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1. Elements of Complex Algebra

Complex numbers are extensions of real numbers, and they make the
number fields complete in the sense that an n-th order polynomial has n-th
roots in a complex field while it is not always true in the real field. Complex
numbers are also very useful in time harmonic analysis of engineering and
physical systems, because they considerably simplify the analysis.

A complex number can be represented in cartesian form as

c=a+jb (1)

where j = v/—1. a is the real part of ¢ while b is the imaginary part of c.
On the complex plane, c is represented by a point ¢ or sometimes an arrow
oc as shown.

Imaginary Axis

bl.....C

Real Axis
0 a

Sometimes it is more convenient to represent ¢ in polar form, i.e.

c=a+jb=|c|e’® = |c|cos ¢ + j|c|sin ¢ (2)

where |c| = v/a? + b? is the magnitude or the absolute value of c.
From (2), it is seen that

b b
tang = - = ¢=tan ' — (3)
a a

where ¢ is the phase of c.

Addition and Subtraction

Addition and subtraction of complex numbers are carried out in Cartesian
forms.
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2. Review of Vector Analysis

A vector A can be written as
A=23A,+9gA, +ZA,.
Similarly, a vector B can be written as

B =B, + §B, + 2B..

(1)

(2)

In the above, Z,9,Z are unit vectors pointing in the x,y,z directions re-
spectively. A,, A, and A, are the components of the vector A in the z,y, 2

directions respectively. The same statement applies to B,, By, and B..

Addition

A +B=2#(A, + B,) + (A, + By) + 2(A, + B,).

Multiplication

(a) Dot Product (scalar product)

A-B=A,B,+A,B,+ A.B.,

A-B=B-A, commutative property
A-(B+C)=A-B+A-C, distributive property

A -B = |A||Bjcosf.

In (7), 6 is the angle between vectors A and B.

(b) Cross Product (vector product)

AxB=|A4, A, A.|=i#(A,B.- A.B,)+§(A.B, — A,B.)
B, B, B.

+ 2(A.B, — A,B,),
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(9)

A x B =i |A||B|siné,
where # is a unit vector obtained from A and B via the right hand rule.
Ax(B+C)=AxB+AxC, distributive property (10)
non-associative property (11)
(12)

A x (BxC)#(AxB)xC,
anti-commutative property

AxB=-BxA,
Vector Derivatives
Del V= A—+A£+A— (13)
~ o yay “92
0 0 0
Gradient V¢ = j£¢ + Qa—yd) + 2$¢, (14)
. 0 0 0
Divergent V.A = %Am + nyAy + aAz, (15)
Ty Z
Curl VXxA= 3% 3% %
A, A, A,
0 0 0 0
=z| —A, ——A y| —A, — —A,
0y 0z " +Y <8z ox )
0 0
2| —A,— —A,|. 16
+z or Y 3y ) ( )
Divergence Theorem
(17)

?{V-AdV:]{A-ﬁdS.
% s

(18)

Stokes Theorem
f(vXA)-ﬁdszfA-dl.
c

S
2



Some Useful Vector Identities

a-(bxc)=b-(cxa)=c-(axb),
ax(bxc)=b(a-c)—c(a-b),

axa=0,
a-(axb)=0,
v x (V¢) =0,
V- (VxA)=0,

V- ($A) = A Vi + V- A,
V.- (AxB)=B-VxA—-A.VxB,
VxVxA=V(V-A)—V-VA,

2 9

+o

2 _v.vu_ 9 '
Vi=Vev or?  0y*> 022
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3. Wave Equation from Maxwell’s Equations

Lossless Medium

In a source free region, Maxwell’s equations are

oD
H-= 1
V x ot (1)
0B
VXE——E, (2)
V.B=0, (3)
V.D=o, )

where B = yH and D = ¢E. Taking the curl of (2), we have
VX(VXE):—M%VXH. (5)
Substituting (1) into (5), we obtain
52
VxVXE= —ue@E. (6)

Making use of the vector identity that

VxVxE=V(V-E)-V’E, (7)
we have
V(V —V’E =— —82E 8
-E = .

Since the region is source free, and V - E = 0, we have
2 0

which is the vector wave equation in freespace where V - E = 0.
Similarly, we can show that

2 0
V‘H = pe—H 10
Heo s (10)
if V- H = 0, which is, of course, true in free space.
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Plane Wave Solutions to the Vector Wave Equations

The condition for arriving at Equation (9) is that V-E = 0. We can have
solutions of the form

E =3FE,(z,t), (11)

E =gE,(z,1), (12)
but not

E = ZFE,(z,1), (13)

because (13) violates V - E = 0 unless F, is independent of z. If E is of the
form (11), then

VE = ¢ (38_:2 - 88—;2 - 38—;> Eu(z,t) = ifaa—;Em (14)
with both 6‘9—; and 6‘9—:2 equal to zero. Then (9) becomes
2 52
@Em(z,t) - ueﬁEm(z,t) = 0. (15)
Similarly, if H = gH,(z,t), (10) becomes
2 2
@Hy(z,t) - ueﬁHy(z,t) = 0. (16)

Equations (15) and (16) are scalar, one dimensional wave equations of the

form
82 2

10
@y('zat) — ﬁﬁy(z,t) =0, (17)

where v = 1/,/pe. The solution to (17) is of the form y = f(z + at). We can
show that

0 0
Dp=rera, T apera, (18)
0? 0?
@f = f"(z + at), B—t]; =a’f"(z + at). (19)
Substituting (19) into (17), we have
02
P at) = S at) =0, (20

which is possible only if @ = 4+v. Hence, the general solution to the wave
equation is
y = f(z—vt) +g(z +vi), (21)

where f and g are arbitrary functions.
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The solution f(z — vt) moves in the positive z-direction for increasing .

f(2) f(z-vt)
t=0 t>0
=0 z zivt z
9(2) g(z+vt)
|7 t=0 ‘ . t=0
z=0 z z':-vt z

The solution g(z + vt) moves in the negative z-direction for increasing ¢.

The shapes of the functions f and g are undistorted as they move along.
We can observe wavelike behavior in a pond when we drop a pebble into it.
Solutions to (9) and (10) that correspond to a plane wave is of the form

E =if(z — vt), H = §fy(z — vt). (22)
The wave is propagating in the z-direction, but the electric and magnetic
fields are transverse to the direction of propagation. Such a wave is known
as the Transverse Electro Magnetic wave or TEM wave.
If one substitutes (22) into Equation (2), one has
0 0

or 5 5
&fl(z —vt) = —Nafz(z —vt), (24)
or
fi(z = vt) = pofy(z — vt), (25)
or

fa(z —owt) = \/gfl (z — vt). (26)

Hence, for a plane TEM wave,

E,
Lo _ B _ 377 2, for free space. (27)
H, €
The quantity
z=/¢ (28)
€

is also known as the intrinsic impedance of free-space.

3
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4. Using Phasor Techniques to Solve Maxwell’s Equations

For a time-harmonic (simple harmonic) signal, Maxwell’s Equations can
be easily solved using phasor techniques. For example, if we let

H = Re[He!], (1)
E = Re[Ee™™], (2)

and substituting into (3.1), we have
Re[V x Hel!] = Re {%ef}eﬁ"t} . (3)

We could replace % by jw since the signal is time harmonic. Furthermore,
we can remove the Re operator and obtain

V x He'*t = jweBet, (4)

where e/“t cancels out on both sides.
Equation (4) implies Equation (3). Also, any time dependence cancels out in
the problem. Hence,

V x H = jweE. (5)

Similarly, _ _
VxE=—jwuH, (6)
V. ¢E = 0. (8)

Taking the curl of (6) and substituting (5) into it, we have
V xVxE=—jwuV x H=w?ueE. (9)

Again, making use of the identity VxVxE = V(V-E)—V2E, and V-E = 0,
we have _ .
V2E = —w?ueE. (10)

Similarly, _ _
V’H = —w?ueH. (11)

These are the Helmholtz’s wave equations.

Lossy Medium (Conductive Medium)

1



Phasor technique is particularly appropriate for solving Maxwell’s equa-
tions in a lossy medium. In a lossy medium, Equation (3.1) becomes

OE
VxH=¢e—+J 12

where J is the induced currents in the medium, and hence,
J =0E. (13)
Applying phasor technique to (12), we have
V xH-= jwef) +oE
= jw (e - jf) E. (14)
w

We can define the quantity
o

_ .0 15
E=e—j— (15)

to be the complex permittivity of the medium, and (14) becomes
V x H = jwéE. (16)

Notice that the only difference between (16) and (5) is the complex permit-
tivity versus the real permittivity. If one goes about deriving the Helmholtz
wave equations for a lossy medium, the results are

VZE = —w?uéE, (17)
VH = —w?péH. (18)

Hence, a lossy medium is easily treated using phasor technique by replacing
a real permittivity with a complex permittivity.
If we restrict ourselves to one dimension, Equation (17), for instance,

becomes of the form 2
- )= B
@Em(z) — v E,(z) =0, (19)

’Yzjw\/;g:jw\/u(e—jg):aﬂﬁ- (20)

The general solution to (19) is of the form

where

E,(z) = C1e77" + Che™. (21)
In real space time,

E.(z,t) = %G[Ew(z)ejm]
= Re[Cre e’ 4+ Re[Che?? /Y] (23)
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If C, = |Ci|e?%, Cy=1|0y|e'*?, y=a+jB, then
E.(z,t) = |Cy| cos(wt — Bz + ¢1)e”**+ | Cy | cos(wt + Bz + ¢o)e**.  (24)

Note that one of the solutions in (24) is decaying with z while another solution
is growing with z. The function cos(wt+ (3z+ @) can be written as cos[+3(z+
5t) + ¢]. Hence, it moves with a velocity

v = 3 (25)

Depending on its sign, it moves either in the positive or negative z direction.
In the above, v is the propagation constant, o is the attenuation constant
while (3 is the phase constant.

Intrinsic Impedance

The intrinsic impedance can be easily derived also in the phasor world.
The phasor representation of Equation (3.23) is

%Ew = —jwuH,. (26)
A corresponding one for I;Ty is
EHy = —jwekF,. (27)

If we now let E, = Ege 7, I:Iy = Hpe 7* , and using them in (26) yields
—yFEge 7 = —jwuHye 7%, (28)
The above implies that

Ey  jwu ©
=2 =20 /0 29
n H, o € ( )

For a lossy medium, we replace € by the complex permittivity and the intrinsic

impedance becomes
Iz [ Jwi
=,./=2 = = . 30
" \/; €—Jj2 o+ Jwp (30)

The above is obviously a complex number.
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5. Transmission Lines

\
VAR

GENERAL STRIPLINE

Examples of Transmission lines

Symbol of a Transmission Line

[ }——o

Symbol of a Transmission Line

Another place where wave phenomenon is often encountered is on trans-
mission lines. A transmission line consists of two parallel conductors of ar-
two opposite
charges. A transmission line has capacitances between the two conductors,
and the conductors have inductances to them. We can characterize this ca-
m~!, and the
inductance by a line inductance L, which has the unit of henry m !. Hence
equivalent as

bitrary cross-sections that can carry two opposite currents or

pacitance by a line capacitance C which has the unit of farad

a transmission line can be approximated by a lumped element

1
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shown

LAZ \Y LAZ V+AV LAZ V+2AV
12228 » YY)y MY 3yo
| I | 1+Al [+2Al
CANZ —|—— CAZ —|/— CAZ —/(
Y _Al
o 0
o—>» 7

We can derive the voltage equation between nodes (1) and (2) to get

ol
or 8[
AV = —LAz—. 2
Sy (2)

Similarly, the current relation at node (3) says that

B o(V + AV) )%
—AI =CAz oy ~ CAz 5 (3)

In the limit when we let our discrete or lumped element model become very
small, or Az — 0, we have

oV oI

5, LTap (4)
and

or__ v 5

0z ot

The above are known as the telegrapher’s equations. Wave equations can be
easily derived from the above

o*V o*V

— LC =0 6
022 ot? ’ (6)
and 52 52
I I

Comparing with Equation (3.17), we deduce that the velocity of the current
and voltage waves on a transmission line is

V= —. (8)



The solution to (6) may be of the form
V(z,t) = f(z — vt).
Substituting into (4), we have

ol

—La = f'(z — vt)
or
I(z.t) = = f(z —vt)
at) = 7o flz—wv
Hence,
v
(z,t)  w— L
I(z,t) C

for a forward going wave. The quantity

| L
Z[): 6

is the characteristic impedance of a transmission line.

Lossy Transmission Line

(10)

(11)

(13)

Often time, a transmission line has loss to it. For example, the conductor
has a finite conductivity and hence is a little resistive. The insulation between
the conductors may have current leakage, thus not forming an ideal capacitor.
A more appropriate lumped element model is as follows.

RAZ LAZ RAZ LAZ RAZ

LAZ

o_/\/\/\/\,_fW\_o_/\/\/\/\,_fW\_o_/\N\/\,_fY'Y'\_n_

1

Q)
>
N
AMA
LAl

J‘CAZ GAZ=
_l_

\AAJ

CAZ

GAZ=

vy

1
=

CAz

The above circuit is more easily treated using phasor techniques. If we
have applied phasor technique to (4) and (5), we would have obtained

v .
— = —jwlL]
dz JWE
dI -
— = —jwCV.
dz Ot

3
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Note that jwL is the series impedance per unit length of the lossless line
while jwC' is the shunt admittance per unit length of the lossless line. In the
lossy line case, the series impedance per unit length becomes

Z=jwL+R (16)
while the shunt admittance per unit length becomes
Y =jwC+G (17)

where R and G are line resistance and line conductance respectively. The
telegraphers equations become

A%

—— =21 18
dZ b ( )
dI .
=YV 19
dz ) ( )
and the corresponding Helmholtz wave equations are
d>V .
— —ZYV =0 20
il ZYT=0 (21)
dz? -

Similarly, the characteristic impedance, is

jwL |jwL + R Z
0 jwC 0 jwC + G Y (22)

Equations (20) and (21) are of the same form as (4.22) or

2V -
< vV =0, (23)
d2I -
17 7 =0, (24)
where
v =VZY = /(jwL + R)(jwuC + G) = a + jf3. (25)

The general solution is of the form (4.23). For example,

V(z) =Vie " + V. et
= V, e 798z L Y_eo=tibz, (26)

If V. = |V, |e®+, V. = |V |eti?-] then the real time representation of
Vis
V(z,t) = Re[V (2)e!]
= |V, |e ** cos(wt — Bz + ¢1) + |V_|e®* cos(wt + Bz + ¢2). (27)
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The first term corresponds to a decaying wave moving in the positive z-
direction while the second term corresponds to a wave decaying and moving
in the negative z-direction. Hence, e 7* corresponds to a positive going wave,
while e™* corresponds to a negative going wave.

