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1 Quantum Coherent State of Light

We have seen that a photon number state1 of a quantum pendulum do not have
a classical correspondence as the average or expectation values of the position
and momentum of the pendulum are always zero for all time for this state.
Therefore, we have to seek a time-dependent quantum state that has the classical
equivalence of a pendulum. This is the coherent state, which is the contribution
of many researchers, most notably, George Sudarshan (1931–2018) and Roy
Glauber (born 1925) in 1963. Glauber was awarded the Nobel prize in 2005.

We like to emphasize again that the mode of an electromagnetic oscillation
is homomorphic to the oscillation of classical pendulum. Hence, we first con-
nect the oscillation of a quantum pendulum to a classical pendulum. Then we
can connect the oscillation of a quantum electromagnetic mode to the classical
electromagnetic mode and then to the quantum pendulum.

1.1 Quantum Harmonic Oscillator Revisited

To this end, we revisit the quantum harmonic oscillator or the quantum pen-
dulum with more mathematical depth. Rewriting the eigen-equation for the
photon number state for the quantum harmonic oscillator, we have

Ĥψn(x) =

[
− ~2

2m

d2

dx2
+

1

2
mω2

0x
2

]
ψn(x) = Enψn(x). (1.1)

where ψn(x) is the eigenfunction, and En is the eigenvalue. The above can be
changed into a dimensionless form first by dividing ~ω0, and then let ξ =

√
mω0

~ x
be a dimensionless variable. The above then becomes

1

2

(
− d2

dξ2
+ ξ2

)
ψ(ξ) =

E

~ω0
ψ(ξ) (1.2)

We can define π̂ = −i ddξ and ξ̂ = Îξ to rewrite the Hamiltonian as

Ĥ =
1

2
~ω0(π̂2 + ξ̂2) (1.3)

Furthermore, the Hamiltonian in (1.1) looks almost like A2−B2, and hence
motivates its factorization. To this end, it can be rewritten

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
=

1

2

(
−d2

dξ2
+ ξ2

)
− 1

2

(
d

dξ
ξ − ξ d

dξ

)
(1.4)

It can be shown easily that as operators (meaning that they will act on a function
to their right), (

d

dξ
ξ − ξ d

dξ

)
= Î (1.5)

1In quantum theory, a “state” is synonymous with a state vector or a function.
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Therefore

1

2

(
− d2

dξ2
+ ξ2

)
=

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
+

1

2
(1.6)

We define the operator

â† =
1√
2

(
− d

dξ
+ ξ

)
(1.7)

The above is the creations, or raising operator and the reason for its name is
obviated later. Moreover, we define

â =
1√
2

(
d

dξ
+ ξ

)
(1.8)

which represents the annihilation or lowering operator. With the above defini-
tions of the raising and lowering operators, it is easy to show that by straight-
forward substitution that [

â, â†
]

= Î (1.9)

Therefore, Schrödinger equation for quantum harmonic oscillator can be
rewritten more concisely as

1

2

(
â†â+ ââ†

)
ψ =

(
â†â+

1

2

)
ψ =

E

~ω0
ψ (1.10)

In mathematics, a function is analogous to a vector. So ψ is the implicit repre-
sentation of a vector. The operator(

â†â+
1

2

)
is an implicit2 representation of an operator, and in this case, a differential
operator. So the above, (1.10), is analogous to the matrix eigenvalue equation
A · x = λx.

Consequently, the Hamiltonian operator can be expressed concisely as

Ĥ = ~ω0

(
â†â+

1

2

)
(1.11)

Equation (1.10) above is in implicit math notation. In implicit Dirac notation,
it is (

â†â+
1

2

)
|ψ〉 =

E

~ω0
|ψ〉 (1.12)

2A notation like A·x, we will call implicit, while a notation
∑
i,j Aijxj , we will call explicit.
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In the above, ψ(ξ) is a function which is a vector in a functional space. It is
denoted as ψ in math notation and |ψ〉 in Dirac notation. This is also known
as the “ket”. The conjugate transpose of a vector in Dirac notation is called a
“bra” which is denoted as 〈ψ|. Hence, the inner product between two vectors is
denoted as 〈ψ1|ψ2〉 in Dirac notation.3

If we denote a photon number state by ψn(x) in explicit notation, ψn in
math notation or |ψn〉 in Dirac notation, then we have(

