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Abstract—A thorough study on the finite-difference time-
domain (FDTD) simulation of the Maxwell-Schrödinger system
in the semi-classical regime is given. For the Maxwell part which
is treated classically, this novel approach directly using the vector
and scalar potentials (A and Φ) is taken. This approach is stable
in the long wavelength regime and removes the need to extract
the potentials at every time step. The perfectly matched layer
(PML) important for FDTD simulations is developed for this
new approach. For the Schrodinger and quantum mechanical
part, minimal coupling is applied to couple the charges to the
electromagnetic potentials. FDTD stability is analyzed for the
whole system and simulation results agree with the properties of
quantum coherent states.

Index Terms—Maxwell-Schrödinger, quantum-dots, nano-
photonics.

I. INTRODUCTION

RECENT advances in nanotechnology have shrunk the
length scales of electronic devices down to nanometers

which are much smaller compared to optical wavelengths. Due
to this miniaturization, the quantum nature of charges becomes
more pronounced in said electronic devices. The system of
charge plus field needs to be modeled quantum mechanically.
While a fully quantum mechanical picture would also have
the field quantized, there is still a large application area for
models where the field is treated classically. This is termed
the semiclassical regime, in which the classical Maxwell’s
equations for the field is coupled to the quantum mechanical
Schrödinger equation for the charged particle [1].

In this paper we work with the Maxwell-Schrödinger system
in time domain, where the dynamics of the coupled system
can be time stepped using the finite-difference time-domain
(FDTD) method. FDTD has been used to study this system for
nearly two decades. Two schools of formulations are popular.
When the interactions are nearly resonant, the physics can
be approximated as restricted to several bound states of the
electron. This allows for the projection of the Schrödinger
part into a subspace, in which one solves the Maxwell-
Bloch equations or the quantum Liouville equations for the
density matrix [1]. This method has been applied to the
study of ultrafast optical pulse simulations [2], excitonics in
quantum dots [3], nanoplasmonics [4] and nanopolaritonics
[5][6]. Furthermore, loss mechanisms can be incorporated into
the system by a combined Maxwell-Bloch Langevin approach
[4].
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The other school of formulations, however, retains the
wavefunction in its entirety. Our work belongs to this latter
school. One of the first works involved a straightforward 3-
dimensional (3D) FDTD scheme to simulate a single electron
tunneling problem [7]. More recent study discusses the control
of particle quantum states using optimal laser pulses designed
through the Maxwell-Schrödinger simulations [8]. Since the
Schrödinger equation couples directly to the magnetic vector
potential (A) and the electric scalar potential (Φ), rather than
the electric and magnetic fields (E and H), these simulations
require the extraction of A and Φ at every time step [7][9].
This can be avoided through the use of gauge transformations,
after which the Schrödinger equation couples directly to the
fields. The length gauge was applied for this purpose in the
work of [10]. However, a long wavelength approximation is
inherent in the length gauge, thus limiting its applicability.

It should be noted that for some of the aforementioned
systems, simulations in which the quantum dots are further
simplified into polarization densities [11] or effective permit-
tivity models [12][13] suffice to describe the essential features.
However, we choose to couple the Maxwell-Schrödinger equa-
tions directly in the spirit that the simulation should come from
first principle as much as possible.

It is well known that in the long wavelength, conventional
Maxwell’s equations suffer from low frequency breakdown
due to the imbalance of frequency scaling. This is previously
overlooked in the Maxwell-Schrödinger system. In view of
these, we developed a new FDTD scheme. For the Maxwell
part, the A-Φ formulation [14] is used and the potentials are
directly time stepped. With this, the extraction of potentials,
the approximation of the length gauge as well as low frequency
instability are avoided.

