Lecture 20

More on Waveguides and
Transmission Lines

Waveguide is a fundamental component of microwave circuits and systems. The study of
closed form solutions offers us physical insight. One can use such insight to design more
complex engineering systems. We will use heuristics to understand some systems whose
designs follow from physical insight of simpler systems.

Also, we will show that the waveguide problem is homomorphic to the transmission line
problem. Here again, many transmission line techniques can be used to solve some complex
waveguide problems encountered in microwave and optical engineering by adding junction
capacitances and inductances.

20.1 Circular Waveguides, Contd.

As in the rectangular waveguide case, the guidance of the wave in a circular waveguide can
be viewed as bouncing waves in the radial direction. But these bouncing waves give rise
to standing waves expressible in terms of Bessel functions. The scalar potential (or pilot
potential) for the modes in the waveguide is expressible as

\Das(p7 (b) = AJn(ﬂsp)eijn(ﬁ (2011)

where a = h for TE waves and a = e for TM waves.! The Bessel function or wave is express-
ible in terms of Hankel functions as in (19.2.5). Since Hankel functions are traveling waves,
Bessel functions represent standing waves. Therefore, the Bessel waves can be thought of as
bouncing traveling waves as in the rectangular waveguide case. In the azimuthal direction,
one can express e*/"? as traveling waves in the ¢ direction, or they can be expressed as
cos(n¢) and sin(n¢) which are standing waves in the ¢ direction.

L As mentioned before, the pilot potentials are related to the z components of the H and E fields, respec-
tively.
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212 ELECTROMAGNETIC FIELD THEORY

20.1.1 An Application of Circular Waveguide

Figure 20.1: Bouncing wave picture of the Bessel wave inside a circular waveguide for
the TEp; mode. One can also explain the physics using the TE mode of a parallel-plate
waveguide.

When a real-world waveguide is made, the wall of the metal waveguide is not made of perfect
electric conductor, but with some metal of finite conductivity. Hence, tangential E field is
not zero on the wall implying that 7 - (E x H*) # 0. Thus energy can dissipate into the
waveguide wall. It turns out that due to symmetry, the TEg; mode of a circular waveguide
has the lowest loss of all the waveguide modes including rectangular waveguide modes. Hence,
this waveguide mode is of interest to astronomers who are interested in building low-loss and
low-noise systems.?

The TEy; mode has electric field given by E = <£E¢. Furthermore, looking at the magnetic
field, the current is mainly circumferential flowing in the ¢ direction. Moreover, by looking at
a bouncing wave picture of the guided waveguide mode, this mode has a small component of
tangential magnetic field on a waveguide wall: It becomes increasingly smaller as the frequency
increases (see Figure 20.1). The reason is that the wave vector for the waveguide becomes
increasingly parallel to the axis of the waveguide with a large 8, component compared to the
Bs component.? In a word, the wave becomes paraxial in the high-frequency limit.

The tangential magnetic field needs to be supported by a surface current on the waveguide
wall. This implies that the surface current on the waveguide wall becomes smaller as the
frequency increases. Consequently, the wall loss (or copper loss or eddy current loss) of the
waveguide becomes smaller for higher frequencies. In fact, for high frequencies, the TEg;
mode has the smallest copper loss of the waveguide modes: It becomes the mode of choice
(see Figure 20.2). Waveguides supporting the TEg; modes are used to connect the antennas
of the very large array (VLA) for detecting extra-terrestrial signals in radio astronomy [132]
as shown in Figure 20.3. The low wall loss gives rise to good SNR (signal-to-noise) ratio.

2Low-loss systems are also low-noise due to energy conservation and the fluctuation dissipation theorem
[125,126,131].
3Recall that for a fixed mode, 85 is independent of frequency.
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Figure 20.2: Losses of different modes in a circular waveguide or radius 1.5 cm . It is
seen that at high frequencies, the TEg; mode has the lowest loss (courtesy of [133]).