â†â+
1

2

)
|ψn〉 =

En
~ω0
|ψn〉 =

(
n+

1

2

)
|ψn〉 (1.13)

where we have used the fact that En = (n+ 1/2)~ω0. Therefore, by comparing
terms in the above, we have

â†â|ψn〉 = n|ψn〉 (1.14)

and the operator â†â is also known as the number operator because of the above.
It is often denoted as

n̂ = â†â (1.15)

It can be further shown by direct substitution that

â|ψn〉 =
√
n|ψn−1〉 ⇔ â|n〉 =

√
n|n− 1〉 (1.16)

â†|ψn〉 =
√
n+ 1|ψn+1〉 ⇔ â†|n〉 =

√
n+ 1|n+ 1〉 (1.17)

hence their names on lowering and raising operator.4

2 Some Words on Quantum Randomness and
Quantum Observables

We saw previously that in classical mechanics, the conjugate variables p and x
are deterministic variables. But in the quantum world, they become random
variables. It was quite easy to see that x is a random variable in the quantum
world. But the momentum p is elevated to become a differential operator p̂,
and it is not clear that it is a random variable anymore. But we found its
expectation value nevertheless in the previous lecture.

It turns out that we have to extend the concept of the average of a random
variable to taking the “average” of an operator, which is the elevated form
of a random variable. Now that we know Dirac notation, we can write the
expectation value of the operator p̂ with respect to a quantum state ψ as

〈p〉 = 〈ψ|p̂|ψ〉 (2.1)

3There is a one-to-one correspondence of Dirac notation to matrix algebra notation. A·x↔
Â|x〉, 〈x| ↔ x† 〈x1|x2〉 ↔ x†1 · x2.

4The above notation for a vector could appear cryptic or too terse to the uninitiated. To
parse it, one can always down-convert from an abstract notation to a more explicit notation.
Namely |n〉 → |ψn〉 → ψn(ξ).
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The above is the elevated way of taking the “average” of an operator. As
mentioned before, Dirac notation is homomorphic to matrix algebra notation.
The above is similar to ψ† ·P·ψ. This quantity is always real if P is a Hermitian
matrix. Hence, in (2.1), the expectation value is always real if p̂ is Hermitian.
In fact, it can be proved the it is Hermitian in the function space that it is
defined.

Operators that correspond to measurable quantities are called observables in
quantum theory, and they are replaced by operators in the quantum world. We
can take expectation values of these operators with respect to the quantum state
involved. Therefore, these observables will have a mean and standard deviation.
In the previous section, we elevated the position variable ξ to become an operator
ξ̂ = ξÎ. This operator is clearly Hermitian, and hence, the expectation value of
this position operator is always real. From the previous section, we see that the
normalized momentum operator is always Hermitian, and hence, its expectation
value is always real. The difference of these quantum observables compared to
classical variables is that the quantum observables have a mean and a standard
deviation just like a random variable.

3 Derivation of the Coherent States

As one cannot see the classical pendulum emerging from the photon number
states, one needs another way of bridging the quantum world with classical
world. This is the role of the coherent state: It will show the correspondence
principle, and that a classical pendulum does emerge from a quantum pendulum
when the energy of the pendulum is large. Hence, it will be interesting to see
how the coherent state is derived. The derivation of the coherent state is more
math than physics. Nevertheless, the derivation is interesting. We are going
to present it according to the simplest way presented in the literature. There
are deeper mathematical methods to derive this coherent state like Bogoliubov
transform which is outside the scope of this course.

Now, endowed with the needed mathematical tools, we can derive the co-
herent state. To say succinctly, the coherent state is the eigenstate of the anni-
hilation operator, namely that

â|α〉 = α|α〉 (3.1)

Here, we use α as an eigenvalue as well as an index or identifier of the state |α〉.5
Since the number state |n〉 is complete, the coherent state |α〉 can be expanded
in terms of the number state |n〉. Or that

|α〉 =

∞∑
n=0

Cn|n〉 (3.2)

5This notation is cryptic and terse, but one can always down-convert it as |α〉 → |fα〉 →
fα(ξ) to get a more explicit notation.
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When the annihilation operator is applied to the above, we have

