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1 Spectral Representations of Sources

A plane wave is an idealization that does not exist in the real world. In practice,
waves are nonplanar in nature as they are generated by finite sources, such as
antennas and scatterers. For example, a point source generates a spherical wave
which is nonplanar. Fortunately, these waves can be expanded in terms of plane
waves. Once this is done, then the study of non-plane-wave reflections from a
layered medium becomes routine. In the following, we shall show how waves
resulting from a point source can be expanded in terms of plane waves.

1.1 A Point Source

From this point onward, we will adopt the exp(−iωt) time convention to be
commensurate with the optics and physics literatures.

The spectral decomposition or the plane-wave expansion of the field due to
a point source could be derived using Fourier transform technique. First, notice
that the scalar wave equation with a point source is[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k20

]
φ(x, y, z) = −δ(x) δ(y) δ(z). (1.1)

The above equation could then be solved in the spherical coordinates, yielding
the solution

φ(r) =
eik0r

4πr
. (1.2)

Next, assuming that the Fourier transform of φ(x, y, z) exists, we can write

φ(x, y, z) =
1

(2π)3

∞˚

−∞

dkxdkydkz φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz. (1.3)

Then we substitute the above into (1.1), after exchanging the order of differen-
tiation and integration, one can convert

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= −k2x − k2y − k2z

Then, together with the Fourier representation of the delta function, which is

δ(x) δ(y) δ(z) =
1

(2π)3

∞˚

−∞

dkxdkydkz e
ikxx+ikyy+ikzz (1.4)
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we convert (1.1) into

∞˚

−∞

dkxdkydkz [k20 − k2x − k2y − k2z ]φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz (1.5)

= −
∞˚

−∞

dkxdkydkz e
ikxx+ikyy+ikzz. (1.6)

Since the above is equal for all x, y, and z, we can Fourier inverse transform the
above to get

φ̃(kx, ky, kz) =
−1

k20 − k2x − k2y − k2z
. (1.7)

Consequently, we have

φ(x, y, z) =
−1

(2π)3

∞˚

−∞

dk
eikxx+ikyy+ikzz

k20 − k2x − k2y − k2z
. (1.8)

C

Re [kz]

– k2
0 – k2

x – k2
y

⊗

Fourier Inversion Contour

Im [kz]

k2
0 – k2

x – k2
y

×

Figure 1: The integration along the real axis is equal to the integration along C
plus the residue of the pole at (k20 − k2x − k2y)1/2, by invoking Jordan’s lemma.

In the above, if we examine the kz integral first, then the integrand has poles
at kz = ±(k20 − k2x − k2y)1/2. Moreover, for real k0, and real values of kx and ky,
these two poles lie on the real axis, rendering the integral in (1.8) undefined.
However, if a small loss is assumed in k0 such that k0 = k′0 + ik′′0 , then the poles
are off the real axis (see Figure 1), and the integrals in (1.8) are well-defined.
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The reason is that φ(x, y, z) is not strictly absolutely integrable for a lossless
medium, and hence, its Fourier transform may not exist. But the introduction
of a small loss also guarantees the radiation condition and the uniqueness of the
solution to (1.1), and therefore, the equality of (1.2) and (1.8).

Observe that in (1.8), when z > 0, the integrand is exponentially small
when =m[kz] → ∞. Therefore, by Jordan’s lemma, the integration for kz over
the contour C as shown in Figure 1 vanishes. Then, by Cauchy’s theorem,
the integration over the Fourier inversion contour on the real axis is the same
as integrating over the pole singularity located at (k20 − k2x − k2y)1/2, yielding
the residue of the pole (see Figure 1). Consequently, after doing the residue
evaluation, we have

φ(x, y, z) =
i

2(2π)2

∞¨

−∞

dkxdky
eikxx+ikyy+ik

′
zz

k′z
, z > 0, (1.9)

where k′z = (k20 − k2x − k2y)1/2.
Similarly, for z < 0, we can add a contour C in the lower-half plane that

contributes to zero to the integral, one can deform the contour to pick up the
pole contribution. Hence, the integral is equal to the pole contribution at k′z =
−(k20−k2x−k2y)1/2 (see Figure 1). As such, the result for all z can be written as

φ(x, y, z) =
i

2(2π)2

∞¨

−∞

dkxdky
eikxx+ikyy+ik

′
z|z|

k′z
, all z. (1.10)

