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1 More on Constitutive Relations

1.1 Isotropic Frequency Dispersive Media

First let us look at the simple constitutive relation for the where
D=¢E+P (1.1)
We have a simple model where
P =¢goxoE (1.2)

where Yq is the electric susceptibility. When used in the generalized Ampere’s
law, P, the polarization density, plays an important role for the flow of the
displacement current through space. The polarization density can be due to the
presence of polar atoms or molecules that become little dipoles in the presence
of an electric field. For instance, water, which is H5O, is a polar molecule that
becomes a small dipole when an electric field is applied.

We can think of displacement current flow as capacitive coupling of polar-
ization current flow through space. Namely, for a source-free medium,

o g D __ 0B 0P

ot —EOE—FE (13)

Figure 1:

For example, for a sinusoidal oscillating field, the dipoles will flip back and forth
giving rise to flow of displacement current just as how time-harmonic electric
current can flow through a capacitor as shown in Figure 1.

This linear relationship can be generalized to that of a linear time-invariant
system, or that at any given r,

P(I‘, t) = €o0Xe (I‘, t) @ E(I‘, t) (14)

where ® here implies a convolution. In the frequency domain or the Fourier
space, the above relationship becomes

P(r,w) = eoxo(r,w)E(r,w), (1.5)
D(r,w) = eo(1 + xo(r,w))E(r,w) = ¢(r,w)E(r, w)

where e(r,w) = €o(1 + xo(r,w)) at any point r in space. There is a rich variety
of ways at which x.(w) can manifest itself.
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1.2 Anisotropic Media

For anisotropic media,

D =¢E + goXxp(w) - E
coI+X(w) - E=%(w)-E (L.7)

In the above, € is a 3 x 3 matrix also known as a tensor in electromagnetics.
The above implies that D and E do not necessary point in the same direction,
the meaning of anisotropy. A tensor is often associated with a physical notion,
whereas a matrix is not.

Previously, we have assume that yo to be frequency independent. This is
not usually the case as all materials have yo’s that are frequency dependent.
This will become clear later. Also, since €(w) is frequency dependent, we should
view it as a transfer function where the input is E, and the output D. This
implies that in the time-domain, the above relation becomes a time-convolution
relation.

Similarly for conductive media,

J =0E, (1.8)

This can be used in Maxwell’s equations in the frequency domain to yield the
definition of complex permittivity. Using the above in Ampere’s law in the
frequency domain, we have

V x H(r) = jweE(r) + cE(r) = jwi(w)E(r) (1.9)

where the complex permittivity g(w) = & — jo/w.
For anisotropic conductive media, one can have

J=5(w) E, (1.10)

Here, again, due to the tensorial nature of the conductivity &, the electric
current J and electric field E do not necessary point in the same direction.

The above assumes a local or point-wise relationship between the input and
the output of a linear system. This need not be so. In fact, the most general
linear relationship between P(r,t) and E(r,t) is

P(r,t) = / X(r—r1't—t) -E( t)dr'dt’ (1.11)

— 00

In the Fourier transform space, the above becomes

Pk,w) =xk,w) Ek,w) (1.12)
where
X(k,w) = /jo X (r,t) exp(jk - r — jwt)drdt (1.13)
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Such a medium is termed spatially dispersive as well as frequency dispersive.
In general

ek,w)=1+x(k,w) (1.14)
where
D(k,w) =gk,w) - E(k,w) (1.15)
The above can be extended to magnetic field and magnetic flux yielding
B(k,w) = fi(k,w) - H(k,w) (1.16)

for a general spatial and frequency dispersive magnetic material. In optics,
most materials are non-magnetic, and hence, u = ug, whereas it is quite easy to
make anisotropic magnetic materials in radio and microwave frequencies, such
as ferrites.

1.3 Bi-anisotropic Media

In the previous section, the electric flux D depends on the electric field E and the
magnetic flux B depends on the magnetic field H. The concept of constitutive
relation can be extended to where D and B depend on both E and H. In
general, one can write

D=¢w) - E+&w) -H (1.17)
B=((w) -E+nw)-H (1.18)

A medium where the electric flux or the magnetic flux is dependent on both E
and H is known as a bi-anisotropic medium.

1.4 Inhomogeneous Media

If any of the &, €, ¢, or [t is a function of position r, the medium is known as
an inhomogeneous medium or a heterogeneous medium. There are usually no
simple solution to problems associated with such media.

1.5 Uniaxial and Biaxial Media

Anisotropic optical materials are quite often encountered in optics. Examples
of them are the biaxial and uniaxial media. They are optical materials where
the permittivity tensor can be written as

€1 0 0
e=[0 & 0 (1.19)
0 0 £3

When e, # g5 # e3, the medium is known as a biaxial medium. But when
€1 = €9 # £3, then the medium is a uniaxial medium.
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In the biaxial medium, all the three components of the electric field feel
different permittivity constants. But in the uniaxial medium, the electric field
in the zy plane feels the same permittivity constant, but the electric field in the
z direction feels a different permittivity constant. As shall be shown, different
light polarization will propagate with different behavior through such a medium.

1.6 Nonlinear Media

In the previous cases, we have assumed that yo is independent of the field E.
The relationships between P and E can be written more generally as

P = c%,(E) (1.20)

where the relationship can appear in many different forms. For nonlinear media,
the relationship can be non-linear as indicated in the above.

