(r)lga(r, ') = —6(r — ') (1)
and the radiation condition at infinity. Then, for r € V; we define
F(l‘) = /dS' [gl(ra l")ﬁ * V'¢aca(r1) - ¢aca(r’)ﬁ . V'gl(r, l")]. (2)
5
Using Gauss’ theorem, we show

F(r)= / AV’ V' (15, PV brea(t) — boea(F) Vi (1, 7)),  (3)
i

= / AV' V' - (010, F) V'buca(r) = buca @)V a1 (r, ). (4)
i+Wo

In the above, we have used the fact that in V; both ¢,,(r') and ¢,(r, r')
are nonsingular, and so are their gradients in Figure 8.8.1.

Using Gauss’ theorem again for (4) we have

F(r) = / dS' [1(r, 7Y V'uca(t) = buca(F)it - Vea(r,1)]. (5)
Seo

The above integral is equal to zero due to the radiation condition at
infinity for both ¢, (r) and g,(r,r’). Thus, finally we have

F(r)=0= /dS’[gl(r, ')A Voo (t)) — uca(t)t - Viga(r, 1)), TEW
5

(6)

Using the above equation, Equation (8.8.6) can be rewritten as

¢1(l') = / ds’[gl(rs rl)ﬁ * V,¢inc(rl) - ¢inc(r')ﬁ * V'gl (l’, l")], re V'l (7)
S

(b) If ¢(r) = dinc(r) + dsca(r) in V5, then we define

F(r) = / dS’ [go(r,r")2 - V'ine(r') — ine(r')it - Vigo(r,r")].  (8)
S
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For r € Vp, F(r) must be zero, since this situation is equivalent to the
entire space being homogeneous. Thus, we have

/ dS’ [go(r, )7t - V'ine(r') = dinc(r')ft - Vigo(r, )] =0, reVo (9)
5
i From the above, (8.8.5) reduces to

Psca(r) = — /dS’ [go(r,x )it - V' ea(r') — Paca(r) 2 - V'go(r, )], re.
S

(10)
§8.37
i From Maxwell’s equations in the frequency domain
V x E(r) = iwpH(r) (1)
V x H(r) = —iweE(r) + J(r), (2)

we can interprete the —iweE(r) term as the electric polarization current
(displacement current) and —iwpuH(r) as the magnetic polarization cur-
rent. We can add a fictitious magnetic current M(r) into (1), giving

V x E(r) = iwpH(r) — M(r). (3)
i From (3), we have

pV X p”'V x E = iwuV x H — uV x u~'M,
= w? ek + iwpd — uV x p~'M. (4)

Thus, the wave equation becomes
pV x u7'V x E — k¥(r)E(r) = iwpd — uV x p~'M. (5)

iFrom (1) and (2), we can see that the induced electric current is in the

E direction and the induced magnetic current is in the H direction. The
second term in (8.9.13) is

F(r) = — / dr' G(r,r') - (W) x [V' x E(r')]. 6)
v
Using (1), we have

F(r)= - /dr’ G(r,r) - (uV'u™Y) x [iwpH(r")),
v

= /dr' G(r,r') - uV' x g 'ME(2). (7)
v
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Here M’ is the induced magnetic current which is defined as
Mi(r) = —iwuH(r). (8)

Comparing (1) and (8), we can see that this term is related to the induced
magnetic current.

§8.38
The matrix in (8.9.23) is

: = VV
Nmn = [ dr O(r) En(r)- {1+ —5 | - [ dr'g(r,r')O(r')E, ("),
faomao (+3) |
= / dr O(r) E,,(r) - / dr'g(r, r')O(r')E.(r")
\"AY
+ [ dr O(r) En(r)—5 - [ dr'g(r,r)O(r)E.(r). (1)

The last term of the above is

Fom = kif‘,,/dr O(r) Em(r)VV/dr' [Vo(r, e} - O(x)EA(x). (2)

Using the identity of Vg¢(r,r') = —V'g(r,r’), we can show

Fom = .’;]:Ev/d!‘ O(r) Em(r)v‘,,/dr'g(r’ r')V' : [O(l")E,.(l")],

--% / dr V - [O(r)En(r)] / o)V OB

In the above, integration by parts has been used twice, and O(r) equals
zero for r — oo has also been applied.

i From (1) and (3), we have

N = / dr O(r) En(r) - / dr'g(r,r")O(r')E,(r')

14 |4

1 ’ N v ’ ’
& ‘/drv - [O(r)En(r)] V/dr g(r, r)V' - [O(x)E,(1')). "

Since g(r,r') = g(r',r), (4) is symmetric with respect to n and m. There-
fore, [Nnm] is a symmetric matrix. It is clear that the multiplication of
O(r) has forced both integrands with respect to r and r’ contain the same
function of O(r)E(r). Meanwhile, g(r,r’) is symmetric with respect to r
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and r’. Therefore, the final matrix is symmetric. Without the multipli-
cation of O(r) as in (8.9.19) the matrix [N,,,] will not be symmetric.

§8.39

The volume integral equation for the field in materials with homogeneous
p is (8.9.14)

E(r) = Eqnc(r) + / d¥ G(r,r) - O(r)E(r). (1)

If the scattering is very weak we can consider that the scattered field is
a small perturbation to the incident field. In this case, the second term
on the right hand side of (1) will be much smaller than the first term on
the right hand side of (1), and O(r) <« 1. We can have a Newmann series
expansion of (1)

E(r) = Ein(r) + / dr' G(r,r') - O(r')Ein(r')
v

+ / dr’' G(r,r") - O(r") / dr" G(r',r") - O(r")E;pnc(r")
v v
+...

= Eincl(r) + / dr' G(r, ') - O(t')Einc(r') + Order(O(r)?).

v (2)
The first two terms are the Born approximation. The error is higher order
in (k% — k2).

§8.40
(a) Given an integral of the form

I= dr'g(r, rI)Q(r’), (1)
/

where g(r,r') = e®I*=1/47|r — ¢'|. By normalizing § = r/L and 9/ =
r'/L, we have

I L3 d ’ eikbL'"“ﬂ" ’L
V/L3
12 / p IeikoLln-n'l ( ’L) 5
- T azin - T @
417



If kyL < 1, then exp(tkyLin — 17']) ~ 1, we approximate

IzLﬁfd'—q—(l"—LLfVOL?* 'L). |
A " ety =y~ OLN'L) ©)

If |¢(r)] « C, where C is a constant, then ¢ is of the same order as ¢. In
this case

I ~O(L*)§(n'L) ~ O(L%9). 4)
(b) Using dimensional analysis g(r,r’) ~ 1/L, [dr’' ~ L* we have

I~0 (Ls%q(r’)) ~ O(L%). )

§8.41

(a) Consider a dielectric slab as in Figure 2.1.3 with d; = 0 and d; = L. For
a normal incident plane wave

E;, = ge™k* (1)
then in region 1, we have an incident and reflected wave
e = e | Rjei*, (2)
In region 2 of a dielectric slab, we have
€2 = A [e—ikz + RnezikL+ikz] ) (3)
In region 3, the downgoing wave can be written as
esr = Ase™ % (4)

Now we enforce the constraint conditions. In region 2 the downgoing wave
is a consequence of the transmission of the downgoing wave in region 1
plus a reflection of the upgoing wave in region 2. Thus at the first interface
z = 0, we have

Ag = Tig + Ay RyaRy e %L, (5)

In region 1 the upgoing wave is caused by the reflection of the downgoing
wave in region 1 plus a transmission of the upgoing wave in region 2.
Thus we have the condition of

Ri2 = Riz + TnRaz Aze** L., (6)
i From (5), we have T
_ 12
Ay = 1 — Ry Rpze?*L” ()
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Substituting (7) into (6), we have

T21T12R2362ikL
1 — Ry Ryze?iL’ (8)
where the TE reflection and transmission coefficients are

2k, 2k
T2 = otk T = Py (9a)
k—kb Ron = k—kb
ky + k' B etk

Rn = Ry +

(9b)

(b) In order to simplify we can rewrite (8) as .