In Section II, FDTD simulation under the A-Φ formulation
is discussed. Perfectly matched layer is formulated for the
simulation of open problems. In Section III, FDTD of the
coupled A-Φ equations and Schrödinger equation is discussed.
In Section IV, the simulation is applied to study an electron
trapped in a quadratic potential under plane wave excitation.
This is a simple model for a quantum dot interacting with
light, a problem that had been studied extensively using the
FDTD technique but with a semi-classical dipole model for the
quantum dot [11]. Coherent states physics are reproduced in
accordance with the expected behavior of a quantum harmonic
oscillator. Finally, we conclude the work and discuss directions
for future work in Section V.
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II. FDTD FORMULATION OF MAXWELL’S EQUATIONS

The A-Φ formulation is an effective alternative to conven-
tional Maxwell’s equations due to its stability in the long
wavelength regime [14] and the fact that the potentials directly
enter into the Schrödinger equation instead of the fields. The
equations for the A-Φ formulation are discretized, and the
application of the coordinate stretching PML is shown.

The potentials are related to the electric and magnetic field
through:

B = ∇×A (1)

E = − ∂

∂t
A−∇Φ (2)

From these relations and Maxwell’s equations in inhomoge-
neous, isotropic media, the equations for the A-Φ formulation
can be derived as in [14]. They are written as

∇ · ε∇Φ− ε2µ ∂
2

∂t2
Φ = −ρ (3)

−∇× µ−1∇×A− ε ∂
2

∂t2
A + ε∇ε−2µ−1∇ · εA = −J (4)

They are under the generalized Lorenz gauge:

ε−1∇ · εA = −µε ∂
∂t

Φ (5)

This gauge has the physical significance that the formulation
remains relativistic in vacuum. We take it to be the natural
gauge condition in inhomogeneous media. The two sources
in the A-Φ equations are related by the current continuity
equation.

∇ · J +
∂ρ

∂t
= 0 (6)

A. Discretization
In order to discretize Equations (3) and (4), the discrete

EM theory on a lattice [15] will be applied, and this theory
is consistent with the widely known Yee’s grid [16]. A brief
review of the discrete vector calculus from the discrete EM
theory can be found in Appendix A.

∇̂ × µ−1
m+1/2∇̃ × Ãn−1/2

m + εm∂̃t∂̂tÃ
n−1/2
m

−εm∇̃µ−1
m ε−2

m ∇̂ · εmÃn−1/2
m =J̃n−1/2

m (7)

−∇̂ · εm∇̃Φnm + µmε
2
m∂̃t∂̂tΦ

n
m =ρnm (8)

∇̂ · J̃n−1/2
m + ∂̂tρ

n
m =0 (9)

The discretized A-Φ equations are shown as Equations (7)
through (9). Here the primary and dual grids are indexed by
m = (i, j, k) and m + 1/2 = (i+ 1/2, j + 1/2, k + 1/2), re-
spectively. The chosen discretization scheme arranges forward
and backward differencing so that all derivatives are central.
Hence, the FDTD simulation of the field part is second-order
accurate. The time stepping equations are given in Equations
(25) through (27) in Appendix A.

The stability condition for these equations is the same as
the FDTD stability condition for Maxwell’s equations [17].

∆t ≤ 1

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

(10)

B. Perfectly Matched Layers

As often employed in the FDTD simulation of Maxwell’s
equations, the Dirichlet boundary conditions are applied at the
boundaries of the simulation domain. In order to efficiently
simulate an infinite space, PML must be developed for the A-
Φ equations. A very simple way of implementing PML using
the idea of coordinate stretching was first introduced in [18].
This same technique can be applied to implement PML for the
A-Φ equations. We relegate the details of the implementation
to Appendix B.

III. MAXWELL-SCHRÖDINGER SYSTEM

The A-Φ potentials enter the Schrödinger equation through
the minimal coupling Hamiltonian [1]. In the semi-classical
picture, we model the back action of the particle on the field
by interpreting the probability current as a radiation source.