â|α〉 =

∞∑
n=0

Cnâ|n〉 =

∞∑
n=1

Cnâ|n〉 =

∞∑
n=1

Cn
√
n|n− 1〉

=

∞∑
n=0

Cn+1

√
n+ 1|n〉 (3.3)

Equating the above with α|α〉, then

∞∑
n=0

Cn+1

√
n+ 1|n〉 = α

∞∑
n=0

Cn|n〉 (3.4)

By the orthonormality of the number states |n〉, then we can take the inner
product of the above with 〈n| and making use of the orthonormal relation that
〈n′|n〉 = δn′n to remove the summation sign. Then we arrive at

Cn+1 = αCn/
√
n+ 1 (3.5)

Or recursively

Cn = Cn−1α/
√
n = Cn−2α

2/
√
n(n− 1) = . . . = C0α

n/
√
n! (3.6)

Consequently

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 (3.7)

But due to the probabilistic interpretation of quantum mechanics, the state
vector |α〉 is normalized to one, or that6

〈α|α〉 = 1 (3.8)

Then

〈α|α〉 = C∗0C0

∞∑
n,n′

αn√
n!

αn
′

√
n′!
〈n′|n〉

= |C0|2
∞∑
n=0

|α|2n

n!
= |C0|2e|α|

2

= 1 (3.9)

Therefore, C0 = e−|α|
2/2, or that

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (3.10)

6The expression can be written more explicitly as 〈α|α〉 = 〈fα|fα〉 =
´∞
∞ dξf∗α(ξ)fα(ξ) = 1.
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In the above, to reduce the double summations into a single summation, we have
make use of 〈n′|n〉 = δn′n, or that the photon-number states are orthonormal.
Also since â is not a Hermitian operator, its eigenvalue α can be a complex
number.

Since the coherent state is a linear superposition of the photon number states,
the average number of photons can be associated with the coherent state. If the
average number of photons embedded in a coherent is N , then N = |α|2. As
shall be shown, α is related to the amplitude of the quantum oscillation. The
more photons there are, the larger is |α|.

3.1 Time Evolution of a Quantum State

The Schrodinger equation can be written concisely as

Ĥ|ψ〉 = i~∂t|ψ〉 (3.11)

The above not only entails the form of Schrodinger equation, it is the form of
the general quantum state equation. Since Ĥ is time independent, the formal
solution to the above is

|ψ(t)〉 = e−iĤt/~|ψ(0)〉 (3.12)

Applying this to the photon number state with Ĥ being that of the quantum
pendulum, then

e−iĤt/~|n〉 = e−iωnt|n〉 (3.13)

where ωn =
(
n+ 1

2

)
ω0. The above simplification follows because |n〉 an eigen-

state of the Hamiltonian Ĥ for the quantum pendulum.

3.1.1 Time Evolution of the Coherent State

Using the above time-evolution operator, then the time dependent coherent
state becomes7

|α, t〉 = e−iĤt/~|α〉 = e−|α|
2/2

∞∑
n=0

αne−iωnt

√
n!

|n〉 (3.14)

By letting ωn = ω0

(
n+ 1

2

)
, the above can be written as

|α, t〉 = e−iω0t/2e−|α|
2/2

∞∑
n=0

(
αe−iω0t

)n
√
n!

|n〉 (3.15)

= e−iω0t/2|αe−iω0t〉 = e−iω0t/2|α̃〉 (3.16)

where α̃ = αe−iω0t. Now we see that the last factor in (3.15) is similar to the
expression for a coherent state in (3.10). Therefore, we can express the above
more succinctly by replacing α in (3.10) with α̃ = αe−iω0t as

â|α, t〉 = e−iω0t/2
(
αe−iω0t

)
|αe−iω0t〉 = α̃|alpha, t〉 (3.17)

7Note that |α, t〉 is a shorthand for fα(ξ, t).
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Therefore, |α, t〉 is the eigenfunction of the â operator. But now, the eigenvalue
of the annihilation operator â is now a complex number which is a function of
time t.