If the transmission line is lossless, i.e., R = G = 0, then, the attenuation
constant « = 0, and the propagation constant v becomes v = j3. In this
case, there is no attenuation, and (26) becomes

V(z) = Vie P 4 V_etiPz, (28)
and (27) becomes
V(z,t) = |Vi|cos(wt — Bz + ¢1) + |V_| cos(wt + Bz + o). (29)
The wave propagates without attenuation or without decay in this case.
The velocity of propagation is v = w/f3.
Furthermore, we can derive the current that corresponds to the voltage

in (26) using Equation (18). Hence

R A A
I=——"—"— =1V Ly eth?, 30
Zd: 7 *° 7 ¢ (30)

0% Y 1
L=y == 31
Z Z  Zy (31)

where Zj is the characteristic impedance given by Equation (22). Hence,

~ V. V_ _
where v 1%
f ~
Z —:—Z- 33
Yz Y-z (33)
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6. Terminated Uniform Lossless Transmission Lines

Zy, vV lossless

N|_d

L| LOAD

I

N
1
o

z=-1

Consider a lossless transmission line terminated in a load of impedance
Z1. A wave traveling to the right will be reflected at the termination. In
general, there will be both positive going and negative going waves on the
line. Hence,

V(z) = Voe % 4 Vie P, (1)

Here, v = j3, a = 0, because of no loss. The corresponding current, as in
(5.32), is

. Vo 5. V3oL
I — Bz _ +5Bz 2
() = goe P = e, )

where 7, = \/% and 3 = wV LC for a lossless line.
At z =0,

V(zzO)_Z W+ N

- Zo. (3)

fz=0 " W%m-W

We can solve for V] in terms of V;, i.e.

Z5, — 2y

=——V. 4

YUz 2, ° (4)
If we define 7 7
L — 4o

v: 9 5

=g (5)

then V; = p,V}, and Equation (1) becomes
V(z) = Voe 7P 4+ pv%e"'mz. (6)

In the above, p, is the ratio of the negative going voltage amplitude to the
positive going voltage amplitude at z = 0, and it is known as the wvoltage
reflection coefficient.



The current reflection coefficient is defined as the ratio of the negative
going current to the positive going current at z = 0, and it is

g = — = —— = —Py- 7
=1 T (7)
The current can be written as
3 Vo . Vo .
T — Bz _ Y iBz 8
(2) = e 7™ = e 0

The voltage and current in (6) and (8) are not constants of position. We can
define a generalized impedance at position z to be

Z(2) = —= = Zy— — . 9
) [(z)  Peif —p,etin: ®)
At z = —I, this becomes
JBl —jBl
Z(=1) = 7,5 T PC (10)

Oeibl — p e ibl"

With p, defined by (5), we can substitute it into (10) to give after some
simplifications,
. Z ZL +]Z0tanﬂl

Z(-1) = :
(=) *Zo + jZ1 tan Bl

(11)

Shorted Terminations

If Z; is a short, or Z; = 0, then,

Z(-1) = jZytan Bl = jX. (12)
X [ | I
A I I |
inductive > : : :
| | Tt I
i i - > BJ

I nm 3! | 5T
) | I

2 R 2 | I 2
: capacitive : :

Open-Circuit Terminations
If Z; is an open circuit, Z; = oo, then
Z(=l)=—jZycot Bl = jX. (13)

2



inductive

N\

211

=

T an 5 > Pl
2 2 2
capacitive
Standing Waves on a Lossless Transmission Line
The positive going wave in Equation (6) is
Vi(2) = Voe 77, (14)
and the negative going wave in Equation (6) is
V_(2) = p,Voe P, (15)

We can define a generalized reflection coefficient to be the ratio of V(z)
to V_(z) at position z. Hence,

V_ Z) 2708z
['(z) = Vi) = p,e?P=, (16)
Hence,
V(z) = Voe 7”1+ T(2)]. (17)
The magnitude of V(z) is then
V()| = Vol 1+ T(2)]. (18)

A plot of |V (z)] is as shown.

4 IMmAXis

» Re AXis




s V@)

T Vmax
| [
| [
| [
: : T Vmin
[
| | ! >
—dl—% ~Ghin 4, z
We can use the triangular inequality and show that
Vol (1= T(2)[) < [V(2)| < Vol (1 +[T(2))). (19)
From (16), |T'(2)| = |p.|, hence (19) becomes,
Vol (1= |po]) < [V (2)] < Vol (T +[pu]). (20)

The voltage standing wave ratio is defined to be V,,40/Viin, and from (20),
it is 1
1- |pv|

If p, = 0, then VSWR= 1, and we have no reflected wave. We say that
the load is matched to the transmission line. Note that p, = 0 when Z; = Z,.

If |p,| =1, then VSWR= 0o, and we have a badly matched transmission
line. In a passive load,

VSWR =

0<|p| <1 (22)

|pv| =1 only when Z;, = 0, or Z, = oo according to Equation (5). Hence,
1< VSWR < oo. (23)

VSWR is an indicator of how well a load is being matched to the transmission
line. We can solve (21) for |p,| in terms of VSWR, i.e.

VSWR -1

= vovR—1 24
Pl = VsWR 1 1 (24)

Therefore, given the measurement of VSWR on a terminated transmission
line, we can deduce the magnitude of p,. Furthermore, if we know the phase
of p,, we would be able to derive Z, from (5), or

1+ py

Z; = Z, 25

L Ol_pvv ( )
or | | ‘0
1_'_ pU e]v

7y = Zyo PolE 2

L 01—|pv|€]91’ ( )

4



where _
po = |pu] €% (27)

Determining 6, from |V (z)|

f, can be determined from the voltage standing wave measured. The
voltage standing wave pattern is proportional to |1 + I'(z)|, but I'(z) is related
to p, as

['(z) = p,e¥?. (28)

Writing the polar representation of p,, we have,
[(z2) = |py| /%), (29)

However, we know that the first minimum value of V' (2) occurs when T'(z) is
purely negative, or the phase of I'(z) is —m. This occurs at z = —d,;, first.
In other words,

—2ﬁdmm + 91, = —T. (30)

Since d,n;, can be obtained from the voltage standing wave pattern measure-
ment, and that 3 = 27/, we deduce that

4
0, = —m+ Tﬂdmm. (31)

Transmission Coefficients

It is sometimes useful to define a transmission coefficient on a transmis-
sion line. The transmission coefficient may be defined as the ratio of the
voltage on the load to the amplitude of the incident voltage. Since

V(z) = Voe P + p, Voe P2, (32)
The voltage at the load is V(z = 0), and it is given by
V(0) = Vo(1 + py). (33)
Since the amplitude of the incident voltage is V;, we have

V(0) 1+ 27
T'U p— p— ) p— —_.
7 =7+ 2,

(34)
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7. The Smith Chart

We have seen from Equation (6.9) that a generalized impedance can be
defined as

V(2) e 9Pz 4 p,etiPz
Z(z) = = = Zyg— — . 1
()=73 (2) e P — petif o
The above can be written as
1+ p,e?P? 1+T(2)
Z(z) = Z — = 2

where T'(z) is as defined in (6.16). When z = 0, Z(0) = Z;, and T'(0) = p,,
and (2) becomes (6.25). Hence (6.25) is a special case of (2). We can introduce
a mormalized generalized impedance to be

Z(z) 1+T(2)
Zy 1-T(2) (3)

Zn(2) =

Similarly, . Z.(2) -1 )
(2) = m (4)

Given I'(z), we can solve for Z,(z) in (3), and given Z,(z), we can solve for
['(z) in (4). It turns out that the mapping of Z,(z) to I'(z) and the mapping
of I'(2) to Z,(z) are one-to-one. We shall next discuss a graphical method to
solve (3) and (4) rapidly using the Smith Chart.

Zy=Rn+jXy Imr
Xn Rh=5 Ry=1 Ry=2
1b---F---p-======F-=--" Xp=1
Rn:O/ Xp=0
/ Rel’
Rn
0 05 |1 2
-1lF---f---f--—=-=-=-=--fF---: Xp=-1 ] Xp=-1
circle
Z,—plane —plane

Z, is a complex number and can be represented by a point on the Z,-plane,
and I' is a complex number and can be represented by a point on the complex
I" plane.



We noted that from Equation (4) that:

When 7, =0, T'=-1.

When Z, =1,or R, =1,X,, =0, I'=0.
When Z, — oo in any direction, I'— 1.
When 7, =jX,, |I'|=1.

When Z, =j,or R, =0,X,, =1, I =.
When Z, = —j,or R, =0,X,=—-1, I'=—j.

—e

. N
o p—e M~
. —

=
<

S

=

—

=

—
. — B
— N N N e

If one works out the mapping from Z,-plane to I'-plane completely, one
finds that the R, = 0 line on Z,-plane maps onto the unit-circle on the I'-
plane. Furthermore, the other R,, = constant lines map into circles as shown.
The X,, = constant lines map into arcs like the X,, +1 lines as shown. Hence,
if one puts grids on the I'-plane, one can read off the R, and X, associated
with the corresponding I' immediately, and, given the value of I', one can
read off the values of R, and X,, immediately.

The mappings (3) and (4) are known as bilinear transforms. A bilinear
transform always maps a circle onto a circle.

Properties of a Smith Chart

(i) The normalized admittance Y,, = 1/Z,, or the reciprocal of Z,, can be
found easily from a Smith Chart, because

Z,—1 l—5 1-Y, Y, -1

_Zn-|-1_1+ZL_1+Yn:_Yn+1'

(5)

(ii) The change of impedance along the line is obtained by adding or sub-
tracting phase to I'(z) via the relationship

[(z) = poe. (6)
(i)
1 v
VSWR = M - anama (7)
1— | py |
since the Smith Chart is a graphical tool to solve Equation (7), and |p,|
is real, corresponding to a number on the X, = 0 line. Notice that

1 < VSWR < oo always.
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8. Examples on Using the Smith Chart

(a) Find the voltages at A on the transmission line.

200 Zo=5OW,V:1.5><108 ms-1
—AWW\—O— —O—
Zs A B
Vg=
10sin wt 6 Z | (30+)25) Q

volts

L O —O0—

z=-1 =—1m 25 MHz z=0

The voltage source sets up a forward going and a backward going wave
on the transmission lines. Hence,

V(z) = Voe % + p, Vel (1)
The corresponding current is
Vo in Vo,
I — 2V —-iBz _ Yy — iz 2
(2) = e = pu e @

In impedance at position Z is

V(2) e 8% + p,elP? 1+ T(z2)
Z(2) = — ZyS __ : 3
(2) I(2) O e=ifz — p,eib 1-T(2) (3)
where
 Zi- 7,

[(2) = p,e®P?, p, = F——=. 4
(2) = poe™™, p A (4)

We can use the Smith Chart to find Z(—[). To use the Smith Chart, we have
to normalize all the impedances with respect to the characteristic impedance
of the line. Hence,

_ Zp 30+ 325
- Zy 50
We can locate Z,;, on the Smith Chart which is the complex I' plane. T'(0)

or p, can also be deduced from the Smith Chart. Since I'(z) is given by (4),
at z = —[, we have

Tt = 0.6 + j0.5. (5)

['(—1) = p,e P, (6)

1



At f = 25MHz, and with v = 1.5 x 10® ms™*, A = v/f = 6m. Then
Gl = %l = Zl. Therefore,

T(—1) = pye /5 (7)
At z = —1 = —1m,T(-1) = p,e 5. From the Smith Chart, we can read
Zn(—1) = 2.15—j0.3,  or Z(—1)=107.5—j150. (8)

So, an equivalent circuit for the point A is:

200 A
—AWWA——o——

_ Zs
Vs = 10sinat () Z(-1)| (107.5-15) Q

O
2%

In phasor representation, Vg = 10e™% = —;10. Hence,

Z(—1) . 107.5 — j15  108.54e 779" ..,
Vip=Vsg——"—-+—=—310 = : 790°10V
AT e+ 2(-1) - 71275415 128.38¢ 967

= 8.5¢ 1V, (9)

Since '
Va=V(-1) = Vpe®[1 + T (-1)], (10)
we can find V, from the above. Once V, is found, we can find Vz from
Ve =V(0) = V,[1+ py]. (11)




(b) Find Z;, from VSWR and d,,;, using a Smith Chart

The voltage on the transmission line is

V(z) = V,(e 7% + p,etP?) = V,e P*[1 + T'(2)]. (12)

If V(2) = |V (2)|e?%®), the real time voltage can be written as

V(z,t) = Re[|[V(2)[e??@eit] = [V (2)| cos [ wt + O(F)]. (13)

Hence the amplitude of the real time voltage is proportional to |V (z)| which
is the voltage standing wave pattern.

=25
(2 for_ nmax _ VSWR
voltage min
Z=~Umin
-
\ Rerl

0 toward
~min z load

For example, we may be given that the VSWR = 2.5 on the line, Z, =
75Q, and d,,;, = 5A/16, in order to find 7.

First, we note that |V (z2)| oc [1 + I'(2)| where I'(z) = p,e?#*. Note that
Vimin occurs when T'(2) is purely negative. When z varies, I'(z) traces out a
constant circle on the Smith Chart, since |I'(z)| = |p,| is independent of z.
Since the |I'(z)| circle must intersect the real I' axis at R, = 2.5 since the
VSWR= 2.5, we can deduce that magnitude of |T'(2)| = |p,|. Since z = —dpnin
point corresponds to I'(z) as shown above, and the load is 5A/16 from the

dmin point, we can figure out p,’s location on the Smith Chart. We can read
off Z,;, = 1.4+ j1.1 on the Smith Chart. Hence Z; = (105 — j82.5){2.

3
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9. Complex Power on a Transmission Line

Complex Power

Since we are dealing with phasors, it is convenient to define a complex
power which has an imaginary part as well as a real part. We shall define

the meaning of complex power.
A complex power is defined as

P=VI

(1)

i.e. the product of a voltage phasor and a current phasor at a given point. If

V= |V|ej¢", I= |I~|ej¢’,

then _ o
P = |V||I|[cos (¢v — ¢r) + sin (dy — é1)] -

The corresponding real time voltage and current are
V(t) = |V|cos (wt+ ¢v), I(t) = |I|cos(wt+ dr).
Then, the instantaneous power is

P(t) = V(t)I(t) = |V||I] cos (wt + pv) cos (wt + v + 1 — pv)
= |V||1:|[cosz(wt + ¢v) cos (pr — Pv)
— cos (wt + ¢y ) sin (wt + ¢y) sin (¢ — dv)].

The time average of P(t), defined as

(P(1) = (V()I(1) = Jim /0 dtP(t)

T—o00

= |V||I|[{cos*(wt + ¢v)) cos (¢ — év)
— (cos (wt + ¢y ) sin (wt + ¢y)) sin (¢r — dv)].

Since
(cos?(wt + ¢v)) = %, (cos(wt + ¢y ) sin(wt + ¢y)) = 0,

we have

(P(t)) = %Wﬂ cos( b1 — ).

1



Comparing with (3), we see that
(P(t)) = o Re[P]. (9)

The imaginary part of the complex power is proportional to the second term
in (5), and hence, the imaginary part of the complex power is proportional to
a part of the instantaneous power that averages to zero. Consequently, the
imaginary part of the complex power is called reactive power. For example,
a purely reactive device dissipates no power on the average, but instantaneous
power is being constantly absorbed and released by a reactive device. The
current and voltage through a reactive device is 90° out-of-phase, and the
complex power is purely imaginary or purely reactive.

