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1 Rayleigh Scattering

Rayleigh scattering is a solution to the scattering of light by small particles.
These particles are assumed to be much smaller than wavelength of light. Then a
simple solution can be found by the method of asymptotic matching. This single
scattering solution can be used to explain a number of physical phenomena in
nature. For instance, why the sky is blue, the sunset so magnificently beautiful,
how birds and insects can navigate without the help of a compass. By the same
token, it can also be used to explain why the Vikings, as a seafarer people,
could cross the Atlantic Ocean over to Iceland without the help of a magnetic
compass.

Figure 1:

When a ray of light impinges on an object, we model the incident light
as a plane electromagnetic wave (see Figure 2). Without loss of generality,
we can assume that the electromagnetic wave is polarized in the z direction
and propagating in the x direction. We assume the particle to be a small
spherical particle with permittivity εs and radius a. Essentially, the particle
sees a constant field as the plane wave impinges on it. In other words, the
particle feels an almost electrostatic field in the incident field.
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Figure 2:

1.1 Scattering by a Small Spherical Particle

The incident field polarizes the particle making it look like an electric dipole.
Since the incident field is time harmonic, the small electric dipole will oscil-
late and radiate like a Hertzian dipole in the far field. First, we will look at
the solution in the vicinity of the scatter, namely, in the near field. Then we
will motivate the form of the solution in the far field of the scatterer. Solving
a boundary value problem by looking at the solutions in two different physi-
cal regimes, and then matching the solutions together is known as asymptotic
matching.

A Hertzian dipole can be approximated by a small current source so that

J(r) = ẑIlδ(r) (1.1)

In the above, we can let the time-harmonic current I = dq/dt = jωq

Il = jωql = jωp (1.2)

where the dipole moment p = ql. The vector potential A due to a Hertzian
dipole, after substituting (1.1), is

A(r) =
µ

4π

˚
V

dr′
J(r′)

|r− r′|
e−jβ|r−r

′|

= ẑ
µIl

4πr
e−jβr (1.3)
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1.1.1 Near Field

From prior knowledge, we know that the electric field is given by E = −jωA−
∇Φ. From a dimensional analysis, the scalar potential term dominates over the
vector potential term in the near field of the scatterer. Hence, we need to derive
the corresponding scalar potential.

The scalar potential Φ(r) is obtained from the Lorenz gauge that ∇ ·A =
−jωµεΦ. Therefore,

Φ(r) =
−1

jωµε
∇ ·A = − Il

jωε4π

∂

∂z

1

r
e−jβr (1.4)

When we are close to the dipole, by assuming that βr � 1, we can use a
quasi-static approximation about the potential.1 Then

∂

∂z

1

r
e−jβr ≈ ∂

∂z

1

r
=
∂r

∂z

∂

∂r

1

r
= −z

r

1

r2
(1.5)

or after using that z/r = cos θ,

Φ(r) ≈ ql

4πεr2
cos θ (1.6)

This dipole induced in the small particle is formed in response to the incident
field. The incident field can be approximated by a constant local static electric
field,

Einc = ẑEi (1.7)

The corresponding electrostatic potential for the incident field is then

Φinc = −zEi (1.8)

so that Einc ≈ −∇Φinc = ẑEi, as ω → 0. The scattered dipole potential from
the spherical particle in the vicinity of it is given by

Φsca = Es
a3

r2
cos θ (1.9)

The electrostatic boundary value problem (BVP) has been previously solved
and2

Es =
εs − ε
εs + 2ε

Ei (1.10)

Using (1.10) in (1.9), and comparing with(1.6), one can see that the dipole
moment induced by the incident field is that

p = ql = 4πε
εs − ε
εs + 2ε

a3Ei (1.11)

1This is the same as ignoring retardation effect.
2It was one of the homework problems.
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1.1.2 Far Field

In the far field of the Hertzian dipole, we can start with

E = −jωA−∇Φ = −jωA− 1

jωµε
∇∇ ·A (1.12)

But when we are in the far field, A behaves like a spherical wave which in turn
behaves like a local plane wave if one goes far enough. Therefore, ∇ → −jβ =
−jβr̂. Using this approximation in (1.12), we arrive at

E = −jω
(
A− ββ

β2
·A
)

= −jω(A− r̂r̂ ·A) = −jω(θ̂Aθ + φ̂Aφ) (1.13)

where we have used r̂ = β/β.