Figure 20.3: Picture of the Very Large Array in New Mexico, USA (courtesy of [132]).
The low loss of the circular waveguide gives good SNR for the system.
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Figure 20.4 shows two ways of engineering a circular waveguide so that the TEg; mode
is enhanced: (i) by using a mode filter that discourages the guidance of other modes but
not the TEp; mode, and (ii), by designing corrugated waveguide wall to discourage the flow
of axial current and hence, the propagation of the non-TEp; mode. More details of circular
waveguides can be found in [133]. Typical loss of a circular waveguide can be as low as 2
dB/km.*

As shall be shown, an open circular waveguide can be made into an aperture antenna
quite easily, because the fields of the aperture are axially symmetric. Such antenna is called a
horn antenna. Because of this, the radiation pattern of such an antenna is axially symmetric,
which can be used to produce axially symmetric circularly polarized (CP) waves. Ways to
enhance the TE(p; mode are also desirable [134] as shown in Figure 20.5.

Figure 20.4: The TEg; has E = (;ASE¢77 and tangential H field only has a z component
on the waveguide wall. Hence, the wall current is purely circumferential for this mode.
There are ways to enhance the TEq; mode in a circular waveguide: (a) Using mode filter
that only allows the mode to go through. (b) Use corrugated waveguide to discourage
axial current flow from the other modes but encourage the circumferential current flow
from this mode. The field plot of the mode is shown in (c). Such waveguide is used
in radio astronomy to design the communication links between antennas in a very large
array (VLA [132]), or it is used in a circular horn antenna [134].

4For optical fiber, this figure of merit (FOM) can be lower than 1 dB/km making the optical fiber a darling
for long-distance communication.
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Figure 20.5: Picture of a circular horn antenna where corrugated wall is used to enhance
the TEp; mode and discourage the other modes (courtesy of [135]).

20.2 Remarks on Quasi-TEM Modes, Hybrid Modes,
and Surface Plasmonic Modes

We have analyzed some simple structures where closed form solutions are available. These
simple elegant solutions offer physical insight into how waves are guided, and how they are
cutoff from guidance. As has been shown, for some simple waveguides, the modes can be
divided into TEM, TE, and TM modes. However, most waveguides are not simple. We will
remark on various complexities that arise in real world applications.
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20.2.1 Quasi-TEM Modes

Figure 20.6: Some examples of practical coaxial-like waveguides are microstrip line and
co-planar waveguide (left). For the microstrip line, the signal line (denoted with a + sign)
mimics the center conductor of a coax, while the ground plane (hashed lines) represents
the outer conductor of a coax. The coplanar waveguide needs no ground plane, and
operates like a twin-ax, where the + line indicates one line of the twin-ax while the other
— line resembles the other line. The optical fiber in indicated (right). It operates by total-
internal-reflection at the interface between the center (core) of the waveguide, and the
cladding (outside the core). The environments of these waveguides are inhomogeneous
media, and hence, a pure TEM mode cannot propagate on these waveguides.

Many waveguides cannot support a pure TEM mode even when two conductors are present.
For example, two pieces of metal make a transmission line, and in the case of a circular coax,
a TEM mode can propagate in the waveguide. But most two-metal transmission lines do not
support a pure TEM mode: Instead, they support a quasi-TEM mode. In the optical fiber
case, when the index contrast of the fiber is very small, the mode is also quasi-TEM as it has
to degenerate to the TEM case when the contrast is absent.

Absence of TEM Modes in Inhomogeneously-Filled Waveguides

In the following, we will give physical arguments as to why a pure TEM mode cannot exists
in a microstrip line, a coplanar waveguide, and an optical fiber. When a wave is TEM, it is
necessary that the wave propagates with the phase velocity of the medium or it propagates
with exp(—jfiz) dependence where j; is the wavenumber of the medium. But when a uni-
form waveguide has inhomogeneity in between, as shown in Figure 20.6, this is not possible
anymore. We can prove this assertion by reductio ad absurdum. Very simply put, if the wave
is TEM in all the regions, the respective phase velocity of the regions, and phase matching is
impossible at the interfaces.