. R12+ RzaezikL
R]z = 2kL "
1-— R21R23€ s

(10)
Using (9b) we have
Rn _ i/%/'f + %:%%eziu,,
1— (é’fiﬁ\/:‘:) 2ikL
_ (- o)

— ) €6

1-0(6€?)
be 2ikL
o~ —-Z-(l —e?*), e— g (11)

where 6¢ = (e — &) /€.
(c) In one dimension, the Green’s function is
! = _Z_ ikbll—zll
9(z,2") 2kbe . (12)
The reflected field from a slab is exactly
0

Eg(z) = /dz'g(z,z')E(z')kf&, z2>0 (13)

~L

In the Born approximation, E(z) =~ E;,(z) so the above becomes

1

tkpjz—z'|  —ikpz' 1.2
—e e kibe
2k, b

0
En(z) ~ / dz’
2L

~ /dz’%—bée eikbze—Za’kbz’

~ eikbz%[eﬁkb[; _ 1]. ‘ (14)
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Thus, we have 5
Ry = - [1 - e0E]. (15)
The Born field reduces to the low contrast slab field only if kydel < 1.

§8.42
(a) The volume integral equation for the scalar wave case is

8(6) = bine) + [ aV's(r, 1) - OGS, &)
1 %4
The Born approximation is

6(£) = Bine(r) + / dV'g(r, ') - O()ina(). ®)
v

We want to find a condition in which the second term on the right-hand
side of (2) will be much smaller than the first term on the right-hand side
of (2). Using dimensional analysis in 3-D, we have

1
g(r, r’) ~ T

O(r') = (k* — k?) ~ k?Ae,,
| / dv' ~ L3, (3)
v

Therefore, the second term on the right-hand side of (2) is of the order
Lk} Ae, Gine. (4)
Thus, the constraint of the Born approximation for the scalar wave is
kiL*Ae, < 1. (5)
(b) In two dimensions, the Green’s function is

o(r,) = SHO(Hr — ¥, ©)

At low frequencies, H, sl)(klr-— r'|) ~ i2In(k|r—r/|). Applying dimensional
analysis in 2-D, we have

g(r,r’) ~ In(kL),

/ dv’ ~ L2,
v

O(r') = k* — k¥ ~ ki Ae,. (7N
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Substituting the above into (2), the order of the second term on the right

hand side of (2) is
L?k? In(k L)A€, $ine-

Thus, the constraint for two dimensions is
kiL?In(kL)Ae, < 1.
In one dimension, the Green’s function is

1

AN —

ky

ikplz—2'|

)
)= —ce
g (Z k] ) 2 kb
Similarly, the constraint in one dimension is

kbLAC,- <1

§8.43
(a) From Exercise 8.41, we have that the reflected field is

¢R(z) = Rlzeik"z, z> 0,
and the field inside the slab is

¢(Z) = Ag (e—ikz + steﬁkL-sz) ,

where
- R12 + R23ezikL
Ry = 2ikL°
1 — Ry Ryze®
T
Ay = 12

1 ~ Ry Ryze?iL’

and for a dielectric slab

(b) The form of the Rytov solution is

#(2) =~ po(2)e™?, O <z<L,

where _
¢0(Z) = c—'kbza

(8)

9

(10)

(11)

(1)

(2)

(3
(4)

(8)

(6)

(7)



§8.43

309

and the phase perturbation is given by (8.10.26)

P(z) = -

0
) T '
dzl_etkblz—z | 2N0(2'
55 ) e 4ex)0()
-L
0 .
.4 | 2 2| —ikaz’
= —je'h? /dz';,;e”‘“" Zle=itkea' L2 A€
z .
= —jeiksz / dzl%eik;(x—z’) e=o2 |, Ae
o .
— jeiksz / dz’% e=ksla=2) g =ikos' kA ¢

zez"""/dz ik b -2:k.,z + Ae/dz

2ikyz z kb
4 L 2
’Af Qe YA€ iks+2ikl _ k

te

Aee-ﬁkgz'

4 4 2
Substituting (8) into (6), we have

. .k ; ~ ; ;
¢(Z) — e—tk,,z ea[-z-hA¢+ s .IA.: eFihy L+2iky 3]

— e-“kb(l'l"%‘)z +A¢ e2ikp L+2iky )

e[‘

Notice that .
— —1=Ae,
€
€ = e(1 + Ae),
and

k=w\/ﬂ_€=kb\/1+Ae:kb(1+é25)

Using the above in (9) becomes

¢(z) —_ e—ikze-A‘se[A‘gcz-‘kbuzikbz]

_ -tkz (1 - _94_5) (1 + __A4__ee2tkbL+21k¢,z) + O(Aez)

(®)

(9)

(10)

(11)
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In part (a), if Ae < 1, then

_ Ty,
1- Rnsteml‘

~ 2y _ 2V 2
_T12+0(A6)—\/e_,,+\/€+o(Ae)
Ae

=1- =7t O(Aé). (12)

A,

Thus, the first term on the right-hand size of (11) is equal to the first
term of (2) when Ae <« 1.

Using (12), we can further obtain that

= _é_f ve— V& 2
= 5 +oae)

And when Ae < 1, we can approximate e**L with e?*L, Therefore, we
have that the second term on the right-hand side of (11) is the same as the
second term on the right-hand side of (2) when Ae < 1. In conclusion,

the Rytov solution (11) reduces to that in part (a) when (8.10.33) is
satisfied.






CHAPTER 9

EXERCISE SOLUTIONS
by W. H. Weedon

§9.1
From Equation (9.1.1), we have

E(r) = Eang(r) + / dr' G(r,r') - O(r')E(r') 1)
\ 4

where O(r) = k*(r) — k}. In operator form,
E) =Eimc) +G-O-E). (2)

The above is a Fredholm integral equation of the second kind, since E(r)
appears both inside and outside the integral. A Neumann series may
be obtained by several methods. The most direct way is to recursively

substitute the expression for £) given by Equation (2) into the second
term on the right of Equation (2):

8) - ginc) +g6 [ginc) +§ -5 8)]
=£znc)+g'6'gmc)+a'(—§ Eb—'[g.m)-%-a-aﬁ)]
=ginc)+-g- 5'5;m)+§'5 3'5'5euc)+§-5-§-6-§-6-5)

=... (3)

Bringing the incident field £;,.) to the left side of Equation (2), the scat-
tered field is given by

The above Neumann series is more commonly known as the Born series
and is valid provided that this series converges uniformly (See Courant
and Hilbert, Vol. 1, 1953). It is analogous to expanding Equation (2) in
a Taylor series about the object function, since successive terms depend

(loosely) on O ,52 ,53, etc. Hence, the scattered field is a nonlinear
function of the scattering object O.

The first terms in Equation (4) is linear in O and corresponds to single
scattering within the object. Higher order terms correspond to multiple
scattering. If the object contrast is small (recall O(r) = k¥*(r) — k;), then
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Equation (4) may be approximated with the first term only, neglecting
higher order terms. This is known as the first Born approximation and
is valid in the weak scattering limit only.