Complex Power on a Transmission Line

The voltage on a transmission line could be written as

V() =V, (eijﬁz + pvejﬁz)
= Voe P [1 +T(2)] . (10)

The current on the line could be written as

I(z) = ;‘;eﬂ*z [1-T(z2)] . (11)

The complex power is given by

P—Vi = %[1 +T()[1 - T(2)], (12)

which reduces to
p=Lln—rep+re ey, 1
Povi= %[1 _ |pof2 4 j2SmT(2)]. (14)

The time average power, defined to be

(P 0) = SRelP()] = (- [ouf?), (19

for a lossless transmission line. If p, = 0, or when the load is matched to the
transmission line, (i.e., Z;, = Zj), all the power carried in the forward going

2



wave is dumped into the load. Otherwise, part of the power is reflected. The
power carried by the forward going wave is

VI
P\ = 16
.y =51, (16)
and the power carried by the backward going wave is
VI,

P )= —-p,|°. 17
)= a7)

Note that (P(z,t)) is independent of z because of energy conservation.
(P) = (Py) = (P-), (18)

is everywhere the same on the lossless transmission line because the total
power leaving the source all arrive at the load end with no loss on the lossless
transmission line. The transmission line can only absorb reactive power.
Hence, the reactive power in (14) is not a constant of position.

Power Delivered to the Load on a Transmission Line

Va Z Va lp
Vg - Z = Vg Z(-1)
Z(-1)
z= -1 z=0

To find the power delivered to the load on a lossless transmission line, we
can first find Z(—[) using formula (6.11). Then, we can replace the transmis-
sion line circuit with the equivalent circuit for finding Vy, and I4. The real
power delivered to Z(—I) would be the same as the real power delivered to
Zr.

- 2 7(— 2 2 7(— 2
povasy - Al | VR SR
Z*(-1) Zs+ Z(=0)| Zx(=l) |Z;+ Z(=1)|?
The time-average power delivered to the load is
1oy 1 R(-1)|Vs|?
P) = —Re|P| == , 20
P = e = R T i%s + R-D) 1 IX (P (20)

where we have assumed that Zs¢ = Rg+ jXg, and Z(—1) = R(-1) + j X (-1).
To optimize (P), with respect to X (—1), we choose X (—1) = —Xg, hence,
1 R(-|VsP?

( >—§m (21)

3



The above is maximum when R(—[) = Rg. Hence, maximum power is deliv-
ered to the load when
Z(-1l)=7%. (22)
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10. Impedance Matching on a Transmission Line.

We note that when the impedance of a load is the same as the character-
istic impedance of the transmission line, there is no reflected wave, and all
the forward going power is dissipated in the load. There are various ways to
achieve this impedance matching and we will discuss some of them below.

(a) Quarter-Wave Transformer

A quarter wave transformer, like low-frequency transformers, changes the
impedance of the load to another value so that matching is possible.

Zo ZT
o |
Zin ZL
o -—oJ
N4

A quarter-wave transformer uses a section of line of characterstic
impedance Zr of % long. To have a matching condition, we want Z;, = Zj.
From Equation (6.11) we have

Zi _ 7 ZL+jZTtan% . Z%

"Zr+jZptany  Zp

(1)

since tan 3l = tan 27"% = tan§ = oo. In order for Z;, = Z,, we need that

72 = ZoZp = Zp = \/Zo 2. (2)

If Zy and Z; are both real, then Z7 is real, and we can use a lossless line
to perform the matching. If Z is complex, it can be made real by adding a
section of line to it.

Zo ZT 20

|—0—|
Zin Z1 ZL
ol

N4 U



Example

Given that Z; = (30 + j40)Q2, Zy, = 5012, find the shortest [ and Zr so that
the above circuit is matched. Assume that Z7 is real and lossless.

We want Z; to be real and Z;,, to be Z;, = 5012 in order for Zr to be real
and the matching condition satisfied. We find that Z,,;, = 0.6+ 50.8. In order
to make 7, real, the shortest [ from the Smith Chart is %. Then Z,; = 3.0,
and Z; = 150€). Since Z;, = 502, we need

ZinZ1 = /50 x 150 = 86.652

in order for matching condition to be satisfied.

Note that the quarter wave transformer only matches the circuit at one
frequency. Often time, it has a small bandwidth of operation, i.e., it only
works in the frequencies in a small neighborhood of the matching frequency.
Sometimes, a cascade of two or more quarter-wave transformers are used in
order to broaden the bandwidth of operation of the transformer.

(b) Single Stub Tuning

Another device for performing matching is a single stub (either shorted or
opened at one end) which is shunted across the transmission line at z = —d
from the load.



—-Y (—d) s

—
in VSWR>1|Z_
\ I—OJ
—d Shorted
Stub
1,7,

The location d is chosen so that the admittance Y (—d) looking toward
the load is Yy + jB (Y, = Zio) The length [ of the shorted stub is chosen so
that its admittance is —jB. Hence, when the stub is connected in parallel to
the transmission line at z = —d, the impedance Z;, = Zj, so that matching
condition is achieved.

A shorted stub has impedance and admittance given by
Z, = jZytan gl, (3)

Y, = —jY, cot Bl (4)

An open-circuited stub can also be used, and the impedance and admittance
are given by
Zop - _jZO cot ﬁla (5)

Y;p :.]YE] tanﬁl. (6)

Example



Let Z;, = (100+ j85)12, find the minimum d and [/ that will reduce the VSWR
of the main line to 1. Assume that Z, = 5012.

We find that the normalized load Z,;, = 2 + 1.75 as shown on the Smith
Chart. Since this problem involves parallel connections, it is more convenient

to work with admittances. Y,,; — %L is as shown. When we move toward

the generator, Y,(z) traces out a locus on the Smith Chart as shown. It
intersects the G = 1 circle as shown, after moving through 0.216\. Therefore,
d = 0.216\.

Now, Y,(—d) =1+ j1.4. Hence, Y,su = —j1.4. From the Smith Chart,
we note that the admittance for a short is infinity, and is at the right end of
the Smith Chart. To get a Y sup, = —j1.4, we move toward the generator for
0.099)\. Hence, [ = 0.099)\.

Often time, it is not easy to change d, but quite easy to change [. We
note that both in the quarter wave transformer and the single stub tuner, we
have to change 2 parameters for tuning. We can provide these 2 degrees of
freedom by using two stubs, changing their length, but not their positions.

(c) Double Stub Tuning (optional reading)

Both single stub tuning and quarter wave transformer matching require
changing the location of the stub or the transformer. In practice, this is
difficult, and a double stub tuning removes the difficulty.

<€ /3
Z0 A Z0
|_Q_|
>
Y1
ANV
11, Z0
Stub 1




All possible values of Yn2
by changing 4.

All possible values of Yn1

O by changing /.
All possible values of Ynz2by
transforming from all possible
values of Yn1 by Z3.
(1) In order to have a matched circuit, we should have ¥Y; = Y, so that

Y,1 = 1. However, if we change [, the possible values of Y,,; trace out a
circle C; as shown.

(2) If Y,z is as shown, by changing I, the possible values of Y, trace out a
circle C5 as shown.

(3) When I3 is added, all the possible values of Y,,; at A is transformed to B
by a rotation according to the length of 3. This constitute a circle Cs
which is all the possible values of Y,,» obtained from Y,,;. There are only
two points, P and @ that the two circles Cy and Cj intersect. If we pick
P, then this point should correspond to the value of Y,,5.

Yn2 — Ynl + Ynstub2 (251)

We can figure out Y,sup2 and hence the length 5.
(4) The length I3 rotates the point P to the point R. Then R has the
impedance Y, — Yostubr = 1 — Yostupi- We can figure out Ygup; from

the Smith Chart and hence the length ;.

(d) Ferranti Effect

Zo=500Q

=10V

z=- z=0

. Find VSWR on the line, and if [ is allowed to vary arbitrarily, find the
maximum voltage on the line.



We can find VSWR from the Smith Chart or by calculator.

25 — 50 1
P(0)=P, = =,
25 + 50 3
1+ |P,| ¢
vswr — Bl 5y
1-|P| 2
ANV@)
Vmax
Vmin
1

z=- —Omin 0

The voltage at Z = —I is always fixed to be V,. Hence, we can see that
|V(2)| on parts of the transmission line can be longer than |V|. If [ is chosen
so that V; is at V,,;,, then

Vinaz — VSWR X V..., = 10 volts x 2 = 20 volts.

This amplification of voltage on a line is known as the Ferranti’s effect. If
the VSWR on the line is very high, V.., can be so large that it reaches the
breakdown voltage of the line. This is something one should be cautious of
in designing transmission line circuits.
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11. Lossy Transmission Lines.

When R and G are not zero, we have a lossy transmission line. In this
case,

V(z) = Vo(e ™ + poe™™) (1)

where

v=VZY =/(jwL+ R)(jwC + G) = a + jB.

The current is derived using the telegrapher’s equation to be

where

Z jwL + R
Zy =\ =\ A~
Y jwC+ G

When % = %, then Z, becomes frequency independent, and Z, = \/% . Also,

V:ij/L_C<1+i>%<1+.£>2=jw\/ﬁ<1+-i> (3)

JwlL JwlL JwlL

From (3), we see that a = Ry/< = Z% while 8 = wvLC. Since « is

frequency independent, and the v = % = \/%_c is also frequency independent,

the transmission line is a distortionless line because any pulse that propagates
on the line will not be distorted. This is because a pulse can be thought of
as a superposition of Fourier harmonics. Each Fourier harmonic is a time
harmonic signal. On a distortionless line, all the Fourier harmonics propagate
at the same velocity and suffer the same attenuation. Hence the pulse is not
distorted but only diminished in amplitude.

If we divide (1) by (2), we get

#z) = ‘;((,:)) Z"iig @)
where
L(z) = p,e””* (5)



Note that (4) also implies that
Z(2)—2Zy Zn(z)—1
I'(z) = = . 6
B =20+ 2%~ Zz) 11 (©)

Equations (4) and (6) can be solved using a Smith Chart. However, now we
have

ID(2)] = |po] €. (7)
The amplitude of |T'(z)| is diminishing when we move from the load to the
source. From (5), we note that I'(z) — 0 when z — —o0, Z(z) — Zp when
z — —oo. Hence, a long lossy transmission line is always matched. The locus
traced out by (7) is a spiral converging on the origin of the Smith Chart when
we move from the load to the source.

Also, the voltage standing wave pattern is given by

V()| = [Vole™™ 1+ T(2)]. (8)

A plot of T'(z) and |V (z)| are as shown. Furthermore, we can define an ad
hoc VSWR given to be

14+ T(2)] _ 1+ |py|e*

VSWR — - : 9
T=0)| 1= || e )

which is dependent on z.

% ZnL



V(z) , VSWR

Power on a Lossy Line

With V(z) and I(z) given by (1) and (2), one can define a complex power

on a lossy line to be
P(z) = V(2)I"(2),

where
Vi(z) = Voe 7# (1 + I‘(z)),
and -
oe *
1(z) = 22— (1-T(2))
0
Hence,
_ |‘/E]|2 —yz—y*z *
0
which is equal to
— |Vb|2 —2az 2 S
P(z2) = s [1—|T(2)|" +2;SmI(z)] .
0
Since |T'(2)] = |p,| €2*#, we have

P(z) = ﬂ6_2‘“ [1- po|” €% + 2jSmI(z)] .

3

(10)
(11)

(12)

(13)

(14)

(15)



We see that both the real part and the imaginary part of the complex power
are functions of position. This is because real power is dissipated as the wave
propagates. Hence, the real power at one point is not equal to the real power
at another point.
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12. Transients on a Transmission Line.

When we do not have a time harmonic signal on a transmission line, we
have to use transient analysis to understand the waves on a transmission line.
A pulse waveform is an example of a transient waveform.

We have shown previously that if we have a forward going wave for a
voltage on a transmission line, the voltage is

V(z,t) = f(z —ot). (1)
The corresponding current can be derived via the telegrapher’s equation
1
I(2,t) = f(z = vt). (2)
0
If instead, we have a wave going in the negative direction,
V(z,t) = g(z + vt), (3)

then the current from the telegrapher’s equations, is

I(2t) = —Ziog(z +ut). (4)
Hence, in general, if
V(z,t) = Vi(z,t) + V_(z,1), (5)
I(z,t) = Yo [Vi(2,t) — V_(z,)], (6)
where Y; = -1, and the subscript + indicates a positive going wave, while

Zo
the subscript — indicates a negative going wave.



(a) Reflection of a Transient Signal from a Shorted Termination

Zo,V

z=0 Zz=L

If we switch on the voltage of the above network at ¢ = 0, the voltage at
z = 0 has the form

V(z=0,t) = VU(t). (7)

The voltage on the transmission line is zero initially, the disturbance at ¢ = 0
will create a wave front propagating to the right as ¢ increases.

L
AV(z,t) t<y
4
Vo
v
—> t
z=0 z=vt 7=L
I(z,t
A( )
I+
Vo Yo
v
—> t
z=0 z=vt z=L

When the wave reaches the right end termination, the voltage and the
current wave fronts will be reflected. However, the short at z = L requires
that V(z = L,t) = 0 always. Hence the reflected voltage wave, which is
negative going, has an amplitude of —V;. The corresponding current can be
derived from (4) and is as shown.



+Vi(z, 1)

Vi,
:
:
zZ= z=L -
AV_(z,1)
0 ; >
i :
1
1
_VO 1 v ]
L V@)=V, Vo
Vo
; >
0 z=L
A I+(Z) t) |+
Yo Vo !
1
:
z= z=L i
I_
4 1(zY Yo Vo
u :
1
1
0 z=L ;
A 1(z, 1)
2Y Vo !
| 1
:
YoV o 8@ - --------- |
1
:
! .
z=0 z7=L i

t>s

t><

t>5



When the signal reaches the source end, it is being reflected again. A
voltage source looks like a short circuit because the reflected voltage must
cancel the incident voltage in order for the voltage across the voltage source
remains unchanged. Hence the negative going voltage and current are again
reflected like a short. Hence, if one is to measure the voltage at z = 0, it will
always be V,. However, the current at z = 0 will increase indefinitely with
time as shown.

1(z=0,1) 7 Yo Vo
A I
5Yo Vo
3YoV
3YoVo t 070
YoVo
>
0 t=2L/N t=4L/v t=6L/V

The current will eventually become infinitely large because the transmis-
sion line will become like a short circuit to the D.C. voltage source. Therefore,
the current becomes infinite.

(b) Open-Circuited Termination

If we have an open-circuited termination at z = L, then the current has
to be zero always. In this case, the reflected current is negative that of the
incident current such that I(z = L,t) = 0 always. For example, if the source
waveform looks like as shown below, the reflected waveform will behave as
shown.



A
Vg +
1
1
1
1
5 >t
0 ty
A V(zY) y
Vo + t<L/v
: » Z
z=L
t<L/v
} > Z
z=L
L 1z Iy
YoVopm————————————~--------- ! t>L/N
1
:
1
1
< 1 » 7
0 ;_h\ ! z=L
\ 1
NN |
\\ 1
A V(Z!t)
2V0 =+ t>L/N
Vo
0 > Z




(c) Resistive Termination

We can think of transient signals as superpositions of time harmonic
signals. This is a consequence of Fourier analysis. We see that the voltage
reflection coefficient is —1 for a shorted termination for all frequencies. Hence,
the voltage reflection coefficient is —1 for a transient signal. By a similar
argument, the voltage reflection coefficient for an open-circuited termination
is +1.

