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1 Magnetostatics

The magnetostatic equations where ∂/∂t = 0 are

∇×H = J (1.1)

∇ ·B = 0 (1.2)

One way to satisfy the second equation is to let

B = ∇×A (1.3)

because

∇ · (∇×A) = 0 (1.4)

The above is zero for the same reason that a · (a × b) = 0. In this manner,
Gauss’s law is automatically satisfied.

From (1.1), we have

∇×
(
B

µ

)
= J (1.5)

Then using (1.3)

∇×
(

1

µ
∇×A

)
= J (1.6)

In a homogeneous medium, µ is a constant and hence

∇× (∇×A) = µJ (1.7)

We use the vector identity that (see handout on Some Useful Formulas)

∇× (∇×A) = ∇(∇ ·A)− (∇ · ∇)A

= ∇(∇ ·A)−∇2A (1.8)

As a result, we arrive at

∇(∇ ·A)−∇2A = µJ (1.9)

By imposing the Coulomb’s gauge that ∇ ·A = 0, which will be elaborated in
the next section, we arrive at

∇2A = −µJ (1.10)

The above is also known as the vector Poisson’s equation. In cartesian coordi-
nates, the above can be viewed as three scalar Poisson’s equations. Each of the
Poisson’s equation can be solved using the Green’s function method previously
described. Consequently, in free space

A(r) =
µ

4π

˚
V

J(r)

R
dV ′ (1.11)

where

R = |r− r′| (1.12)
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1.1 More on Coulomb’s Gauge

However, A in (1.3) is not unique because one can always define

A′ = A−∇Ψ (1.13)

Then

∇×A′ = ∇× (A−∇Ψ) = ∇×A = B (1.14)

where we have made use of that ∇ ×∇Ψ = 0. Hence, the ∇× of both A and
A′ produce the same B.

To find A uniquely, we have to define or set the divergence of A or provide
a gauge condition. One way is to set the divergence of A to be zero, namely

∇ ·A = 0 (1.15)

Then

∇ ·A′ = ∇ ·A−∇2Ψ 6= ∇ ·A (1.16)

The last non-equal sign follows if ∇2Ψ 6= 0. However, if we further stipulate
that ∇ ·A′ = ∇ ·A = 0, then −∇2Ψ = 0. This does not necessary imply that
Ψ = 0, but if we impose that condition that Ψ → 0 when r → ∞, then Ψ = 0
everywhere.1 By so doing, A and A′ are equal to each other, and we obtain
(1.10) and (1.11).

2 Boundary Conditions–1D Poisson’s Equation

Boundary conditions are embedded in the partial differential equations that the
potential or the field satisfy. Two important concepts to keep in mind are:

• Differentiation of a function with discontinuous slope will give rise to step
discontinuity.

• Differentiation of a function with step discontinuity will give rise to a Dirac
delta function.

Take for example a one dimensional Poisson’s equation that

d

dx
ε(x)

d

dx
Φ(x) = −%(x) (2.1)

where ε(x) represents material property that has the form given in Figure 1. One
can actually say a lot about Φ(x) given %(x) on the right-hand side. If %(x) has
a delta function singularity, it implies that ε(x) d

dxΦ(x) has a step discontinuity.

If %(x) is finite everywhere, then ε(x) d
dxΦ(x) must be continuous everywhere.

1It is a property of the Laplace boundary value problem that if Ψ = 0 on a closed surface
S, then Ψ = 0 everywhere inside S. Earnshaw’s theorem is useful for proving this assertion.
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Furthermore, if ε(x) d
dxΦ(x) is finite everywhere, it implies that Φ(x) must

be continuous everywhere.

Figure 1:

To see this in greater detail, we illustrate it with the following example. In
the above, %(x) represents a charge distribution given by %(x) = %sδ(x − x0).
In this case, the charge distribution is everywhere zero except at the location of
the surface charge sheet, where the charge density is infinite: it is represented
mathematically by a delta function2 in space.

To find the boundary condition of the potential Φ(x) at x0 , we integrate
(2.1) over an infinitesimal width around x0, the location of the charge sheet,
namely

ˆ x0+∆

x0−∆

dx
d

dx
ε(x)

d

dx
Φ(x) = −

ˆ x0+∆

x0−∆

dx%(x) (2.2)

2This function has been attributed to Dirac who used in pervasively, but Cauchy was aware
of such a function.
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or on the left-hand side, we get

ε(x)
d

dx
Φ(x)

∣∣∣∣x0+∆

x0−∆

∼= −%s (2.3)

whereas on the right-hand side, we pick up the contribution from the delta
function. Evaluating the left-hand side at their limits, one arrives at

lim
∆→0

ε(x+
0 )

d

dx
Φ(x+

0 )− ε(x−0 )
d

dx
Φ(x−0 ) ∼= −%s, (2.4)

In other words, the jump discontinuity is in ε(x) d
dxΦ(x) and the amplitude of

the jump discontinuity is proportional to the amplitude of the delta function.
Since E = ∇Φ, or

Ex(x) = − d

dx
Φ(x), (2.5)

The above implies that

ε(x+
0 )Ex(x+

0 )− ε(x−0 )Ex(x−0 ) = %s (2.6)

or

Dx(x+
0 )−Dx(x−0 ) = %s (2.7)

where

Dx(x) = ε(x)Ex(x) (2.8)

The lesson learned from above is that boundary condition is obtained by inte-
grating the pertinent differential equation over an infinitesimal small segment.
One can also eyeball the differential equation and ascertain the terms that will
have the jump discontinuity that will yield the delta function on the right-hand
side.