§9.2

Using the formulation given in Section 8.6 of the text, we may express an
arbitrary incident field as

binc(r) = Reyp(ko,ro) - a, (1)

where a is the vector of expansion coefficients ..f the standing wave har-
monic basis functions Reyp(ko,ro). In the s.i.zle scatterer case, we ex-
press the scattered field in outgoing wave harmonics,

Psca(r) = '»bi(kﬁv r)-f (2)

where the scattering amplitude coefficients f may be written in terms of
the incident field amplitude vector a as

f=To-a, 3)

and T(y) is the single-scatterer transition matrix. When two scatterers
are present, we write the scattered field as

Goca(r) = P (ko 11) - f1 + Y (Ko, r2) - fo. (4)

The scattering coefficients f; and f; may again be expressed in terms of
the incident field amplitude as

fi =T Bro-a (5)
f, = T2 - By - a. (6)

Now, Tl(g) and _T-g(z) are the transition matrices in the presence of two

scatterers, and B,, and B,, are appropriate translation matrices. From
Equations (8.6.7) and (8.6.8) of the text, the two-scatterer T matrices
may be written in terms of the one-scatterer T matrices as

Ty = [i — Ty - Gz Taq - 2 -
= = = = =1
N STHE [I + @9 - To1) - Boo ﬂm] : (7)

—'fz(z) = [i - —T-Z(l) - Oty - T1(1) . 512] -
- Ty - [i +@ - Ti) Bro Bro ] - (8)

Hence, the single-scatterer T matrices are not the same as the double-
scatterer T matrices and the two-scatterer solution is not a simple linear
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superposition of the one-scatterer solutions. As is clear from the form
of Equations (7) and (8), the two-scatterer solution takes into account
multiple scattering between the two scatterers.

§9.3
The phase delay may be obtained from the WKB approximation as
$(b,w) = ¢(a,w)eiw-r, (1)
where

= / ' o(2)d, )

and s(z2) = k,/w is the slowness of the medium. From elementary Fourier
theory, a phase shift in the frequency domain corresponds to a time delay
in the time domain. That is, if

f(t) = F(w), (3)
then _
f(t=r1) = 7 F(w). (4)
Taking the inverse Fourier transform of (1) and using property (4), we
have
#(b,t) = ¢(a,t — 7). (5)
That is, the field at b is just a time delayed version of the field at point
a.
§9.4
(a) }
— 1 iksz+ikyy
(.9 = G / / dk,dk, e S(ka,k,). (1)
Let, z = pcos¢,y = psing, and k; = k,cosa,ky, = k,sina. Hence,
dk.dk, = k,dk,da and we have
1 2% 0
(08 = g [ da [ dhhemIsh,a). (2
) 0

where we have used the identity cos(a — ¢) = cosacos @ + sina sin ¢.
Note that in the above integral both the exponential e**o<°*(@=¢) and the
Fourier transform slice S(k,, @) remain invariant if « is replaced by a + =
and k, is replaces by —k,. The invariance of the exponential is obvious.
To see that S(k,, a) remains invariant, we write

S(kyya) = / dee=* P(£, a). (3)
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Figure 1 for Exercise Solution 9.4

By observing Figure 1, it should be clear that if we were to rotate the
&, 1 axis by 7 radians, we would find that

P(={,a+7) = P(§, ). (4)
Substituting this expression into Equation (3) above and replacing ¢ by
—£, we have

S(kpv Ot) = S(—km a-+ 1l'). (5)

Thus, Equation (2) can be rewritten as

T

1 > -
(. 9) = Gz / da / dk, [k,|e*r oISk, a)  (6)

0

where we have replaced the factor k, by |k,| to account for its asymmetry.

(b) We are asked to prove

oo e-"l'!l
P.V./ dy 5 = —misgn(z). )

Without the “P.V.”, the above is an improper integral due to the singu-
larity at the origin. The principal value is obtained by integrating along
the real axis from y = —oc0 to —¢ and y = +€ to +00 and then letting
e — 0. The evaluation is simplified by using analytic continuation to
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. Im{y}

I"_ (for x<0)

Rely}

r+ (fOl' X>0)

Figure 2 for Exercise Solution 9.4

extend the integral into the complex plane and using Cauchy’s integral
theorem along with Jordan’s lemma.

In Figure 2, we show a closed contour for evaluating this integral. We have
chosen a semicircle below the singularity at the origin, extending from —e
to +e¢. The contour is closed at co by either I'y or I'_, depending on the
sign of z. For z > 0, we want Re{y} < 0, so that the exponential factor
e~**¥ decays as |y| — oo, and so we choose T';. Similarly, for z < 0 we
want to choose I'_.

Then -
e—i.ty e—t’zy e—i::y
PV. | d = f d - / d 8
/ ¥ ¥y, ¥ (8)
—00 (o) e

where C is the contour along the real axis around I', and closing at either
T4 or I'_. The integral around I, is subtracted off because we only want
the integral along the real axis. We have

[ e [ 0—[miRes(0)), 2>0
F 'V'_ Z dy Ty { [27i Res(0)] — [ri Res(0)], z <0

_ -7, >0
Tl 47, <0
= ~misgn(z). (9)
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Hence,
i i .
P.V./ dy 5 = —misgn(zx). (10)

Taking the inverse Fourier transform of the above,

PV -!1; = / dz(—m1) sgn(z)e'V,
-1 / dz sgn(z)e’™. (11)
Taking the partial derivative with respect to y,
©0
0 1 1 izy
ayPVy =3 /dz |zle (12)

where we have used |z| = z sgn(z).From Equations (9.1.10) and (9.1.11)
in the text,

1 x 00 ' ) o0 y
(0.9 =z [ da [ dlklereed [ ggemiotpig,a)
] -0 -0

L

= (2:;')2 / da / df P(E, a) / dkp'kp'eikppcu(a—¢)—.‘kp€

0
/ WP s =) =]

x P.V. ! . (13)

pcos(a — @) —¢€
The above expression may be further reduced by integrating the £ integral
by parts. However, a generalized integration by parts formula must be

used since partial derivatives are involved. From the product rule for
partial derivatives, we may obtain

/ d{u—— = uv - 7 d{vg—g. | (14)

Let u = P(§,a) an — = %P.V.-:; where y = pcos(a — ¢) — €. Invoking
the Chain rule,

L
272

o\

5~ oy % oy (19)
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and thus v = —P.V.(]). Then

J reag ey (2) --reorn (3)

+PV. / d{ap(g,a) (-!1;) s

If we assume that the scattering object has compact support, then
P(c0,a) = P(—o0,a) = 0. It follows that

"' Nt P(§,a)
s(p,4) = —= / da PV. / & de. (17)
’ 22 peos(a — @) — €
. 0 -00

(c) For the fixed measurement configuration shown in Figure 9.1.3 of the
text, we obtain the slowness profile as a function of the y’ coordinate
only as

o0
PO) = [ s(a ) (18)
)
If we were to rotate the entire measurement apparatus by an angle of a,
but keep the object fixed, we would obtain

[

mm=/@%m (19)

-0

where £,n represent the the rotated coordinates. It is desirable to express
the slowness profile in terms of the fixed coordinates (z’,y’). To do this
we must integrate s(z’,y’) over both z’ and y’ at a fixed value of £ given
as the projection of (z’,y') in the £ direction, £ = p-€ where p = iz’ +§y'.
Hence

P(€,a) = / &z’ / dy' 6(p- € - £)s(a',¥'). (20)

We may also write the above in terms of the fixed cylindrical coordinates
p,¢ where z' = pcoséd, y = psing. We have dz'dy’ = pdpds, £ =
—Zsina+ycosa,and p-€ = —pcos ¢sina + psing cosa = psin(é — a).
Thus,

Y14 -]

P(€,a) = / d$ / pdplpsin(é — a) — E)s(p,4).  (21)

0 0
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§9.5

(a)

(b)

Starting with Equation (9.1.22) in the text,

s(r,9,¢)=(2:r)3 / dﬂ/dasina/ d¢ P(¢,B,a) / dk k2eik(kr-8)
0 0 -0 —00

(1)
The last integral may be simplified using
/ dk K2e* -0 = _ong"(k . — g). @)
Hence the last two integrals in Equation (1) may be rewritten as
i . , O?P(k r,5,0)
-2 dé P(£,B,a)8"(k-r—§€) = =2 3
Z € P(E, B,2) 8"(k - x — €) s ©

and thus

2

s(r,0,9) = (2 )2 / dﬂ/ da sina (6 5 (k-r,ﬂ,a). (4)

The forward transform is derived in a manner exactly analogous to the
2-D forward Radon transform.