When the termination is resistive on a lossless transmission line, we recall
that the voltage reflection coefficient is

Z1—Zy _ Rp— 2,
- Z;+7Zy Ri+Z,

Po

Hence, the reflection coefficient is frequency independent. All frequency com-
ponents in a transient signal will experience the same reflection. Hence, p, is
also the reflection coefficient for a voltage pulse.

infmis

w

Q

Tl (o]

Consider, for example, a transmission line being driven via a source re-
sistance R and a load termination R. If R = %Zo, let us see what happens
when we turn on the switch.

For t < é, the transmission line appears to be infinitely long to the
source. Hence, Z;, looks like Z, to the source. Hence, V, = ZOZJER% = %Vb

for R = %Zo. Hence, we have a wavefront of %VO propagating to the right for
t< L.
%



A V(Z, t) 2LIv>t>Liv
Vi,
2Vo/3 T T e 4V9
0 - >Z
2Vy9 1 DRI NEREE, Jz=L
.| V_=-2Vy9
(21 _8YqVg/9
2YqoV/3  —— “‘+I+
0 DAL bl | g

For t > %, a reflected voltage wave is generated at the termination and

its amplitude is %pv%. Pov = —% for this termination.
AV(zt) 2LV>t>Liv
V+
2 V0/3 s e 1 M
0 : ? >
. ' z
2Vol9 T ‘T—;i ————— S L
Al V-=""g_8Yow0/9
2YoVo/3  p—— (__JI\ "
0 D . A I > 7
I-=2VoYo/9 2=L

For t > 2%, a voltage source looks like a short to the transient signal. The
reflection from the left is again —% for the voltage and +§ for the current.

7



2Vo/3 e A A 4Vo
| i\or=2V0l27 9
OfF—/— > ; y A
Rv_ = -2 \Vo/9 z=L
A l(z, 1)
26
<2 Yo\Vo 8v.v
v 27 . L9 YoVo
““““““““““““““““““““ —~]1+=2YoV0/3
QF======== S = A : > Z
| 2+= 2 YoVo/27 I_=2YoVo/9 2=L

When ¢t — oo, the voltage and current on the line will settle down to a
steady state. In that case, we have only DC signal on the line, and we need
only to use DC circuit analysis to find the steady state solution. At DC, the
transmission line becomes first two pieces of wires, V, = Vg = %Vg = %Vg.
The current through the circuit is ‘Z/—g If one is to measure V4 as a function

of time, it will look like

A Va(b)
2V, 2V/3 14V /27
3 .. e ———— e S Vo2

1 t 1 > {

0 2LIv AL 6L/v

4 1A®

VYo dmmmm e
% VoY Nz Vo Y/27

1 1 1 >

0 2L/v 4L /v 6L/v

Transient analysis has important application to computer circuitry. We
note that when we switch on a circuit with a delay line, we do not immediately
arrive at the desired steady state value when we have a transmission line or
a delay line. The settling time depends on the length of the line involved.
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13. Properties of Fields in a Transmission Line.

The field or wave in a transmission line is TEM (Transmission Electro-
Magnetic) because both the H-field and the E-field are transverse to the
direction of propagation. If the wave is propagating in the Z-direction, then
both E, and H, are zero for such a wave. In such a case, the fields are

E=E,H=H,, (1)

where we have used the subscript s to denote fields transverse to the direction
of propagation. We can also define a del operation such that

d
V=V, +2i—, 2
+ i (2)

where V; is transverse to the Z-direction, and in Cartesian coordinate, it is
— 450 4L 7590
V=g + Y5, From

OE
VxH=¢e— 3
o 0 OE
Ve+ 2— H,=¢—. 4
( +Z8z> X = ()
Since V, x H; points in the Z-direction, 2% x H, is 2Z-directed, we have
Vs x Hy =0, (5)
0 OE
— (2 x Hy) = °.
g * M) = ey, (6)
Similarly, from V, x E; = —uagts, we can show that
V. x E, =0, (7)
o . 0OH,
5, F X By) = —p— = (8)

Equations (5) and (7) shows that the transverse curl of the fields are zero.
This implies that the fields in the transverse directions of a transmission
line resembles that of the electrostatic fields. Furthermore, Equations (6)
and (8) couple the E, and H; fields together. These two equations are the
electromagnetic field analogues of the telegrapher’s equations.



Contour

A current in a coaxial cable will produce a magnetic field polarized in the
¢ direction. From Ampere’s Law, we have

]st-dl:/J-ds:I, (9)
C A

2w
/0 pdoH, =1. (10)

or

Hence,
I(z,t)
2p

(11)

If we assume that the inner conductor in the coaxial line is charged up with
the line charge @ in coulomb/m, then from § €E - fids = Q, we have

H¢,(p, 2 t) =

2mpeE, = Q, (12)

or

Q

E,= .
2 pe

p

(13)

Since the potential between a and b is fab E,dp, we have

_ [ _ @, (b
V—/a Epdp—%hl(E) (14)

By(p.201) = Zl(n(t; -g&, (15)

Hence,

The ratio % is the capacitance per unit length, and it is

2me (16)




If E, = pE,, H, = $H,, equations (6) and (8) become

5,6 = "5 (17)
382Ep = u%. (18)
Substituting (11) for H, and (15) for E,, we get
L1 = —%%—‘;, (19)
wnd 3} pln(2)or
£V(z,t) = — 271_“ % (20)

This is just the telegrapher’s equations derived from Maxwell’s equations.
C is given by (16) while the inductance per unit length L is obtained by
comparing (20) with the telegrapher’s equations

In(3)

S (21)

L=pu

Note that the velocity of the wave on a transmission line is

1 1

VIC  Jie

which is independent of the dimensions of the line. This is because all TEM
waves have velocity given by \/1“_6

(22)
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14. Skin Depth and Plane Wave in a Lossy Medium.

We learn earlier that in a lossy medium, J = ¢E, and from

OE ) )
VxH=e¢—+J=c— +oE. 1
X €5 J=¢€ ;s to (1)

Using phasor technique, we can convert the above to

V x H = jweE + cE = jweE, (2)

where o
—e— j— 3
e=e—j-, (3)

is the complex permittivity. Furthermore, using that
VXxE=—jwuH, (4)
and that V-H =0, V- E = 0, we can show that

VzE = _W2N§E, (5)
V’H = —w?ueH. (6)

[Refer to § 4 for details]. If we assume that E = #F,(z), then, we can show
that

d? 9
@Em(z) — v E,(z) =0, (7)
where
v = jwy/pne = a+ jpB. (7a)

The general solution to (7) is of the form
E.(2) = cre 7% + cpe””. (8)
If we assume that c; = 0, we have only
E.(2) = cie™ % (9)

We can convert the above into a real time quantity using phasor techniques,
or

E,(2,t) = |c;| Re[e o= IP=Hiortivt]
= |e1| e cos(wt — Bz + ¢1), (10)

1



where we have assumed that c; = |c;|e/?*. Hence, we see that E,(z,t) is

w

a wave that propagates to the right with velocity v = 5 and attenuation
constant «. We can find « from equation (7a), and

7:a+jﬂ=jwqu—Jg)=jwwm%1—ﬁ%)- (11)

The first term on the RHS of (1) is the displacement current term, while the
second term is the conduction current term. From (2), we see that the ratio
< is the ratio of the conduction current to the displacement current in a lossy

a

medium. = is also known as the loss tangent of a lossy medium.

(i) When = < 1, the loss tangent is small, and the conduction current com-
pared to the displacement current is small. The medium behaves more
like a dielectric medium. In this case, we can use binomial expansions to
approximate (11) to obtain

1o

i (1 A2t

2 we

where

o= %0\/g,ﬁ = w,/LLE. (13)

(ii) When = >> 1, the loss tangent is large because there is more conduc-

tion current than displacement current in the medium. In this case, the

medium is conductive. According to equation (11), when 2 > 1, we

have
7= w3 = Viene = (1+ ), /57 (14)

Hence
a=p= %?:%. (15)

If we substitute a = 8 = 3 into (10), we have

z

E,(z,t) = |ci| e cos (wt ~3

+ ¢1) . (16)

2



Ex(z.t), t=0.,0.5,1.0,1.5,2.0,2.5
T

1 T

15
0.4, b

0.2 b

Ex(z,t)
o

t=0.

-0.6 omega=1, delta=0.2, phi=—0.25pi b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

This signal attenuates to e ! of its original strength at z = §. Hence §

is also known as the penetration depth or the skin depth of a conductive
medium. For other media, the penetration is é, but for a conductive medium,

it is
2 1
5=\ s =\ w1 )

This skin depth decreases with increasing frequencies and increasing conduc-
tivities.

o

(iii) When = ~ 1, it is a general lossy medium, and we have to resort to
complex arithmatics to find « and 3.
If we square (11), we have

o’ = +2jaf = —wule — j2), (18)
or
a? — 32 = —wpe, (19a)
2a3 = wpo. (19b)
Squaring (19a) and adding the square of (19b) to it, we have
(0 — B2)% + (2a8)? = (0 + B2)? = wiie® + wulo?, (20)
or

o’ + 3% = wpvw?e? + o2 (21)

Combining with (19a), we deduce that
1
a? = 5(w,u\/cu?e? + 02 — W e), (22a)

3



1
B2 = 5(wu\/w?‘s? + 02 + we), (22b)

Notice that when o = 0, a = 0.
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15. Group and Phase Velocities.

If we have two waves that are slightly different in frequency w and phase
constant [, a linear superposition of them is still a solution of the wave
equation

EJ, = EO cos(wlt — Blz) + EO COS(WQt — /BQZ). (1)

fw=w—Aw, f1 =08— A8, ws =w+ Aw, B = 8+ AS, then
E, = Eycos[wt — Bz — (Awt — ABz)] + Ey cos|wt — Bz + (Awt — ABz)]. (2)
Using the fact that cos(A — B) + cos(A + B) = 2 cos A cos B, we have
E, = 2Ejcos(wt — 3z) cos(Awt — AfBz), (3)

E,(2,1) = 2E, cos {5 <%t - z)] cos {AB <i—;t - zﬂ . (4)

At t =0, we have E, = 2FEj cos 3z cos A3z which is sketched below.

Ex(z,t), t=1., omega=0.5, beta=0.4, domega=0.01, dbeta=0.02
2 T T T T

/\M o
| IR

_2 1 1 | 1 1
0 50 100 150 200 250 300

z

The first factor in (4) is rapidly varying while the second factor is slowly
varying. The slowly varying term amplitude-modulates the rapidly varying
term giving rise to the picture as shown.

We have learnt that a function of the form f(vt — z) propagates in the
positive z-direction with velocity v. From (10.5), we see that the rapidly

1



varying term propagates with velocity % Since this represents the propa-
gation of the phases in the rapidly oscillating part in the figure, this is also
known as phase velocity,

w
vy, = —. (5)
T

The slowly varying part propagates with the velocity ﬁ—g, which is Z—‘g in the

limit that Aw and A — 0. This represents the velocity on the envelope in
the picture and hence, it is known as the group velocity,

dw 4, ap
vg—%orvg = (6)
If 8 = w,/pe, the phase velocity v, = 5= \/%, the group velocity from (6)
is also —=. Hence, the group and the phase velocities are the same is 3 is a

. ue. .
linear function of w.

If B is not a linear function of w, then, the phase velocity and the group
velocities are functions of frequencies, and the medium is known to be disper-
stwe. In a dispersive medium, a pulse propagates with subsequent distortions
because the different harmonics in the pulse propagate with different phase
velocity. Example of a dispersive medium is a conductive medium where
8= % = /257, is not a linear function of w.

In a distortionless line, the phase velocity is made to be frequency inde-
pendent so that a pulse propagates without distortions.

Furthermore, a phase velocity can be larger than the velocity of light
while the group velocity is always less than the speed of light. This is because
energy propagates with the group velocity so that special relativity is not
violated.
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16. Real Poynting Theorem.

Since E x H has the dimension of watts/m?, we can study its divergence
property and its conservative property. Using the vector identity in (1.26),
we have,

V. (ExH)=H-VXE-E -V x H. (1)

From Maxwell’s equations, we can replace V x E by —% and V x H by
% + J. Hence,

0B oD
oH 0E
= yH-—— —¢E-— —E-J. 2
PR 7 ot J 2)

We can show that
10H S

> ot N o (3)
Hence,
v (E><H)——ﬁ L |H|2+1.5|E|2 ~E-J (4)
ot \ 2" 2 '

We can define

S = E x H Poynting vector (Power Flow Density watt m™2), (5)

1
Ug = oH |H|?> Magnetic Energy Density (joule m™2), (6)
1
Up = 2 |E|” Electric Energy Density (joule m™®), (7)
E -J = Energy Dissipation Density(watt m ?). (8)

Uy and Ug represent the energy stored in the magnetic field and electric field
respectively. Alternatively, (4) becomes

v-sz—%(UHJrUE)—E-J. (9)



Using the divergence theorem, (9) can be written in integral form,

)
%S%M:——/@@+%MVi/EJWL (10)
A ot Jv v

The equation says that the LHS will be positive only if there is a net
outflow of the flux due to the vector field S. If there is no current inside V' so
that E -J = 0, then this is only possible if the stored energy Uy + Ug inside
V' decreases with time.

If J = oE, then the last term is — [ o |[E|* dV is always negative. Hence,
the last term tends to make fs S - n dA negative, because energy dissipation
has to be compensated by power flux flowing into V. The Poynting theorems
(9) and (10) are statements of energy conservation. For example, for a plane
wave,

E=if(z— vt), Hzﬁ\/gf(z—vt), (11)

then
S:EXH:2¢Eﬂ@—m) (12)
0
Also,
1 1
UE+UH:56f2(z—vt)-|-§ef2(z—vt) = ef?(z — vt), (13)
Therefore,
1
S=:2 ef*(z — vt) = 2v(Ug + Ug). (14)

N

Hence, the velocity times the total energy density stored equals the power
density flow in a plane wave.
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17. Complex Poynting Theorem.

The complex Poynting vector is defined to be
S=ExH" (1)

It has the dimension of watt/m? and it denotes the flow of complex power.

(We have used underbars to denote complex vectors).

Before we proceed further, let us look at Maxwell’s equations for the
phasor field. In phasor representation, Maxwell’s equations become

V xH=J+ jweE, (2)
VxE=—jwuH. (3)

First, we study the divergence property of (1),
V ExH)=H"-VxE-E-Vx H". (4)
Substituting (2) and (3) into (4), we have

V- (ExH")=—jwupH -H" + jweE -E* — E - J*
= —jw[p|H” — €¢|E’] - E-J*. (5)

Comparing with (16.4), (5) involves the difference of the stored energy terms
rather than the sum.

We have shown that for two quantities,

A(z,t) = %e[é(z)e’j“’t], (6)
B(2,1) = Re[B(2)¢!]. 7)

The time average of A(z,t)B(z,t), denoted by (A, B) is given by
1 *
(4, B) = S Re[A(2)B’(2)]. (8)

Therefore,

() = (B x H) = _ReB x H'| = _Re[S]. 9)

1



The imaginary part of S corresponds to instantaneous power that time aver-
ages to zero. It is also known as the reactive power. We can also convert (5)
into integral from using the divergence theorem,

f B ) ndd = o § WP - eB1av - § 0B av. (10
A v 1%
where we have assumed that J = oE. If u, €, and o are all real, then
?{ Re(E x H*) -ndA = —]{ o |E|2 dv, (11)
A 1%
and

7{ Sm(E x H*) -idA = —w f [ [H|> — € |E[]dV. (12)
A \%4

We see that the real part of the power corresponds to power dissipated in
V' while the imaginary part of the power corresponds to difference in the
magnetic energy stored and the electric energy stored. Hence, if a system
has equal amount of magnetic and electric energy stored, it does not consume
any reactive power.