A. Governing Equations

From the minimal coupling Hamiltonian, the time-
dependent Schrödinger equation is written as

ih̄
∂

∂t
ψ(r, t) =

1

2m∗

(
h̄

i
∇− qA

)2

ψ(r, t) + Φ(r, t)ψ(r, t)

+ V (r, t)ψ(r, t) (11)

where h̄ = h
2π , h is the Planck constant, ψ is the wave function

of the particle where |ψ|2 represents the probability density
function of the particle, m∗ is the effective mass of the particle,
and V is the confinement potential. To establish the back
action of the particle on the field, we replace the charge and
current in Equations (3) and (4) with their quantum mechanical
analogs ρq and Jq , denoted with a subscript q to indicate their
quantum nature. These sources obey the continuity equation
for probability amplitude

∇ · Jq +
∂ρq
∂t

= 0 (12)

They are calculated instantaneously from the wavefunction as
[19]:

Jq =
q

2

{[
p̂− qA
m∗

ψ

]∗
ψ + ψ∗

[
p̂− qA
m∗

]
ψ

}
(13)

ρq = q |ψ(r, t)|2 (14)

Here, p̂ = h̄
i∇ is the momentum operator.

Two points should be noted in connection with the fully
quantized theory. First, the Jq in Equation (13) comes from
tracing the symmetric particle current operator over the field
states. Second, the A2 term captures the physics of plasma
oscillations of the electron in the field. Although its effects
are not pronounced in the simulation scheme of Section IV
due to the small charge and low field intensity, it is expected
to be of importance when field intensities are high, such as
in nano-plasmonic applications. The link between the semi-
classical and fully quantized theory is the restriction that the
field states be coherent, and not entangled with the electron
state. The discretization of the modified Schrödinger equation
and the particle current are shown in Appendix C.
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Fig. 1: Illustration of the simulation setting for an artificial
atom.

B. Stability Condition

The time-step, ∆t, is taken to be the minimum of the two
from the A-Φ equations or the Schrödinger equation. The
time-step for the A-Φ equations has been shown, and the
one for the Schrödinger equation has been presented in other
papers [20]. We modify it here and show the result in Equation
(15). Note that when the field is turned off, we recover the
stability condition for the simple Schrödinger equation.

IV. SIMULATION RESULTS

The Maxwell-Schrödinger system is used, for example,
to simulate a single electron trapped in an artificial atom
(quantum dot). The effective mass Schrödinger equation can
be used to simulate many electrons problem with a single
electron. The electron can be trapped by a potential or quantum
well generated by a heterogeneous (heterojunction) materials,
or by a defect in a crystal lattice. For simplicity, the confine-
ment potential of the atom is characterized by a harmonic
oscillator. The simulation setting is illustrated in Figure 1.
This setting mimics the quantum dot introduced in [21]. The
effective mass of the electron is m∗ = 0.023m0 where m0

is the electron rest mass, and the angular frequency of the
harmonic oscillator is ω = 2πc

λ where λ = 950 nm. The
electron is initialized in the ground state. The plane wave
is given by Ainc = ẑ1.4871 × 10−7 sin(ky − ωt) V · s/m or
Einc = −ẑ2.9487× 108 cos(ky−ωt) V/m which corresponds
to an average number of 6 photons in the simulation space.
The simulation domain is narrow in x- and y-directions to
reduce the number of unknowns and the simulation time.

The state of a harmonic oscillator driven by a classical field
is called a coherent state. The expression for a coherent state
is given by [22]

|z〉 = e−
|z|2
2

∞∑
n=0

zn√
n!
|n〉 (16)

where z =
√
E0e

iϕ(t), n is the mode number in the harmonic
oscillator, E0 is the average number of photons in the mode,
and ϕ(t) is a real function in time that represents the phase of

Fig. 2: Plot of eigenenergy levels of a simulated coherent
state.

