
Lecture 11

Transmission Lines

Transmission lines represent one of the most important electromagnetic technologies. The
reason being that they can be described by simple theory, similar to circuit theory. As such,
the theory is within the grasp of most practicing electrical engineers. Moreover, transmission
line theory fills the gap in the physics of circuit theory: Circuit theory alone cannot describe
wave phenomena, but when circuit theory is augmented with transmission line theory, wave
phenomena with its corresponding wave physics start to emerge.

Even though circuit theory has played an indispensable role in the development of the
computer chip industry, eventually, circuit theory has to be embellished by transmission
line theory, so that high-speed circuits can be designed. Retardation effect, which causes
time delay, clock skew, and phase shift, can be modeled simply using transmission lines.
Nowadays, commercial circuit solver software such as SPICE1 have the capability of including
transmission line as an element in modeling.

1This is an acronym for a package “simulation program with integrated circuit emphasis” that came out
of U. Cal., Berkeley [87].
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11.1 Transmission Line Theory

Figure 11.1: Various kinds of transmission lines. Schematically, all of them can be
modeled by two parallel wires. On the right are pictures of a power transmission line,
and a telephone lineḊue to technology advancement, telephone lines are a rare sight now
(courtesy of Lister-Communications and Istockphoto.com).

Transmission lines were the first electromagnetic waveguides ever invented. The were driven
by the needs in telegraphy technology. It is best to introduce transmission line theory from
the viewpoint of circuit theory, which is elegant and one of the simplest theories of electrical
engineering. This theory is also discussed in many textbooks and lecture notes. Transmission
lines are so important in modern day electromagnetic engineering, that most engineering
electromagnetics textbooks would be incomplete without introducing the topics related to
them [32,33,45,51,55,66,81,85,88,89].

Circuit theory is robust and is not sensitive to the detail shapes of the components in-
volved such as capacitors or inductors. Moreover, many transmission line problems cannot
be analyzed simply when the full form of Maxwell’s equations is used,2 but approximate so-
lutions can be obtained using circuit theory. We shall show later that circuit theory is an
approximation of electromagnetic field theory when the wavelength is very long: the longer
the wavelength, the better is the approximation [51]. Hence, in long-wavelength limit, trans-
mission line theory can be approximated by circuit theory.

Examples of transmission lines are shown in Figure 11.1. The symbol for a transmission
line is usually represented by two pieces of parallel wires, but in practice, these wires need
not be parallel as shown in Figure 11.2.

2Usually called full-wave analysis.
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Figure 11.2: A twisted pair transmission line where the two wires are not parallel to each
other (courtesy of slides by A. Wadhwa, A.L. Dal, N. Malhotra [90].)

Circuit theory also explains why waveguides can be made sloppily when wavelength is long
or the frequency low. For instance, in the long-wavelength limit, we can make twisted-pair
waveguides with abandon, and they still work well (see Figure 11.2). Hence, it is simplest
to first explain the propagation of electromagnetic signal on a transmission line using circuit
analysis.

11.1.1 Time-Domain Analysis

We will start with performing the time-domain analysis of a simple, infinitely long transmis-
sion line. Remember that two pieces of metal can accumulate attractive positive and negative
charges between them, giving rise to electric fields that start with positive charges and end
with negative charges. The stored energy in the electric field gives rise to capacitive effect
in the line which can be modeled by capacitances. Moreover, a piece of wire carrying a cur-
rent generates a magnetic field, and hence, yields stored energy in the magnetic field. The
stored magnetic field energy gives rise to inductive effect in the line which can be modeled
by inductances. These stored energies are the sources of the capacitive and inductive effects.

But these capacitive and inductive effects are distributed over the spatial dimension of
the transmission line. Therefore, it is helpful to think of the two pieces of metal as consisting
of small segments of metal concatenated together. Each of these segments will have a small
inductance, as well as a small capacitive coupling between them. Hence, we can model
two pieces of metal with a distributed lumped element model as shown in Figure 11.3. For
simplicity, we assume the other conductor to be a ground plane, so that it need not be
approximated with lumped elements.

