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1 Linear Array of Dipole Antennas

Antenna array can be designed so that the constructive and destructive inter-
ference in the far field can be used to steer the direction of radiation of the
antenna, or the far-field radiation pattern of an antenna array. A simple linear
dipole array is shown in Figure 1.

Figure 1:

First, we assume that this is a linear array of Hertzian dipoles aligned on
the x axis. The current can then be described mathematically as follows:

J(r′) = ẑIl[A0δ(x
′) +A1δ(x

′ − d1) +A2δ(x
′ − d2) + · · ·

+AN−1δ(x
′ − dN−1)]δ(y′)δ(z′) (1.1)

1.1 Far-Field Approximation

The vector potential on the xy-plane in the far field is derived to be

A(r) ∼= ẑ
µIl

4πr
e−jβr

˚
dr′[A0δ(x

′) +A1δ(x
′ − d1) + · · · ]δ(y′)δ(z′)ejβr

′·r̂

= ẑ
µIl

4πr
e−jβr[A0 +A1e

jβd1 cosφ +A2e
jβd2 cosφ + · · ·+AN−1e

jβdN−1 cosφ]

(1.2)

In the above, we have assumed that the observation point is on the xy plane,
or that r = ρ = x̂x + ŷy. Thus, r̂ = x̂ cosφ + ŷ sinφ. Also, since the sources
are aligned on the x axis, then r′ = x̂x′, and r′ · r̂ = x′ cosφ. Consequently,
ejβr

′·r̂ = ejβx
′ cosφ. Using the sifting property of delta function, we arrive at

the last line of the above equation.
If dn = nd, and An = ejnψ, then the antenna array, which assumes a pro-

gressively increasing phase shift between different elements, is called a linear
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phase array. Thus, (1.2) in the above becomes

A(r) ∼= ẑ
µIl

4πr
e−jβr[1 + ej(βd cosφ+ψ) + ej2(βd cosφ+ψ) + · · ·

+ej(N−1)(βd cosφ+ψ)] (1.3)

1.2 Radiation Pattern of an Array

The above can be summed in closed form using

N−1∑
n=0

xn =
1− xN

1− x
(1.4)

Then in the far field,

A(r) ∼= ẑ
µIl

4πr
e−jβr

1− ejN(βd cosφ+ψ)

1− ej(βd cosφ+ψ)
(1.5)

Ordinarily, as shown previously, E = −jω(θ̂Aθ+φ̂Aφ). But since A is ẑ directed,
Aφ = 0. Furthermore, on the xy plane, Eθ = −jωAθ = jωAz. Therefore,

|Eθ| = |E0|
∣∣∣∣1− ejN(βd cosφ+ψ)

1− ej(βd cosφ+ψ)

∣∣∣∣
= |E0|

∣∣∣∣∣ sin N
2 (βd cosφ+ ψ)

sin 1
2 (βd cosφ+ ψ)

∣∣∣∣∣ (1.6)

The factor multiplying |E0| above is also called the array factor. The above can
be used to plot the far-field pattern of an antenna array.

Equation (1.6) has an array factor that is of the form |sinNx|
|sin x| . This function

appears in digital signal processing frequently, and is known as the digital sinc
function. The reason why this is so is because the far field is proportional to
the Fourier transform of the current. The current in this case a finite array
of Hertzian dipole, which is a product of a box function and infinite array of
Hertzian dipole. The Fourier transform of such a current, as is well known in
digital signal processing, is the digital sinc.

Plots of |sin 3x| and |sinx| are shown as an example and the resulting |sin 3x|
|sin x|

is also shown in Figure 2. The function peaks when both the numerator and the
denominator of the digital sinc vanish. This happens when x = nπ for integer
n.
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Figure 2:

In equation (1.6), x = 1
2 (βd cosφ + ψ). We notice that the maximum in

(1.6) would occur if x = nπ, or if

βd cosφ+ ψ = 2nπ, n = 0,±1,±2,±3, · · · (1.7)

The zeros or nulls will occur at Nx = nπ, or

βd cosφ+ ψ =
2nπ

N
, n = ±1,±2,±3, · · · , n 6= mN (1.8)

For example,

Case I. ψ = 0, βd = π, principal maximum is at φ = ±π2 . If N = 5,
nulls are at φ = ± cos−1

(
2n
5

)
, or φ = ±66.4◦,±36.9◦,±113.6◦,±143.1◦. The

radiation pattern is seen to form lopes. Since ψ = 0, the radiated fields in the
y direction are in phase and the peak of the radiation lope is in the y direction
or the broadside direction. Hence, this is called a broadside array.
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Figure 3:

Case II. ψ = π, βd = π, principal maximum is at φ = 0, π. If N = 4, nulls
are at φ = ± cos−1

(
n
2 − 1

)
, or φ = ±120◦,±90◦,±60◦. Since the sources are

out of phase by 180◦, and N = 4 is even, the radiation fields cancel each other
in the broadside, but add in the x direction or the end-fire direction.