In any number of dimensions, the slowness projection along a direction é
is given as

P& = [dm-- [ dnaasie,m) (5)

where 7; L € for i = 1,n — 1 and n is the number of dimensions. But
this is just the Fourier transform of s(§,7) with respect to the (n — 1)
dimensional vector 7 evaluated at k,, = 0.

Writing

S(kf,k,,)=/dxs(§,n)e“""=/d{ / dm.../dnn_l s(€,n)e” k>

(6)
with x = (€,9) and k = (k¢, k,), we have

S(ke,€) = S(keyn = 0) = / de P(€, E)eiket )
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where we have discarded 7 = 0 and included the parameter f‘as the
second argument to S(:,). The inverse Fourier transform of S(k, k) may
be written as

— 1 1 "~ n—1_ik-x 1.
s(x) = @r) «/t; dk / dk k" e *S(k, k). (8)
0
By geometrical arguments (see solution for Exercise 9.4(a)) we can show
that
P(-é" —E) = P({,f) (9)
Similarly, ) X
S(—kfa _é) = S(kfa E) (10)

since k¢ = € (this may also be derived from Equations (7) and (9)). This
means that we may rewrite Equation (8) as

= 1 I i n-1_ikx 7
) = G [m dk-l dk |E*-1e** S(k, ), an

where B/2 is an arbitrary half of a unit ball. Substituting (7) into (11),

1 ) 0 X 00 ‘ .
s(x)=z—2-1$ /B ., dk / deP(¢, k) / dk |k["teix-ik . (19)

From Equation (9.1.14) of the text it follows that

o1 1 i | .
g _Pv-=-L | dklkrreit
s PV == [ dklkrien, (13)
and so -
-2 / - / Y S
s(x) = - dk déP(E k PV.- 14
() (27i) Jsy, J LR )6y"" y (14)

where y = k - x — £. Integrating by parts (n — 1) times gives

=2 . [ 1 Pk
)= oy "”‘_/ ®rx—c oo W

(c) In odd dimensions, Equation (12) can be written as

s(x) = (2i)n /B ’ dk / dEP(E, k) / di kr-1ekx=i (16
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Using the identity

‘n—-1

oo -1
1 / dk ke = il é(z) & 6"’1(:1:), (17)

2% ~ dzn-1

the last two integrals in (16) above may be rewritten as

2x > N enel(l o _ _ 2 on! ;3
=3 l APk ox =€) = o Pex k. ()
Then ! -1
s(x) = (—27-}-;)"—_1- /13/2 dkmp(k - X, k). (19)

§9.6

Since we only have a single transducer, we are only allowed backscatter

data where kg = —kr. But from (9.1.31) of the text, the scattered field
is proportional to

O(kg — kr) = O(2kg) = O(2kokr). (1)

Since ko = w/co where cq is the free-space velocity, it is clear that the
Fourier space of the object may be filled out by varying both the frequency
w and the incidence direction of the single transducer kr. Since the
transducer is bandlimited by 0 < w < 2, we obtain a windowed version
of the object Fourier transform O(k, k) where 0 < k < 22, Assuming
that the transducer has unity gain over the entire bandwidﬁx, the inverse
Fourier transform of O(k, k) gives the true object O(r) convolved with
a sinc function (in rectangular coordinates). Hence, the resolution is

determined by the width of the main lobe of the sinc function, given as
Az = 2,

§9.7

(a) We are asked to consider the locus of k' — k with both k’ and k sweeping
over the angles 0 to 180°. It should be clear upon examining Figure
9.1.9 of the text that the locus is the two disks showri. Otherwise, the
locus may be determined by letting k' = k(Zcos¢’ + §sin¢’) and k =
k(Z cos ¢ + §sin¢) and plotting k' — k for 0 < ¢’, ¢ < 180°.

(b) For the backscatter experiment, we have k' = —k and so k' — k = —2k.
Since k varies from 0 to 180°, it is clear that the locus of —2k is a
semicircle of radius 2k, in the lower-half k plane. If the backscatter
experiment were performed varying the transmitter and receiver angles
independently, we would fill in the semicircle in the lower-half k plane.
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§9.8
(a) From Equation (9.2.1) of the text,
A¢zz + 2B¢zt + C¢tt = ¢(¢a ¢t1 ¢z, 2, t)' (1)
Assuming ¢ to be discontinuous in the vicinity of the characteristic, we
have
#(z,t) = u(z — vt — a). (2)
Hence
. 2 u'(z—vt—a), ¢~ —vu'(z—vt—a) (3)
and

$.: = u"(z — vt — @), ;s ® —vu"(z — vt — @), du = vV?u"(z — vt — a). (4)

However, the most singular terms of Equation (1) above cancel each other
and since the right hand side of Equation (1) is of order u/(-) (due to ¢,, ¢)
and u”(-) is more singular than u/(-), we must have

A—-2Bv+Cv?=0. (5)
(b) For the wave equation
& 1
("a? - -c-z--a?) #(z,t) =0 (6)

the characteristic curve is given by
z=2c(z)t +a (7N

where we assume that c(z) is non-dispersive (does not depend on time).
If we assume that ¢ has a discontinuity given by

#(z,t) = u(z F ct — a), (8)
it follows that
$:: =u"(z Fct—a) and ¢y = c'u"(z Fct—a) (9)

and hence ¢(z,t) satisfies Equation (6). If ¢ were frequency dispersive,
then we could express the characteristic curve in the vicinity of time ¢,

as
z = %e(z,t,)t (10)
(c) Using the chain rule, we may write
do. d
;; = v¢,, + ¢, and i‘;—t = ¢+ ¢u‘v—1 (11)
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then

A¢zz + 2B¢zt + C¢tt

-4 oy 2oy )

The last term in Equation (12) alone is zero by virtue of Equation (5)
above. Then using Equation (1),

Av -‘di‘ +Cv j ®. (13)

But
" _dg. _ dt dg, _ do,

dt ~dz dt  dz°

Substituting Equation (14) into Equation (13) and multiplying through
by dz gives

(14)

Ad¢, + Cvdo, = Pdz. (15)
§9.9
(a) For the wave equation
o 1
(5;2. 62 atg) ¢(Z t) = 0 (1)
we have A =1, B = 0, C"—?' = 0 and hence v = +c. Then
Equations (9.2. 9a) and (9.2.9b) become
1
d¢; — —dé, =0 on Cy (2)
and 1
doé, + zddu =0onC_ (3)

(b)

With knowledge of ¢ and ¢, for all z at t = 0, we may solve for ¢, ¢,
and ¢, for all time using a finite difference scheme. First, we discretize
the time and space variables as shown in the Figure below. We are ; :ven
values of ¢ and ¢; at points N, @, M and we wish to derive the fiel: : ¢,
¢z, ¢: at point P. Once we have a formula for deriving the fields at P
from those at N, Q, M the algorithm may be used recursively to derive
the fields everywhere. Of course, an absorbing boundary condition must
be used to take care of the endpoints of the grid.