In the transmission line, the voltage V (z, t) and the current I(z, t) are functions of both
space z and time t, but we will model the space variation of the voltage and current with
discrete step approximations. The voltage varies from node to node while the current varies
from branch to branch of the lumped-element model.
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Figure 11.3: A long transmission line can be replaced by a concatenation of many short
transmission lines. For each pair of short wires, there are capacitive coupling between
them. Furtheremore, when current flows in the wire, magnetic field is generated making
them behave like an inductor. Therefore, the transmission line can be replaced by a
lumped-element approximation as shown. The lumped elements have inductances given
by L∆z and capacitances given by C∆z, distributed over the line. Hence, this is also
known as the distributive model of the transmission line.

Telegrapher’s Equations

First, we recall that the V-I relation of an inductor is

V0 = L0
dI0
dt

(11.1.1)

where L0 is the inductor, V0 is the time-varying voltage drop across the inductor, and I0 is
the current through the inductor. Then using this relation between nodes 1 and 2 in Figure
11.3, we have

V − (V + ∆V ) = L∆z
∂I

∂t
(11.1.2)

The left-hand side is the voltage drop across then series inductor, while the right-hand side
follows from the aforementioned V-I relation of an inductor, but we have replaced L0 = L∆z.
Here, L is the inductance per unit length (line inductance) of the transmission line. And L∆z
is the incremental inductance due to the small segment of metal of length ∆z. In the above,
we assume that V = V (z, t) and I = I(z, t), so that time derivative is replaced by partial
time derivative. Then the above (11.1.2) can be simplified to

∆V = −L∆z
∂I

∂t
(11.1.3)

where ∆V is the incremental voltage drop between the two nodes 1 and 2.
Next, we make use of the V-I relation for a capacitor, which is

I0 = C0
dV0

dt
(11.1.4)
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where C0 is the capacitor, I0 is the current through the capacitor, and V0 is a time-varying
voltage drop across the capacitor. Thus, applying this relation at node 2 in Figure 11.3 gives
the incremental shunt current to be

−∆I = C∆z
∂

∂t
(V + ∆V ) ≈ C∆z

∂V

∂t
(11.1.5)

where C is the capacitance per unit length, and C∆z is the incremental capacitance between
the small piece of metal and the ground plane. In the above, we have used Kirchhoff current
law to surmise that the current through the shunt capacitor is −∆I, where ∆I = I(z +
∆z, t)− I(z, t). In the last approximation in (11.1.5), we have dropped a term involving the
product of ∆z and ∆V , since it will be very small or second order in magnitude.

In the limit when ∆z → 0, one gets from (11.1.3) and (11.1.5) that

∂V (z, t)

∂z
= −L∂I(z, t)

∂t
(11.1.6)

∂I(z, t)

∂z
= −C ∂V (z, t)

∂t
(11.1.7)

The above are the telegrapher’s equations.3 They are two coupled first-order equations, and
can be converted into second-order equations easily by eliminating one of the two unknowns.
Therefore,

∂2V

∂z2
− LC ∂

2V

∂t2
= 0 (11.1.8)

∂2I

∂z2
− LC ∂

2I

∂t2
= 0 (11.1.9)

The above are wave equations that we have previously studied, where the velocity of the wave
is given by

v =
1√
LC

(11.1.10)

Furthermore, if we assume that

V (z, t) = V0f+(z − vt), I(z, t) = I0f+(z − vt) (11.1.11)

corresponding to a right-traveling wave, they can be verified to satisfy (11.1.6) and (11.1.7)
as well as (11.1.8) and (11.1.9) by back substitution.

Consequently, we can easily show that for the right-traveling wave,

V (z, t)

I(z, t)
=
V0

I0
=

√
L

C
= Z0 (11.1.12)

where Z0 is the characteristic impedance of the transmission line. The above ratio is only
true for one-way traveling wave, in this case, one that propagates in the +z direction.

3They can be thought of as the distillation of the Faraday’s law and Ampere’s law from Maxwell’s equations
without the source term. Their simplicity gives them an important role in engineering electromagnetics.
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For a wave that travels in the negative z direction, we can let,

V (z, t) = V0f−(z + vt), I(z, t) = I0f−(z + vt) (11.1.13)

one can easily show by the same token that

V (z, t)

I(z, t)
=
V0

I0
= −

√
L

C
= −Z0 (11.1.14)

Time-domain analysis is very useful for transient analysis of transmission lines, especially
when nonlinear elements are coupled to the transmission line.4 Another major strength
of transmission line model is that it is a simple way to introduce time-delay (also called
retardation) in a simple circuit model.5 As we saw when we studied the solution to the wave
equation: solutions at different times are just the time-delayed version of the original solution.