1.2 Scattering Cross Section

From (1.3), we see that Aφ = 0 while

Aθ = −jωµql
4πr

e−jβr sin θ (1.14)

Consequently, using (1.11) for ql, we have in the far field that3

Eθ ∼= −jωAθ = −ω
2µql

4πr
e−jβr sin θ = −ω2µε

(
εs − ε
εs + 2ε

)
a3

r
Eie
−jβr sin θ

(1.15)

Hφ
∼=
√
ε

µ
Eθ =

1

η
Eθ (1.16)

where η =
√
µ/ε. The time-averaged Poynting vector is given by 〈S〉 =

1/2<e {E×H∗}. Therefore, the total scattered power is

Ps =
1

2

ˆ π

0

r2 sin θdθ

ˆ 2π

0

dφEθH
∗
φ (1.17)

=
1

2η
β4

(
εs − ε
εs + 2ε

)2
a6

r2
|Ei|2r2

(ˆ π

0

sin3 θdθ

)
2π (1.18)

But ˆ π

0

sin3 θdθ = −
ˆ π

0

sin2 θd cos θ = −
ˆ π

0

(1− cos2 θ)d cos θ

= −
ˆ −1
1

(1− x2)dx =
4

3
(1.19)

3The ω2 dependence of the following function implies that the radiated electric field in the
far zone is proportional to the acceleration of the charges on the dipole.
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Therefore

Ps =
4π

3η

(
εs − ε
εs + 2εs

)2

β4a6|Ei|2 (1.20)

The scattering cross section is the effective area of a scatterer such that the
total scattered power is proportional to the incident power density times the
scattering cross section. As such it is defined as

Σs =
Ps

1
2η |Ei|2

=
8πa2

3

(
εs − ε
εs + 2ε

)2

(βa)4 (1.21)

In other words,
Ps = 〈Sinc〉 × Σs

It is seen that the scattering cross section grows as the fourth power of
frequency since β = ω/c. The radiated field grows as the second power because
it is proportional to the acceleration of the charges on the particle. The higher
the frequency, the more the scattered power. this mechanism can be used to
explain why the sky is blue. It also can be used to explain why sunset has a
brilliant hue of red and orange. The above also explain the brilliant glitter of
gold plasmonic nano-particles as discovered by ancient Roman artisans. For
gold, the medium resembles a plasma, and hence, we can have εs < 0, and the
denominator can be very small.

Furthermore, since the far field scattered power density of this particle is

〈S〉 =
1

2η
EθH

∗
φ ∼ sin2 θ (1.22)

the scattering pattern of this small particle is not isotropic. In other words,
these dipoles radiate predominantly in the broadside direction but not in their
end-fire directions. Therefore, insects and sailors can use this to figure out where
the sun is even in a cloudy day. In fact, it is like a rainbow: If the sun is rising
or setting in the horizon, there will be a bow across the sky where the scattered
field is predominantly linearly polarized.4 Such a “sunstone” is shown in Figure
3.

4You can go through a Gedanken experiment to convince yourself of such.
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Figure 3: Courtesy of Wikipedia.

1.3 Small Conductive Particle

The above analysis is for a small dielectric particle. The quasi-static analysis
may not be valid for when the conductivity of the particle becomes very large.
For instance, for a perfect electric conductor immersed in a time varying elec-
tromagnetic field, the magnetic field in the long wavelength limit induces eddy
current in PEC sphere. Hence, in addition to an electric dipole component, a
PEC sphere has a magnetic dipole component. The scattered field due to a tiny
PEC sphere is a linear superposition of an electric and magnetic dipole compo-
nents. These two dipolar components have electric fields that cancel precisely
at certain observation angle. This gives rise to deep null in the bi-static radar
scattering cross-section (RCS)5 of a PEC sphere as illustrated in Figure 4.

5Scattering cross section in microwave range is called an RCS due to its prevalent use in
radar technology.
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Figure 4: RCS (radar scattering cross section) of a small PEC scatterer (courtesy
of Sheng et al.).

2 Mie Scattering

When the size of the dipole becomes larger, quasi-static approximation is in-
sufficient to approximate the solution. Then one has to solve the boundary
value problem in its full glory usually called the full-wave theory or Mie theory.
With this theory, the scattering cross section does not grow indefinitely with
frequency. For a sphere of radius a, the scattering cross section becomes πa2 in
the high-frequency limit. This physical feature of this plot is shown in Figure
5, and it also explains why the sky is not purple.
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Figure 5:

2.1 Optical Theorem

Before we discuss Mie scattering solutions, let us discuss an amazing theorem
called the optical theorem. This theorem says that the scattering cross section of
a scatterer depends only on the forward scattering power density of the scatterer.
In other words, if a plane wave is incident on a scatterer, the scatterer will
scatter the incident power in all directions. But the total power scattered by
the object is only dependent on the forward scattering power density of the
object or scatterer. This amazing theorem is called the optical theorem, and
the proof of this is given in J.D. Jackson’s book.

