
Lecture 32

Shielding, Image Theory

The physics of electromagnetic shielding and electromagnetic image theory (also called image
theorem) go hand in hand. They work by the moving of charges around so as to cancel
the impinging fields. By understanding simple cases of shielding and image theory, we can
gain enough insight to solve some real-world problems. For instance, the art of shielding
is very important in the field of electromagnetic compatibility (EMC) and electromagnetic
interference (EMI). In the modern age where we have more electronic components working side
by side in a very compact environment, e.g. inside a cell phone (see Figure 32.1), EMC/EMI
become an increasingly challenging issue. Due to the complexity of these problems, they have
to be solved using heuristics with a high dosage of physical insight.

32.1 Shielding

We can understand shielding by understanding how electric charges move around in a conduc-
tive medium. They move around to shield out the electric field, or cancel the impinging field
inside the conductor. There are two cases to consider: the static case and the dynamic case.
The physical arguments needed to understand these two cases are very different. Moreover,
since there are no magnetic charges around, the shielding of magnetic field is very different
from the shielding of electric field, as shall be seen below.

32.1.1 A Note on Electrostatic Shielding

We begin with the simple case of electrostatic shielding. For electrostatic problems, a con-
ductive medium suffices to produce surface charges that shield out the electric field from the
conductive medium. If the electric field is not zero, then since J = σE, the electric current
inside the conductor will keep flowing. The current will produce charges on the surface of the
conductor to cancel the impinging field, until inside the conductive medium E = 0. In this
case, electric current ceases to flow in the conductor.

In other words, when the field reaches the quiescent state, the charges have to redistribute
themselves so as to shield out the electric field, and that the total internal electric field,
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Figure 32.1: The compact locations of the cell phone components make urgent use of
EMC/EMI knowledge instrumental in the design of cell phones. Clever use of shielding
is necessary to prevent interferences between different components. Compatibility means
that even when each component works well in isolation, but when brought to work
alongside each other, they fail to work together.

E = 0 at equilibrium. And from Faraday’s law that tangential E field is continuous, then
n̂×E = 0 on the conductor surface since n̂×E = 0 inside the conductor. Figure 32.2 shows
the static electric field, in the quiescent state, between two conductors (even though they
are not PECs), and the electric field has to be normal to the conductor surfaces. Moreover,
since E = 0 inside the conductor, ∇Φ = 0 implying that the potential is a constant inside a
conductor at equilibrium.

32.1.2 Relaxation Time

The time it takes for the charges to move around until they reach their quiescent distribution
such that E(t) = 0 is called the relaxation time. It is very much similar to the RC time
constant of an RC circuit consisting of a resistor in series with a capacitor (see Figure 32.3).
It can be proven that this relaxation time τ is related to ε/σ, but the proof is beyond the
scope of this course and it is worthwhile to note that this constant has the same unit as the
RC time constant of an RC circuit where a charged capacitor relaxes as exp(−t/τ) where the
relaxation time τ = RC. Note that when σ →∞, the relaxation time is zero. In other words,
in a perfect conductor or a superconductor, the charges reorient themselves instantaneously
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Figure 32.2: The objects can just be conductors, and in the quiescent state (static
state), the tangential electric field will be zero on their surfaces. Also, E = 0 inside the
conductor, or ∇Φ = 0, or Φ is a constant inside.

if the external field is time-varying so that E(t) = 0 always.

Electrostatic shielding or low-frequency shielding is important at low frequencies. The
Faraday cage or Faraday shield is an important application of such a shielding (see Figure
32.4). By grounding the Faraday cage, the potential inside the cage is set to zero1 [203].

However, if the conductor charges are induced by an external electric field that is time
varying, then the charges have to constantly redistribute/re-orient themselves to try to shield
out the incident time-varying electric field. Currents have to be constantly flowing around
the conductor. Then the electric field cannot be zero inside the conductors as shown in
Figure 32.5. In other words, an object with finite conductivity cannot shield out completely
a time-varying electric field. It can be shown that the depth of penetration of the field into
the conductive object is about a skin depth δ =

√
2/(ωµσ). Or the lower the frequency ω or

the conductivity σ, the large the penetration depth.