3 Boundary Conditions–Maxwell’s Equations

As seen previously, boundary conditions for a field is embedded in the differential
equation that the field satisfies. Hence, boundary conditions can be derived from
the differential operator forms of Maxwell’s equations. To derive these boundary
conditions, we will take an unconventional view: namely to see what sources
can induce jump conditions on the pertinent fields. Boundary conditions are
needed at media interfaces, as well as across current or charge sheets.
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3.1 Faraday’s Law

Figure 2:

For this, we start with Faraday’s law, which implies that

∇×E = −∂B
∂t

(3.1)

One quick answer we could have is that if the right-hand side of the above
equation is everywhere finite, then there could not be any jump discontinuity
on the field E on the left hand side. To see this quickly, one can project the
tangential field component and normal field component to a local coordinate
system. In other words, one can think of t̂ and n̂ as the local x̂ and ŷ coordinates.
Then writing the curl operator in this local coordinates, one gets

∇×E =

(
x̂
∂

∂x
+ ŷ

∂

∂y

)
× (x̂Ex + ŷEy) (3.2)

= ẑ
∂

∂x
Ey − ẑ

∂

∂y
Ex (3.3)

In simplifying the above, we have used the distributive property of cross product,
and evaluating the cross product in cartesian coordinates. The cross product
produces four terms, but only two of the four terms are non-zero as shown above.

Since the right-hand side of (3.1) is finite, the above implies that ∂
∂xEy and

∂
∂yEx have to be finite. In order words, Ex is continuous in the y direction and
Ey is continuous in the x direction. Since in the local coordinate system, Ex =
Et, then Et is continuous across the boundary. The above implies that

E1t = E2t (3.4)

or

n̂×E1 = n̂×E2 (3.5)

where n̂ is the unit normal at the interface, and n̂ × E always bring out the
tangential component of a vector E (convince yourself).
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3.2 Gauss’s Law

From Gauss’s law, we have

∇ ·D = % (3.6)

where % is the volume charge density.

Figure 3:

Expressing the above in local coordinates, then

∇ ·D =
∂

∂x
Dx +

∂

∂y
Dy +

∂

∂z
Dz = % (3.7)

If there is a surface layer charge at the interface, then the volume charge density
must be infinitely large, and can be expressed in terms of a delta function, or
% = %sδ(z) in local coordinates. By looking at the above expression, the only
term that can produce a δ(z) is from ∂

∂zDz. In other words, Dz has a jump
discontinuity at z = 0; the other terms do not. Then

∂

∂z
Dz = %sδ(z) (3.8)

Integrating the above from 0−∆ to 0 + ∆, we get

Dz(z)

∣∣∣∣0+∆

0−∆

= %s (3.9)

or

Dz(0+)−Dz(0−) = %s (3.10)

where 0+ = lim∆→0 0+∆, 0− = lim∆→0 0−∆. Since Dz(0+) = D2n, Dz(0−) =
D1n, the above becomes

D2n −D1n = %s (3.11)

or that

n̂ · (D2 −D1) = %s (3.12)
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3.3 Ampere’s Law

Ampere’s law, or the generalized one, stipulates that

∇×H = J +
∂D

∂t
(3.13)

Again if the right-hand side is everywhere finite, then H is a continuous field
everywhere. However, if the right-hand side has a delta function singularity,
then this is not so. For instance, we can project the above equation onto a local
coordinates just as we did for Faraday’s law.

Figure 4:

To be general, we also include the presence of a current sheet at the interface.
A current sheet, or a surface current density becomes a delta function singularity
when expressed as a volume current density; Thus, rewriting (3.13) in a local
coordinate system, assuming that J = x̂Jsxδ(z), then

∇×H = x̂

(
∂

∂y
Hz −

∂

∂z
Hy

)
= x̂Jsxδ(z) (3.14)

The displacement current term on the right-hand side is ignored since it is
regular or finite, and will not induce a jump discontinuity on the field; hence,
we have the form of the right-hand side of the above equation. From the above,
the only term that can produce a δ(z) singularity on the left-hand side is the
− ∂

∂zHy term. Therefore, we conclude that

− ∂

∂z
Hy = Jsxδ(z) (3.15)

In other words, Hy has to have a jump discontinuity at the interface where
the current sheet resides. Or that

Hy(z = 0+)−Hy(z = 0−) = −Jsx (3.16)
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The above implies that

H2y −H1y = −Jsx (3.17)

But Hy is just the tangential component of the H field. Now if we repeat the
same exercise with J = ŷJsyδ(z), at the interface, we have

H2x −H1x = Jsy (3.18)

Now, (3.17) and (3.18) can be rewritten using a cross product as

ẑ × (ŷH2y − ŷH1y) = x̂Jsx (3.19)

ẑ × (x̂H2x − x̂H1x) = ŷJsy (3.20)

The above two equations can be combined as one to give

ẑ × (H2 −H1) = Js (3.21)

Taking ẑ = n̂ in general, we have

n̂× (H2 −H1) = Js (3.22)

3.4 Gauss’s Law for Magnetic Flux

Similarly, from Gauss’s law for magnetic flux, or that

∇ ·B = 0 (3.23)

one deduces that

n̂ · (B2 −B1) = 0 (3.24)

or that the normal magnetic fluxes are continuous at an interface.
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