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1 Radiation by a Hertzian Dipole

Radiation by arbitrary sources is an important problem for antennas and wire-
less communications. We will start with studying the Hertzian dipole which is
the simplest of a radiation source we can think of.

1.1 History

The original historic Hertzian dipole experiment is shown in Figure 1. It was
done in 1887 by Heinrich Hertz. The schematics for the original experiment is
also shown in Figure 2.

A metallic sphere has a capacitance in closed form with respect to infinity
or a ground plane. Hertz could use those knowledge to estimate the capacitance
of the sphere, and also, he could estimate the inductance of the leads that
are attached to the dipole, and hence, the resonance frequency of his antenna.
The large sphere is needed to have a large capacitance, so that current can be
driven through the wires. As we shall see, the radiation strength of the dipole
is proportional to p = ql the dipole moment. To get a large dipole moment, the
current flowing in the lead should be large.

Figure 1:
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Figure 2:

1.2 Approximation by a Point Source

A Hertzian dipole is a dipole which is much smaller than the wavelength under
consideration so that we can approximate it by a point current distribution,
mathematically given by

J(r) = ẑIlδ(r) (1.1)

The dipole may look like the following schematically;
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Figure 3:

In (1.1), l is the effective length of the dipole so that the dipole moment
p = ql. The charge q is varying time harmonically because it is driven by the
generator. Since

dq

dt
= I,

we have

Il =
dq

dt
l = jωql = jωp (1.2)

for a Hertzian dipole. We have learnt previously that the vector potential is
related to the current as follows:

A(r) = µ

˚
dr′J(r′)

e−jβ|r−r
′|

4π|r− r′|
(1.3)

Therefore, the corresponding vector potential is given by

A(r) = ẑ
µIl

4πr
e−jβr (1.4)

The magnetic field is obtained, using cylindrical coordinates, as

H =
1

µ
∇×A =

1

µ

(
ρ̂

1

ρ

∂

∂φ
Az − φ̂

∂

∂ρ
Az

)
(1.5)

where ∂
∂φ = 0, r =

√
ρ2 + z2. In the above,

∂

∂ρ
=
∂r

∂ρ

∂

∂r
=

ρ√
ρ2 + z2

∂

∂r
=
ρ

r

∂

∂r
.

Hence,

H = −φ̂ρ
r

Il

4π

(
− 1

r2
− jβ 1

r

)
e−jβr (1.6)
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Figure 4:

In spherical coordinates, ρ
r = sin θ, and (1.6) becomes

H = φ̂
Il

4πr2
(1 + jβr)e−jβr sin θ (1.7)

The electric field can be derived using Maxwell’s equations.

E =
1

jωε
∇×H =

1

jωε

(
r̂

1

r sin θ

∂

∂θ
sin θHφ − φ̂

1

r

∂

∂r
rHφ

)
(1.8)

=
Ile−jβr

jωε4πr3

[
r̂2 cos θ(1 + jβr) + θ̂ sin θ(1 + jβr − β2r2)

]
(1.9)

1.3 Case I. Near Field, βr � 1

E ∼=
p

4πεr3
(r̂2 cos θ + θ̂ sin θ), βr � 1 (1.10)

H� E, when βr � 1 (1.11)

where p = ql is the dipole moment, and βr could be made very small by making
r
λ small or by making ω → 0. The above is like the static field of a dipole. The
reason being that in the near field, the field varies rapidly, and space derivatives
are much larger than the time derivative. For instance,

∂

∂x
� ∂

c∂t
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1.4 Case II. Far Field (Radiation Field), βr � 1

In this case,

E ∼= θ̂jωµ
Il

4πr
e−jβr sin θ (1.12)

and

H ∼= φ̂jβ
Il

4πr
e−jβr sin θ (1.13)

Note that Eθ

Hφ
= ωµ

β =
√

µ
ε = η0. E and H are orthogonal to each other and are

both orthogonal to the direction of propagation, as in the case of a plane wave.
A spherical wave resembles a plane wave in the far field approximation.

1.5 Radiation, Power, and Directive Gain Patterns

The time average power flow is given by

〈S〉 =
1

2
<e[E×H∗] = r̂

1

2
η0 |Hφ|2 = r̂

η0

2

(
βIl

4πr

)2

sin2 θ (1.14)

The radiation field pattern of a Hertzian dipole is the plot of |E| as a function
of θ at a constant r. Hence, it is proportional to sin θ, and it can be proved that
it is a circle.

Figure 5:
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The radiation power pattern is the plot of 〈Sr〉 at a constant r.

Figure 6:

The total power radiated by a Hertzian dipole is given by

P =

ˆ 2π

0

dφ

ˆ π

0

dθr2 sin θ〈Sr〉 = 2π

ˆ π

0

dθ
η0

2

(
βIl

4π

)2

sin3 θ (1.15)

Sinceˆ π

0

dθ sin3 θ = −
ˆ −1

1

(d cos θ)[1− cos2 θ] =

ˆ 1

−1

dx(1− x2) =
4

3
(1.16)

then

P =
4

3
πη0

(
βIl

4π

)2

(1.17)

The directive gain of an antenna, D(θ, φ), is defined as

D(θ, φ) =
〈Sr〉
P

4πr2

(1.18)

where
P

4πr2

is the power density if the power P were uniformly distributed over a sphere of
radius r. Substituting (1.14) and (1.17) into the above, we have

D(θ, φ) =

η0
2

(
βIl
4πr

)2

sin2 θ

1
4πr2

4
3η0π

(
βIl
4π

)2 =
3

2
sin2 θ (1.19)
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The peak of D(θ, φ) is known as the directivity of an antenna. It is 1.5 in this
case. If an antenna is radiating isotropically, its directivity is 1. Therefore, the
lowest possible values for the directivity of an antenna is 1, whereas it can be
over 100 for some antennas like reflector antennas. A directive gain pattern
is a plot of the above function D(θ, φ) and it resembles the radiation power
pattern.

If the total power fed into the antenna instead of the total radiated power is
used in the denominator of (1.18), the ratio is known as the power gain or just
bf gain. The total power fed into the antenna is not equal to the total radiated
power because there could be some loss in the antenna system like metallic loss.

1.6 Radiation Resistance

Defining a radiation resistance Rr by P = 1
2I

2Rr, we have

Rr =
2P

I2
= η0

(βl)2

6π
, where η0 = 377Ω (1.20)

For example, for a Hertzian dipole with l = 0.1λ, Rr ≈ 8Ω.
The above assumes that the current is uniformly distributed over the length

of the Hertzian dipole. This is true if there are two charge reservoirs at its two
ends. For a small dipole with no charge reservoir at the two ends, the currents
have to vanish at the tip of the dipole as shown in Figure 7.

Figure 7:

The effective length of the dipole is half of its actual length due to the
manner the currents are distributed. For example, for a half-wave dipole, a = λ

2 ,

and if we use leff = λ
4 in (1.20), we have

Rr ≈ 50Ω (1.21)
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However, a half-wave dipole is not much smaller than a wavelength and does not
qualify to be a Hertzian dipole. Furthermore, the current distribution on the
half-wave dipole is not triangular in shape as above. A more precise calculation
shows that Rr = 73Ω for a half-wave dipole.
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