The scattering pattern of a scatterer for increasing frequency is shown in
Figure 6. For Rayleigh scattering where the wavelength is long, the scattered
power is distributed isotropically save for the doughnut shape of the radiation
pattern, namely, the sin2(θ) dependence. As the frequency increases, the power
is scattered increasingly in the forward direction. The reason being that for very
short wavelength, the scatterer looks like a disc to the incident wave, casting a
shadow in the forward direction. Hence, there has to be scattered field in the
forward direction to cancel the incident wave to cast this shadow.

In a nutshell, the scattering theorem is intuitively obvious for high-frequency
scattering. The amazing part about this theorem is that it is true for all fre-
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quencies.

Figure 6:

2.2 Mie Scattering by Spherical Harmonic Expansions

As mentioned before, as the wavelength becomes shorter, we need to solve the
boundary value problem in its full glory without making any approximations.
This can be done by using separation of variables and spherical harmonic ex-
pansions that will be discussed in the section.

The Mie scattering solution by a sph ere is beyond the scope of this course.6

This problem have to solved by the separation of variables in spherical coor-
dinates. The separation of variables in spherical coordinates is not the only
useful for Mie scattering, it is also useful for analyzing spherical cavity. So
we will present the precursor knowledge so that you can read further into Mie
scattering theory if you need to in the future.

2.3 Separation of Variables in Spherical Coordinates

To this end, we look at the scalar wave equation (∇2 +β2)Ψ(r) = 0 in spherical
coordinates. A lookup table can be used to evaluate ∇ · ∇, or divergence of a
gradient in spherical coordinates. Hence, the Helmholtz wave equation becomes7(

1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

r2 sin2 θ

∂2

∂φ2
+ β2

)
Ψ(r) = 0 (2.1)

Noting the ∂2/∂φ2 derivative, by using separation of variables technique, we
assume Ψ(r) to be

Ψ(r) = F (r, θ)ejmφ (2.2)

where ∂2

∂φ2 e
jmφ = −m2ejmφ. Then (2.1) becomes(

1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
− m2

r2 sin2 θ
+ β2

)
F (r, θ) = 0 (2.3)

6But it is treated in J.A. Kong’s book and Chapter 3 of W.C. Chew, Waves and Fields in
Inhomogeneous Media.

7By quirk of mathematics, it turns out that the first term on the right-hand side below
can be simplified by observing that 1

r2
∂
∂r

r2 = 1
r

∂
∂r

r.
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Again, by using the separation of variables, and letting further that

F (r, θ) = bn(βr)Pmn (cos θ) (2.4)

where we require that{
1

sin θ

d

dθ
sin θ

d

dθ
+

[
n(n+ 1)− m2

sin2 θ

]}
Pmn (cos θ) = 0 (2.5)

when Pmn (cos θ) is the associate Legendre polynomial. Note that (2.5) is an
eigenvalue problem, and |m| ≤ |n|.

Consequently, bn(kr) satisfies[
1

r2
d

dr
r2
d

dr
− n(n+ 1)

r2
+ β2

]
bn(βr) = 0 (2.6)

The above is the spherical Bessel equation where bn(βr) is either the spherical
Bessel function jn(βr), spherical Neumann function nn(βr), or the sphereical

Hankel functions, h
(1)
n (βr) and h

(2)
n (βr). The spherical functions are related to

the cylindrical functions via8

bn(βr) =

√
π

2βr
Bn+ 1

2
(βr) (2.7)

It is customary to define the spherical harmonic as

Ynm(θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cos θ)ejmφ (2.8)

The above is normalized such that9

Yn,−m(θ, φ) = (−1)mY ∗nm(θ, φ) (2.9)

and that

ˆ 2π

0

dφ

ˆ π

0

sin θdθY ∗n′m′(θ, φ)Ynm(θ, φ) = δn′nδm′m (2.10)

These functions are also complete10 if like Fourier series, so that

∞∑
n=0

n∑
m=−n

Y ∗nm(θ′, φ′)Ynm(θ, φ) = δ(φ− φ
′
)δ(cos θ − cos θ

′
) (2.11)

8By a quirk of nature, the spherical Bessel functions needed for 3D wave equations are in
fact simpler than cylindrical Bessel functions needed for 2D wave equation. One can say that
3D is real, but 2D is surreal.

9See J.D. Jackson, for instance.
10In a nutshell, a set of basis functions is complete in a subspace if any function in the same

subspace can be expanded as a sum of these basis functions.
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