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1 Reciprocity Theorem

Figure 1:

Reciprocity theorem is like “tit-for-tat” relationship in humans: good-will is
reciprocated with good will while ill-will is reciprocated with ill-will. Not ex-
actly as in electromagnetics, this relationship can be expressed precisely and
succinctly using mathematics. We shall see how this is done.

Consider a general anisotropic inhomogeneous medium where both µ(r) and
ε(r) are described by permeability tensor and permittivity tensor over a finite
part of space as shown in Figure 1. This representation of the medium is quite
general, and it can include conductive media as well. It can represent complex
terrain as well as complicated electronic circuit structures in circuit boards or
microchips, and complicated antenna structures.

When only J1 and M1 are turned on, they generate fields E1 and H1 in this
medium. On the other hand, when only J2 and M2 are turned on, they generate
E2 and H2 in this medium. Therefore, the pertinent equations for these two
cases are2

∇×E1 = −jωµ ·H1 −M1 (1.1)

∇×H1 = jωε ·E1 + J1 (1.2)

∇×E2 = −jωµ ·H2 −M2 (1.3)

∇×H2 = jωε ·E2 + J2 (1.4)

From the above, we can show that

H2 · ∇ ×E1 = −jωH2 · µ ·H1 −H2 ·M1 (1.5)

E1 · ∇ ×H2 = jωE1 · ε ·E2 + E1 · J2 (1.6)

2The current sources are impressed currents so that they are immutable, and not changed
by the environment they are immersed in.
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Then,

∇ · (E1 ×H2) = H2 · ∇ ×E1 −E1 · ∇ ·H2

= −jωH2 · µ ·H1 − jωE1 · ε ·E2 −H2 ·M1 −E1 · J2 (1.7)

By the same token,

∇ · (E2 ×H1) = −jωH1 · µ ·H2 − jωE2 · ε ·E1 −H1 ·M2 −E2 · J1 (1.8)

If one assumes that

µ = µt, ε = εt (1.9)

or when the tensors are symmetric, then H1 ·µ ·H2 = H2 ·µ ·H1 and E1 ·ε ·E2

= E2 · ε ·E1.3

Upon subtracting (1.7) and (1.8), one gets

∇ · (E1 ×H2 −E2 ×H1) = −H2 ·M1 −E1 · J2 + H1 ·M2 + E2 · J1 (1.10)

Figure 2:

3It is to be noted that in matrix algebra, the dot product between two vectors are often
written as at · b, but in the physics literature, the transpose on a is implied. Therefore, the
dot product between two vectors is just written as a · b.
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Figure 3:

Now, integrating (1.10) over a volume V bounded by a surface S, and in-
voking Gauss’ divergence theorem, we have the reciprocity theorem that‹

S

dS · (E1 ×H2 −E2 ×H1)

= −
˚

V

dV [H2 ·M1 + E1 · J2 −H1 ·M2 −E2 · J1] (1.11)

When the volume V contains no sources (see Figure 2), the reciprocity theorem
reduces to ‹

S

dS · (E1 ×H2 −E2 ×H1) = 0 (1.12)

The above is also called Lorentz reciprocity theorem by some authors.4

Next, when the surface S contains all the sources (see Figure 3), then the
right-hand side of (1.11) will not be zero. On the other hand, when the sur-
face S → ∞, E1 and H2 becomes spherical waves sharing the same β vector.
Moreover ωµ0H2 = β ×E2, ωµ0H1 = β ×E1, then

E1 ×H2 ∼ E1 × (β ×E2) = E1(β ·E2)− β(E1 ·E2) (1.13)

E2 ×H1 ∼ E2 × (β ×E1) = E2(β ·E1)− β(E2 ·E1) (1.14)

But β ·E2 = β ·E1 = 0 in the far field because the spherical waves emanated by
the sources resemble a plane wave, and the β vectors are parallel to each other.
Therefore, the two terms on the left-hand side of (1.11) cancel each other, and
it vanishes when S → ∞. Furthermore, they cancel each other so that the
remnant field vanishes faster than 1/r2. This is necessary as the surface area S
is growing larger and proportional to r2.

As a result, (1.11) can be rewritten simply asˆ
V

dV [E2 · J1 −H2 ·M1] =

ˆ
V

dV [E1 · J2 −H1 ·M2] (1.15)

4Harrington, Time-Harmonic Electric Field.
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The inner product symbol is often used to rewrite the above as

〈E2,J1〉 − 〈H2,M1〉 = 〈E1,J2〉 − 〈H1,M2〉 (1.16)

where the inner product 〈A,B〉 =
´
V
dVA(r) ·B(r).