Fig. 3: Plot of the Poisson distribution with E0 = 0.5615
photons.

the state. The probability of finding mode n in this coherent
state is

pn(z) =
En0
n!
e−E0 (17)

which is a Poisson distribution.
For the excitation of the coherent state, the electron is

excited initially by a classical plane wave, and then the
technique described in [23] is used to map out the distribution
of eigenstates in the electron’s wavefunction. In Figure 2 the
overlapped distribution of eigenstates at several observation
points (represented by different colors) is shown to match
the Poisson distribution as the theory suggests. Due to the
spatial dependence of the eigenstates of a harmonic oscillator,
the Poisson distribution is not reflected at every observation
point. Note that the eigenfrequencies are all equidistant, which
is characteristic of a quantum harmonic oscillator. We see
that mainly three modes are excited by the plane wave, and
the peak is located at n = 0. In order to find the Poisson
distribution with the peak at the same location, the derivative
of Equation (17) is taken:

d

dn
pn(z) =

En0 (lnE0 − ψ(0)(n+ 1))

eE0Γ(n+ 1)
(18)

where ψ(m)(z) is the polygamma function of order m and
Γ(n) is the gamma function. To find a Poisson distribution
with a peak located at n = 0, we let the above derivative
be equal to zero and find the value of E0. It is found to be
E0 = 0.5615 photons. The corresponding Poisson distribution
is plotted in Figure 3.

In the simulation space, the average number of photons
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∆t ≤ h̄

1
m∗

[
4h̄2

(
1

∆x2 + 1
∆y2 + 1

∆z2

)
− 2h̄q

(
Ax

∆x +
Ay

∆y + Az

∆z

)
+ q2|A|2

]
+ Vmax

(15)

Fig. 4: Plots of xy- and yz-plane slices of an electron in a
ground state in an artificial atom with the quadratic
confinement potential.

Fig. 5: Snapshots of yz-plane slices at different time steps.
The electron is in a coherent state after it has been excited
by light.

was set to be 6 photons, and this indicates that the electron
absorbed E0

6 ×100 ≈ 9.36% of the photons in space. In terms
of volume, this corresponds to a sphere with a radius of 4.1758
nm, and most of the probability density of the electron is
contained in this sphere. As a reference, a plot of the electron
in the ground state is shown in Figure 4. In contrast, Figure
5 shows the electron after it has been excited by the plane
wave. It shows the movement of the electron in the z-direction
swinging back and forth.

If the number of photons in the simulation space is tripled
from 6 to 18, then E0 is also expected to triple from the
previous value. This expected Poisson distribution is plotted
in Figure 6. With 18 photons in the simulation space, the
coherent state simulation result is plotted in Figure 7. We can
see that the simulated distribution of states closely resembles
the predicted Poisson distribution.

V. CONCLUSION

In this paper, a new FDTD simulation scheme for the
coupled Maxwell-Schrödinger system is presented. By directly
using the potentials A and Φ, approximations existing in
the literature are avoided, and the computation made more
efficient. The formulation is based on the first principle
minimal coupling Hamiltonian. The only restriction is that
of the semi-classical picture, which dictates the field to be

Fig. 6: Plot of the Poisson distribution with E0 = 1.6844
photons.

Fig. 7: Plot of eigenenergy levels of a simulated coherent
state.

in coherent states not entangled with the electron states. The
calculations are numerically exact within this framework. This
is unlike previous works in atom-field modeling where either
the Jaynes-Cummings model is used, or the rotating wave
approximation is made [24].

This work portends well for future work where a fully
quantized numerical model for field-atom system needs to be
developed. It also allows the incorporation of field-atom effects
in future quantum systems, such as density functional calcu-
lations, or more sophisticated k · p calculations in effective
mass Schrödinger system. It is directly applicable in the study
of quantum optics using quantum dots, or in nano-plasmonics
where the quantum confinement of charges are important for
their electromagnetic response. Also, the FDTD scheme is
not costly for low-dimensional system, such as the popular
quantum wells and quantum wires. Explicit time domain sim-
ulations that allow the visualization of electron wavefunctions
and field profiles will open up new understanding in these
structures. Hence, the prowess of modern computers can be
harnessed for the FDTD simulation scheme of the Maxwell-
Schrödinger system which is a valid and useful tool in the
study of nanostructures interacting with light.
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APPENDIX A
DISCRETE VECTOR CALCULUS

The discrete vector calculus forms the basis for the electro-
magnetic theory on a lattice. A brief overview is given on this
topic. The paper [15] includes the details.