By the uniqueness of the solution to the partial differential equation (1.1)
satisfying radiation condition at infinity, we can equate (1.2) and (1.10), yielding
the identity

eik0r

r
=

i

2π

∞¨

−∞

dkxdky
eikxx+ikyy+ikz|z|

kz
, (1.11)

where k2x + k2y + k2z = k20, or kz = (k20 − k2x − k2y)1/2. The above is known as
the Weyl identity (Weyl 1919). To ensure the radiation condition, we require
that =m[kz] > 0 and <e[kz] > 0 over all values of kx and ky in the integration.
Furthermore, Equation (1.11) could be interpreted as an integral summation of
plane waves propagating in all directions, including evanescent waves. It is the
plane-wave expansion of a spherical wave.
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Figure 2: The the wave is propagating for kρ vectors inside the disk, while the
wave is evanescent for kρ outside the disk.

One can also interpret the above as a 2D surface integral in the Fourier space
over the kx and ky variables. When k2x+k2y < k20, or inside a disk of radius k0, the
waves are propagating waves. But for contributions outside this disk, the waves
are evanescent (see Figure 2). And the high Fourier (or spectral) components
of the Fourier spectrum correspond to evanescent waves. Since high spectral
components are needed to reconstruct the singularity of the Green’s function,
the evanescent waves are important for reconstructing the singularity of the
Green’s function.

y
kρ

a
φ x

ρ

Figure 3: The kρ and the ρ vector on the xy plane.

In (1.11), we can write kρ = x̂kρ cosα+ ŷkρ sinα, ρ = x̂ρ cosφ+ ŷρ sinφ (see
Figure 3), and dkxdky = kρdkρ dα. Then, kxx + kyy = kρ · ρ = kρ cos(α − φ),

5



ECE 604, Lecture 35 Wed, April 17, 2019

and we have

eik0r

r
=

i

2π

∞ˆ

0

kρdkρ

ˆ 2π

0

dα
eikρρ cos(α−φ)+ikz|z|

kz
, (1.12)

where kz = (k20 − k2x − k2y)1/2 = (k20 − k2ρ)1/2, where in cylindrical coordinates,
in the kρ-space, or the Fourier space, k2ρ = k2x + k2y. Then, using the integral
identity for Bessel functions given by1

J0(kρρ) =
1

2π

2πˆ

0

dα eikρρ cos(α−φ), (1.13)

(1.12) becomes

eik0r

r
= i

∞ˆ

0

dkρ
kρ
kz
J0(kρρ)eikz|z|. (1.14)

The above is also known as the Sommerfeld identity (Sommerfeld 1909; 1949,
p. 242). Its physical interpretation is that a spherical wave can be expanded as
an integral summation of conical waves or cylindrical waves in the ρ direction,
times a plane wave in the z direction over all wave numbers kρ. This wave is
evanescent in the ±z direction when kρ > k0.

By using the fact that J0(kρρ) = 1/2[H
(1)
0 (kρρ) +H

(2)
0 (kρρ)], and the reflec-

tion formula that H
(1)
0 (eiπx) = −H(2)

0 (x), a variation of the above identity can
be derived as

eik0r

r
=
i

2

∞ˆ

−∞

dkρ
kρ
kz
H

(1)
0 (kρρ)eikz|z|. (1.15)

–k0
•

Im [kρ]

• +k0

Sommerfeld
Integration Path

Re [kρ]

Figure 4: Sommerfeld integration path.

Since H
(1)
0 (x) has a logarithmic branch-point singularity at x = 0,2 and kz =

(k20 − k2ρ)1/2 has algebraic branch-point singularities at kρ = ±k0, the integral

1See Chew, WFIM, or Whitaker and Watson(1927).
2H

(1)
0 (x) ∼ 2i

π
ln(x), see Chew, WFIM, p. 14, or Abromawitz or Stegun.
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in Equation (1.15) is undefined unless we stipulate also the path of integration.
Hence, a path of integration adopted by Sommerfeld, which is even good for a
lossless medium, is shown in Figure 4. Because of the manner in which we have

selected the reflection formula for Hankel functions, i.e., H
(1)
0 (eiπx) = −H(2)

0 (x),
the path of integration should be above the logarithmic branch-point singularity
at the origin.

1.2 Riemann Sheets and Branch Cuts

The function kz = (k20 − k2ρ)1/2 in (1.14) and (1.15) are double-value functions
because, in taking the square root of a number, two values are possible. In
particular, kz is a double-value function of kρ. Consequently, for every point on
a complex kρ plane in Figure 4, there are two possible values of kz. Therefore,
the integral (1.10) is undefined unless we stipulate which of the two values of
kz is adopted in performing the integration.