We shall study this in greater detail: Assume only TE wave in a piecewise homogeneous
region, then using the vector pilot potential approach, the E field is

1
Jwe;

E =

V x V x (20,) (20.2.1)

where ¢; is the permittivity of the region. By doing some algebra, and assume that the field
is a waveguide mode such that ¥, has e 7%-% dependence, then using the BOTC formula, one
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can show that F, is given by

1

_ 2 2
B. == (82 — BT, (20.2.2)

The above derivation is certainly valid in a piecewise homogeneous region. But each of the
piecewise homogeneous media can be made arbitrary small, and hence, it is also valid for
inhomogeneous media. If this mode becomes TEM, then E, = 0 and this is possible only if
B, = B;. In other words, the phase velocity of the waveguide mode is the same as a plane
TEM wave in the same medium.

Now assume that a TEM wave exists in both inhomogeneous regions of the microstrip line
or all three dielectric regions of the optical fiber in Figure 20.6. Then the phase velocities
in the z direction, determined by w/f3, of each region will be w/3; of the respective region.
Hence, phase matching is not possible, and the boundary condition cannot be satisfied at the
dielectric interfaces.

Nevertheless, the lumped element circuit model of the transmission line is still a very good
model for such a waveguide. If the line capacitance and line inductance of such lines can be
estimated, 8, can still be estimated. As shall be shown later, circuit theory is valid when the
frequency is low, or the wavelength is large compared to the size of the structures.

20.2.2 Hybrid Modes—Inhomogeneously-Filled Waveguides

For most inhomogeneously filled waveguides, the modes (eigenmodes or eigenfunctions) inside
are not cleanly classed into TE and TM modes, but with some modes that are the hybrid of
TE and TM modes. If the inhomogeneity is piecewise constant, some of the equations we have
derived before are still valid: In other words, in the homogeneous part (or constant part) of the
waveguide filled with piecewise constant inhomogeneity, the fields can still be decomposed into
TE and TM fields. But these fields are coupled to each other by the presence of inhomogeneity,
i.e., by the boundary conditions required at the interface between the piecewise homogeneous
regions. Or both TE and TM waves are coupled together and are present simultaneously, and
both E, # 0 and H, # 0. Some examples of inhomogeneously-filled waveguides where hybrid
modes exist are shown in Figure 20.7.

Sometimes, the hybrid modes are called EH or HE modes, as in an optical fiber. Never-
theless, the guidance is via a bouncing wave picture, where the bouncing waves are reflected
off the boundaries of the waveguides. In the case of an optical fiber or a dielectric waveguide,
the reflection is due to total internal reflection. But in the case of metalic waveguides, the
reflection is due to the metal walls.
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Figure 20.7: Some examples of inhomogeneously filled waveguides where hybrid modes
exist: (top-left) A general inhomogeneously filled waveguide, (top-right) slab-loaded rect-
angular waveguides, and (bottom) an optical fiber with core and cladding.

20.2.3 Guidance of Modes

Propagation of a plane wave in free space is by the exchange of electric stored energy and
magnetic stored energy. So the same thing happens in a waveguide. For example. in the
transmission line, the guidance is by the exchange of electric and magnetic stored energy via
the coupling between the line capacitance and the line inductance of the line. In this case,
the waveguide size, like the cross-section of a coaxial cable, can be made much smaller than
the wavelength and the wave is still guided.

In the case of hollow waveguides, the E and H fields are coupled through their space and
time variations representing a bouncing wave inside the waveguide. Namely,

V xE=—jwuH, V x H = jweE (20.2.3)

Hence, the exchange of the energies stored is via the space that stores these energies, like
that of a plane wave. These waveguides work only when these plane waves can “enter” the
waveguide. Hence, the size of these waveguides has to be about half a wavelength.

The surface plasmonic waveguide is an exception in that the exchange is between the
electric field energy stored with the kinetic energy stored in the moving electrons in the
plasma instead of magnetic energy stored. This form of energy stored is sometimes referred
to as coming from kinetic inductance. Therefore, the dimension of the waveguide can be very
small compared to wavelength, and yet the surface plasmonic mode can be guided.
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20.3 Homomorphism of Waveguides and Transmission
Lines

Previously, we have demonstrated mathematical homomorphism between plane waves in lay-
ered medium and transmission lines. Such homomorphism can be further extended to waveg-
uides and transmission lines. But unlike the plane wave in layered medium case, we cannot
replace the V operator with —j3 in a waveguide. Hence, the mathematics is slightly more
elaborate. We can show this first for TE modes in a hollow waveguide, and the case for TM
modes can be established by invoking duality principle.®