Time Delay and Velocity of Light

Time delay is a wave propagation effect, and it is harder to incorporate into circuit theory or
a pure circuit model consisting of R, L, and C only. In circuit theory, where the wavelength
is assumed very long, Laplace’s equation is usually solved, which is equivalent to Helmholtz
equation with infinite wave velocity, namely,

lim
c→∞

∇2Φ(r) +
ω2

c2
Φ(r) = 0 =⇒ ∇2Φ(r) = 0 (11.1.15)

From the above, we see that Helmholtz equation becomes Laplace’s equation when the ve-
locity of light c is infinite. Hence, events in Laplace’s equation happen instantaneously. In
other words, circuit theory, where Laplace’s equation is usually solved, assumes that the ve-
locity of the wave is infinite, and there is no retardation effect. This is only true or a good
approximation when the size of the structure is small compared to wavelength.

11.1.2 Frequency-Domain Analysis—the Power of Phasor Technique
Again!

As we have seen in previous lectures, the frequency-domain analysis greatly simplifies the
analysis of many complicated phenomena. This was especially true in our analysis of conduc-
tive media, and frequency dispersive media as in the Drude-Lorentz-Sommerfeld model. As
such, frequency domain analysis is very popular as it makes the transmission line equations
very simple–one just replace ∂/∂t→ jω. Moreover, generalization to a lossy system is quite
straight forward. Furthermore, for linear time invariant systems, the time-domain signals can
be obtained from the frequency-domain data by performing a Fourier inverse transform since
phasors and Fourier transforms of a time variable are just related to each other by a constant.

4Remember that we can only use frequency domain technique or Fourier transform for linear time-invariant
systems.

5By a simple circuit model, we mean a model that has lumped elements such as R, L, and C as well as a
transmission line element.
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The telegrapher’s equations (11.1.6) and (11.1.7) then in frequency domain become

d

dz
V (z, ω) = −jωLI(z, ω) (11.1.16)

d

dz
I(z, ω) = −jωCV (z, ω) (11.1.17)

The above gives the notion that the change in the voltage V (z, ω) on a transmission line is
proportional to the line impedance jωL times the current I(z, ω). Similar notion can be said
of the second equation above.

The corresponding Helmholtz equations are then

d2V

dz2
+ ω2LCV = 0 (11.1.18)

d2I

dz2
+ ω2LCI = 0 (11.1.19)

The above are second ordinary differential equations, and the general solutions to the above
are

V (z) = V+e
−jβz + V−e

jβz (11.1.20)

I(z) = I+e
−jβz + I−e

jβz (11.1.21)

where β = ω
√
LC. This is similar to what we have seen previously for plane waves in the

one-dimensional wave equation in free space, where

Ex(z) = E0+e
−jk0z + E0−e

jk0z (11.1.22)

where k0 = ω
√
µ0ε0. We see much similarity between (11.1.20), (11.1.21), and (11.1.22).

To see the solution in the time domain, we let the phasor V± = |V±|ejφ± in (11.1.20),
and the voltage signal above can then be converted back to the time domain using the key
formula in phasor technique as

V (z, t) = <e{V (z, ω)ejωt} (11.1.23)

= |V+| cos(ωt− βz + φ+) + |V−| cos(ωt+ βz + φ−) (11.1.24)

As can be seen, the first term corresponds to a right-traveling wave, while the second term is
a left-traveling wave.

Furthermore, if we assume only a one-way traveling wave to the right by letting V− =
I− = 0, then it can be shown that, for a right-traveling wave, using (11.1.16) or (11.1.17)

V (z)

I(z)
=
V+

I+
=

√
L

C
= Z0 (11.1.25)

where Z0 is the characteristic impedance. Since Z0 is real, it implies that the phasors6 V (z)
and I(z) are in phase.

6We will neglect to denote phasors by under-tilde, as they are implied by the context.
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Similarly, applying the same process for a left-traveling wave only, by letting V+ = I+ = 0,
then

V (z)

I(z)
=
V−
I−

= −
√
L

C
= −Z0 (11.1.26)

In other words, for the left-traveling waves, the voltage and current are 180 ◦ out of phase.

11.2 Lossy Transmission Line

Figure 11.4: In a lossy transmission line, series resistance can be added to the series
inductance, and the shunt conductance can be added to the shun susceptance of the
capacitor. However, this problem is homomorphic to the lossless case in the frequency
domain.