For a perfect electric conductor (PEC) , E = 0 inside with the following argument: Because
if E 6= 0, then J = σE where σ → ∞. Let us assume an infinitesimally small time-varying
electric field in the PEC to begin with. It will induce an infinitely large electric current, and
hence an infinitely large time-varying magnetic field. An infinite time-varying magnetic field
in turn yields an infinite electric field that will drive an electric current, and these fields and
current will be infinitely large. This is an unstable and escalating chain of events if it is true.
Moreover, it will generate infinite energy in the system, which is not physical. Hence, the
only possibility for a stable solution is for the time-varying electromagnetic fields to be zero
inside a PEC.

Thus, for the PEC, the charges can re-orient themselves instantaneously on the surface
when the inducing (incident or impinging) electric fields from outside are time varying. In
other words, the relaxation time ε/σ is zero. As a consequence, the time-varying electric field
E is always zero inside PEC, and therefore, n̂ × E = 0 on the surface of the PEC, even for

1Whether if the potential is zero is immaterial, since potential is a relative concept. But in electrical
engineering, it is customary to call the ground potential to be zero.
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Figure 32.3: The relaxation (or disappearance of accumulated charges) in a conductive
object is similar to the relaxation of charges from a charged capacitance in an RC circuit
as shown.

time-varying fields.

32.2 Image Theory

The image theory here in electromagnetics is quite different from that in optics. As mentioned
before, when the frequency of the fields is high, the waves associated with the fields can be
described by rays. Therefore ray optics can be used to solve many high-frequency problems.
We can use ray optics to understand how an image is generated in a mirror. But the image
theory in electromagnetics is quite different from that in ray optics.

Image theory can be used to derived closed form solutions to boundary value problems
when the geometry is simple and has a lot of symmetry. These closed form solutions in turn
offer physical insight into the problems. This theory or method is also discussed in many
textbooks [1, 44,55,66,81,196,204].

32.2.1 Electric Charges and Electric Dipoles

Image theory for a flat conductor surface or a half-space is quite easy to derive. To see
that, we can start with electro-static theory of putting a positive charge above a flat plane.
As mentioned before, for electrostatics, the plane or half-space does not have to be a perfect
conductor, but only a conductor (or a metal). From the previous Section 32.1.1, the tangential
static electric field on the surface of the conductor has to be zero.
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Figure 32.4: Faraday cage demonstration on volunteers in the Palais de la Découverte in
Paris (courtesy of Wikipedia). When the cage is grounded, the potential at the surface
of the cage is zero. By the solution to Laplace’s equation, the potential inside the cage
is a constant. Hence, the electric field inside the cage is zero. Charges will surge from
the ground to the cage surface to make the potential zero inside the cage. Therefore, a
grounded Faraday cage effectively shields the external fields from entering the cage.

Figure 32.7: By image theory, the total electric field of the original problem and the
equivalent problem when we add the total electric field due to the original charge and
the image charge.
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Figure 32.5: If the source that induces the charges on the conductor is time varying, the
current in the conductor is always nonzero so that the charges can move around to respond
to the external time-varying charges. The two figures above show the orientation of the
charges for two snap-shot in time. In other words, a time-varying field can penetrate the
conductor to approximately within a skin-depth δ =

√
2/(ωµσ).

By the principle of linear superposition, the tangential static electric field can be canceled
by putting an image charge of opposite sign at the mirror location of the original charge. This
is shown in Figure 32.6. Now we can mentally add the total field due to these two charges.
When the total static electric field due to the original charge and image charge is sketched, it
will look like that in Figure 32.7. It is seen that the static electric field satisfies the boundary
condition that n̂×E = 0 at the conductor interface due to symmetry.

An electric dipole is made from a positive charge placed in close proximity to a negative
charge. Using the fact that an electric charge reflects to an electric charge of opposite polarity
above a conductor, one can easily see that a static horizontal electric dipole reflects to a static
horizontal electric dipole of opposite polarity. By the same token, a static vertical electric
dipole reflects to static vertical electric dipole of the same polarity as shown in Figure 32.8.