Example of Reactive Power

I
g 2

I
L L
C

We notice that in the complex Poynting theorem, the reactive power is
proportional to w(u|H|?> — €¢|E|?). It is zero when u|/H|?> = ¢|E|?, or when
the stored magnetic field energy equals the stored electric field energy. To
comprehend this further, we look at a simple LC circuit driven by a time-
harmonic voltage source.

At the resonant frequency of the tank circuit, w = 1/ V/LC, its input
impedance is infinite, and hence I, = 0. Therefore, there is no power deliv-
ered from the generator, be it real or reactive. However, I; = —I, # 0 at
resonance, and as the tank circuit is resonating, the electric field energy stored
in C is being converted into the magnetic field energy stored in L. Therefore,

2



SL|I|> = 1C|V|? can be easily verified for a resonating tank circuit. This is
precisely the case mentioned above.
Away from resonance,

1 1

Iy =V (jwC + jw—L) = jwCVy(1 - m)-

I, is at 90° out-of-phase with V,, and the complex power, V, I} is purely
imaginary. This implies that there is no time average power delivered by the
source V;, but it delivers nonzero reactive power. Away from resonance, the
magnetic and electric stored energies are not in perfect balance with respect
to each other, and we need to augment the system with external reactive
power.
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18. Wave Polarization.

We learnt that

is a solution to the wave equation because V - E = 0. Similarly,

E = 2E, = 2 E; cos(wt — 2),

E = gE, = yE; cos(wt — Bz + ¢),

(1)

(2)

is also a solution to the wave equation. Solutions (1) and (2) are known as
linearly polarized waves, because the electric field or the magnetic field are
polarized in only one direction. However, a linear superposition of (1) and
(2) are still a solution to Maxwell’s equation

E = &E,(z,t) + gE,(2,1).

If we observe this field at z = 0, it is

When ¢ = 90°,

E = &FE) coswt + §F, cos(wt + ¢).

E, = E,coswt E, = E,cos(wt+ 90°),

When wt =0°, E,=FE;, E,=0.

E E
When wt = 45°, E, = —, E,=——
V2

When wt =90°, E, =0, FE,=—E,.

E, E,

When wt =135°, E,=-——, FE,=

V2R

When wt =180°, E,=-E,, E,=0.

Yy _%'

(3)

If we continue further, we can sketch out the tip of the vector field E. It
traces out an ellipse as shown when E; # FE,. Such a wave is known as an
elliptically polarized wave.



x V¥

When E; = Ej, the ellipse becomes a circle, and the wave is known as
a circularly polarized wave. When ¢ is —90°, the vector E rotates in the
counter-clockwise direction.

A wayve is classified as left hand elliptically (circularly) polarized when
the wave is approaching the viewer. A counterclockwise rotation is classified
as right hand elliptically (circularly) polarized.

When ¢ # +90°, the tip of the vector E traces out a tilted ellipse. We
can show this by expanding F, in (5).

E, = F; coswt cos ¢ — Fysinwt sin ¢

E £,\2]°
= EjEm cos¢p — Ey [1— <E> sin ¢. (11)
Rearranging terms, we get
aE? —bE,E, + cE. =1, (12)
where
1 2 1
o= Loy e 1 (13)
E7sin® ¢ E{E>sin” ¢ E3%sin® ¢
Equation (12) is of the form
ax® — bry + cy® =1, (14)

which is the equation of a tilted ellipse.

2



A 4

The equation of an ellipse in its self coordinate is

- (3)

where A and B are the semi-axes of the ellipse. However,

' = xcosf —ysinb, (16)
y' = xsinf + ycosh, (17)
we have
, (cos2f  sin®@ o (L 1 o (sin®6  cos?6)
T yE + 5 — xysin 2 YR +y yE + 5 =1.
(18)

Equating (14) and (18), we can deduce that

1 _1 [ 2cos pE 1 Ey
o — Ltan- <7> | (19)
2 E? - F?
1+A\?
where )
4F2E2sin? ¢ 2
A= {1 T BB (21)

AR is the axial ratio which is the ratio of the two axes of the ellipse. It is
defined to be larger than one always.
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19. Representation of a Plane Wave.

When V - E = 0, the electric field satisfies the wave equation
V’E + °E = 0, (1)

where 3% = w?ue. We have learnt that one of the many possible solutions to
the above equation is '
E = 2 Eje 772, (2)

The expression e 7#?, when viewed in three dimensions, has constant phase
planes or wave fronts which are orthogonal to the z-axis.

Constant phase

A X e
—— planes
— 7

To denote a plane wave propagating in other directions, we write it as
E — dE'Oe_j,Bmm_]':Byy_]ﬂzZ, (3)

where @ is a constant unit vector, and Ej, a constant. If we substitute (3)
into (1), we obtain

(=62 — By — 62 + 5] Ey = 0. (4)
In order for (3) to satisfy (1) and that Ey # 0, we require that
B2+ B+ B2 =B =wpe. (5)

If we define a vector 3 = 0, + y0, + 20, and r = &z + gy + 2z, then (3)
can be written as '
E = aEge PT, (6)

where the magnitude of 3 is
8 = 82 + 62+ 32

1

B. (7)



Equation (6) is a concise way to write a solution to (1). Since V-E = 0 using
(3), we note that

V-E = —j[&8, + 96y + 28:] - aEoe 7P (8)
Therefore, in order for V - E = 0, we require that
B-a=0. (9)

To explore further how the function e 7#T look like, we assume (3 to be
pointing in a direction as shown in the figure. The value of B - r is constant
on a plane that is orthogonal to 3.

Constant phase
planes

That is

B -t =|B[|r[cost = B(OA), (10)
for all r on the plane S that is orthogonal to 3. Hence, S is the constant
phase plane of e /8™ = ¢=78(04) " Ag one moves progressively in the 8 direc-
tion, the function e/ has a phase that is linearly decreasing with distance.
Therefore, e 72T denotes a plane wave that is propagating in the 3 direction.
When 3 is pointing in the z-direction, such that 8 = 203, then e 78T = ¢ 75,
which is our familiar solution of a plane wave propagating in the z-direction.

An example of a plane wave electric field satisfying Maxwell’s equations
is
E = QE'Oe_jB”_jBZz, (11)
where 32 + 32 = 3%. The corresponding magnetic field can be derived using
Maxwell’s equations.

V xE=—jwuH. (12)
Hence,
H= _—1 <23Ey — i’ﬁEy>
jwp \ Ox 0z
— (gﬁm — fﬂz) &e*jﬁmmfjﬁzz. (13)
W

2



In general, when V operates on a plane wave phasor described by e 7P T,
it transforms into —j@3. This is obvious also from Equation (8). Therefore,
from (12), we can express

1

H=—8xE. (14)

wpt
Therefore, H is orthogonal to both E and 3, or that H-E = 0, and that
H.3 =0, in addition to E-3 = 0. Furthermore, E x H points in the direction
of 3. Therefore, for a plane electromagnetic wave, E, H, and 3 form a right-
handed orthogonal system. It is also a transverse electromagnetic (TEM)
wave.

E

_/ > B

T
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19a. Reflection and Transmission of a Simple Plane Wave Off an
Interface.

We have learnt that in an infinite free space, a simple plane wave solution
exists that is given by

(2) = £Ege P07
: E :
(2) = §Hye 7% = eI,
o

E=iFE,
1
H = jH, o

where 19 = /po/€o is the intrinsic impedance, and By = w,/l€ is the
wavenumber. Also, By = 2w /Ay where ) is the free space wavelength.

Region 0 Region 1
E Ho: €0 M1, €1
—_ e e
H l)—» 0 > Z
<—

When the simple plane wave is normally incident on a flat material inter-
face, we expect to have a reflected wave in Region 0, and a transmitted wave
in Region 1.

In Region 0, we can write the total fields as

E, = & (Edkefjﬁoz + E(;€+j60z) , (2)
+ —
Hy =79 <E_Uejﬁoz _ E_Ueﬂ'ﬁoz) . (3)
o o
In Region 1, the total fields are
Eo = 2B e P17 (4)
Ef .
Hy = i—1e 777, (5)
m

where 1y = y/p1/€; and By = w,/ui€;. There are two unknowns in the
above expressions, E; and H,. E; is known because it is the amplitude

1



if the incident field. We can set up two equations to find two unknowns by
matching boundary conditions at z = 0. The requisite boundary conditions
are that the tangential components of the E field and H field should be
continuous.

By imposing tangential E continuous, we arrive at

Ey + By = By, (6)
whereas imposing tangential H conditions yields

Ey Ey Ef

o o m

Solving these two equations expresses E; and E; in terms of Ej :

_ M —"o +
B = E7, 8
0 m + Mo 0 ®)
2
By = g (9)
m + Mo

We define the reflection coefficient to be

T — 771—770’ (10)
m + Mo

and the transmission coefficient to be

2
y (11)
m + 1o

Notice that 14+ T'=T.

When there is a mismatch at the interface, we expect most of the wave
to be reflected. This occurs when 17; < 1. In this case, I' ~ —1, and T ~ 0.
It also occurs when 7; > 7, for which case, I' ~ +1, T ~ 2.

The above derivation also holds true when Region 1 is a conductive lossy
region. In this case, we replace €; with a comlex permittivity €; which is
given by

51 = €1 —]% (12)

Then 7, = \/u1/€ where n; would be a complex number. Also, j3; becomes
Y1 = jwy/M1€1 = a1 + jB1 which is a complex number also.
For a highly conductive medium like copper, o1/w > €1, & ~ —joi/w,

and m; = (14 j)v/wu/(2071). Consequently, n; < np and I' ~ —1, T ~= 0.
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20. Reflections and Refractions of Plane Waves.

medium 1

M1, €1

> X

Ho, &
medium 2

Ht _Et

Perpendicular Case (Transverse Electric or TE case)

When an incident wave impinges on a dielectric interface, a reflected wave
as well as a transmitted wave is generated. We can express the three waves
as

E; = §Eoe P, (1)
Er = :lng_Egeijﬁr-r, (2)
Et = gTLEoe_jﬁt.r. (3)

The electric field is perpendicular to the xz plane, and 3;, 3., and 3; are their
respective directions of propagation. The 3’s are also known as propagation
vectors. In particular,

Bi = 20z + 20z,
Br = 20z — 26z,
Bie = Bt + 5.
Since E; and E, are in medium 1, we have
5+ B = 07 = wime, (
2+ B2 = 0] = WPe, (8)

~ ~
Sy Ot
~— — ~—

\]
SN

1



and for E; in medium 2, we have
/Bt2m + /BtZZ = /822 = {")2“262' (9)

(7), (8), and (9) are known as the dispersion relations for the components
of the propagation vectors. From the figure, we note that

ﬁim - /81 sin 91" ﬁiz - /81 Ccos 91" (10)
/81’1: = /61 sin 07’7 /Brz = /61 COos 91’, (11)
Btz = B2sinby, [i. = B2 cosb. (12)

To find the unknown p, and 7, we need to match boundary conditions for
the fields at the dielectric interface. The boundary conditions are the equality
of the tangential electric and magnetic fields on both sides of the interface.
The magnetic fields can be derived via Maxwell’s equations.

Ey

V x E, ; X Ez R “ i3,
H;, = — = B = (8Bix — #0;;) —e P (13)
—jom wm Wi
Similarly,
E .
H, = (28,, + 28,.) =2¢ 987, (14)
w1
E .
H, = (38 — 26, ) =—LeiBer, (15)
w2

Continuity of the tangential electric fields across the interface implies
Eoe—jﬁmr + pLE'ge_m”“’ — TLEOe_jBtmm. (16)

The above equation is to be satisfied for all x. This is only possible if
Bie = Bra = Btz = Be- (17)

This condition is known as phase matching. From (10), (11), and (12), we
know that (17) implies

,81 sin 0, = BI sin 9,. = ,82 sin Bt. (18)

The above implies that 8, = ;. Furthermore,

V€L sin 0; = /L€ sin 6;. (19a)

If we define a refractive index n; = | /£4%, then (19a) becomes
ny sin §; = n, sin 6;, (190)

which is the well known Snell’s Law. Consequently, equation (16) becomes
1+p =71. (20)

2



From the continuity of the tangential magnetic fields, we have
Ey pLEy 7. Ey
_/Biz— + ﬁrz— = _/Btz—- (21)
w1 W W2

Since 6, = 0;, we have 3;, = (3,,. Therefore, (21) becomes

1431 /Btz
1-— PL— ——T]. 22
2 Biz (22)

Solving (20) and (22), we have

_ p2Biz — p B

pPL = 9 23
U 2B + s (23)
2“2/8722
T =—""" 24
- u2/8iz + ,u’lﬂtz ( )
Using (10), (11), and (12), we can rewrite the above as
6; — 6
P cos 71 COS 3 (25)
7)o cos B; + 1y cos b,
2 0;
7= 12 208 (26)

N2 cos B; + my cos By

If the media are non-magnetic so that puy = ps = po, we can use (19) to

rewrite (25) as
N2 cos; —my/1— Z—;sin2 0;
2 COSQ,; + M/ 1-— :—;sin2 0,

If z—; sinf; > 1, which is possible if E—; > 1, when 6; < 7, then p, is of the

form .

_A-jB
A+ jB’
which always has a magnitude of 1. In this case, all energy will be reflected.
This is known as a total internal reflection. This occurs when 6, > 6.

where \/g sinf, = 1. or

pL (28)

. e
6, = sin * i, € < €. (29)



When 6; = 6., 8; = 90° from (19). The figure below denotes the phe-
nomenon.

lessthan
,’/ critical angle

larger than
)/critical angle

- /at critical angle
— > >» X

\A\ -y .
~~._ k lessthan critical angle

\4

V4

When 60; > 0., B, = /32 — Fsin6;, or

=

B: = wy/fio€s <1 — < sin? 9,-) : (30)

€2

The quantity in the parenthesis is purely negative, so that
Biz = —jouz, (31)
a pure imaginary number. In this case, the electric field in medium 2 is
B, = 7 Ege /7=t (32)

The field is exponentially decaying in the positive z direction. We call such
a wave an evanescent wave, or an inhomogeneous wave as opposed to
uniform plane wave. The magnitude of a uniform plane wave is a constant
of space while the magnitude of an evanescent wave or an inhomogeneous
wave is not a constant of space. The corresponding magnetic field is

TLE

0 p—iBoz—at:z (33)

H, = (2/81 + jj%z) o
2



The complex power in the transmitted wave is

2
e 2otz® (34)

We note that S, is pure real implying the presence of net time average power
flowing in the Z-direction. However, S, is pure imaginary implying that the
power that is flowing in the 2-direction is purely reactive. Hence, no net time
average power is flowing in the Z-direction.

