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1 Equivalence Theorem or Equivalence Princi-
ple

Another theorem that is closely related to uniqueness theorem is the equivalence
theorem or equivalence principle. We can consider two cases: (1) The inside out
case. (2) The outside in case.

1.1 Inside-Out Case

Figure 1:

In this case, we let J and M be the radiating sources inside a surface S radi-
ating into a region V . They produce E and H everywhere. We can construct
an equivalence problem by first constructing an imaginary surface S. Then
impressed surface current sources are placed on this surface. They are

Js = n̂×H, Ms = E× n̂ (1.1)

Furthermore, the equivalence theorem says that these sources will produce
the same E and H fields in region V or outside S. In order to ensure that n̂×H
on S in (a) in Figure 2 is the same as n̂×H on S in (b) in the same figure, it
is necessary that H = 0 inside S. If H = 0, then E = 0 for consistency with
Maxwell’s equations. Similarly, in this case, E × n̂ on S in (a) is the same as
E× n̂ on S in (b). As a consequence, n̂×H and E× n̂ on S in both cases are
the same.

By the uniqueness theorem, only the equality of one of them E× n̂, or n̂×H
ons S, will guarantee that E and H outside S are the same in both cases.
Also, both the fields inside and outside the surface S are Maxwellian, implying
that they are solutions to Maxwell’s equations. The fact that these equivalent
currents generate zero fields inside S is known as the extinction theorem.
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1.2 Outside-in Case

Figure 2:

Similar to before, in order to impress equivalence current Ei × n̂ and n̂ ×Hi

on S that generates the same Ei, Hi inside S, these equivalence currents have
to produce zero fields outside. Then by the uniqueness theorem, the fields Ei,
Hi inside V in both cases are the same. Again, by the extinction theorem, the
fields produced by Ei × n̂ and n̂×Hi are zero outside S.

From these two cases, we can create a rich variety of equivalence problems.
By linear superposition of the inside-out problem, and the outside-in problem,
then a third equivalence problem is shown in Figure 3:

Figure 3:

1.3 Electric Current on a PEC

From reciprocity theorem, it is quite easy to proof that an impressed current on
the PEC cannot radiate. Using a Gedanken experiment, since the fields inside
S is zero, one can insert an PEC object inside S without disturbing the fields E
and H outside. As the PEC object grows to snugly fit the surface S, then the
electric current Js = n̂×H does not radiate by reciprocity. Only one of the two
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currents is radiating, namely, the magnetic current Ms = E × n̂ is radiating.
This is commensurate with the uniqueness theorem that only the knowledge of
E× n̂ is needed to uniquely determine the fields outside S.

Figure 4:

1.4 Magnetic Current on a PMC

Again, from reciprocity, an impressed magnetic current on a PMC cannot radi-
ate. By the same token, we can perform the Gedanken experiment by inserting
a PMC object inside S. It will not alter the fields outside S, as the fields inside
S is zero. As the PMC object grows to snugly fit the surface S, only the electric
current Js = n̂ ×H radiates, and the magnetic current Ms = E × n̂ does not
radiate. This is again commensurate with the uniqueness theorem that only the
knowledge of the n̂×H is needed to uniquely determine the fields outside S.

Figure 5:

2 Huygens’ Principle and Green’s Theorem

Huygens’ principle shows how a wave field on a surface S determines the wave
field outside the surface S. This concept was expressed by Huygens in the 1600s.
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But the mathematical expression of this idea was due to George Green1 in the
1800s. This concept can be expressed mathematically for both scalar and vector
waves. The derivation for the vector wave case is homomorphic to the scalar
wave case. But the algebra in the scalar wave case is much simpler. Therefore,
we shall first discuss the scalar wave case first, followed by the electromagnetic
vector wave case.