Using the notation of the Figure, Equations (2) and (3) may be rewritten
as



§9.10 — 323

Figure 1 for Exercise Solution 9.9

1
¢:(P) = ¢:.(M) + ;@[¢:(P) — ¢(M)). (5)

Equations (4) and (5) may be combined to give

8:(P) = 516 + GO0 + 5B — (0] (©)

c 1
84P) = iy, (W) ~ 4.00] + LN + 00 (D)
Next, we let Az, = c,At and so
#(z2,t) = p(nlz,, lAL) = ¢L. (8)
Then, Equations (6) and (7) become
1 1
¢ = §[¢Iz,n-1 + Grnpa) + ‘éc_[¢£,n—l - $tnsr)s (9)
3 = 204y = Bl + 5B + B (10)
tn T 2 z,n=-1 z,n+1 2 t,n-1 t,n+ll°
The initial value of the derivative ¢, may be obtained using
$n — Sa-
$om = —_Az,.—_l (11)

and finally the field ¢! may be obtained everywhere from
i1 = Pn + Prndzn (12)
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Equations (9), (10), and (12) may be used recursively to obtain ¢, ¢.,
and ¢, for all time and for all z.

§9.10

®)
0 0? 18 5}
K Y+ o~ g h Y = @

Let
P(z,2,t) = —= (2 z / dkye'*=* / dw e ¢(z, kz, w) (2)

T = ELGkw) (3)
Assume p = pu(z), ¢ = ¢(z), 6 = d(z). Then by linearity, '
u(.?z# aazfi,uw} k;.w{ ,fz 'l—‘ﬁ} (4)

S FS) = F (k) 3)

~Srns = mn{ G}, ©)

o g Fi A9} = Fil fiwnas). @

Substituting these quantities in Equation (9.10.1) above,

-1 a —1a 2 2
FoL p-p (—9;+——k +iwpo | ¢ =0. (8)

Since the above holds for all z, ¢, we may perform the forward transform
corresponding to Equation (2) on both sides of Equation (8), or equiva-
lently remove the F_' {-} ouerator from the left hand side of Equation
(8) to obtain

a -1 a 2 2 .
Haoh ™ o+ S = K iwno ) 62, keyw) = 0 (9)

which is the same as Equation (9.2.11).
(b) If we let k; = % cosé in Equation (9), we have

d _,0 . ) w
(,u-é-; 15 + -c—zsm2 0+ zw,ua) ¢ (z, ~ cos é, w) =0. (10)

Now let w
¢ (z, — cos G,w) = Fi{¢(2,0,t)} (11)
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Substituting Equation (11) into Equation (10) and moving the F; oper-
ator to the outside, we have

F{ (hgen 52— mgm—wog ) Km0} =0 (2)

where we have defined ¢ = sil‘f—;—;. Since Equation (12) must hold for all
w, we may remove the F, operator to obtain

(0 _,0 18 i}
(ﬂaz laz 2o et ) = 01) =0 (13)

which is equivalent to Equation (9.2.13) in the text. The equation

§9.11

$(z,2,t) = (21 e [ doe e k) ()
may be rewritten as
(2, keyw) = / dz/dtt/:(z,x,t)e""”""“‘" (15)
or - -
¢(z,‘-z-cosa,w) = / d:t/ dt Y(z, z,t)e~cToosd+ivt (16)
then -
' 1 —iwt! w
¢(z,0,t)=§/ dwe ‘¢(z,—c-cose,w) a7
/ dZ/ dtl,b(z z, t)( ) /d&d —iw[t' =14 £ cos ] (18)
6(2,6,¢') = / dz / dt(z,2,0)6 (1=t = cosd)  (19)
,  WT
= / dzy (z,z:,t +—c—cos0) . (20)
19 9 1

62
pappap¢(m ) - g(—;)'a—,fi’(mt) =0 (1)
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The above may be rewritten as

2 10 10
(554 53~ 3w o0 =0 @

From (9.2.1) in the tex;, A=1,B=0,C = —-%, &(p,¢) = -%5f and
hence vy = *c. Equations (9.2.9) in the text now become

1 1

dé, — zdd’: + ;ff’p =0 on C (3)
1 1

dé, + zd¢t + ;¢p =0 on C. (4)

The layer-stripping algorithimn follows from Equation (9.2.17) in the text
which we repeat as

1
p.m+1 ¢:m - :’(¢:,m+1 - ¢£,m) - @, Apm =0o0n Cy (5)

lp.m+l ‘H (¢: ml ‘H) & Ap, =00n C_ (6)

where
0 1 9¢!
| = P = Z%m
om = apgz')[mAp,,.,(m+ DAL, em = c(pm), Prn o _Bp . (D
Then from Equation (9.2.19) in the text,
- -cl—¢:,m —®lc At=0Vm ®)
o 1 1
}Jm - z:¢:,m + ;:¢:,mcmAt = 0 V m. (9)
1
C,zn (;—.At(ﬁl'”‘) - cm(d’:"'n) - ¢ll,m =0, (10)
n it /(8hn) + 42001 0L, an
2 At ¢p,m .
§9.12

Consider the 1-D inhomogeneous profile shown in Figure 1 consisting of
several dispersionless fine layers with equal travel time. That is,

dive = di i€y = ... = dn\Jlin€n = 7. (1)
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S A L

» X
P =5 (t—x/c)
d, d, d d,
Figure 1 for Exercise Solution 9.12
Let the incident field consist of the impulse plane wave
z
,-,w:z:,t =6{t——]. 2
e ) =5 (1= ) @
It is readily verified that the above is a solution of
2 18 4 =0 3
oz2  20z2 ) T T (3)

Now since we assume that the layers are dispersionless, the reflection and

transmission coefficients for each layer are independent of frequency. To
see this, we write

Rios = €irrki — €ikin _ Gn i€ — Ghi€in 0 — i (4)
il = = =
* €inrki + €kivi € li€ + €€ N+ i
and 9e.i k 0
2€i41K; i
Tiipr = = 5

T ki ekisr 0+ i ®)

where

7h'=\/’—‘i-
€

Assuming that the incident pulse strikes the first layer (z = 0) at time
t = 0, the scattered field may be written using a geometric series as

Psca(2,1) = Ar6 (t + %) + A6 (t +% - 27)

+A36(t+§—4f)+A46(t+3—;—-67)+--- (6)
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TR E———

where ’ . ‘ Saties

A, = Ry

Az = Ty Ri2Tho

Az = Tn R12Ri0R12Tho + TonT12R23T21 Tho

Ay = Ty Rya Ryo Ry Ryo Raa Tho + Tor Raz RyoTh2 R23T21Tho
+ To1T12 Rya Ry RosTon Tho + Ton Th2 T3 Rag Ta Ty Tho

(b) Using time gating we can recover the coefficients 4;, Az,... , 4, in Equa-
tion (6). From A, we know Ry, and 7; may be determined from Equation
(4). Then Ty, and Typ may be determined from Equation (5). Then from
A; we may determine R,; and using Equations (4) and (5) we may solve
for 52, Th2, T2;. Then in A3 the only unknown is Rjyswhich determines
3, Tos, T5;. Similarly in A4 the only unknown is Rj,. This process is
repeated until the impedance of all of the layers are unraveled.