Parallel case (Transverse Magnetic or TM case)
In this case, the electric field is parallel to the xz plane that contains the

plane of incidence.

medium 1

M1, €1

> X

Ho2, €
medium 2

as

By _,
H; = §—2e 7P, (35)
m
A E —9 -r
H, = —leun—l06 G (36)
Ey .
H, = gTHn—;e*mt'r. (37)

We put a negative sign in the definition for p; to follow the convention of
transmission line theory, where reflection coefficients are defined for voltages,
and hence has a negative sign when used for currents. The magnetic field is
the analogue of a current in transmission theory.
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In this case, the electric field has to be orthogonal to 3 and g, and they

can be derived using

s x H;
E;, = _B
WeEq
to be
g x G - 0 _
Ei — Eoff iPir (x/gzz 2/87,1:) iPir
B B
E,
(x/BTZ + Z/BT:E) p“ 0 _]ﬁr b
51
X T 0 -
E, = (-Tﬁtz Z/Bta:) ” iPer
B
Imposing the boundary conditions as before, we have
ﬁtz /81
1+p=——57
| ﬂ2 /Biz a
Uil
L=py=—1).
2
The above can be solved to give
_ €fi —€fi:  mpcosby —mcosh;
Pl @B+ e 1cosy + micosb;’
and
2628 Mo 213 cos b);

=
In (43), p; will be zero if
05 cos® B, =

Using Snell’s Law, or (19), cos?6; = 1 —
1—
H2€2

Solving the above, we get

sinf;, = ( e
H2€2

Most materials are non-magnetic in this world so that pu = g, then

Hi€r .
= sin?6; =

€08, + €18 m N 12 cos B; + 1y cos 0,-'

n? cos® 6;.

v sin? f;, and (45) becomes

H1€2
22 cos? 6.
H2€1

1 _ me 2
H2€1
prer _ pier | °
H2€1

Y

(38)
(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)



The angle for #; at which p; = 0 is known as the Brewster angle. It is

given by
By =sin~" , / 2 _ tan™' A =3 (49)
€2+ €1 €1

At this angle of incident, the wave will not be reflected but totally transmit-
ted. Furthermore, we can show that

sin? 6;;, + sin? Oy, = 1, (50)
implying that
T
Oip + O = 9 (51)

On the contrary, p, can never be zero for ;1 = py or non-magnetic materials.
Hence, a plot of ‘PH‘ as a function of #; goes through a zero while the plot of
|p1| is always larger than zero for non-magnetic materials.

A

|PD|,or 14

Pl

At normal incidence, i.e., §; = 0,p;, = p| since we cannot distinguish
between perpendicular and parallel polarizations. When 6; = 90°, |p,| =
‘p”‘ = 1. On the whole, |p, | > ‘p”‘ for non-magnetic materials.

The above equations are defined for lossless media. However, for lossy
media, if we define a complex permittivity € = € — 52, Maxwell’s equations
remain unchanged. Hence, the expressions for p,, 7, p|, and 7 remain the
same, except that we replace real permittivities with complex permittivities.

For example, if medium 2 is metallic so that o — oo, then, 7, = , /22 — 0,
13

and p; = —1, and 7, = 0. Similarly, py = —1 and 7 = 0.
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21. Infinite Parallel Plate Waveguide.

e
y

By

0 X=b

—_)

X

We have studied TEM (transverse electromagnetic) waves between two
pieces of parallel conductors in the transmission line theory. We shall study
other kinds of waves between two infinite parallel plates, or planes. We have
learnt earlier that for a plane wave incident on a plane interface, the wave
can be categorized into TE (transverse electric) with electric field polarized in
the y-direction. Hence, between a parallel plate waveguide, we shall look for
solutions of TE type with E = gE,, or TM (transverse magnetic) type with
H = yH,. We shall assume that the field does not vary in the y-direction so
that 2 = 0.

We have shown earlier that if V - E = 0, the equation for the E field in a
source region is

(V2 + w?ue)E = 0. (1)
If V-H = 0, the equation for the H field is

(V2 + w?ue)H = 0. (2)
Since 3% =0, V2= 3‘9—; + 3‘9—; in these two equations.
I. TM Case, H = yH,.

In this case,
0? 0?
(W + ﬁ + w2,ue> Hy = 0. (3)



If we assume that .
H, = A(z)e 7%, (4)

substituting (4) into (3), we have

{£;+wme—@yM@:0- (5)

2

z)

Letting 32 = w?ue — 32, (5) becomes

d? 5
s 2] Al =0 ©
where the independent solutions are
cos B,x
A(z) = . 7
(z) { sin 3,x (™)
Hence, H, is of the form
cos B,x .
H,=H iP=z 8
g °{ﬁnmx}e ! ®)
where
B2+ 67 = wine = B2, (9)

which are the dispersion relation for plane waves. We can also define
B = Bcosb, B, = Bsinf so that (9) is automatically satisfied.

To decide a viable solution from (8), we look at the boundary conditions
for the E-field at the metallic plates. From V x H = jweE, we have

0 0
ju)GEw = 8_sz — &Hy, (]_0)
(where %Hz = 0 in the above equation) or
B. cos Bpx| .
E,="“H, iP== 11
we U\ sin By ¢ ’ (11)
and 5 5
jWGEz = %Hy - 8—yHm, (12)

(where %Hm = 0 in the above equation) or

B P HO{ Smﬂmx} e, (13)

_jwe —cos Byx

2



The boundary conditions require that E,(z = 0) = E,(z = b) = 0. Only the
first solution gives E.(x = 0) = 0. Hence, we eliminate the second solution,
or

E, = —,ﬁ—mHO sin(B,x)e 7P+, (14)
Jwe
In order for E,(x = b) = 0, we require that
sin 3,b = 0, (15)
or
B.b = mm, m=0,+1,+2,+3,..., (16)
and consequently,
ﬁng, m=0,+1,42,43,.... (17)

This is known as the guidance condition for the waveguide. Finally, we
have

H, = H,cos (%x) e IP=7 (18)
E, = &HO cos (w) e P2, (19)
we b
mm mmx ,

B = - s ( ) ~ipez, 20
Jjweb oS\ )¢ (20)

where )

mm\ 2] 2
B. = [w2u€ - (T) ] ) (21)

which is the dispersion relation for the parallel plate waveguide. Equation
(18) can be written as

Hy . . : : Ho\ ig.aj Ba—j

The first term in the above represents a plane wave propagating in the positive
Z-direction and the negative Z-direction, while the second term corresponds
to a wave propagating in the positive x and z directions. Hence, the field in
between a parallel plate waveguide consists of a plane wave bouncing back
and forth between the two plates, as shown.

L — E:Q Bx+%[32

z d

|— E=—Q[3x+/2\[32




Since we define 3, = (Bcosf, 3, = (Fsinf, the wave propagates in a di-
rection making an angle # with the Z-direction. Since the guidance condition

requires that 3, = 5% = [cosf, the plane wave can be guided only for
discrete values of 6.

From (21), we note that for different m’s, 3, will assume different values.
When m = 0, 8. = w,/ne, E. = 0, and we have a TEM mode. When
m > 0, we have a TM mode of order m; we call it a TM,, mode. Hence,
there are infinitely many solutions to Maxwell’s equations between a parallel
plate waveguide with the field given by (18), (19), (20), and the dispersion
relation given by (21) where m =0,1,2,3,....

I1I. Cutoff Frequency

From (21), for a given TM,, mode, if w,/je < %*, then 3, is pure imag-
inary. In this case, the wave is purely decaying in the Z-direction, and it is
evanescent and non-propagating. For a given TM,, mode, we can always
lower the frequency so that this occurs. When this happens, we say that the
mode is cut off. The cutoff frequency is the frequency for which a given
TM,, mode becomes cutoff when the frequency of the TM,, mode is lower
than this cutoff frequency. Hence,

mm m muv

. oo m _m 23
Wme = g2 OF Jme = e = oy (23)
When
(m+ 1)v mv _ (m—1v _ (m—2)
T f> 5n > op oy 0, (24)

the TEM mode plus all the TM,, modes, where 0 < n < m are propagating
or guided while the TM,,,; and higher order modes are evanescent or
cutoff. For the parallel plate waveguide, there is one mode with zero cutoff
frequency and hence is guided for all frequencies. This is the TEM mode
which is equivalent to the transmission line mode.

The wavelength that corresponds to the cutoff frequency is known as the
cutoff wavelength, i.e.,

v 2b
TS (25)
When A < A, the corresponding TM,,, mode will be guided. You can think
of A\ as some kind of the “size” of the wave, and that only when the “size” of
the wave is less than \,,. can a wave “enter” the waveguide. Notice that A,
is proportional to the physical size of the waveguide.

Amc

IV. TE Case, E = jE,.



The field for the TE case can be derived similarly to the TM case. The
electric field is polarized in the g-direction, and satisfies

0? 0?

The fields can be shown in a similar fashion to be

E, = Eysin(B,x)e 7P, (27)

H, = —&EO sin(B,x)e 7P+, (28)
Wit

H, = —,ﬁ—mEO cos(B,x)e P, (29)
jwp

The boundary conditions are

E,(x=0)=0, E,(xz=»5)=0. (30)
This gives
mm
Be = 3 (31)

as before, where 32 + (3> = w?ue. Hence, the TE,, modes have the same
dispersion relation and cut-off frequency as the TM,, mode. However, when
m =0, 3, =0, and (27)—(29) imply that we have zero field. Therefore, TE,
mode does not exist. We say that TE,, and TM,, modes are degenerate
when they have the same cutoff frequencies.

We can decompose (27) into plane waves, i.e.,

Ey — E?[ejﬁmm*jﬁzz _ efjﬁmmfjﬁzz], (32)
23
and interpret the above as bouncing waves. Compared to (22), we see that
the two bouncing waves in (32) are of the opposite signs whereas that in (22)
are of the same sign. This is because the electric field has to vanish on the
plates while the magnetic field need not.

TM; mode field

H-field
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The sketch of the fields for TM; and TE; modes are as shown above.
For the TM mode, H, = 0, and E. # 0, while for the TE mode, E, = 0,
and H, # 0. Tangential electric field is zero on the plates while tangential
magnetic field is not zero on the plates. The above is the instantaneous field
plots. E x H is in the direction of propagation of the waves.

ITI. Phase and Group Velocities.

The phase velocity in the Z-direction of a wave in a waveguide is defined

to be

w w 1
vp = — = - ) (33)

e )] w1 ()]

which is always larger than the speed of light for f > f,... The group velocity
is

=

B wze_m2% A fme )’
. dw_(i%) :[ uw(eb)] [1 \(/;;)}

g = d/@z =
which is always less than the speed of light.

w
A
TM2and TE; modes . w 1
— =—=C
\ Bz +fpe
© TM; and TE; modes
2¢
TMgp=TEM mode
Wi oz 99
"B
/// sz (AJ/BZ

Woc > B,



1
Since 8, = ¢ [1 — (“’%)2] 2, a plot of w versus (3, is as shown. When

B, — 0, the group velocity becomes zero while the phase velocity approaches
infinity. When (8, — 00, or w — 00, the group and phase velocities both
approach the velocity of light in free-space which is the TEM wave velocity.
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22. Hollow Waveguide.

A hollow cylindrical waveguide of uniform and arbitrary cross-section
can guide waves. The fields inside a hollow waveguide can guide waves of
both TE and TM types. When the field is of TE type, the electric field is
purely transverse to the direction of wave propagation z; Hence E, = 0. For
TM fields, the magnetic field is purely transverse to the z-axis and hence,
H, = 0. Therefore, the field components of TE fields are

Ea:vEyaHmHanza
and for TM fields, they are
HmvaaEmEyaEz-

We can hence characterize TE fields as having E. = 0, H, # 0, and TM
fields as H, = 0, E, # 0. Hence, the z-component of the H field can be used
to characterize TE fields, while the z-component of the E field can be used
to characterize TM fields in a hollow waveguide. Given E., and H., it will be
desirable to derive the transverse components of the fields. We shall denote a
vector transverse to Z by a subscript s. In this notation, Maxwell’s equations
become

(Vs + z%) x (H, + 2H,) = jwe(E, + 2E.), (1)
(Vs + z%) x (Bs + 2E,) = —jwu(H, + 2H.), (2)

where V, = 37;3% + 3}3%, and E,; and H, are the electric field and the mag-
netic field, respectively, transverse to the z directon. Equating the transverse
components in (1) and (2), we have

0

Vi, x 2H, + 55 x H, = jweB,, (3)
z
0

Ve x 2B, + —2 x E;, = —jwuH,. (4)

0z
1



Substituting (4) for H, into (3), we have

0 J 0
Vex Z2H, + —%2 X <V x ZF, —I—asz>:jweEs.

0z Wi
Using the vector identity
Ax(BxC)=B(A-C)-C(A-B),
we can show that
2xVyx2E,=V,(%2-2E,) — 2E,(£-V,) = V,E,,

and
X (2xEs)=%(2-E;) —E,(2-%2) = —E,.

Hence, (5) becomes
oG 00

VexZiH,+—~——V,E, —
XA w0z wp 022

If E is of the form Ae 7% + Bei®, then 2, = —? and (9) becomes

1 o . —
E, = wzue &z [ V,E, — jwuV, X sz_ .
In a similar fashion, we obtain
1 0
Hszm VH+jweV ><2E_.

(10)

(11)

The above equations can be used to derive the transverse components of the
fields given the Z-components. Hence, in general, we only need to know the

Z-components of the fields.

I. Rectangular Waveguides

Rectangular waveguides are a special case of cylindrical waveguides with
uniform rectangular cross section. Hence, we can divide the waves inside the

waveguide into TM and TE types.

Ay




TM Case, H, =0,E, #0
Inside the waveguide, we have a source free region, therefore
[V2 + wue]E =0, (12)

or
(V2 + W uelE, = 0. (13)

Equation (13) admits solutions of the form

sin B,z sin B,y _.
E.=E iPez 14
O{COSBmx} {cosﬁyy}6 (14)
since ) P p
0 sin O,x sin B,x
0x? | cos B,z cos B,x
6_2 sin B,y _ g sin B,y 3_26,jﬁzz _ et (16)
dy? | cos B,y Y cosByy) ' 922 ?
Therefore
(V2 +w?ne)E, = (62 — B2 — 32 + w’ne)E, = 0. (17)
This is only possible if
Ba + B, + 82 = W pe, (18)

which is the dispersion relation. The boundary conditions require that
E.(x=0)=0, E.(y=0)=0. (19)
Hence, the admissible solution is
E. = Eysin(B,z) sin(B,y)e 7. (20)
Also, we require that
E.(x=a) =0, E.(y=0b) =0. (21)
This is only possible if sin(8,a) = 0 and sin(3,b) = 0, or
B.,a=mm,m=20,1,2,..., Byb=nm,n=0,1,2,3,.... (22)

However, when m or n = 0, E, = 0. Hence, we have

m n
ﬁm: 7ra m > 1, /By: bﬂ-, n > 1, (23)
a



which are the guidance conditions. To get the transverse E and H fields,
we use (10) and (11)

1 0 0 _j/B:v/Bz . _s
F,=—————F.= E . 3Pz
w?pe — (2 02 0z g2+ cos(f,x) sin(Byy)e (1)
1 09 —JB:P: »
E = 7——E v °F B2z
VT e —B20z0y T B+ sin(B,x) cos(Byy)e 7, 25)
_ j(,dG 3 . ]weﬁy —jBzz
H, = 7{.‘)2/;6 ey ByE RN Eysin(B,x) cos(B,y)e , (26)
H, = __Jwe 3E _]weﬁmEO cos(B.x) sin(B,y)e 7P+ (27)

Sue— B0z " BE O

We note that the electric fields satisfy their boundary conditions. From the
dispersion relation (18), we have

N m)l (E)Q 98
5. = Jwme— ("7)" - ()" 25)
The solution that corresponds to a particular choice of m and n in (23)
is known as the TM,,, mode. For a given TM,,,, mode, (3. will be pure

imaginary if
< (mﬂ)2+ (mr)Q (29)
w2 e —
/"L a b )

1
1 mm 2 nm\2|?
< (%5) + (5)| - 30
“ NG [ a * b (30)
In this case, the mode is cutoff, and the fields decay in the Z-direction and
become purely evanescent. We define the cutoff frequency for the TM,,,

mode to be
ome =g () (F) ] = [ () ()]

The TM,,,, mode will not propagate if

or

W < Whne O f < frnes (32)
where fr,. = “2e, f = 3=. The corresponding cutoff wavelength is

e =2 [ (22 (22 ] (310

Only when the wavelength A is smaller than this “size” can the wave “enter”
the waveguide and be guided as the TM,,,, mode.
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To find the power flowing in the waveguide, we use the Poynting theorem.