A differentiation can be approximated by a forward or
backward difference. When g(x) = ∂xf(x),

gm+1/2 = ∂̃xfm =
fm+1 − fm

∆x
(19)

gm−1/2 = ∂̂xfm =
fm − fm−1

∆x
(20)

where ∂x = ∂
∂x , fm = f(m∆x), and ∆x is the length of

one cell. A discrete gradient also has forward and backward
directions as given below when g = ∇f .

g̃mnp = ∇̃fmnp = x̂∂̃xfmnp + ŷ∂̃yfmnp + ẑ∂̃zfmnp (21)

ĝmnp = ∇̂fmnp = x̂∂̂xfmnp + ŷ∂̂yfmnp + ẑ∂̂zfmnp (22)

where x̂, ŷ, ẑ are unit vectors in x, y, z directions, g̃mnp is a
fore-vector emanating from point (m,n, p) to (m+1/2, n, p),
(m,n + 1/2, p), and (m,n, p + 1/2), and ĝmnp is a back-
vector located on points (m− 1/2, n, p), (m,n− 1/2, p), and
(m,n, p− 1/2) all pointing to (m,n, p).

If we have a fore-vector F̃mnp = x̂fxm+1/2,n,p +

ŷfym,n+1/2,p + ẑfzm,n,p+1/2, then we define a discrete diver-
gence associated with point (m,n, p) such that

dmnp = ∇̂ · F̃mnp
= ∂̂xf

x
m+1/2,n,p + ∂̂yf

y
m,n+1/2,p + ∂̂zf

z
m,n,p+1/2 (23)

Similarly, the direction can be in the other way as dmnp =
∇̃ · F̂mnp.

The discrete curl is defined as in Equation (24) on the next
page. Similarly, B̃m−1/2,n−1/2,p−1/2 = ∇̂×F̂mnp is possible.

With these definitions, the discretization of the A-Φ equa-
tions can be carried out, and produces the Equations (8)
through (9) in Section II. Furthermore, when discretization in
time is done, these can be rearranged into the time-stepping
equations for the field and sources, given in Equations (25)
through (27).

APPENDIX B
PERFECTLY MATCHED LAYER

We implement PML following the coordinate stretching idea
in [18]. To this end, modify Equations (3) and (4) by replacing
the ∇ operator with its stretched coordinate counterpart ∇s,
given by:

∇s = x̂
1

sx

∂

∂t
+ ŷ

1

sy

∂

∂t
+ ẑ

1

sz

∂

∂t
(28)

It can be shown that the wave vector becomes ks = x̂kxsx +

ŷ
ky
sy

+ ẑ kzsz , so if one of sx, sy, or sz is complex, the wave gets
attenuated in the corresponding x-, y-, or z-direction. These
coordinate stretching parameters are defined as

sx = 1 + i
σx
ωε
, sy = 1 + i

σy
ωε
, sz = 1 + i

σz
ωε

(29)

Substituting Equation (28) into (3) and transforming to the
frequency domain we produce three equations for the so-called
split-fields, Φsx ,Φsy ,Φsz .

1

sx

∂

∂x
[ε∇sΦ]x + ε2µω2Φsx = −ρ (30)

1

sy

∂

∂y
[ε∇sΦ]y + ε2µω2Φsy = 0 (31)

1

sz

∂

∂z
[ε∇sΦ]z + ε2µω2Φsz = 0 (32)

The choice of placing the source in the first equation of
the above three is an arbitrary and inconsequential. Further
substituting Equation (29) into (30) and transforming back into
the time domain gives:

(ε2µ
∂2

∂t2
+ σxεµ

∂

∂t
)Φsx =

∂

∂x
[ε∇sΦ]x + ρ (33)

By turning the equation into a discrete one, the time-stepping
equation can be found as follows:

Φn+1
sx =

1
ε2µ
∆t2 + σxεµ

2∆t

(
− ε2µ

−2Φnsx + Φn−1
sx

∆t2
+ σxεµ

Φn−1
sx

2∆t

+ ∂̂x[ε∇̃sΦ]nx + ρn
)