§9.13
From Equations (9.2.30) and (9.2.31) in the text, we have
ZUD 1 - V(O =0 )
where 5
V()= n'%gz;n%- (2

Now, however, the potential is frequency dependent since ¢ = ¢ + i is
complex and we have

veo-(7e) salAs) @
where .
= \/#(Z') [+ 25 ax @

Note that although ¢ = (' + (" is now complezx, if we assume €, o, u to
be analytic functions of space, then 58-(7 = a—&ﬂg. Alternatively, we may

use the fact that 5‘% = v’ai:,- and write

V(¢,w) =[u(z)] [e,(zf) + ia%,_)]-%

(%)

x _412__ #(zr)
dz? 5’(2,.) 4 zg—%ﬁ- zr=Re{z(()}
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with
¢

0= [ {uor|eer+s “')]} o’ (6)

¢

Equation (1) becomes

azz/)a(g'o: @) +w2¢(<’w) V(¢,w)y((,w) = 0. (7)

Applying an inverse Fourier transform to Equation (7), we have

2 2
. g(ccz’t) -2 '/é(ti’t) V() *b((t) =0 (&)

where V((,t) is the inverse transform of V({,w) and * indicates convolu-
tion in time.

§9.14

(a) The Schrodinger equation given by Equation (9.2.34) along with the
boundary condition of Equation (9.2.35) may be related to the transmis-
sion line shown in Figure 1. Defining v(0,t) = ¢(0,t), i(0,t) = — £ ¢(0, t),
Z, = } and i,(t) = §'(t), we have

i(0,8) = () - 221 1)

9
or

9 '
~5¢9(0,0) = 8(t) ~ h4(0, ), (2)

which is the same as Equation (9.2.35) in the text. This is equivalent
to having an impulsive source backed by an impedance boundary on the
left. It is a sheet source because it is a 1-D problem and hence there is
no variation in any other space dimension.

(b) The 1-D Schrodinger equation is given in Equation (9.2.34) of the text
and repeated here as

i S
|5 - 2 - VO] el = ©

We assume that the scattering potential V(() has compact support and

is identically zero for || > L. In the frequency domain with |{| > L.
Equation (3) becomes

[-a-ag,-+w ] $(¢w) = 0. (4)
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i(0,t) —» (L) —
+ +
Z, v(0,t) v(L.t)

—ls _J
generator £=0 line C=L

ig(0.1)

Figure 1 for Exercise Solution 9.14

A general solution to Equation (4) with || > L consists of the super-
position of a plane wave travelling to the right ¢,,; corresponding to an
outgoing wave and a plane wave travelling to the left ¢;, corresponding
to an incoming wave. We write

(¢, w) = dout((,w) + din((,w), ¢>L (5)
= A(z)e™ + B(w)e <. (6)

The radiation condition that ¢({,w) is outgoing when { — oo corresponds

to B(w) = 0. Then
#(C,1) = -211; / dw A(w)e™ ™t =gt —-¢), ¢>L (7

where a(t) is the inverse Fourier transform of A(w), which is clearly a
causal solution.

Finally, we note that the above principle is not restricted to 1-D and
follows for the 2-D and 3-D cases easily. It also applies to the variable
velocity acoustic and electromagnetic wave equations.

§9.15
Given the Cauchy data on ( =0,

G(0, 1) = 26(¢), (1)
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0

a¢
we are asked to use the method of characteristics to show that the support
of G((,t) is as shown in Figure (9.2.5) of the text. From the Schrodinger
equation (9.2.49) and Equation (9.2.1) we deduce that A = 1, B = 0,
C = -1, and ® = V(¢)G(¢,t). Then from Equation (9.2.6), vy = *1.
Substituting these quantities into Equations (9.2.9) gives

dG(¢,t)c — dG(¢, 1) = V(()G(¢,t)d( on Cy, (3)
dG((,t)c + dG((,t)e = V(C)G(¢,t)dC on C_. (4)

Since V; = +1 and the Cauchy data consists of a single point on the
¢ = 0 axis, the function will fill out a triangular region in the ((, t) plane.
To see this, we discretize the ( and ¢ axis and let { = nA, t = IA. The
impulse at n = 0, | = 0, first propagates to | = A, n = %IA. The point
at n = A, l = A, can then propagate to both n = 2A, 1 = 0, and n = 24,
I = 2A. This process repeats until the shaded triangular region in the
Figure is filled out.

G(0,) + hG(0,t) = 0, 2)

Figure for Exercise Solution 9.15

To see that the general solution to Equation (9.2.49) is of the form
G(C,t) = &(¢ —t) + 6(¢ + t) + K(¢, 1),

we recall that the characteristics of Equation (9.2.49) are along V = +1.
By symmetry, the impulse 26(t), at ( = 0 splits and travels along the
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characteristics. The symmetric kernel K({,7: hnich is nonzero in the
triangular region shown in Figure 1 accounts . ‘1e wal:» of the impulse
as they propagate through the scatterer.

§9.16
The general form for G(¢, t) is assumed to be

G(¢,t) =6(¢ —t) + 6(C +1t) + K(¢,1). (1)
Substituting this expression into Equation (9.2.49) leads to
K(C, t)~ a(,K(C,t) + V(QIK(C, 1) +6(¢—t) + 8¢+t =0. (2)

Substitution of Equation (1) into the boundary conditions of Equations
(9.2.50) gives

—gf K(G,)| _, +BK(0,t) +2h6(t) =0, (3)

K(0,t) = 0. 4)
Matching the most singular terms in Equation (2) gives

(62 62>K(( £) = V(OIS(C +1) + 6(¢ ~ ¢ it (5
ac: ~ o )= (+8)+6((~t)], (=~ (5)

This implies that K(({,t) must be discontinuous in the vicinity of ¢ = +t
and given the triangular support of K((,?), it is fair to assume that

K(¢,t) = F(¢ t)u(t + ¢) — u(t — Q). (6)
Then

(55~ 3) K60 == | (35— 35) €. e = 0
+2|(g+5) fG0] 8-

(35~ 33) Fc.0] e+ 0

2|(F-5)/@lae-0. @

Substituting Equation (7) into Equation (5) and matching the most sin-
gular terms gives

+

+

2(30+3) F60] L, = 22500 =25 KCO =V, ®
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2( 2 - 5) FGD| =25/ -0 =2 KGO = V(O ©)
Combining Equations (8) and (9), we have
d
V()= 23‘5K(C,iC)- (10)

Then substituting Equation (6) into Equations (3) and (4) and matching
the most singular terms gives

___ h=K(0,0). L (11)
§9.17
(a) The Gel’fand-Levitan equation is given as
q
0=£(¢, D)+ [ drK(¢,Df,T)+ K, T) 1)
0
for 0 < T < (. f(7,T) is obtained from measurement data ¢,({,t) where
$1(¢,t) = &(t — ¢) — Kr((, t)- (2)
Using the relation
F.T) = ~5{K:(0, It = T) + (0, It + T}, 3)

Equation (1) may be solved numerically for K({,t) by discretizing the

problem and representing f(¢,t) and K((,t) in terms of sub-domain basis
functions. We let '

M N
FG=)") amafma(Cot), (4)
P Q
K(C,t) =)D bpgkpe(C,t), (5)

where we assume that the scatterer has compact support so that f((,t)
and K((,t) may be represented in terms of a finite number of basis func-
tions. The subdomain basis functions fma((,t) and kye((,t) may for ex-
ample be 2-D pulse or chapeau functions and are chosen to model f((,1)
and K((,t) to the desired level of accuracy.
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Substituting Equations (4) and (5) in Equation (1) gives

m N M N P Q ¢ ’
0= " anafmn(C, T+ DD 3> amnby / drkpg(C,8) frmn(T, T)
m=1 n=1 m=1 n=1 p=l ¢=1 0 )
P Q
+ Z Z boekpe(, T) (6)
p=1 ¢q=1
Now let ]
e, T) = [ (€, ) (7, T) (7
0
and define the inner product
(w.O.w¢) = [ dc [ at u(cic,e) (8)

Then taking the inner product of Equation (6) with the weighting vectors
w,s((,t), we have