The phasor technique is empowered by that the algebra for complex numbers is the same
as that of real numbers. Second, resistors and conductances are replaced by impedances
and admittances in the frequency domain, making the solution to a network of impedances
and admittances analogous to the network of resistances and conductances. The power of
frequency domain analysis is revealed in the study of lossy transmission lines. The previous
analysis, which is valid for lossless transmission line, can be easily generalized to the lossy
case in the frequency domain. In using frequency domain and phasor technique, impedances
will become complex numbers as shall be shown.

To include loss, we use the lumped-element model as shown in Figure 11.4. One thing to
note is that jωL is actually the series line impedance of the lossless transmission line, while
jωC is the shunt line admittance of the same line. First, we can rewrite the expressions for
the telegrapher’s equations in (11.1.16) and (11.1.17) in terms of series line impedance and
shunt line admittance to arrive at

d

dz
V = −ZI (11.2.1)

d

dz
I = −Y V (11.2.2)

where Z = jωL and Y = jωC. The above can be easily generalized to the lossy case as shall
be shown.
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The geometry in Figure 11.4 is topologically similar to, or homomorphic7 to the lossless
case in Figure 11.3. Hence, when lossy elements are added in the geometry, we can surmise
that the corresponding telegrapher’s equations are similar to those above. But to include loss,
we need only to generalize the series line impedance and shunt admittance from the lossless
case to lossy case as follows:

Z = jωL→ Z = jωL+R (11.2.3)

Y = jωC → Y = jωC +G (11.2.4)

where R is the series line resistance, and G is the shunt line conductance, and now Z and Y are
the series impedance and shunt admittance, (which are complex numbers rather than being
pure imaginary numbers), respectively. We will further exploit the fact that the algebra
of complex numbers is the same as the algebra of real numbers. We will refer to this as
mathematical “homomorphism”. Then, the corresponding Helmholtz equations are

d2V

dz2
− ZY V = 0 (11.2.5)

d2I

dz2
− ZY I = 0 (11.2.6)

or

d2V

dz2
− γ2V = 0 (11.2.7)

d2I

dz2
− γ2I = 0 (11.2.8)

where γ2 = ZY , or that one can also think of γ2 = −β2 by comparing with (11.1.18) and
(11.1.19). Then the above is homomorphic to the lossless case except that now, β is a complex
number, indicating that the field is decaying and oscillating as it propagates. As before, the
above are second order one-dimensional Helmholtz equations where the general solutions are

V (z) = V+e
−γz + V−e

γz (11.2.9)

I(z) = I+e
−γz + I−e

γz (11.2.10)

and

γ =
√
ZY =

√
(jωL+R)(jωC +G) = jβ (11.2.11)

Here, β = β′ − jβ′′ is now a complex number. In other words,

e−γz = e−jβ
′z−β′′z

is an oscillatory and decaying wave. Or focusing on the voltage case,

V (z) = V+e
−β′′z−jβ′z + V−e

β′′z+jβ′z (11.2.12)

7A math term for “similar in math structure”. The term is even used in computer science describing a
emerging field of homomorphic computing.
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Again, letting V± = |V±|ejφ± , the above can be converted back to the time domain as

V (z, t) = <e{V (z, ω)ejωt} (11.2.13)

= |V+|e−β
′′z cos(ωt− β′z + φ+) + |V−|eβ

′′z cos(ωt+ β′z + φ−) (11.2.14)

The first term corresponds to a decaying wave moving to the right while the second term is
also a decaying wave but moving to the left. When there is no loss, or R = G = 0, and from
(11.2.11), we retrieve the lossless case where β′′ = 0 and γ = jβ = jω

√
LC.

Notice that for the lossy case, the characteristic impedance, which is the ratio of the
voltage to the current for a one-way wave, can similarly be derived using homomorphism:

Z0 =
V+

I+
= −V−

I−
=

√
L

C
=

√
jωL

jωC
→ Z0 =

√
Z

Y
=

√
jωL+R

jωC +G
(11.2.15)

The above Z0 is manifestly a complex number. Here, Z0 is the ratio of the phasors of the
one-way traveling waves, and apparently, their current phasor and the voltage phasor will not
be in phase for lossy transmission line.

In the absence of loss, the above again becomes

Z0 =

√
L

C
(11.2.16)

the characteristic impedance for the lossless case previously derived.