(34)

The only remaining term to find is the third term in the
parenthesis on the right-hand side. We can write

[∇̃sΦ]nx =
1

sx
∂̃xΦn (35)

which becomes (
1 + i

σx
ωε

)
[∇̃sΦ]x = ∂̃xΦn (36)

Transforming this into a time-domain equation yields

[∇̃sΦ]nx

(
i+

1

2
, j, k

)
+
σx
ε

(n−1∑
m=1

[∇̃sΦ]mx

(
i+

1

2
, j, k

)
+

1

2
[∇̃sΦ]nx

(
i+

1

2
, j, k

))
∆t

=
Φn(i+ 1, j, k)− Φn(i, j, k)

∆x
(37)

The summation in this equation is a discrete integral using the
midpoint rule. When i

ω is transformed to an operator in the
time-domain, it is written as [25]:

i

ω
↔

t∫
0

dt′ ≈
n∑

m=0

∆t (38)

Equation (37) can be used to find [∇̃sΦ]nx using Φn. After
finding this term, it can be used to find

∂̂x[ε∇̃sΦ]nx =
ε(i+ 1

2 , j, k)[∇̃sΦ]nx − ε(i− 1
2 , j, k)[∇̃sΦ]nx

∆x
(39)

The spatial coordinates of [∇̃sΦ] terms follow the ones of ε’s
multiplied to them. This concludes the derivation of coordinate
stretching PML for the discrete Φ equation.

Next we apply PML to the A equation. Plug the following
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B̂m+1/2,n+1/2,p+1/2 = ∇̃ × F̃mnp = x̂

(
fzm,n+1,p+1/2 − f

z
m,n,p+1/2

∆y
−
fym,n+1/2,p+1 − f

y
m,n+1/2,p

∆z

)

+ ŷ

(
fxm+1/2,n,p+1 − f

x
m+1/2,n,p

∆z
−
fzm+1,n,p+1/2 − f

z
m,n,p+1/2

∆z

)
+ ẑ

(
fym+1,n+1/2,p − f

y
m,n+1/2,p

∆x
−
fxm+1/2,n+1,p − f

x
m+1/2,n,p

∆y

)
(24)

ρnm =ρn−1
m −∆t(∇̂ · J̃n−1/2

m ) (25)

Φn+1
m =2Φnm − Φn−1

m +
∆t2

µmε2m

(
∇̂ · εm∇̃Φnm + ρnm

)
(26)

Ãn+1/2
m =2Ãn−1/2

m − Ãn−3/2
m +

∆t2

εm

(
−∇̂ × µ−1

m+1/2∇̃ × Ãn−1/2
m + εm∇̃µ−1

m ε−2
m ∇̂ · εmÃn−1/2

m + J̃n−1/2
m

)
(27)

quantities
H = µ−1∇s ×A (40)

and
f = ε−2µ−1∇s · εA (41)

into the coordinate stretched Equation (4), we get

∇s ×H + ε
∂2

∂t2
A− ε[∇sf ] = J (42)

Consider the x-component of this equation. By converting this
to the frequency-domain, applying Equation (28), and taking
the x-component, we find

1

sy

∂Hz

∂y
− 1

sz

∂Hy

∂z
− εω2Ax − ε[∇sf ]x = Jx (43)

Substituting Equation (29) into this and simplifying the ex-
pression yields(

−ω2 − iωσz
ε

)[∂Hz

∂y

]
+
(
ω2 + iω

σy
ε

)[∂Hy

∂z

]
+
(
εω4 + iω3(σy + σz)− ω2σyσz

ε

)
Ax

+
(
ω2ε+ iω(σy + σz)−

σyσz
ε

)
[∇sf ]x

= −ω2Jx (44)

Converting this back to time-domain,(
∂2

∂t2
+
σz
ε

∂

∂t

)[
∂Hz

∂y

]
+

(
− ∂2

∂t2
− σy

ε

∂

∂t

)[
∂Hy

∂z

]
+

(
ε
∂4

∂t4
+ (σy + σz)

∂3

∂t3
+
σyσz
ε

∂2

∂t2

)
Ax

+

(
−ε ∂

2

∂t2
− (σy + σz)

∂

∂t
− σyσz

ε

)
[∇sf ]x =

∂2

∂t2
Jx

(45)

Discretizing the above equation yields Equation (46) shown
on the next page. This is essentially time-stepping A equation
with PML.