M N M N P Q
0= Z Z amn(wrn fmn) + Z Z Z Z amnbpq(wrs,gmnpq>
m=l n=1 m=] n=1 p=1 ¢=1
P Q
+ Z Z bpg(Wrs, kpg)- (9)
p=1 ¢=1

The above may be written more conveniently by arranging the elements
{amn} in a single vector a of dimension MN and {b,,} in a vector b of
dimension PQ. Similarly, (w,,, fmn) may be written as the RS x MN
matrix F and (wy,,k,,) may be expressed as the RS x PQ matrix K,
where RS is the dimension of the space spanned by the set of weighting
vectors w,s(¢,t). The inner product (wy,, gmnpe) May be written as a third
rank tensor G with the property that

G b a = Gromnpebpe@mn (10)
and summation is implied over repeated indices. Then we have

F-a+(G-b)-a+K-b=0. (11)

In Equation (11) above, the matrices, F and K and the tensor G may be
calculated for a given basis set. The vector a may be determined from the
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(b)

scattering data. The only unknown is the vector b. To simplify Equation
(11), we define the rotation of G as

ar = (Gramnpq)r = quramn- (12)
Then Equation (11) becomes
F.-a+(G -a)-b+K-b=0 (13)
or — . _
(G™-a)+K]-b=-F-a (14)

where (-)* is the matrix transpose operation. Then

b=-[(G -a)+K|"-F-a (15)
Note that the matrices involved are highly sparse and (15) may be in-
verted rapidly.
The Marchenko integral equation is given as

¢
_K(C,t) = Ky(0,t + ) + ] K(¢,)E(0,t+7)dr, (>t (16)

where K;((,t) is the scattering data. Equation (16) may be solved by
expanding K((,t) in 2-D basis functions as before, but now we need only
expand K3, (0,t) in a 1-D basis set. We write

M
((0,8) = ) am funlt) (17)

m=1
P Q

K(C,t) =) bpokpel(C, ). (18)

p=1 ¢=1
Equation (16) becomes

M

P Q
- Z Z bookpq(C,t) = Z amfml(t + )

=] gq=1 m=1
Q 4

M P
t Z Z Z mbpq / dt fm(t 4+ T)kpe(C, 1)
m=1p=1 ¢=1 t (19

)

Now letting

4
gmpq(c’t) = / d‘rfm(t + T)km(c,t)a (20)
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and taking the inner product with weighting vector w,,({,t), we have

P Q M
33 g (wea(Cr 1) kpa( G 1)) + D am(wes(C, ), Fim(t + )
M P Q
+ z Z Z A bpg(Wrs(€12), gmpe(€, 1)) = 0. (1)

Then {b,,} may be written as the vector b of dimension PQ and{an} as
the vector a of dimension M. The inner products (w,,(¢, %), kpe(¢,t)) and
(wrs(Cyt), fm(t + ¢)) may be written as matrices K and F of dimension
RS x PQ and RS x M while the inner product (w,s({,t), gmpqe(¢,¢)) may

be written as the RS x M x PQ tensor G = G,,mp,- Then we have

K-b+F-a+G-b-a=0 (22)
or _ _ —
K-b+F-a+(G'~a)‘-b=0, (23)
which becomes — _ _
b= -[(G'-a)‘ -}-K]'1 -F-.a (24)
as before.
§9.18

(a) From Equations (9.2.74) with r(¢) = 0, we have

¢(0,t) = &(t) + R(t) (1)

-a—qs(o,t) = —8(t). @

Using a transmission line analogy as in Exercise 9.14, we define v((,t) =
#(¢,t) and i(¢,t) = 8(¢(C,t) Then Equations (1) and (2) correspond to
the model shown in the Figure consisting of an impulsive voltage source
in series with a unit capacitance and diode D. Equating ¢({,t) with

electric field and % with magnetic field, this corresponds to a sheet
source backed by a magnetic wall.

(b) Letting r(t) = R(t) in Equations (9.2.74), we have

¢(0,t) = é(t) + R(t) (3)

9 :
~5¢4(0,8) = (1) - R(2). (4)
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+ +
v(0.%) v(LY)
Vg(t)= (1) - =
» e a
generator £=0 line £=L

Figure 1 for Exercise Solution 9.18

The transmission line analogy of Equations (3) and (4) is shown in Figure
2 and in the same as that of Figure 1 without the diode. The voltage
v(0,t) consists of the impulse due to the generator and a time-varying
reflection R(t). The capacitor accounts for the fact that the current is
the derivative of the voltage. This configuration is equivalent to probing a
1-D profile with an impulsive source where the scattering potential V()
is zero for ( < 0.

§9.19

(a) For an arbitrary scalar field #(r) with compact support in a homogeneous
back ground medium k;, the source that supports the scalar field may be
derived directly from the scalar Helmholtz equation

(V2 + E)(r) = S(r). (1)

Since the differential operator V2 + k? is a local operator, the support of
S(r) is restricted to volume V, the support of ¥(r).

As an example, consider the field
s
¥(x) = cos () [u(r + 1) = u(r - 1)} (2)

where u(r) is the unit step function. Then the volume V is a unit ball.
Writing the Laplacian in spherical coordinates and noting that there is
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no 8 or ¢ dependence, we have V%) = %}k + %%’f Then
S(r) = (V2 + kg )p(r)

- [(kg - 1’;) cos ("—2’) - -’Esin (1'21)] [u(r + 1) — u(r — 1)]

+ [g cos (32:) — wsin (122)] [o(r+1) = é(r —1)

r
+ cos (1r_2r_) [f(r+1)-8(r-1)]. (3)
Note that S(r) remains finite as r — 0 since
. sin% _w
M T3 “)

and that S (r) has compact support on a unit ball.

(b) A general solution to Equation (1) that is valid for all r may be written
as the superposition integral

B(r) = / dr'g(r,r')S(r') (5)
where ,
(V2 + kD)g(r,r') = 6(c — &)

is the point source response. But for r ¢ V, we have ¥(r) = 0 and so

/ dr'g(r,r)S(r') =0 ,r ¢ V. (6)

This means that some nonzero S(r’) gives rise to no field ¢(r) forr ¢ V
and hence the above integral operator has a null space.

(c) Now consider an inhomogeneous scatterer k(r) embedded in a homoge-
neous background k;. The scalar Helmholtz equation becomes

[V + k*(r)jé(r) = S(r), (7
which may be rewritten as
(V2 + E})é(r) = S(r) + [k} — k*(r))é(r). (8)

Using the superposition integral again and considering the term [k —
k%(r)]é(r) as an induced source, the total solution may be written as

¢(l‘) = ¢inc(r) + ¢oo¢(r)a (9)
where

Pine(r) = / dr'g(r,r)S(r'), (10)
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(d)

()

bua(r) = [ d'a(e, YEE = KGN, (11)
Using the first Born approximation, we may write
Baca(T) = / dr'g(r,r')[K} — K*(r')]ine(r'). (12)

Assuming that ¢i.(r') # 0, the operator [ dr'g(r, r')in.(r') which oper-
ates on k? — k%(r) has a null space. To see this, we note that ¢,,(r) in
Equation (12) is the field generated by the induced source ¢;,.(r')[k? —
k*(r")]. In part (b) we showed that the operator [ dr'g(r,r’) has a null
space. For nonzero ¢, (r'), it follows that [ dr'g(r,r')¢inc(r') must also
have a null space. An example of a state vector that is in the null space
of this operator is that of Equation (3) divided by ¢;n(r).

From Equation (12), we see that the internal scattered field ¢,.,(r) with
r € V generated by a non-radiating source for a given scatterer kZ — k%(r)
depends on the incident field ¢;,.(r). Hence, different transmitter loca-
tions correspond to different nonradiating internal fields. By collecting
data at many transmitter locations, the nonradiating internal fields can
be squeezed to zero and the null space is reduced. This is because the
non-radiating internal fields change with transmitter location, but the
scattering object does not.