If this electric dipole is a Hertzian dipole whose field is time-varying, then one needs a PEC
surface to shield out the electric field. Also, the image charges will follow the original dipole
charges instantaneously. Then the image theory for static electric dipoles over a half-space
still holds true if the dipoles now become Hertzian dipoles, but over a PEC surface.

32.2.2 Magnetic Charges and Magnetic Dipoles

A static magnetic field can penetrate a conductive medium. This is apparent from our
experience when we play with a bar magnet over a copper sheet: the magnetic field from the
magnet can still be experienced by iron filings put on the other side of the copper sheet.

However, this is not the case for a time-varying magnetic field. Inside a conductive
medium, a time-varying magnetic field will produce a time-varying electric field, which in
turn produces the conduction current via J = σE. This is termed eddy current, which by
Lenz’s law, repels the magnetic field from the conductive medium.2

2The repulsive force occurs by virtue of energy conservation. Since “work done” is needed to set the eddy
current in motion in the conductor, or to impart kinetic energy to the electrons forming the eddy current,
a repulsive force is felt in Lenz’s law so that work is done in pushing the magnetic field into the conductive
medium.
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Figure 32.6: The use of image theory to solve the BVP of a point charge on top of a
conductor. The boundary condition is that n̂ × E = 0 on the conductor surface. By
placing a negative charge with respect to the original charge, by the principle of linear
superposition, both of them produce a total field with no tangential component at the
interface.

Now, consider a static magnetic field penetrating into a perfect electric conductor, a
minute amount of time variation will produce an electric field, which in turn produces an
infinitely large eddy current. So the stable state for a static magnetic field inside a PEC is
for it to be expelled from the perfect electric conductor. This in fact is what we observe when
a magnetic field is brought near a superconductor. Therefore, for the static magnetic field,
where B = 0 inside the PEC, then n̂ ·B = 0 on the PEC surface (see Figure 32.9).

Figure 32.9: On a PEC surface, the requisite boundary condition is n̂ · B = 0. Hence,
a magnetic monopole on top of a PEC surface will have magnetic field distributed as
shown. By image theory, such a distribution of the B field can be obtained by adding a
magnetic monopole of the same polarity at its image point.

Now, assuming a magnetic monopole exists, it will reflect to itself on a PEC surface so
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Figure 32.8: By image theory, on a conductor surface, a horizontal static dipole reflects to
one of opposite polarity, while a static vertical dipole reflects to one of the same polarity.
If the dipoles are time-varying, then a PEC will have a same reflection rule.

that n̂ ·B = 0 as shown in Figure 32.9. Therefore, a magnetic charge reflects to a charge of
similar polarity on the PEC surface.

By extrapolating this to magnetic dipoles, they will reflect themselves to the magnetic
dipoles as shown in Figure 32.10. A horizontal magnetic dipole reflects to a horizontal mag-
netic dipole of the same polarity, and a vertical magnetic dipole reflects to a vertical magnetic
dipole of opposite polarity. Hence, a vertical dipolar bar magnet near a superconducting hals-
space reflects to a vertical bar magnet of opposite polarity: hence it can be levitated by a
superconductor half-space when this magnet is placed close to it. This is also known as the
Meissner effect [205], which is shown in Figure 32.11.

A time-varying magnetic dipole can be made from a electric current loop. Over a PEC, a
time-varying magnetic dipole will reflect the same way as a static magnetic dipole as shown
in Figure 32.10.

Figure 32.10: Using the rule of how magnetic monopole reflects itself on a PEC surface,
the reflection rules for magnetic dipoles can be ascertained. Magnetic dipoles are often
denoted by double arrows.