Going back to Equation (40), we can substitute Equation

(29) and take the sx-component to find

1

sx

∂

∂x
x̂×A = µHsx (47)

The process is similar for sy- and sz-components, so it will
not be repeated here. In the frequency-domain, this equation
becomes

∂

∂x
(ẑAy − ŷAz) =

(
µ+ i

σxµ

ωε

)
Hsx (48)

Since this equation has two vector components, we can split
them into two, each in z- and y-directions, and convert them
into time-domain equations as follows:

A
n− 1

2
y (i+ 1, j + 1

2 , k)−An−
1
2

y (i, j + 1
2 , k)

∆x

= µH
n− 1

2
sx,z +

σxµ

ε

(
n−1∑
m=1

H
m− 1

2
sx,z +

1

2
H
n− 1

2
sx,z

)
∆t (49)

−
A
n− 1

2
z (i+ 1, j, k + 1

2 )−An−
1
2

z (i, j, k + 1
2 )

∆x

= µH
n− 1

2
sx,y +

σxµ

ε

(
n−1∑
m=1

H
m− 1

2
sx,y +

1

2
H
n− 1

2
sx,y

)
∆t (50)

H
n− 1

2
sx,z can be calculated from A

n− 1
2

y , and H
n− 1

2
sx,y can be

calculated from A
n− 1

2
z . Once sy- and sz-components are also

found from Equation (40) in a similar manner, the magnetic
field can be recovered as Hx = Hsx,x + Hsy,x + Hsz,x and
same for Hy and Hz . From this, the partial derivatives of H
terms in Equation (46) can easily be found.[

∂Hz

∂y

]
=
Hz(i+ 1

2 , j + 1
2 , k)−Hz(i+ 1

2 , j −
1
2 , k)

∆y
(51)[

∂Hy

∂z

]
=
Hy(i+ 1

2 , j, k + 1
2 )−Hz(i+ 1

2 , j, k −
1
2 )

∆z
(52)

The remaining term to be derived in Equation (46) is the
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[
∂Hz

∂y

]n− 1
2 − 2

[
∂Hz

∂y

]n− 3
2

+
[
∂Hz

∂y

]n− 5
2

∆t2
+
σz
ε

[
∂Hz

∂y

]n− 1
2 −

[
∂Hz

∂y

]n− 5
2

2∆t
−

[
∂Hy

∂z

]n− 1
2 − 2

[
∂Hy

∂z

]n− 3
2

+
[
∂Hy

∂z

]n− 5
2

∆t2

− σy
ε

[
∂Hy

∂z

]n− 1
2 −

[
∂Hy

∂z

]n− 5
2

2∆t
+ ε

A
n+ 1

2
x − 4A

n− 1
2

x + 6A
n− 3

2
x − 4A

n− 5
2

x +A
n− 7

2
x

∆t4

+ (σy + σz)
1
2A

n+ 1
2

x −An−
1
2

x +A
n− 5

2
x − 1

2A
n− 7

2
x

∆t3
+
σyσz
ε

A
n− 1

2
x − 2A

n− 3
2

x +A
n− 5

2
x

∆t2
− ε [∇sf ]

n− 1
2

x − 2[∇sf ]
n− 3

2
x [∇sf ]

n− 5
2

x

∆t2

− (σy + σz)
[∇sf ]

n− 1
2

x − [∇sf ]
n− 5

2
x

2∆t
− σyσz

ε
[∇sf ]

n− 3
2

x =
J
n− 1

2
x − 2J

n− 3
2

x + J
n− 5

2
x

∆t2
(46)

gradient of f term. In order to derive this, f must be derived
first. We have the following relationship:

µε2f = ∇s · εA (53)

Applying the split-field method and taking the sx-component
of this equation,(

1 + i
σx
ωε

)
fsx =

1

µε2
∂

∂x
(εAx) (54)

We convert this to time-domain and discretize it.

f
n− 1

2
sx +

σx
ε

(
n−1∑
m=1

f
m− 1

2
sx +

1

2
f
n− 1

2
sx

)
∆t

=
1

µε2
ε(i+ 1

2 , j, k)A
n− 1

2
x − ε(i− 1

2 , j, k)A
n− 1

2
x

∆x
(55)

Using this equation, fn−
1
2

sx can be found from A
n− 1

2
x . The

terms fsy and fsz can be found similarly, and then f = fsx +
fsy +fsz . From this f term, the gradient of f can be calculated
as follows:

∇sf = [∇sf ] (56)

Taking the sx-component of this,

1

sx

∂

∂x
x̂f = [∇sf ]sx = [∇sf ]x (57)

Note that the sx-component in this case happens to be the x-
component because the vector is only in the x-direction. The
discretized time-domain version of this equation is

fn−
1
2 (i+ 1, j, k)− fn− 1

2 (i, j, k)

∆x

= [∇sf ]
n− 1

2
x +

σx
ε

(
n−1∑
m=1

[∇sf ]
n− 1

2
x +

1

2
[∇sf ]

n− 1
2

x

)
∆t

(58)

This concludes the derivation of the coordinate stretching PML
for the A-Φ equations.

APPENDIX C
DISCRETIZATION OF THE MAXWELL-SCHRÖDINGER

EQUATIONS

The discrete version of the modified Schrödinger equation
is very similar to the original one.

ih̄
ˆ̃
∂tψ

n
m =

[
1

2m∗

(
h̄

i
∇̂ − qÃn

m

)
·
(
h̄

i
∇̃ − qÃn

m

)
+ qΦnm

+ Vm

]
ψnm (59)

The time-stepping equation obtained from the above is

ψn+1
m =ψn−1

m +
∆t

m∗

[
ih̄∇̂ · ∇̃ψnm + q∇̂ · (Ãn

mψ
n
m)

+ qÃn
m · ∇̃ψnm − i

q2|Ãn
m|2

h̄
ψnm

]
− i2∆tqΦnm

h̄
ψnm

− i2∆tVm
h̄

ψnm (60)

The discretized expression for the second term on the right-
hand side of the above equation has been derived in other
papers such as [23]. The rest can be written down using the
same discrete vector calculus method as given in Appendix A.
It is worth noting that, whereas A and ψ are not on the same
grid, average values for ψ are used at the two nearby nodes.

The remaining equation to be discretized is the particle
current equation. The discrete version of that is

J̃n+1/2
q,m =

q

2

{[ h̄
i ∇̃ − qÃ

n+1/2
m

m∗
ψn+1/2
m

]∗
ψn+1/2
m

+ (ψn+1/2
m )∗

[
h̄
i ∇̃ − qÃ

n+1/2
m

m∗

]
ψn+1/2
m

}
(61)

This can be simplified as

J̃n+1/2
q,m = − q

m∗

[
Re{ih̄(ψn+1/2

m )∗∇̃ψn+1/2
m }

+ q|ψn+1/2
m |2Ãn+1/2

m

]
(62)

There are two terms in this equation, and the x-component of
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the discretized expression for the first terms looks like

[ψ∗m∇̃ψm]x =
ψ∗(i+ 1, j, k) + ψ∗(i, j, k)

2

× ψ(i+ 1, j, k)− ψ(i, j, k)

∆x
(63)

Only the real part of the above term enters into Equation (62).
The y- and z-components are analogous. For the x-component
of the second term, we have

[|ψm|2Ãm]x =
ψ2(i+ 1, j, k) + ψ2(i, j, k)

2
Ax

(
i+

1

2
, j, k

)
(64)

The y- and z-components can be written analogously, and
this completes the discretization for the Maxwell-Schrödinger
system.
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