20.3.1 TE Case

For this case, E, = 0, and from Maxwell’s equations
V x H = jweE (20.3.1)

By letting V=V, +V,, H=H; + H, where V, = 2%7 and H, = ZH,, and the subscript
s implies transverse to z components, then

(Vo+ V) x (Hy+H,) =V, x H, + V., x H, + V, x H, (20.3.2)

where it is understood that V, x H, = 0. Notice that the first term on the right-hand side
of the above is pointing in the z direction. Therefore, by letting E = E; + E,, and equating
transverse components in (20.3.1), we have®

V. x Hy + V, x H, = juweE, (20.3.3)

To simplify the above equation, we shall relate H, from above with the other field components.
To this end, we look at Faraday’s law from which we have

V xE=—jwuH (20.3.4)
Again, by letting E = E; 4+ E., we can let (20.3.4) be written as
Vs xEsg+V, xE;+ VX E, = —jwu(H, + H,) (20.3.5)
Equating z components of the above, we have
Vs x Eg = —jwpH, (20.3.6)

The above allows us to express H, in terms of E,. Using (20.3.6), Eq.(20.3.3) can be rewritten
as

1
Vo x H, 4 Vo x — Vo X By = +juwe, (20.3.7)

5T have not seen exposition of such mathematical homomorphism elsewhere except in very simple cases [33].
6And from the above, it is obvious that Vs x Hs = jweE;, but this equation will not be used in the
subsequent derivation.



220 ELECTROMAGNETIC FIELD THEORY

The above can be further simplified by noting that
Vs x Vs xEg =V (Vs E;) — V- VE; (20.3.8)

But since V- E =0, and E, = 0 for TE modes, it also implies that V- E; = 0. Also, from
Maxwell’s equations, we have previously shown that for a homogeneous source-free medium,

(V24 BHE=0, (V2+5*)E,=0 (20.3.9)

since E, = 0 for TE mode. Furthermore, assuming e¥7#%:* for the z dependence of the
waveguide modes, (20.3.9) then becomes

(V2 + 8% = BB =0 (20.3.10)
or that E; satisfies the reduced wave equation or
(Vs? +B°)Es =0 (20.3.11)

where 32 = 32 — 32 is the transverse wave number. Consequently, from (20.3.8), we arrive at
the simplification, or that

Vs x Vs x E, = -V2E, = 5°E, (20.3.12)

As such, using this in (20.3.7), it becomes

1
V. xH, = ngEs + %BszEs
Jwp

2 2
= jwe (1 - %2 > E, = wa%ES (20.3.13)

Letting 8, = B cos @, then the above can further be rewritten as
V. x H, = jwe cos® OE, (20.3.14)

The above now resembles one of the two telegrapher’s equations that we seek. Now looking
at (20.3.4) again, assuming E, = 0, equating transverse components, we have

V. x B, = —jwuH, (20.3.15)

More explicitly, we can rewrite (20.3.14) and (20.3.15) in the above as

322 x Hy = jwe cos? 0E, (20.3.16)
z

%2 x By, = —jwuH, (20.3.17)
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The above now resembles the telegrapher’s equations. We can multiply (20.3.17) by £x to
get

B
5B = jupz x H, (20.3.18)

Now (20.3.16) and (20.3.18) are a set of coupled equations that look even more like the
telegrapher’s equations. We can have E; — V., 2 x Hy, — —I, u — L, ecos?§ — C, and the
above resembles the telegrapher’s equations, or that the waveguide problem is homomorphic
to the transmission line problem. The characteristic impedance of this line is then

L n w1 w
gL T 20.3.1
0 C ecos2 0 ccosl S, (20.3.19)

Therefore, the TE modes of a waveguide can be mapped into a transmission problem. This
can be done, for instance, for the TE,,,, mode of a rectangular waveguide. Then, in the above

B. = \/52 - (?)2 - (%)2 (20.3.20)

Therefore, each TE,,, mode will be represented by a different characteristic impedance Zj,
since (3, is different for different TE,,,, modes.