2 Wave Phenomenon in the Frequency Domain

Given that we have seen the emergence of wave phenomenon in the time do-
main, it will be interesting to ask how this phenomenon presents itself for time-
harmonic field or in the frequency domain. In the frequency domain, the source-
free Maxwell’s equations are

V x E(r) = —jwuoH(r) (2.1)
V x H(r) = jweoE(r)

Taking the curl of (2.1) and then substituting (2.2) into its right-hand side, one
obtains

V x V x E(r) = —jwueV x H(r) = w? oo E(r) (2.3)
Again, using the identity that
VxVxE=V(V-E)-V-VE=V(V-E)- V’E (2.4)
and that V- E = 0 in a source-free medium, (2.3) becomes
(V? 4 w’p0g0)E(r) = 0 (2.5)

This is known as the Helmholtz wave equation or just the Helmholtz equation.

For simplicity of seeing the wave phenomenon, we let E = #F,(z), a field
pointing in the z direction, but varies only in the z direction. Evidently, V -
E(r) = 0E;(%)/0x = 0. Then (2.5) simplifies to

(;; + k?)) E.(2)=0 (2.6)
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where k% = w?upeg = w?/c2. The general solution to (2.6) is of the form
E.(2) = Eg e k07 1 Ey_eikoz (2.7)

One can convert the above back to the time domain using phasor technique, or
by using that E,(z,t) = Re[E,(z,w)e’*!], yielding

E,(z,t) = |Eoy|cos(wt — koz + ay) + |Eo—| cos(wt + koz + ) (2.8)
where we have assumed that
Eoi = |E‘0:|:|€jai (29)

The physical picture of the above expressions can be appreciated by rewriting

cos(wt F koz + ax) = cos ﬁ(cot Fz)+Foax (2.10)
co
where we have used the fact that kg = . One can see that the first term on the

right-hand side of (2.8) is a sinusoidal plane wave traveling to the right, while

the second term is a sinusoidal plane wave traveling to the left, with velocity co.
The above plane wave is uniform and a constant in the xy plane and propagating
in the z direction. Hence, it is also called a uniform plane wave in 1D.
Moreover, for a fixed ¢ or at t = 0, the sinusoidal functions are proportional
to cos(Fkoz + a4). From this, we can see that whenever koz = 2nm, n € Q
where @ is the set of integers, the functions repeat themselves. Calling this
repetition length the wavelength \g, we deduce that Ay = %7 or that

21w 2@wf
kp=—=—=—= 2.11
0 Ao Co Co ( )

One can see that because ¢y is a humongous number, A\¢ can be very large. You
can plug in the frequency of your local AM station to see how big A is.

3 Uniform Plane Waves in 3D

By repeating the previous derivation for a homogeneous lossless medium, the
vector Helmholtz equation for a source-free medium is given by

VxVXE—-w?ueE =0 (3.1
By the same derivation as before for the free-space case, one has
V2E + w?ucE =0 (3.2)

if V-E=0.
The general solution to (3.2) is hence

E = Ege Femdhvy=ikez = Foe—ikr (3.3)
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where k = 2k, + 9ky + 2k, r = Zx + gy + 22 and Eq is a constant vector. And
upon substituting (3.3) into (3.2), it is seen that

k2 + k; + k2 = wue (3.4)

This is called the dispersion relation for a plane wave.

In general, k., k,, and k. can be arbitrary and even complex numbers as
long as this relation is satisfied. To simplify the discussion, we will focus on the
case where kg, ky, and k, are all real. When this is the case, the vector function
represents a uniform plane wave propagating in the k direction. As can be seen,
when k - r = constant, it is represented by all points of r that represents a flat
plane. This flat plane represents the constant phase wave front. By increasing
the constant, we obtain different planes for progressively changing phase fronts.!

Y
A k

- K r = constant

Figure 2:

Further, since V - E = 0, we have

V-E=V-Ege Frihyike = v Epe ikr
= (_i‘]km - :l)]k’lj - éjkz) ']5)06_]41(.r
= —j(&ky + Gky + 2k.) - E =0 (3.5)

or that

k-Eg=k-E=0 (3.6)

'n the exp(jwt) time convention, this phase front is decreasing, whereas in the exp(—iwt)
time convention, this phase front is increasing.
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Thus, E is orthogonal to k for a uniform plane wave.

The above exercise shows that whenever E is a plane wave, and when the V
operator operates on such a vector function, one can do the substitution that
VvV — —jk.

Hence, in a source-free homogenous medium,
V xE=—jwuH (3.7

the above equation simplifies to

—jk x E = —jwuH (3.8)
or that
kxE
H= " (3.9)
wit

In other words, E, H and k form a right-handed system, or that E x H point in
the direction of k. Such a wave, where the electric field and magnetic field are
transverse to the direction of propagation, is called a transverse electromagnetic

(TEM) wave.
Also, from
V x H = jweE (3.10)
we get that
kxH kx(kxE
E= 27— ng) (3.11)
we w2pue
Again, using the vector identity, the above simplifies to
k(k-E)— (k-k)E k- -k
g Kk-B)-(k-E_k-kp (3.12)

w2ue w2pue

where k - E = 0 has been used. For the above equation to be consistent, it is
necessary that

k-k=Fk>+k +k=wpe (3.13)

or that k has to satisfy the dispersion relation previously derived in (3.4).
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H

Figure 3:

Figure 3 shows that k- E = 0, and that k x E points in the direction of
H as shown in (3.9). Figure 3 also shows, as k, E, and H are orthogonal to
each other. Hence, taking the magnitude of (3.9), and using that k and E are
orthogonal to each other, then

KIE| _ [2p 1
H =52 = SR - E (3.14)
I I n

where the quantity
1
=./E 3.15
U 5 (3.15)

is call the intrinsic impedance. For vacuum or free-space, it is about 377€. It
is also noted that E x H* points in the direction of the vector k. This is also
required by the Poynting’s theorem.

In the above, when k,, k,, and k. are not all real, the wave is known as an
inhomogeneous wave.?

2The term inhomogeneous plane wave is used sometimes, but it is a misnomer since there
is no more a planar wave front in this case.