Figure 4:

From the above examples, it is seen that the interference effects between the
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different antenna elements of a linear array focus the power in a given direction.
We can use linear array to increase the directivity of antennas. Moreover, it
is shown that the radiation patterns can be changed by adjusting the spacings
of the elements as well as the phase shift between them. The idea of antenna
array design is to make the main lobe of the pattern to be much higher than
the side lobes so that the radiated power of the antenna is directed along the
main lobe or lobes rather than the side lobes. So side-lobe level suppression is
an important goal of designing a highly directive antenna design.

2 When is Far-Field Approximation Valid?

In making the far-field approximation in (1.2), it will be interesting to ponder
when the far-field approximation is valid? That is, when we can approximate

e−jβ|r−r
′| ≈ e−jβr+jβr

′·r̂ (2.1)

to arrive at (1.2). This is especially important because when we integrate over
r′, it can range over large values especially for a large array. In this case, r′ can
be as large as (N − 1)d.

To answer this question, we need to study the approximation in (2.1) more
carefully. First, we have

|r− r′|2 = (r− r′) · (r− r′
2
) = r2 − 2r · r′ + r′

2
(2.2)

We can take the square root of the above to get

|r− r′| = r

(
1− 2r · r′

r2
+
r′

2

r2

)1/2

(2.3)

Next, we use the Taylor series expansion to get, for small x, that

(1 + x)n ≈ 1 + nx+
n(n− 1)

2!
x2 + · · · (2.4)

or that

(1 + x)1/2 ≈ 1 +
1

2
x− 1

8
x2 + · · · (2.5)

We can apply this approximation by letting

x = −2r · r′

r2
+
r′

2

r2

To this end, we arrive at

|r− r′| ≈ r

[
1− r · r′

r2
+

1

2

r′
2

r2
− 1

2

(
r · r′

r2

)2

+ · · ·

]
(2.6)
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In the above, we have not kept every terms of the x2 term by assuming that
r′2 � r′ ·r, and terms much smaller than the last term in (2.6) can be neglected.

We can multiply out the right-hand side of the above to further arrive at

|r− r′| ≈ r − r · r′

r
+

1

2

r′
2

r
− 1

2

(r · r′)2

r3
+ · · ·

= r − r̂ · r′ + 1

2

r′
2

r
− 1

2r
(r̂ · r′)2 + · · · (2.7)

The last two terms in the last line of (2.3) are of the same order. Moreover,

their sum is bounded by r′
2
/(2r) since r̂ · r′ is always less than r′. Hence, the

far field approximation is valid if

β
r′

2

2r
� 1 (2.8)

In the above, β is involved because the approximation has to be valid in the
exponent, namely exp(−jβ|r− r′|).

2.1 Rayleigh Distance

Consequently, after using that β = 2π/λ, for the far-field approximation to be
valid, we need that

r � π

λ
r′

2
(2.9)

If the aperture of the antenna is of radius W , then r′ < rmax
′ ∼= W and the far

field approximation is valid if

r � π

λ
W 2 = rR (2.10)

If r is larger than this distance, then an antenna beam behaves like a spherical
wave and starts to diverge. This distance rR is also known as the Rayleigh
distance. After this distance, the wave from a finite size source resembles a
spherical wave which is diverging in all directions. Also, notice that the shorter
the wavelength λ, the larger is this distance. This also explains why a laser
pointer works. A laser pointer light can be thought of radiation from a finite
size source located at the aperture of the laser pointer. The laser pointer beam
remains collimated for quite a distance, before it becomes a divergent beam or
a beam with a spherical wave front.

In some textbooks, it is common to define acceptable phase error to be π/8.
The Rayleigh distance is the distance beyond which the phase error is below
this value. When the phase error of π/8 is put on the right-hand side of (2.8),
one gets

β
r′

2

2r
≈ π

8
(2.11)
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Using the approximation, the Rayleigh distance is defined to be

rR =
2D2

λ
(2.12)

where D = 2W is the diameter of the antenna aperture.

2.2 Near Zone, Fresnel Zone, and Far Zone

Therefore, when a source radiates, the radiation field is divided into the near
zone, the Fresnel zone, and the far zone (also known as the radiation zone,
or the Fraunhofer zone in optics). The Rayleigh distance is the demarcation
boundary between the Fresnel zone and the far zone. The larger the aperture
of an antenna array is, the further one has to be to reach the far zone of an
antenna. This distance becomes larger too when the wavelength is short. In the
far zone, the far field behaves like a spherical wave, and its radiation pattern is
proportional to the Fourier transform of the current.

In the near zone, much reactive energy is stored in the electric field or the
magnetic field near to the source. This near zone receives reactive power from
the source, which corresponds to instantaneous power that flows from the source,
but is return to the source after one time harmonic cycle.

The field in the far zone carries power that radiates to infinity. As a result,
the field in the near zone decays rapidly, but the field in the far zone decays as
1/r for energy conservation.
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