The above inner product is also called reaction, a concept introduced by
Rumsey. The above is rewritten as

〈2, 1〉 = 〈1, 2〉 (1.17)

where

〈2, 1〉 = 〈E2,J1〉 − 〈H2,M1〉 (1.18)

The concept of inner product or reaction can be thought of as a kind of “mea-
surement”. The reciprocity theorem can be stated as that the fields generated
by sources 2 as “measured” by sources 1 is equal to fields generated by sources
1 as “measured” by sources 2. This measurement concept is more lucid if we
think of these sources as Hertzian dipoles.

1.1 Conditions for Reciprocity

It is seen that the above proof hinges on (1.9). In other words, the anisotropic
medium has to be described by symmetric tensors. This include conductive
media, but not gyrotropic media. A ferrite biased by a magnetic field is often
used in electronic circuits, and it corresponds to a gyrotropic medium. Also,
our starting equations (1.1) to (1.4) assume that the medium and the equations
are linear time invariant so that Maxwell’s equations can be written down in
the frequency domain easily.

1.2 Application to a Two-Port Network

Figure 4:

The reciprocity theorem can be used to distill and condense the interaction
between two antennas over a complex terrain as long as the terrain comprises
reciprocal media. In Figure 4, we assume that antenna 1 is driven by current
J1 while antenna 2 is driven by current J2. Since the system is linear time
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invariant, it can be written as the interaction between two ports as in circuit
theory as shown in Figure 5. Assuming that these two ports are small compared
to wavelengths, then we can apply circuit concepts like potential theory at the
ports.

Figure 5:

Focusing on a two-port network as shown in Figure 5, we have[
V1
V2

]
=

[
Z11 Z12

Z21 Z22

] [
I1
I2

]
(1.19)

Then assuming that the port 2 is turned on with J2 6= 0, and port 1 is turned
off with J1 = 0. In other words, port 1 is open circuit, and the source J2 will
produce an electric field E2 at port 1. Consequently,

〈E2,J1〉 =

ˆ
V

dV (E2 · J1) = I1

ˆ
Port 1

E2 · dl = −I1V oc
1 (1.20)

Even though port 1 is assumed to be off, the J1 to be used above is the J1 when
port 1 is turned on. Given that the port is in the circuit physics regime, then the
current J1 is a constant current at the port when it is turned on. The current
J1 = l̂I1/A where A is the cross-sectional area of the wire, and l̂ is a unit vector
aligned with the axis of the wire. The volume integral dV = Adl, and hence the
second equality follows above, where dl = l̂dl. Since

´
Port 1

E2 · dl = −V oc
1 , we

have the last equality above.
We can repeat the derivation with port 2 to arrive at

〈E1,J2〉 = I2

ˆ
Port 2

E1 · dl = −I2V oc
2 (1.21)

But from (1.19), we can set the pertinent currents to zero to find these open
circuit voltages. Therefore, V oc

1 = Z12I2, V oc
2 = Z21I1. Since I1V

oc
1 = I2V

oc
2 by

the reaction concept or by reciprocity, then Z12 = Z21. The above analysis can
be easily generalized to an N -port network.

The simplicity of the above belies its importance. The above shows that
the reciprocity concept in circuit theory is a special case of reciprocity theorem.
The terrain can also be replaced by complex circuits as in a circuit board, as
long as the materials are reciprocal, linear and time invariant. The complex
terrain can also be replaced by complex antenna structures.
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1.3 Voltage Sources in Electromagnetics

Figure 6: Courtesy of Kong, ELectromagnetic Wave Theory.

In the above discussions, we have used current sources in reciprocity theorem
to derive certain circuit concepts. Before we end this section, it is prudent to
mention how voltage sources are modeled in electromagnetic theory. The use
of the impressed currents so that circuit concepts can be applied is shown in
Figure 6. The antenna in (a) is driven by a current source. But a magnetic
current can be used as a voltage source in circuit theory as shown by Figure 6b.
By using duality concept, an electric field has to curl around a magnetic current
just in Ampere’s law where magnetic field curls around an electric current. This
electric field will cause a voltage drop between the metal above and below the
magnetic current loop making it behave like a voltage source.5

1.4 Hind Sight

The proof of reciprocity theorem for Maxwell’s equations is very deeply to the
symmetry of the operator involved. We can see this from linear algebra. Given
a matrix equation driven by two different sources, they can be written as

A · x1 = b1 (1.22)

A · x2 = b2 (1.23)

We can left dot multiply the first equation with x2 and do the same with the
second equation with x1 to arrive at

xt
2 ·A · x1 = xt

2 · b1 (1.24)

xt
1 ·A · x2 = xt

1 · b2 (1.25)

5More can be found in Jordain and Balmain, Electromagnetic Waves and Radiation Sys-
tems.