2.1 Scalar Waves Case

Figure 6:

For a ψ(r) that satisfies the scalar wave equation

(∇2 + k2)ψ(r) = 0, (2.1)

the corresponding scalar Green’s function g(r, r′) satisfies

(∇2 + k2) g(r, r′) = −δ(r− r′). (2.2)

Next, we multiply (2.1) by g(r, r′) and (2.2) by ψ(r). And then, we subtract
the resultant equations and integrating over a volume V as shown in Figure 6.
There are two cases to consider: when r′ is in V , or when r′ is outside V . Thus,
we have

ˆ

V

dr [g(r, r′)∇2ψ(r)− ψ(r)∇2g(r, r′)] =

{
ψ(r′), if r′ ∈ V
0, if r′ 6∈ V (2.3)

1George Green (1793-1841) was self educated and the son of a miller in Nottingham,
England.
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The right-hand side evaluates to different value depending on where r′ is due
to the sifting property of the delta function δ(r − r′). Since g∇2ψ − ψ∇2g =
∇ · (g∇ψ − ψ∇g), the left-hand side of (2.3) can be rewritten using Gauss’
divergence theorem, giving2

if r′ ∈ V , ψ(r′)
if r′ 6∈ V , 0

}
=

˛

S

dS n̂ · [g(r, r′)∇ψ(r)− ψ(r)∇g(r, r′)], (2.4)

where S is the surface bounding V . The above is the mathematical expression
that once ψ(r) and n̂ · ∇ψ(r) are known on S, then ψ(r′) away from S could be
found. This is similar to the expression of equivalence principle where n̂ ·∇ψ(r)
and ψ(r) are equivalence sources on the surface S. In acoustics, these are known
as monopole layer and double layer sources, respectively. The above is also the
mathematical expression of the extinction theorem that says if r′ is outside V ,
the left-hand side evaluates to 0.

Figure 7:

If the volume V is bounded by S and Sinf as shown in Figure 7, then
the surface integral in (2.4) should include an integral over Sinf . But when
Sinf →∞, all fields look like plane wave, and ∇ → −r̂jk on Sinf . Furthermore,
g(r− r′) ∼ O(1/r),3 when r →∞, and ψ(r) ∼ O(1/r), when r →∞, if ψ(r) is
due to a source of finite extent. Then, the integral over Sinf in (2.4) vanishes,
and (2.4) is valid for the case shown in Figure 7 as well. Here, the field outside

2The equivalence of the volume integral in (2.3) to the surface integral in (2.4) is also
known as Green’s theorem.

3The symbol “O” means “of the order.”
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S at r′ is expressible in terms of the field on S. This is similar to the inside-out
equivalence principle we have discussed previously.

Notice that in deriving (2.4), g(r, r′) has only to satisfy (2.2) for both r and
r′ in V but no boundary condition has yet been imposed on g(r, r′). Therefore,
if we further require that g(r, r′) = 0 for r ∈ S, then (2.4) becomes

ψ(r′) = −
˛

S

dS ψ(r) n̂ · ∇g(r, r′), r′ ∈ V. (2.5)

On the other hand, if require additionally that g(r, r′) satisfies (2.2) with the
boundary condition n̂ · ∇g(r, r′) = 0 for r ∈ S, then (2.4) becomes

ψ(r′) =

˛

S

dS g(r, r′) n̂ · ∇ψ(r), r′ ∈ V. (2.6)

Equations (2.4), (2.5), and (2.6) are various forms of Huygens’ principle,
or equivalence principle for scalar waves (acoustic waves) depending on the
definition of g(r, r′). Equations (2.5) and (2.6) stipulate that only ψ(r) or
n̂·∇ψ(r) need be known on the surface S in order to determine ψ(r′). The above
are analogous to the PEC and PMC equivalence principle considered previously.
(Note that in the above derivation, k2 could be a function of position as well.)

2.2 Electromagnetic Waves Case

Figure 8:
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In a source-free region, an electromagnetic wave satisfies the vector wave equa-
tion

∇×∇×E(r)− k2 E(r) = 0. (2.7)

The analogue of the scalar Green’s function for the scalar wave equation is the
dyadic Green’s function for the electromagnetic wave case. Moreover, the dyadic
Green’s function satisfies the equation4

∇×∇×G(r, r′)− k2 G(r, r′) = I δ(r− r′). (2.8)

It can be shown by direct back substitution that the dyadic Green’s function in
free space is

G(r, r′) =

(
I +
∇∇
k2

)
g(r− r′) (2.9)