§9.20

(a)

From Equation (9.3.11), we have

I=4 Z aua:anm + Z E; - Z anfkn
n,m k n
= 51 Z ana:anm. + Z (Ek - kan) (Ek - Zanflm)
n,m k n n

2

=6, Z ana, Bnm
+3 [ B - Y G LLE. - a.Li.E} - Za;amf‘,,,,f,,,.]
k n n n,m

=6,af-]_3--a+a"-_P_-a—C-a—(C-a)‘+ZE;Ek
k

Taking the first variation with respect to a gives
6 = 6,at - B-(8a) + 6,(6a)! -B-a
+(6a)!-P-at+al-P.fa—-C.6a—|[C-éa]*
=(6a")-(6B-a+P-a—-C)+[(6a).(6B-a+P-a-C)
= 2Re|(6a)! - (B -a+P-a—C)]
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since al - B-da=[éal - B-a]* and at . P.6a=[éa’ P-a]*. Now since
da is arbitrary (and may be complex), we must have

§B-a+P-a-C=0
in order for I to be stationary.
(b) From (9.3.12a),
By = / dr'b, (')}, (r').
if we choose {b,} to be pulse functions, this integral is nonzero only

for n = m since the usual pulse basis functions do not overlap. Hence
B = [B,] is a diagonal matrix.

§9.21

I=4, / dr’ |V'[k*(r') — k]|’
|4

2

Eaca(riyrj) - / dl‘lM(l‘,', rjsr’aeb)[kz(r’) - kg]
\ 4

+2
I

Now letting k*(r) — kf = 3, @anbn(r) , Ei = E, o (ri,1;),

Do = / dr' [V, (¢)][V'b, ()]

Lin = /dr’M(r.',rj, r', €)ba(r'),
we have

I=6 6n@Dam+ Y |Ek— ) anLinf®
n,m k n

Note that the above is nearly identical to Equation (9.3.11) and so we
may write the optimal solution by inspection as

a=[P+6D]-C.
§9.22

(a) From Equation (9.3.21), the minimum norm solution is

~-1

a=S-X -St.C. (1)
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(b)

where S is a unitary eigenvector matrix and A~! is the inverse (diagonal)
eigenvalue matrix with the smallest elements removed. Since A is diag-
onal, its inverse is just the element-wise multxphcatlve inverse of each of
its diagonal elements. We let

where X is the original eigenvalue matrix and X\, contains only the near-
zero elements that are to be removed. Then the solution of

P.-a=C | (3)
with ,
P=S-X.8"=8-X.S+S-X,-S (4)
becomes
a=[S-X-S+S.X,.5|"*-C (5)
-s.X .s-C+s-3'.s.C (6)

The norm of a is then obtained as

~=-1 =1
llalf=}{S-X -S-C|l+|IS-A -S-CJ| (M

since the eigenvectors are orthogonal. Hence, Equation (1) gives the
minimum norm solution.

The regularization P’ = P + 6,B where B is a well-conditioned matrix is
equivalent to padding the small eigenvalues for the following reason. The
matrices P and B must exist in the same vector space in order for their

addition to be well-defined. Therefore, the eigenvectors S span both P
and B and we may write

St
S"

W
I
>«l

>‘|

S-
S-

~ and

P'=S-(X,+6Xp)-St.

Usually é; is a small parameter_and the large elements of Xp are not
affected. The small elements of Ap however get a small boost from the
well-conditioned matrix B.

§9.23

(a) Use of the first-order Taylor series expansion gives

f(=) = f(zo) + (z — 20)f'(z0) + Ol(z — z0)’]
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Figure for Exercise Solution 9.23

for £ &~ zo. Hence, the formula

_ J(=0)
f(zo)

TR ZIg
has second-order error.

(b) From Equations (9.3.3) and (9.3.5),

E(r) ~ Eine(r) + / drG(r, &', &) - [F3(r') = k2] Einc(r).
v

The field E;,(r) is actually the total field in the presence of the back-
ground k,. Hence, this is equivalent to solving the Equation

m = mo(e) + g(es)(e — €)d(€)
in multidimensions and is analogous to the Newton-Raphson method.
(c¢) For solving the equation = h(z), we write
h(z.) = z. = h(zp-1) + (Te = Tn-1)A'(Tp-1) + ...
Then approximating z, = h(z,-,), we have
Te — Tn X (Te — Tp-1)h'(T0-1).
Hence, for the process to converge we must have
|ze — Zn]
|ZTe = Tni]

or h'(z.) < 1. This procedure is illustrated in the Figure.

~ h'(z,._l) <1
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(d) From Equation (9.3.24)

E(r) = Eond(r) + / dr'Go(r, t') - [F(r') — KJE(r) (1)

v

it is apparent that the Born iterative method is equivalent to solving
x = h(x) | @

~ where x = E(r). Note that h(-) is a non-linear integral function since
k*(r) is related to E(r). For the N-dimensional Equation (2), we may use
the same argument given in part (c) to show that a necessary condition
for convergence is a " ' o

IVh(x.)llo < 1,

or that the maximum element of the gradient of h(.) must be less than
unity.

§9.24

(a) From (9.2.8), _
E) =Einc) +Go- O E). (1)

Taking the inner product with k) and inserting the identity operator
T = [ dkk)(k appropriately gives

(k, &) = (k, Einc)
+ / dK’ / dK(k, o, K') (K, T, k") (K", £) 2)

or
E(k) = Ein(k) + / dK’ / dK"G(k, K)OK)S(K — KNEK")  (3)

= Eun(K) + / dKG(k, K')O(K)E(K') @)

Hence, in the spectral space O(k) is again diagonal, but G(k, k') is not.
This equation has the same form as its space-domain counterpart of Equa-
tion (9.3.24).

(b) Representation in the space spanned by the eigenfunctions F, of Gy:
zjofn> = A‘7:“) (5)
Taking the inner product of Equation (1) with F,),

(Far &) = (FnyEinc) + (Fn,Go- O - E). (6)
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From the spatial and spectral representations of Equation (5), we know
that the operators G, O, £ are transitive. Hence, we may write

En = Cn,inc + (8 ‘ O 901}.")
= Eninc + A(f -O- ]:n), (7)
where E, = (F,,E), Epine = (f',,,&,,c)._ In this case, the matrix repre-
sentation of Gy is diagonal, but that of O is not.

§9.25

(a) From Equation (9.3.40a),
Epiinc) = Einc) + Go* Ob - E4inc)
(Z - Go - O1)Epinc) = Eine)
Esine) = (T —Go - Op)™" - Eine)
Similarly, from Equation (9.3.40b),
Go) =Go+Go 0, Gy
(T-Go-0s)-Gs=G
Go=T—-Go-0s)"-Go
(b) -
E) = Einc) + Gb - 60 - E).
Substituting the above expressions
) =(T - Go- 04)  [Einc) + Go- 60 - £)]
EY+Go -0y E) =Eine) +Go-60-E)
E) = Einc) +Go - (60 ~ Oy) - €)
= inc)+g0'0'£)
(¢) From Equation (9.3.28)
E)=Ein)+G-0-£)
Let O = 0, + 60. We have
£) =€) +T-0,-£)+T - 60 - £)
= Epinc) + G - 60 - E)
where _
Evine) = Einc) +G - O - €)

(d) The operator (I—Gq-O)~! appears in both Equations (9.3.38) and (9.3.43)
indicating that the forward problem must be solved at each iteration.
Hence, the computational complexity is the same.
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