7



ECE 604, Lecture 30 Wed, April 3, 2019

If A is symmetric, the left-hand side of both equations are equal to each other.
Subtracting the two equations, we arrive at

xt
2 · b1 = xt

1 · b2 (1.26)

The above is analogous to the statement of the reciprocity theorem. The above
inner product is that of dot product in matrix theory, but the inner product for
reciprocity is that for infinite dimensional space. So if the operators in Maxwell’s
equations are symmetrical, then reciprocity theorem applies.

1.5 Transmit and Receive Patterns of an Antennna6

Figure 7:

Reciprocity also implies that the transmit and receive properties of an antenna
is similar to each other. Consider an antenna in the transmit mode. Then the
radiation power density that it will yield around the antenna is

Srad =
Pt

4πr2
G(θ, φ) (1.27)

where Pt is the total power radiated by the transmit antenna, and G(θ, φ) is its
directive gain function.

1.5.1 Effective Gain versus Directive Gain

At this juncture, it is important to introduce the concept of effective gain versus
directive gain. The effective gain, also called the power gain, is

Ge(θ, φ) = feG(θ, φ) (1.28)

6The author is indebted to inspiration from E. Kudeki of UIUC for this part of the lecture
notes.
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where fe is the efficiency of the antenna, a factor less than 1. It accounts for the
fact that not all power pumped into the antenna is delivered as radiated power.
For instance, power can be loss in the circuits and mismatch of the antenna.
Therefore, the correct formula the radiated power density is

Srad =
Pt

4πr2
Ge(θ, φ) (1.29)

If this power density is intercepted by a receive antenna, then the receive
antenna will see an incident power density as

Sinc = Srad =
Pt

4πr2
Ge(θ, φ) (1.30)

The effective area or aperture of a receive antenna is used to characterize its
receive property. The power received by such an antenna is then

Pr = SincAe(θ
′, φ′) (1.31)

where (θ′, φ′) are the angles at which the plane wave is incident upon the re-
ceiving antenna (see Figure 7). Combining the above formulas, we have

Pr =
Pt

4πr2
Ge(θ, φ)Ae(θ

′, φ′) (1.32)

Now assuming that the transmit and receive antennas are identical. We swap
their roles of transmit and receive, and also the circuitries involved in driving
the transmit and receive antennas. Then,

Pr =
Pt

4πr2
Ge(θ

′, φ′)Ae(θ, φ) (1.33)

We also assume that the receive antenna, that now acts as the transmit antenna
is transmitting in the (θ′, φ′) direction. Moreover, the transmit antenna, that
now acts as the receive antenna is receiving in the (θ, φ) direction (see Figure
7).

By reciprocity, these two powers are the same, because Z12 = Z21. Further-
more, since these two antennas are identical, Z11 = Z22. So by swapping the
transmit and receive electronics, the power transmitted and received will not
change.

Consequently, we conclude that

Ge(θ, φ)Ae(θ
′, φ′) = Ge(θ

′, φ′)Ae(θ, φ) (1.34)

The above implies that

Ae(θ, φ)

Ge(θ, φ)
=
Ae(θ

′, φ′)

Ge(θ′, φ′)
= constant (1.35)

The above Gedanken experiment is carried out for arbitrary angles. Therefore,
the constant is independent of angles. Moreover, this constant is independent
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of the size, shape, and efficiency of the antenna, as we have not used their
shape, size, and efficienty in the above discussion. One can repeat the above
for a Hertzian dipole, wherein the mathematics of calculating Pr and Pt is a lot
simpler. This constant is found to be λ2/(4π).7 Therefore, an interesting rela-
tionship between the effective aperture (or area) and the directive gain function
is that

Ae(θ, φ) =
λ2

4π
Ge(θ, φ) (1.36)

One amusing point about the above formula is that the effective aperture,
say of a Hertzian dipole, becomes very large when the frequency is low, or the
wavelength is very long. Of course, this cannot be physically true, and I will let
you meditate on this paradox and muse over this point.

7See Kong, p. 700. The derivation is for 100% efficient antenna. A thermal equilibrium
argument is used in Wikipedia as well.
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