4 More on the Creation and Annihilation Op-
erator

In order to connect the quantum pendulum to a classical pendulum via the
coherent state, we will introduce some new operators. Since

â† =
1√
2

(
− d

dξ
+ ξ

)
(4.1)

â =
1√
2

(
d

dξ
+ ξ

)
(4.2)

We can relate â† and â to the momentum operator π̂ and position operator ξ̂
previously defined, or that

â† =
1√
2

(
−iπ̂ + ξ̂

)
(4.3)

â =
1√
2

(
iπ̂ + ξ̂

)
(4.4)

We also notice that

ξ̂ =
1√
2

(
â† + â

)
= ξÎ (4.5)

π̂ =
i√
2

(
â† − â

)
= −i d

dξ
(4.6)

Notice that both ξ̂ and π̂ are Hermitian operators in the above, and hence, their
expectation values are real. With this, the average or expectation position of
the pendulum in normalized coordinate, ξ, can be found by taking expectation
with respect to the coherent state, or

〈α|ξ̂|α〉 =
1√
2
〈α|â† + â|α〉 (4.7)

Since by taking the complex conjugation transpose of (3.1)8

〈α|â† = 〈α|α∗ (4.8)

and (4.7) becomes

〈ξ〉 = 〈α|ξ̂|α〉 =
1√
2

(α∗ + α) 〈α|α〉 =
√

2<e[α] 6= 0 (4.9)

8Dirac notation is homomorphic with matrix algebra notation. (a · x)† = x† · (a)†.
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Repeating the exercise for time-dependent case, when we let α → α̃(t) =
αe−iω0t, then, letting α = |α|e−iψ,

〈ξ(t)〉 =
√

2|α| cos(ω0t+ ψ) (4.10)

By the same token,

〈P 〉 = 〈α|P̂ |α〉 =
i√
2

(α∗ − α) 〈α|α〉 =
√

2=m[α] 6= 0 (4.11)

For the time-dependent case, we let α→ α̃(t) = αe−iω0t,

〈P (t)〉 = −
√

2|α| sin(ω0t+ ψ) (4.12)

Hence, we see that the expectation values of the normalized coordinate and
momentum just behave like a classical pendulum. There is however a marked
difference: These values have standard deviations that are non-zero. Hence,
they have quantum fluctuation or quantum noise associated with them. Since
the quantum pendulum is homomorphic with the oscillation of a quantum elec-
tromagnetic mode, the amplitude of a quantum electromagnetic mode will have
a mean and a fluctuation as well.

Figure 1: The time evolution of the coherent state. It follows the motion of a
classical pendulum or harmonic oscillator (Courtesy of Gerry and Knight).

.
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Figure 2: The time evolution of the coherent state for different α’s. The left
figure is for α = 5 while the right figure is for α = 10. Recall that N = |α|2.

.

4.1 Connecting Quantum Pendulum to Electromagnetic
Oscillator

We see that the electromagnetic oscillator in a cavity is similar or homomorphic
to a pendulum. We have next to elevate a classical pendulum to become a
quantum pendulum. The classical Hamiltonian is

H = T + V =
p2

2m
+

1

2
mω2

0x
2 =

1

2

(
P 2(t) +Q2(t)

)
= E (4.13)

In the above, P is a normalized momentum and Q is a normalized coordinate,
and their squares have the unit of energy. We have also shown that when
the classical pendulum is lifted to be a quantum pendulum, then the quantum
Schrodinger equation is

~ωl
(
â†â+

1

2

)
|ψ, t〉 = i~∂t|ψ, t〉 (4.14)

Our next task is to connect the electromagnetic oscillator to this pendulum.
In general, the total energy or the Hamiltonian of an electromagnetic system is

H =
1

2

ˆ

V

dr

[
εE2(r, t) +

1

µ
B2(r, t)

]
. (4.15)

It is customary to write this Hamiltonian in terms of scalar and vector potentials.
For simplicity, we use a 1D cavity, and let A = x̂Ax, ∇·A = 0 so that ∂xAx = 0,
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and letting Φ = 0. Then B = ∇×A and E = −
.

A, and the classical Hamiltonian
from (4.15) for a Maxwellian system becomes

H =
1

2

ˆ

V

dr

[
ε

.

A2(r, t) +
1

µ
(∇×A(r, t))

2

]
. (4.16)

For the 1D case, the above implies that By = ∂zAx, and Ex = −∂tAx =

−
.

Ax. Hence, we let

Ax = A0(t) sin(klz) (4.17)

Ex = −
.

A0(t) sin(klz) = E0(t) sin(klz) (4.18)

By = klA0(t) cos(klz). (4.19)

where E0(t) = −
.