A multivalue function is denoted on a complex plane with the help of Rie-
mann sheets. For instance, a double-value function such as kz is assigned two
Riemann sheets to a single complex plane. On one of these Riemann sheets, kz
assumes a value just opposite in sign to the value on the other Riemann sheet.
The correct sign for kz is to pick the square root solution so that =m(kz) > 0.
This will ensure a decaying wave from the source.

2 A Source on Top of a Layered Medium

It can be shown that plane waves reflecting from a layered medium can be
decomposed into TE-type plane waves, where Ez = 0, Hz 6= 0, and TM-type
plane waves, where Hz = 0, Ez 6= 0.3 One also sees how the field due to a point
source can be expanded into plane waves in Section 1.

In view of the above observations, when a point source is on top of a layered
medium, it is then best to decompose its field in terms of waves of TE-type and
TM-type. Then, the nonzero component of Ez characterizes TM waves, while
the nonzero component of Hz characterizes TE waves. Hence, given a field, its
TM and TE components can be extracted readily. Furthermore, if these TM
and TE components are expanded in terms of plane waves, their propagations
in a layered medium can be studied easily.

The problem of a vertical electric dipole on top of a half space was first
solved by Sommerfeld (1909) using Hertzian potentials, which are related to
the z components of the electromagnetic field. The work is later generalized
to layered media, as discussed in the literature. Later, Kong (1972) suggested
the use of the z components of the electromagnetic field instead of the Hertzian
potentials.

3Chew, Waves and Fields in Inhomogeneous Media; Kong, Electromagnetic Wave Theory.
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2.1 Electric Dipole Fields

The E field in a homogeneous medium due to a point current source or a
Hertzian dipole directed in the α̂ direction, J = α̂I` δ(r), is derivable via the
vector potential method or the dyadic Green’s function approach. Then, using
the dyadic Green’s function approach, or the vector/scalar potential approach,
the field due to a Hertzian dipole is given by

E(r) = iωµ

(
I +
∇∇
k2

)
· α̂I` e

ikr

4πr
, (2.1)

where I` is the current moment and k = ω
√
µε , the wave number of the homo-

geneous medium. Furthermore, from ∇×E = iωµH, the magnetic field due to
a Hertzian dipole is given by

H(r) = ∇× α̂I` e
ikr

4πr
. (2.2)

With the above fields, their TM and TE components can be extracted easily.

2.1.1 (a) Vertical Electric Dipole (VED)

Region 1

Region i

z

x

–d1

–di

Figure 5: A vertical electric dipole over a layered medium.

A vertical electric dipole shown in Figure 5 has α̂ = ẑ; hence, the TM component
of the field is characterized by

Ez =
iωµI`

4πk2

(
k2 +

∂2

∂z2

)
eikr

r
, (2.3)

and the TE component of the field is characterized by

Hz = 0, (2.4)

implying the absence of the TE field.
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Next, using the Sommerfeld identity (1.15) in the above, and after exchang-
ing the order of integration and differentiation, we have4

Ez =
−I`
8πωε

∞̂

−∞

dkρ
k3ρ
kz
H

(1)
0 (kρρ)eikz|z|, (2.5)

after noting that k2ρ + k2z = k2. Notice that now Equation (2.5) expands the z
component of the electric field in terms of cylindrical waves in the ρ direction
and a plane wave in the z direction. Since cylindrical waves actually are linear
superpositions of plane waves, because we can work backward from (1.15) to
(1.11) to see this. As such, the integrand in (2.5) in fact consists of a linear
superposition of TM-type plane waves. The above is also the primary field
generated by the source.

Consequently, for a VED on top of a stratified medium as shown, the down-
going plane wave from the point source will be reflected like TM waves with
the generalized reflection coefficient R̃TM12 . Hence, over a stratified medium, the
field in region 1 can be written as

E1z =
−I`

8πωε1

∞ˆ

−∞

dkρ
k3ρ
k1z

H
(1)
0 (kρρ)

[
eik1z|z| + R̃TM12 eik1zz+2ik1zd1

]
,

(2.6)

where k1z = (k21 − k2ρ)
1
2 , and k21 = ω2µ1ε1, the wave number in region 1.

The phase-matching condition dictates that the transverse variation of the
field in all the regions must be the same. Consequently, in the i-th region, the
solution becomes

εiEiz =
−I`
8πω

∞ˆ

−∞

dkρ
k3ρ
k1z

H
(1)
0 (kρρ)Ai

[
e−ikizz + R̃TMi,i+1e

ikizz+2ikizdi
]
.