32.2.3 Perfect Magnetic Conductor (PMC) Surfaces

Magnetic conductor does not come naturally in this world since there are no free-moving
magnetic charges around. Magnetic monopoles are yet to be discovered. On a PMC surface,
by duality, n̂×H = 0. At low frequency, it can be mimicked by a high µ material. One can
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Figure 32.11: On a PEC (superconducting) surface, a vertical magnetic dipole above it
(formed by a small permanent bar magnet here) reflects to an image of a bar magnet of
opposite polarity. Hence, the magnetic dipoles repel each other displaying the Meissner
effect. The magnet, because of the repulsive force from its image, levitates above the
superconductor (courtesy of Wikipedia [206]).

see that for magnetostatics, at the interface of a high µ material and air, the magnetic flux
is approximately normal to the surface, resembling the H field near a PMC surface.

High µ materials are hard to find at higher frequencies. Since n̂ × H = 0 on such a
surface, no electric current can flow on such a surface. Hence, a PMC can be mimicked by
a surface where no surface electric current can flow. This has been achieved in microwave
engineering with a mushroom surface as shown in Figure 32.12 [207]. The mushroom structure
consisting of a wire and an end-cap, can be thought of as forming an LC tank circuit. Close
to the resonance frequency of this tank circuit, the surface of mushroom structures essentially
becomes open circuits with no or little current flowing on the surface, or Js ∼= 0. In other
words, n̂×H ∼= 0. This resembles a PMC surface, because with no surface electric current can
flow on this surface, the tangential magnetic field is small, the hallmark of a good magnetic
conductor, by the duality principle.

Mathematically, a surface that is dual to the PEC surface is the perfect magnetic conductor
(PMC) surface. The magnetic dipole is also dual to the electric dipole. Thus, over a PMC
surface, these electric and magnetic dipoles will reflect differently as shown in Figure 32.13.
One can go through Gedanken experiments and verify that the reflection rules are as shown
in the figure.

32.2.4 Multiple Images

For the geometry shown in Figure 32.14, one can start with electrostatic theory, and convince
oneself that n̂ × E = 0 on the metal surface with the placement of charges as shown. For
conducting media, the charges will relax to the quiescent distribution after the relaxation
time. For PEC surfaces, one can extend these cases to time-varying dipoles because the
charges in the PEC medium can re-orient instantaneously (i.e. with zero relaxation time) to
shield out or expel the E and H fields. Again, one can repeat the above exercise for magnetic
charges, magnetic dipoles, and PMC surfaces.
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Figure 32.12: A mushroom structure operates like an LC tank circuit. At the right
resonant frequency, the surface resembles an open-circuit surface where no current can
flow. Hence, tangential magnetic field is zero resembling perfect magnetic conductor
(courtesy of Sievenpiper [207]).

Figure 32.13: Reflection rules for electric and magnetic dipoles over a PMC surface.
Magnetic dipoles are denoted by double arrows.

32.2.5 Some Special Cases—Spheres, Cylinders, and Dielectric In-
terfaces

One curious case is for a static charge placed near a conductive sphere (or cylinder) as shown
in Figure 32.15.3 A charge of +Q reflects to a charge of −QI inside the sphere where QI 6= Q.
For electrostatics, the sphere (or cylinder) need only be a conductor. However, this cannot be
generalized to electrodynamics or a time-varying problem, because of the retardation effect:
A time-varying dipole or charge will be felt at different points asymmetrically on the surface
of the sphere from the original and image charges. Exact cancelation of the tangential electric
field on the surface of the sphere or cylinder cannot occur for time-varying field.

When a static charge is placed over a dielectric interface, image theory can be used to

3This is worked out in detail in p. 48 and p. 49, Ramo et al [32].
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Figure 32.14: Image theory for multiple images [32].

Figure 32.15: Image theory for a point charge near a cylinder or a sphere can be found
in closed form. Details are given in [32].

find the closed form solution. This solution can be derived using Fourier transform technique
which we shall learn later [36]. It can also be extended to multiple interfaces. But image
theory cannot be used for the electrodynamic case due to the different speed of light in
different media, giving rise to different retardation effects.
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Figure 32.16: A static charge over a dielectric interface can be found in closed form using
Fourier transform technique to be discussed later. The solution is beyond the scope of
this course.