A0(t). After integrating over the volume such that
´
V
dr =

A
´ L
0
dz, the Hamiltonian (4.16) then becomes

H =
V0ε

4

( .

A0(t)
)2

+
V0
4µ
k2l A

2
0(t). (4.20)

where V0 = AL, is the mode volume. The form of (4.20) now has all the
elements that make it resemble the pendulum Hamiltonian. We can think of
A0(t) as being related to the displacement of the pendulum. Hence, the second
term resembles the potential energy. The first term has the time derivative
of A0(t), and hence, can be connected to the kinetic energy of the system.
Therefore, we can rewrite the Hamiltonian as

H =
1

2

[
P 2(t) +Q2(t)

]
(4.21)

where

P (t) =

√
V0ε

2

.

A0(t) = −
√
V0ε

2
E0(t), Q(t) =

√
V0
2µ
klA0(t) (4.22)

By letting

P (t)→ P̂ =
√
~ωlπ̂(t), Q(t)→ Q̂ =

√
~ωlξ̂(t) (4.23)

so that the quantum Hamiltonian now is

Ĥ =
1

2

[
P̂ 2 + Q̂2

]
=

1

2
~ωl

(
π̂2 + ξ̂2

)
(4.24)

similar to (1.3) as before except now that the resonant frequency of this mode is
ωl instead of ω0. An equation of motion for the state of the quantum system can
be associated with the quantum Hamiltonian just as in the quantum pendulum
case.
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We have shown previously that

â† + â =
√

2ξ̂ (4.25)

â† − â = −
√

2iπ̂ (4.26)

Then we can let

P̂ = −
√
V0ε

2
Ê0 =

√
~ωlπ̂ (4.27)

Finally, we arrive at

Ê0 = −
√

2~ωl
εV0

π̂ =
1

i

√
~ωl
εV0

(
â† − â

)
(4.28)

Now that E0 has been elevated to be a quantum operator Ê0, from (4.18), we
can put in the space dependence to get

Êx(z) = Ê0 sin(klz) (4.29)

Therefore,

Êx(z) =
1

i

√
~ωl
εV0

(
â† − â

)
sin(klz) (4.30)

Notice that in the above, Ê0, and Êx(z) are all Hermitian operators and they
correspond to quantum observables that have randomness associated with them.
Also, the operators are independent of time because they are in the Schrodinger
picture. The derivation in the Heisenberg picture can be repeated.

In the Schrodinger picture, to get time dependence fields, one has to take
the expectation value of the operators with respect to time-varying quantum
state vector like the time-varying coherent state.

To let Êx have any meaning, it should act on a quantum state. For example,

|ψE〉 = Êx|ψ〉 (4.31)

Notice that thus far, all the operators derived are independent of time. To
derive time dependence of these operators, one needs to find their expectation
value with respect to time-dependent state vectors.9

To illustrate this, we can take expectation value of the quantum operator
Êx(z) with respect to a time dependent state vector, like the time-dependent
coherent state, Thus

〈Ex(z, t)〉 = 〈α, t|Êx(z)|α, t〉 =
1

i

√
~ωl
εV0
〈α, t|â† − â|α, t〉

=
1

i

√
~ωl
εV0

(α̃∗(t)− α̃(t)) 〈α, t|α, t〉 = −2

√
~ωl
εV0
=m(α̃) (4.32)

9This is known as the Schrodinger picture.
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Using the time-dependent α̃(t) = αe−iωlt = |α|e−i(ωlt+ψ) in the above, we have

〈Ex(z, t)〉 = 2

√
~ωl
εV0
|α| sin(ωlt+ ψ) (4.33)

where α̃(t) = αe−iωlt. The expectation value of the operator with respect to a
time-varying quantum state in fact gives rise to a time-varying quantity.

The above, which is the average of a random field, resembles a classical
field. But since it is rooted in a random variable, it has a standard deviation in
addition to having a mean.

We can also show that

B̂y(z) = klÂ0 cos(klz) =

√
2µ~ωl
V0

ξ̂ =

√
µ~ωl
V0

(â† + â) (4.34)

Again, these are time-independent operators in the Schrodinger picture. To get
time-dependent quantities, we have to take the expectation value of the above
operator with respect to to a time-varying quantum state.
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