(2.7)

Notice that Equation (2.7) is now expressed in terms of εiEiz because εiEiz
reflects and transmits like Hiy, the transverse component of the magnetic field

or TM waves.5 Therefore, R̃TMi,i+1 and Ai could be obtained using the methods
discussed in Chew, Waves and Fields in Inhomogeneous Media.

This completes the derivation of the integral representation of the electric
field everywhere in the stratified medium. These integrals are known as Som-
merfeld integrals. The case when the source is embedded in a layered medium
can be derived similarly

4By using (1.15) in (2.3), the ∂2/∂z2 operating on eikz |z| produces a Dirac delta function
singularity. Detail discussion on this can be found in the chapter on dyadic Green’s function
in Chew, Waves and Fields in Inhomogeneous Media.

5See Chew, Waves and Fields in Inhomogeneous Media, p. 46, (2.1.6) and (2.1.7)
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2.1.2 (b) Horizontal Electric Dipole (HED)

For a horizontal electric dipole pointing in the x direction, α̂ = x̂; hence, (2.1)
and (2.2) give the TM and the TE components as

Ez =
iI`

4πωε

∂2

∂z∂x

eikr

r
, (2.8)

Hz = − I`
4π

∂

∂y

eikr

r
. (2.9)

Then, with the Sommerfeld identity (1.15), we can expand the above as

Ez = ± iI`

8πωε
cosφ

∞ˆ

−∞

dkρ k
2
ρH

(1)
1 (kρρ)eikz|z| (2.10)

Hz = i
I`

8π
sinφ

∞ˆ

−∞

dkρ
k2ρ
kz
H

(1)
1 (kρρ)eikz|z|. (2.11)

Now, Equation (2.10) represents the wave expansion of the TM field, while
(2.11) represents the wave expansion of the TE field. Observe that because Ez
is odd about z = 0 in (2.10), the downgoing wave has an opposite sign from the
upgoing wave. At this point, the above are just the primary field generated by
the source.

On top of a stratified medium, the downgoing wave is reflected accordingly,
depending on its wave type. Consequently, we have

E1z =
iI`

8πωε1
cosφ

∞ˆ

−∞

dkρ k
2
ρH

(1)
1 (kρρ)

[
±eik1z|z| − R̃TM12 eik1z(z+2d1)

]
,

(2.12)

H1z =
iI`

8π
sinφ

∞ˆ

−∞

dkρ
k2ρ
k1z

H
(1)
1 (kρρ)

[
eik1z|z| + R̃TE12 e

ik1z(z+2d1)
]
.

(2.13)

Notice that the negative sign in front of R̃TM12 in (2.12) follows because the
downgoing wave in the primary field has a negative sign.

2.2 Some Remarks

Even though we have arrived at the solutions of a point source on top of a
layered medium by heuristic arguments of plane waves propagating through
layered media, they can also be derived more rigorously. For example, Equation
(2.6) can be arrived at by matching boundary conditions at every interface. The
reason why a more heuristic argument is still valid is due to the completeness
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of Fourier transforms. It is best explained by putting a source over a half space
and a scalar problem.

We can expand the scalar field in the upper region as

Φ1(x, y, z) =

∞̈

−∞

dkxdkyΦ̃1(kx, ky, z)e
ikxx+ikyy (2.14)

and the scalar field in the lower region as

Φ2(x, y, z) =

∞̈

−∞

dkxdkyΦ̃2(kx, ky, z)e
ikxx+ikyy (2.15)

If we require that the two fields be equal to each other at z = 0, then we have

∞̈

−∞

dkxdkyΦ̃1(kx, ky, z = 0)eikxx+ikyy =

∞̈

−∞

dkxdkyΦ̃2(kx, ky, z = 0)eikxx+ikyy

(2.16)

In order to remove the integral, and replace it with a simple scalar problem,
one has to impose the above equation for all x and y. Then the completeness
of Fourier transform implies that6

Φ̃1(kx, ky, z = 0) = Φ̃2(kx, ky, z = 0) (2.17)

The above equation is much simpler than that in (2.16). In other words, due
to the completeness of Fourier transform, one can match a boundary condi-
tion spectral-component by spectral-component. If the boundary condition is
matched for all spectral components, than (2.16) is also true.

6Or that we can perform a Fourier inversion on the above integrals.
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