The above allows us to derive the vector Green’s theorem.
Then, after post-multiplying (2.7) by G(r, r′), pre-multiplying (2.8) by E(r),

subtracting the resultant equations and integrating the difference over volume
V , considering two cases as we did for the scalar wave case, we have

if r′ ∈ V , E(r′)
if r′ 6∈ V , 0

}
=

ˆ

V

dV
[
E(r) · ∇ ×∇×G(r, r′)

−∇×∇×E(r) ·G(r, r′)
]
. (2.10)

Next, using the vector identity that5

−∇ ·
[
E(r)×∇×G(r, r′) +∇×E(r)×G(r, r′)

]
= E(r) · ∇ ×∇×G(r, r′)−∇×∇×E(r) ·G(r, r′), (2.11)

Equation (2.10), with the help of Gauss’ divergence theorem, can be written as

if r′ ∈ V , E(r′)
if r′ 6∈ V , 0

}
= −

˛

S

dS n̂ ·
[
E(r)×∇×G(r, r′) +∇×E(r)×G(r, r′)

]
= −

˛

S

dS
[
n̂×E(r) · ∇ ×G(r, r′) + iωµ n̂×H(r) ·G(r, r′)

]
. (2.12)

The above is just the vector analogue of (2.4). Since E× n̂ and n̂×H are as-
sociated with surface magnetic current and surface electric current, respectively,

4A dyad is an outer product between two vectors, and it behaves like a tensor, except that
a tensor is more general than a dyad. A purist will call the above a tensor Green’s function,
as the above is not a dyad in its strictest definition.

5This identity can be established by using the identity ∇· (A×B) = B ·∇×A−A ·∇×B.
We will have to let (2.11) act on a constant vector to convert the dyad into a vector before we
can apply this identity. The equality of the volume integral in (2.10) to the surface integral
in (2.12) is also known as vector Green’s theorem.

8



ECE 604, Lecture 31 Fri, April 5, 2019

the above can be thought of having these equivalent surface currents radiating
via the dyadic Green’s function. Again, notice that (2.12) is derived via the use
of (2.8), but no boundary condition has yet been imposed on G(r, r′) on S even
though we have given a closed form solution for the free-space case.

Now, if we require the addition boundary condition that n̂×G(r, r′) = 0 for
r ∈ S. This corresponds to a point source radiating in the presence of a PEC
surface. Then (2.12) becomes

E(r′) = −
˛

S

dS n̂×E(r) · ∇ ×G(r, r′), r′ ∈ V (2.13)

for it could be shown that n̂×H ·G = H · n̂×G implying that the second term
in (2.12) is zero. On the other hand, if we require that n̂×∇×G(r, r′) = 0 for
r ∈ S, then (2.12) becomes

E(r′) = −iωµ
˛

S

dS n̂×H(r) ·G(r, r′), r′ ∈ V (2.14)

Equations (2.13) and (2.14) state that E(r′) is determined if either n̂ × E(r)
or n̂ ×H(r) is specified on S. This is in agreement with the uniqueness theo-
rem. These are the mathematical expressions of the PEC and PMC equivalence
problems we have considered in the previous sections.

The dyadic Green’s functions in (2.13) and (2.14) are for a closed cavity
since boundary conditions are imposed on S for them. But the dyadic Green’s
function for an unbounded, homogeneous medium, given in (2.10) can be written
as

G(r, r′) =
1

k2
[∇×∇× I g(r− r′)− I δ(r− r′)], (2.15)

∇×G(r, r′) = ∇× I g(r− r′). (2.16)

Then, (2.12), for r′ ∈ V and r′ 6= r, becomes

E(r′) = −∇′×
˛

S

dS g(r− r′) n̂×E(r) +
1

iωε
∇′×∇′×

˛

S

dS g(r− r′) n̂×H(r).

(2.17)

The above can be applied to the geometry in Figure 7 where r′ is enclosed in
S and Sinf . However, the integral over Sinf vanishes by virtue of the radiation
condition as for (2.4). Then, (2.17) relates the field outside S at r′ in terms of
only the field on S. This is similar to the inside-out problem in the equivalence
theorem. It is also related to the fact that if the radiation condition is satisfied,
then the field outside of the source region is uniquely satisfied. Hence, this is
also related to the uniqueness theorem.
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