S. = E,H — E,H;, (33)

2 2
= s Vol cost(B) i) + s B s (0.0) o5,
= (ﬁzwjriﬁ&)? |EO|2 (32 cos?(B,) sinQ(ﬁyy) + ﬂ; sin?(3,x) cos2(ﬂyy)]. (34)

The total power

2
/ dy / xS, = ‘”eg;af |§;°)| (8 +32) = —”6(%%“1";5)' . (35)

When f < fine, 8. is purely imaginary and the power becomes purely reac-
tive. No real power or time average power flows down a waveguide when all
the modes are cutoff.

TE Case, £, =0,H, # 0.

In this case,

H, = Hycos(B,x) cos(B,y)e P+ (36)
so that from equations (10) and (11), we have,
E, = %gy}[ = B];J_l:ﬂgy2H° cos(B,x) sin(B,y)e 7P+, (37)
E, = ﬁ%[f ;giugg Hy sin(B,z) cos(B,y)e 7P+, (38)
M= oigean - gjﬂgﬁ sl oG,
= mgé% o éﬂiﬁgﬁ Hocos(Bx)sn)e (40)

where 32 + 37 + 37 = (* = w’pe. Matching boundary conditions for the
tangential electric field requires that

mm nmw

fo=-"m=01,23,..., f="n=0123 ... (41)
Unlike the TM case, the TE case can have either m or n equal to zero.
Hence, TE,,q or TEy, modes exist. However, when both m and n are zero,
H. = Hype™%*, H, = H, = 0, and V - H # 0, therefore, TEy mode cannot
exist,.

For the TE,,, modes, the subscript m is associated with the longer side
of the rectangular waveguide, while n is associated with the shorter side. In

5



the case of TE,,0 mode, 3, = 0, implying that £, = 0, E, # 0, H, = 0,
H, # 0, H, # 0. The fields resemble that of the TE,, mode in a parallel
plate waveguide. For the general TE,,, mode, the dispersion relation is

= Jorue— (BT - (21 o
.= \Jurme — (")~ (*T)" (42)
Hence, the TE,,,, mode and the TM,,,, mode have the same cutoff frequency
and they are degenerate.

Example: Designing a Waveguide to Propagate only the TE;; mode

The cutoff frequency of a TM,,,, or a TE,,, mode is given by

o= G ) ()T g

Usually, a is assumed to be larger than b so that TE;y mode has the lowest
cutoff frequency, which is given by

v
flOc = % or /\IOC = 2@, (44)

where v = \/%, and fio. = %2. The next higher cutoff frequency is either

f20e or fo1. depending on the ratio of a to b.

v v
= — = —. 4
f20c a, fOlc 20 ( 5)

If a > 2b, fggc < fglc, and if a < 2b, fggc > fOlc- fggc = fOlc if a = 2b. When
a = 2b, and we want a waveguide to carry only the TE;, mode between 10
GHz and 20 GHz. Therefore, we want fio. = 10 GHz, and foo. = fo1c =
20GHz. If the waveguide is filled with air, then v = 3 % 108?, and we deduce
that v v
= = 1.5cm, b=
2f108 2f018
In such a rectangular waveguide, only the TE;, will propagate above 10 GHz
and below 20 GHz. The other modes are all cutoff. Note that no mode could

propagate below 10 GHz.

a

= 0.75. (46)
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23. Cavity Resonator.

A cavity resonator is a useful microwave device. If we close off two ends
of a rectangular waveguide with metallic walls, we have a rectangular cavity
resonator. In this case, the wave propagating in the 2-direction will bounce
off the two walls resulting in a standing wave in the 2-direction. For the TM
case, we have

b, = EO.Sin(ﬂmw) Sin(ﬂyy)(e_]ﬂzz + pe]ﬂzz), (1)
Ea: - gjimgg EO COS(ﬁmx) Sil’l(ﬁyy) (673'5:2 - pej:Bzz), (2)
By = ;j%g By sin(B,2) cos(B,y) (e %% — pe?®*). "

For the boundary conditions to be satisfied, we require that E,(z = 0) =
E,(z=0)=0. Hence, p =1, and

E. = 2Ey sin(3,) sin(8,y) cos(B.2), n
r = gf?f_mgg EO COS(/Bma:) Sin(ﬁyy) Sin(ﬁzz), (5)
y = g;f_yg; Eysin(fB,x) cos(B,y) sin(3.z). (6)

Furthermore, E,(z = —d) = E,(z = —d) = 0, implying that

p=0,1,2,3,.... (7)

The guidance conditions for a waveguide demand that 3, = =F and 3, = *F,
where for TM case, neither m or n can be zero. Now that (3, has to satisfy

(7), the TM mode in a cavity is classified as TM,,,,, mode. We note from (4)

1



that p can be zero while E, # 0. Hence, the TM,,,,o cavity mode can exist.
In order for (4), (5), and (6) to be solutions to the wave equation, we require

that ) ) 2
wie =B+ B+ 62 = (m) + (E) + (p_) . (8)
a b d
For a given choice of m, n, and p, only a single frequency can satisfy (8).
This frequency is the resonant frequency of the cavity. It is only at this
frequency that the cavity can sustain a free oscillation. At other frequencies,
the fields interfere destructively and the free oscillation is not sustained. From

8), we gather that the resonant frequency for the TM,,,, mode is
g P

4 [ RI CO R o) G

For the TE case, similar derivation shows that

H. = Hy cos(f,x) cos(fB,y) sin(6.2), (10)
= G Hocos(Bur) sin(B,) sin(5.2), (1)
= _ﬁ];iﬂﬁ% Hy sin(B,z) cos(B,y) sin(5.2). (12)
Similarly, the boundary conditions require that
Bo= "2 B, = B = (13)

When p = 0, H, = 0, hence TE,,,,o mode does not exist. However, TE,, or
TE, 0, modes can exist. The resonant frequency formula is as given in (9).
If a > b > d, the lowest resonant frequency is the TM;;q mode. In this case,

1
2

1 T2 T2
= z z 14
w110 N [<a> + <b) ] ) (14)
and E, #0, H, #0, H, # 0, E, = E, = 0. A sketch of the field is as shown.

YA

b -
— H-field
TM110 © ®© © E-fidd
mode 10 ®
X
z(“ a >

We can decompose the wave into plane waves bouncing off the four walls
of the cavity.



>
0 a X

As an example, for a = 2 cm, b = 1 cm, d = 0.5 cm, the resonant
frequency of the TM;1p mode is

5m? 3 x 1087
2 =3x10° = 5H 15
mfito 4(1072)2 2 x 10—2f “ (15)
or
3 10 10
fiao = 7 X 107 x V5Hz = 1.68 x 10'°Hz = 16.8GHz. (16)

Cavity resonators are useful as filters and tuners in microwave circuits, as LC
resonators are in RF circuits. Cavity resonators can also be used to measure
the frequency of an electromagnetic signal.
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24. Dielectric Waveguides (Slab).

When a wave is incident from a medium with higher dielectric constant
at an interface of two dielectric media, total internal reflection occurs
when the angle of incident is larger than the critical angle. This fact can
be used to make waves bouncing between two interfaces of a dielectric slab
to be guided

A
Ho» €0 d/2 Y )8;'/ region 0

/\ 0 .
M1 &1 y® >z regionl
?e/ \/
—di2 R o~ region 2
Ha, €2 =

Since total internal reflection occurs for both TE and TM waves, guidance
is possible for both types of waves

I. TE Case E = §E,

E, is a solution to the wave equation in each region. In region 0, we
assume a solution of the form

Eo, = E'Oe—jﬁomr—jﬁzz’ (1)

where
Bon + 07 = wPoeo = 55 (1a)
In region 1, we assume a solution of the form

Ey, = [A1e77P1=" | B, eiP1eT]emiP:2 (2)

where
Ble + B2 = wime = 67 (2a)

In region 2, the solution is of the form
By, = E2ejB2mm_j:322, (3)

where
Bre + B2 = wnoer = G5 (3a)

1



We assume that all the solutions in the three regions to have the same z-
variation of e 7%:* by the phase matching condition.

In region 1, we have an up-going wave as well as a down-going wave. The
two waves have to be related by the reflection coefficient p, for the electric
field at the boundaries. p, is derived earlier in the course. Therefore at

x = g, we have

Bye??=7 = pig, Aye e, (4)
where p1g, is the reflection coefficient at the regions 1 and 0 interface. At
r= —g, we have

Alejﬁlm% — p12¢B16_]‘B“‘%, (5)

where p1o, is the reflection coefficient at the regions 1 and 2 interface. Mul-
tiplying equations (4) and (5) together, we have,

A1 B¢ = p15| p1gL Ay Bre 777, (6)
A; and B; are non-zero only if

1 = prasproLe 3P, (7)

The above is known as the guidance condition of a dielectric slab waveg-
uide. If medium 3 is equal to medium 1, then p15, = p101, and the guidance
condition becomes

S Q

From before, for a wave incident at an angle 6,

1o cos f — ny cos 6"

(9)

ProL = M9 cos O + 1y cos "

Since By, = (1 cosb, By, = PBocosh”, (9) could be written as

0 n
5_01B1m B 5_;/8093 _ ,U’Oﬂlm B MlﬁOm

prot = %5193 + %ﬁ&v  p0B1e + 1B (10)
Taking the square root of (8), we have
proLe Pt = 41, (11)
When we choose the plus sign, B; = A; from (4), and from (2)
Ey, = 24, cos(Brz)e 7P* = even in x. (12)
When we choose the minus sign in (11) we have B; = —A;, and
Ey, = —2jA; sin(Bi,x)e ™ = odd in x. (13)

2



Multiplying (11) by ¢’%125 and manipulating, we have

d d oo d .

%BM’E tan (/Bla:§> = ]BOJ'E even solutions, (14)
d d oo d .

%51935 cot (/Bla:§> = ]BOJ'E odd solutions. (15)

Subtracting (1a) from (2a) and solving for (., we have

Bow = [w2(uoﬁo — pi€r) + 51293]%- (16)

In order for (14) and (15) to be satisfied, [y, has to be pure imaginary. In
other words, the waves in region 0 and 3 have to be evanescent and decay
exponentially away from the slab. Hence

Boz = —Jjoe = _j[wz(ﬂlfl — [o€o) — 5121:]%, (17)
and (14) and (15) become

d d & 2 _
Blm tan ﬁm = Qe = w(pi€; — ,uoeo) ﬁ'u even solutions,
(18)

d d d 2 >
_Ho o= COt Bip— = Qp— = \/w2(,u161 uge(;)— - <51m > odd solutions.
D) 2 2

(19)
We can solve the above graphically by plotting
d d
Y = @glm— tan (ﬂu-) even solutions, (20)
p 2 2
d d
ys = _Hao 12— COt (ﬁm—) odd solutions, (21)
p 2 2

2 2 %
Y3 = [wz(ﬂlfl —,U0€0)d (ﬁlm > ] = aOmg- (22)

Y2
(1 &1~ Ho £o) dI2

~
e
w
=



y3 is the equation of a circle; the radius of the circle is given by

1 d
w(pr€r — Mofo)ii- (23)

The solutions to (18) and (19) are given by the intersections of y; with y; and
y2. We note from (23) that the radius of the circle can be increased in three
ways; (i) by increasing the frequency, (ii) by increasing the contrast ﬁ, and
(iii) by increasing the thickness d of the slab.

When [y, = —jag,, the reflection coeflicient is
et | o x . _ Qg
proL = o _7.M1 0z _ exp [+2] tan~—! (Nl 0 >] : (24)
poBiz — JH100e o1z
and |p1o.| = 1. Hence there is total internal reflections and the wave is

guided by total internal reflections. Cut-off occurs when the total internal
reflection ceases to occur, i.e. when the frequency decreases such that g, = 0.
From the diagram, we see that ag, = 0 when

1
2

[\ =W
3
3

w(pr€r — po€g)2 = = —, m=0,1,2,3,..., (25)

or
mm
Wine = -, m=20,1,2,3,.... (26)
d(p€1 — o€o)?
The mode that corresponds to the m-th cut-off frequency above is labeled
the TE,, mode. TE, mode is the mode that has no cut-off or propagates at

all frequencies.

At cut-off, ag, = 0, and from (1a),

B. = wy/Hoko, (27)

for all the modes. Hence, both the group and the phase velocities are that of
the outer region. This is because when ag, = 0, the wave is not evanescent
outside, and most of the energy of the mode is carried by the exterior field.

When w — oo, B1, — % from the diagram for all the modes. From (2a),

/Bz = \/ u)2,U161 - /61293 R W/ €1, W — 0. (28)

Hence the group and phase velocities approach that of the dielectric slab.
This is because when w — 0o, g, — 00, and all the fields are trapped in the
slab and propagating within it.

Because of this, the dispersion diagram of the different modes appear as
below.



BZ A wWVH1 €1
TE
TE, 3
w\Hp €
TE, Ho €o
TEg
|
| |
| |
| | | N
0 W1c Woc W3c

II. TM Case H=yH,

For the TM case, a similar guidance condition analogous to (27) can be
derived '
1= proyyproje 7=, (29)

where p is the reflection coefficient for the TM field. Similar derivations show
that the above guidance condition, for €3 = €g, s = g, reduces to

d d e d\’
6—0512— tan B, -~ = w2(ﬂ161 - MOGO)— — | Bre= even solution,
€1 2 2 4 2 (30)

d d 2 d\’
_@ﬁlm_ cot Biam = || w(p1er — po€o) — — | Bres odd solution.
€ 2 2 4 2 (31)
Note that for equations (7) and (29), when we have two parallel metallic

plates, py = 1, and p; = +1, and the guidance condition becomes

mT
—  m=0,1,2,..., (32)

which is what we have observed before.
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25. Vector Potential - Introduction to Antennas & Radiations

Maxwell’s equations are

VXxE=—jwuH, (1)
V x H = jweE + J, (2)
V. uH =0, (3)
V.eE = p. (4)
Since V - (V x A) = 0, we can let
pH =V x A, (5)

so that equation (3) is automatically satisfied. Substituting (5) into (1), we
have
V x (E+ jwA) =0. (6)

Since V x V¢ = 0, we have
E=—jwA —-Vo. (7)

Hence, knowing A and ¢ uniquely determines E and H. We shall relate A
and ¢ to the sources J and p of Maxwell’s equations. Substituting (5) and
(7) into (2), we have

V XV XA = jwpe[—jwA — V| + uJ, (8)
or
VA + wlueA = —pJ + jupeVeo + VV - A. (9)
Using (7) in (4), we have
V- (jwA + V) = —g. (10)

The above could be simplified for the following observation. Equations (5)
and (7) give the same E and H fields under the transformation

A=A+ Vy, (11)
¢ =¢— jwy. (12)

The above are known as the Gauge Transformation. With the new A’
and ¢', we can substitute into (5) and (7) and they give the same E and H
fields, i.e.