20.3.2 TM Case

This case can be derived using duality principle. Invoking duality, and after some algebra,
then the equivalence of (20.3.16) and (20.3.18) become

gEs = jwpcos® 02 x Hy (20.3.21)
z
9 s H, = jueE (20.3.22)
82 s j S b

To keep the dimensions commensurate, we can let E;, — V, 2 x Hy, — —1I, pcos?8 — L,
€ — C, then the above resembles the telegrapher’s equations. We can thus let

L 2
Zo =1/ 2 = \/m _ P esn = B2 (20.3.23)
C € € we

Please note that (20.3.19) and (20.3.23) are very similar to that for the plane wave case, which
are the wave impedance for the TE and TM modes, respectively.
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Figure 20.8: A waveguide filled with layered medium is mathematically homomorphic to
a multi-section transmission line problem. Hence, transmission-line method can be used
to solve this problem, but junction capacitance and inductance are needed to model the
junctions correctly.

The above implies that if we have a waveguide of arbitrary cross section filled with layered
media, the problem can be mapped to a multi-section transmission line problem, and solved
with transmission line methods. When V and I are continuous at a transmission line junction,
E; and H; will also be continuous. Hence, the transmission line solution would also imply
continuous E; and H, field solutions.

Figure 20.9: A multi-section waveguide is not exactly homormorphic to a multi-section
transmission line problem, when the cross section of the waveguides are not equal to
each other. Circuit elements are needed at the junctions to capture the physics at the
waveguide junctions as shown in the next figure.

20.3.3 Mode Conversion

In the waveguide shown in Figure 20.8, there is no mode conversion at the junction interface.
Assuming a rectangular waveguide as an example, what this means is that if we send at TEqq
into the waveguide, this same mode will propagate throughout the length of the waveguide.
The reason is that only this mode alone is sufficient to satisfy the boundary condition at the
junction interface. The mode profile does not change throughout the length of the waveguide.

To elaborate further, from our prior knowledge, the transverse fields of the waveguide,
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e.g., for the TM mode, can be derived to be

H, =V x 20, (r,)eTP> (20.3.24)
E, = jFizvsqfes(rs)eijﬂzz (20.3.25)

In the above, 32 and W.4(r,) are eigenvalue and eigenfunction, respectively, that depend only
on the geometrical cross-sectional shape of the waveguide, but not the materials filling the
waveguide. These eigenfunctions are the same throughout different sections of the waveguide
and only 8, = /% — s changes from section to section. Therefore, boundary conditions
can be easily satisfied at the junctions.

However, for a multi-junction waveguide show in Figure 20.9, tangential E and H con-
tinuous condition cannot be satisfied by a single mode in each waveguide alone: V and I
continuous at a transmission line junction will not guarantee the continuity of tangential E
and tangential H fields at the waveguide junction.

Multi-modes have to be assumed on both sides of the junction at each section in order
to match boundary conditions at the junction [85]. Moreover, mode matching method for
multiple modes has to be used at each junction. Typically, a single mode incident at a junction
will give rise to multiple modes reflected and multiple modes transmitted. The multiple modes
give rise to the phenomenon of mode conversion at a junction. Hence, the waveguide may need
to be modeled with multiple transmission lines where each mode is modeled by a different
transmission line with different characteristic impedances.

However, the operating frequency can be chosen so that only one mode is propagating at
each section of the waveguide, and the other modes are cutoff or evanescent. In this case, the
multiple modes at a junction give rise to localized energy storage at a junction. These energies
can be either inductive or capacitive. The junction effect may be modeled by a simple circuit
model as shown in Figure 20.10. These junction elements also account for the physics that
the currents and voltages are not continuous anymore across the junction. Moreover, these
junction lumped circuit elements account for the stored electric and magnetic energies at the
junction.
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Figure 20.10: Junction circuit elements are used to account for stored electric and mag-
netic energies at the waveguide junctions. They also account for that the currents and
voltages are not continuous across the junctions anymore as the fields of the dominant
modes in each section as shown in Figure 20.9 are not continuous anymore. The moral of
the story is that engineers love to replace complicated theory with simple ones in order
to solve complex problems.