VxA'=VxA+VxVy=VxA=pH, (13)
WA — V¢ = —jwA — jwV — Vb + juVi = B, (14)

1



It implies that A and ¢ are not unique. The vector field A is not unique
unless we specify both its curl and its divergence. Hence, in order to make
A unique, we have to specify its divergence. If we specify the divergence of
A such that

V-A=—jwuep, (15)

then (9) and (10) become
VA + wlpe = —pd, (16)
V2 + w?ped = —g. (17)

The condition in (15) is also known as the Lorentz gauge. Equations (16)
and (17) represent a set of four inhomogeneous wave equations driven by the
sources of Maxwell’s equations. Hence given the sources p and J, we may
find A and ¢. E and H may in turn be found using (5) and (7). However,
as a consequence of the Lorentz gauge, we need only to find A; ¢ follows
directly from equation (15).

Let us consider the relation due to an elemental current that can be
described by
J = 2I15(r) A/m?, (18)

where Il denotes the strength of this current, and §(r) = §(x)d(y)d(z). Equa-

tion (16) becomes
V2A, +wiueA, = —ullé(r). (19)

Taking advantage of the spherical symmetry of the problem, V2 has only r
dependence in spherical coordinates, we have

oA+ AL = —ullb(r), (20)

where 32 = w?pe. Equations (19) and (20) are similar in form to Poisson’s
equation with a point charge Q at the origin,

@5). (21)

V=~
€

We know that (21) has the solution of the form
Q

= . 22
¢ 4dmer (22)
Hence, we guess that the solution to (20) is of the form
ull
A, =— . 2
=) (23)
It can be shown that
1d ,d 1 d?
2 = - . 24
r2dr drf(r) rdr2rf(r) (24)



Outside the origin, the RHS of (20) is zero, and after using (23) and (24) in

(20), we have
2

%C(r) + B*C(r) = 0. (25)

This gives '
C(r) = P, (26)

Since we are looking for a solution that radiates energy to infinity, we choose
an outgoing solution in (26). Hence,

wll _.
A (r)= e 7Pr 27
(r) = 4 emitr, (27)
for a source directed at a 2-direction. From (16), we note that A and J
always point in the same direction. Therefore, for a point source directed at
1 and located at r’ instead of the origin, the vector potential A is

,LLI]. Y T
Alr) = ———e AT, 28

P N

X

By linear superposition, the vector potential due to an arbitrary source

Jis Ie
A= /// g I s (29)
4 v — /|

Similarly, we can show that

¢ = 4%6 / / / dr'%eﬂ”r’. (30)
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26. The Fields of a Hertzian Dipole

A Hertzian dipole is a dipole which is much smaller than the wavelength
under construction so that we can approximate it by a point current distri-

bution,
J(r) = 2116(r).

The dipole may look like the following

q metallic spheres — charge reservoir
T e
g <—— generator

L

(1)

l is the effective length of the dipole so that the dipole moment p =
gl. The charge ¢ is varying time harmonically because it is driven by the

generator. Since % = I, we have

dq
Il = %l = jwql = jwp,

(2)

for a Hertzian dipole. We already know that the corresponding vector poten-

tial is given by

Il
A(r) = 2290,
47Tr

The magnetic field is obtained, using cylindrical coordinates, as

Where——O r = \/p? + 22. In the above, 3%:@@: 2 izfaﬁ.

Hence,

(3)



PN

0 r
A > y
o
p ~
>0
X
In spherical coordinates, £ = sin#, and (5) becomes
5 11 ) e BT g
H= ¢47rr2(1 + jBr)e 7P sin . (6)

The electric field can be derived using Maxwell’s equations.

1 1 1 0 ~10
E=—VxH=—|7¢ —sinfHy — ¢p——rH,
Jwe x Jwe <r7’sin989 SIYHe ¢r or ¢>
Ilefjﬁr R . A . 2 9
= Gocdnr® [r2 cosB(1+ jBr) + Osinf(1+ j08r — B°r )] . (7)

Case I. Near Field, gr <1

E = 471'27“3 (72 cos 0 + B sin 6), Br < 1, (8)
H < E, when Gr < 1. (9)

Br could be made very small by making { small or by making w — 0. The
above is like the static field of a dipole.

Case II. Far Field (Radiation Field), fr > 1

In this case,

. Il
EZ 6’jwu4—e_]ﬂ’" sin 6, (10)
wr
and
N (R
H ¢]ﬁ4—e IPT sin B, (11)
wr
Note that 5—2 = % = \/g = 19. E and H are orthogonal to each other

and are both orthogonal to the direction of propagation, i.e. as in the case
of a plane wave. A spherical wave resembles a plane wave in the far field
approximation.



The time average power flow is given by

1 1 ) AN
(S) = Eﬂ?e[E x H*] = 750 |H,y|? = r% <f—7rr> sin’ 4. (12)

The radiation field pattern of a Hertzian dipole is the plot of |E| as a
function of # at a constant r.

- % >y
N N

The radiation power pattern is the plot of (S,) at a constant r.

AZ

The total power radiated by a Hertzian dipole is given by

2r ™ ™ ﬂIl 2
P:/ d¢/ d9r2sin9<s,,>:27r/ oL (—) sin®.  (13)
0 0 0 2 4

T
Since
s -1 1 4
/ 49 sin® 6 = —/ (d cos8)[1 — cos? 6] = / d(—a) =3, (14)
0 1 —1
then R
4 /BII
P=- — ) . 1
s (20 (15)
The directive gain of an antenna, D(6, ¢), is defined as
S,
D(6,6) = 52, (16)
4nr?



where 471; s is the power density if the power P were uniformly distributed

over a sphere. Substituting (12) and (15) into the above, we have

m (812 Gin2 g 3
D(9, ) = 2 (izr) S = Csin®6. (17)
47:-1’2%77071' (I[éi_w) 2

The peak of D (6, ¢) is known as the directivity of an antenna. It is 1.5 in this
case. If an antenna is radiating isotropically, its directivity is 1. Therefore,
the lowest possible values for the directivity of an antenna is 1, whereas it
can be over 100 for some antennas like reflector antennas. A directive gain
pattern is a plot of the above function D(6, ¢) and it resembles the radiation
power pattern.

If the total power fed into the antenna instead of the total radiated power
is used in the denominator of (16), the ratio is known as the power gain or
just bf gain. The total power fed into the antenna is not equal to the total
radiated power because there could be some loss in the antenna system like
metallic loss.

Defining a radiation resistance R, by P = %I2R,., we have

2P A%
R, = Tz =M (g) , where ng = 3774). (18)
T

For example, for a Hertzian dipole with [ = 0.1\, R, ~ 8(2. For a small dipole
with no charge reservoir at the two ends, the currents have to vanish at the
tip of the dipole.

o—r
@

N\
7

—-al2 2

The effective length of the dipole is half of its actual length due to the
manner the currents are distributed. For example, for a half-wave dipole,
a = 3, and if we use lgg = 4 in (18), we have

R, ~ 509). (19)

However, a half-wave dipole is not much smaller than a wavelength and does
not qualify to be a Hertzian dipole. Furthermore, the current distribution
on the half-wave dipole is not triangular in shape as above. A more precise
calculation shows that R, = 732 for a half~-wave dipole.
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27. Radiation Field Approximations

The vector potential due to a source J(r), can be calculated from the

equation
dr' e IBIr—r| 1
/// 47 |r — r’| ’ (1)

where V is the volume occupled by J(r).

A Z )

\/

0 >y
)

/r\

P'e

When |r| > |r'|, then |[r —r'| = r — ' - 7. Equation (1) becomes

A(r) = /// dr'iu'](rl) e ~IPr QiPr T
r—r-r

v
—3pr ,
B /// dr' I (r')edPr "
4drr
v
. f(0 A N

_ P00 gy ga, A, 2)

r

In the above we have assumed that |¢' - 7| < r but Sr’- 7 is not small, since (3

can be large. When fr is large, ﬁ is a slowly varying function compared

£(6,¢) ,¢)

to e7%". Hence, we can regard almost to be a constant compared to

e 77", The magnetic field can be derived to be

0 ~ 0
-1 A~—— Ay — b= Ayl .
NVX 987‘ & d)ar 0 (3)

However, % ~ —jB3 when (r is large. Hence,

H = ]5(9A¢ — $Ay), when Sr — oo. (4)



Similarly,
E= —V xH= —]u)[@Ag + ¢A¢] (5)

Jwe

Linear Array of Dipole Antennas

If J(r') is of the form

J(I‘I) = 2Il[A05(.T,) + A15(x' - dl) + A25(x' - dg)
+ oo Ano1d(2" — dy-1)]0(y)d (=), (6)

dn—s Oy dna

the vector potential on the xy-plane can be derived to be

A.( A/“LIlej,Br /// dr AO +A1(5(.’L’I . dl) + _._]5(yl)5(zl)e+jﬂr’.f

Il , .
Y R [Ag + AgetiPhieosd o 4, piBdacost oy A cifdN-rcosd]
4rr (7)

If d, = nd, and A, = e’™¥, then (7) becomes

A(r) = YL [1 4 ef(Bdeos i) | p2i(pdcosdv) | ... | (i(N-1)(Bdcos+v)]

4mr
(8)
which is of the form
pl 1—aV
"= . 9
x 1% (9)
n=0
Therefore,
Il 1= JN(Bd cos ¢p+)
Ar) = s B gmipr 2 =& . (10)
4rr 1 — ei(Bdcos¢+v)

The electric field on the zy-plane is Fy = —jwAy = +jwA,. Hence, |Ep| is of
the form

1— e]N(,BdCOS(t)—HZJ)
8 = 1Bl [ =y |
sin & (Bd cos ¢ + 1)
= |Ep| (11)

sin $(Bdcos¢ + ) |

2



|sin Nz|

. Plots of |sin 3z| and |sin 2| are shown as

Equation (11) is of the form
an example.

|sin x|

> X
X
In equation (11), A = £(Bd cos ¢ + ). We notice that the maximum in
(11) would occur if A = nm, or if
Bdcos ¢ + ¢ = 2nm, n=0,+1,+2,+3,---. (12)
The zeros or nulls will occur at Nx = nm, or
2nm
Bdcosg+4 =",  n=:+,x2,%3,--, n#mN. (13)

For example,

Case I. ¢ = 0, 8d = m, principal maximum is at ¢ = +7 if N =5, nulls
are at ¢ = +cos™! (), or ¢ = +66.4°, +36.9°, £113.6°, +-143.1°.

> x broadside
array

Case II. ¢ = m,(3d = m, principal maximum is at ¢ = 0,7, if N = 4,
nulls are at ¢ = +cos™ ! (2 — 1), or ¢ = £120°,+90°, £60°.

3



P X

-120° -90" -60°

The interference effects between the different antenna elements of a linear
array focus the power in a given direction. We can use linear array to increase
the directivity of antennas.

Note that equation (7) can also be derived by other means. We know
that the vector potential due to one dipole is

Il e—3BIr—r’|
A= 2”—7, (14)
A7 |r — 1/
when the dipole is located at r' and pointing in the Z-direction. Hence
for an array of dipoles of different phases and amplitudes, located at x =

2dy, &dy, Tds, - - - ,dN_1, the vector potential by linear superposition is
Il [e 3BIr—ado] ¢ IBlr—id| o iBlr—adn_1|
A(r) =2— ~ Ay + ~ A4+ ————  An
() 4 | |r — 2dy| 0 v — 2d,| ! Ir — 2dn_1] N-1
(15)

If we approximate |r — &d,| by r — 7 - #dy = r — dy cos ¢, in the phase, and
by r in the denominator, then (15) becomes

1 . . :
A(r) = 250 97 [Ag - Ayt e000 4 g iddicosd
™r

4+ AN_lej’Bdel COS¢>] , (16)

which is the same as equation (7). The interference between the terms in
(16) can be used to generate different radiation patterns for different com-
munication applications.



Let ¢ =a + jb, and h = f + jg, then
cth=(a+f)+jb+g), (4)

and
c—h=(a—f)+jl~-g), (5)

Multiplication and Division

ch = (a+ jb)(f + jg) = (af —bg) + j(bf + ag), (6)
c_a+jb_(a+b)(f—jg) af+bg  bf—ag (7)

hftig (f+iof-ig) P+e TPte

Multiplication and division are more conveniently carried out in a polar form.
Let

c=|c|e’®, h=|h|e?, (8)
then
ch = el [B] /9744, )
¢ ] j(d1—o2)
— = . 10
TN (10)

Square Root of a Complex Number

It is most convenient to take the square root of a complex number in
polar form or by converting it to polar form.

c=|c| e/t = Va? + b2ed tan! %, (11)

Ve = e e = (a® + b?)Feitta e (12)
In fact L
1 . —15b
cF:|c|5t2]71:(a2+b2)2me]mtan 'a. (13)

Phasor Representation of a Time-Harmonic Scalar



If V(¢) is a time-harmonic signal such that

V(t) = V, cos(wt + @), (14)
it could also be written as

V(t) = Re{Vel?e?“'}. (15)

The term V = Vye/? is known as the phasor representation of V(t).
If U(t) = Uy cos(wt + ¢1), or the phasor representation of U(t) is

U = Upe?®. (16)
It can be shown easily that

Vit)+U(t) = %e{w—k Upe®1]ed“'}. (17)

U

Hence V + U is a phasor representation of V(t)+U(t).
Also oV (1) 5
t o o
I S Jé jwty ; Jjé ,jwt
Y Bt%e{%e '} = Re{jw beﬁ e} (18)
%

Therefore jwV is a phasor representation of %V(t). However, as a word of

caution, VU is not a phasor representation of V(¢)U(t). You can convince
yourself of this.

Exercise

1) Show that,
(a) ¢+ c* is always real,
(b) ¢ — ¢* is always imaginary,
(c) ¢/c* has magnitude equal to 1.

2) Consider 22 = 1+ 2j. It is a second order polynomial with two roots.
Find the two roots.

3) Obtain the phasor representation of the following
(a) V(t) = 10cos(wt + %),
(b) I(t) = —8sin(wt + ),

(c) A(t) = 3sinwt — 2 coswt,

(d) C(t) = 3cos(wt + ) + 4sin(wt + 7).

4) Obtain C(t) in terms of w from the following phasors:
(a) c=1+7,



(b) ¢ = 4exp(50.8),
(c) c=3e’% + 4¢708,
(d) ¢=jsin3z.
5) (a) Using binomial theorem, show that

Ml-l-ja:i(l-l-jg), if |a| < 1.

(b) Show that

1
; N AAW] .
1+]a2i(1+])<5)2, if |a] > 1.



