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1 Circuit Theory Revisited

Circuit theory is one of the most successful and often used theories in electrical
engineering. Its success is mainly due to its simplicity: it can capture the
physics of highly complex circuits and structures, which is very important in
the micro-chip industry. Now, having understood electromagnetic theory in its
full glory, it is prudent to revisit circuit theory and study its relationship to
electromagnetic theory.

The two most important laws in circuit theory are Kirchoff current law
(KCL) and Kirchhoff voltage law (KVL). These two laws are derivable from the
current continuity equation and from Faraday’s law.

1.1 Kirchhoff Current Law

Figure 1:

Kirchhoff current law (KCL) is a consequence of the current continuity equation,
or that

∇ · J = −jω% (1.1)

It is a consequence of charge conservation. Some authors will say that this
equation is derivable from Maxwell’s equations, for example, from generalized
Ampere’s law and Gauss’ law for charge. However, one should think that charge
conservation is more fundamental, and that Gauss’ law and Ampere’s law are
consistent with charge conservation and the current continuity equation.

First, we assume that all currents are flowing into a node as shown in Figure
1, and that the node is non-charge accumulating with ω → 0. Then the charge
continuity equation becomes

∇ · J = 0 (1.2)
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By integrating the above current continuity equation over a volume containing
the node, it is easy to show that

N∑
i

Ii = 0 (1.3)

which is the statement of KCL. This is shown for the schematic of Figure 1.

1.2 Kirchhoff Voltage Law

Kirchhoff voltage law is the consequence of Faraday’s law. For the truly static
case when ω = 0, it is

∇×E = 0 (1.4)

The above implies that E = −∇Φ, from which we can deduce that

−
˛
C

E · dl = 0 (1.5)

For statics, the statement that E = −∇Φ also implies that we can define a
voltage drop between two points, a and b to be

Vba = −
ˆ b

a

E · dl =

ˆ b

a

∇Φ · dl = Φ(rb)− Φ(ra) = Vb − Va (1.6)

As has been shown before, this concept is only valid in the low frequency or
long wavelength limit, or that the dimension over which the above is applied
very small so that retardation effect can be ignored.

A good way to remember the above formula is that if Vb > Va, then the
electric field points from point a to point b. Electric field always points from
the point of higher potential to point of lower potential. Faraday’s law when
applied to the static case for a closed loop of resistors shown in Figure 2 gives
Kirchhoff voltage law (KVL), or that

N∑
i

Vj = 0 (1.7)

If one of the voltage drops is a voltage source, it can be modeled by a negative
resistor as shown in Figure 3. The voltage drop across a negative resistor is
opposite to that of a positive resistor. As we have learn from the Poynting’s
theorem, negative resistor gives out energy instead of dissipates energy.
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Figure 2:

Figure 3:

Faraday’s law for the time-varying case is

∇×E = −∂B
∂t

(1.8)

Writing the above in integral form, one gets

−
˛
C

E · dl =
d

dt

ˆ
s

B · dS (1.9)

We can apply the above to a loop shown in Figure 4(a), or a loop C that
goes from a to b to c to d to a. We can further assume that this loop is very
small compared to wavelength so that potential theory that E = −∇Φ can be
applied. Furthermore, we assume that this loop C does not have any magnetic
flux through it so that the right-hand side of the above can be set to zero.
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Figure 4:

Notice that this loop does not go through the inductor, but goes directly
from c to d. Then there is no flux linkage in this loop and thus

−
ˆ b

a

E · dl−
ˆ c

b

E · dl−
ˆ d

c

E · dl−
ˆ a

d

E · dl = 0 (1.10)

Inside the source or the battery, it is assumed that the electric field points
opposite to the direction of integration dl, and hence the first term on the left-
hand side of the above is positive while the other terms are negative. Writing
out the above more explicitly, we have

V0(t) + Vcb + Vdc + Vad = 0 (1.11)

We will study the contributions to each of the terms, the inductor, the capacitor,
and the resistor more carefully next.

1.3 Inductor

To find the voltage current relation of an inductor, we apply Faraday’s law to
a closed loop C ′ formed by dc and the inductor coil shown in the Figure 4(b).
Assume that the inductor is made of a very good conductor, so that the electric
field in the wire is small or zero. Then the only contribution to the left-hand
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side of Faraday’s law is the integration from point d to point c. We assume that
outside the loop, potential theory applies, and hence, E = −∇Φ. Now, we can
connect Vdc in the previous equation to the flux linkage to the inductor. When
the voltage source attempts to drive an electric current into the loop, Lenz’s
law (1834)1 comes into effect, essentially, generating an opposing voltage. The
opposing voltage gives rise to charge accumulation at d and c, and hence, a low
frequency electric field at the gap.

To this end, we form a new C ′ that goes from d to c, and then continue onto
the wire that leads to the inductor. But this new loop will contain the flux B
generated by the inductor current. Thus

˛
C′

E · dl =

ˆ c

d

E · dl = −Vdc = − d

dt

ˆ
S′

B · dS (1.12)

The inductance L is defined as the flux linkage per unit current, or

L =

[ˆ
S′

B · dS
]
/I (1.13)

So the voltage in (1.12) is then

Vdc =
d

dt
(LI) = L

dI

dt
(1.14)

Had there been a finite resistance in the wire of the inductor, then the electric
field is non-zero inside the wire. Taking this into account, we have

˛
E · dl = RLI − Vdc = − d

dt

ˆ
s

B · dS (1.15)

Consequently,

Vdc = RLI + L
dI

dt
(1.16)

Thus, to account for the loss of the coil, we add a resistor in the equation. The
above becomes simpler in the frequency domain, namely

Vdc = RLI + jωLI (1.17)

1.4 Capacitance

The capacitance is the proportionality constant between the charge Q stored
in the capacitor, and the voltage V applied across the capacitor, or Q = CV .
Then

C =
Q

V
(1.18)

1Lenz’s law can also be explained from Faraday’s law (1831).
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From the current continuity equation, one can easily show that

I =
dQ

dt
=

d

dt
(CVda) = C

dVda
dt

(1.19)

Integrating the above equation, one gets

Vda(t) =
1

C

ˆ t

Idt′ (1.20)

The above looks quite cumbersome in the time domain, but in the frequency
domain, it becomes

I = jωCVda (1.21)

Figure 5:

1.5 Resistor

The electric field is not zero inside the resistor as electric field is needed to push
electrons through it. As is well known,

J = σE (1.22)

From this, we deduce that Vcb = Vc − Vb is a negative number given by

Vcb = −
ˆ c

b

E · dl = −
ˆ c

b

J

σ
· dl (1.23)

where we assume a uniform current J = l̂I/A in the resistor where l̂ is a unit
vector pointing in the direction of current flow in the resistor. We can assumed
that I is a constant along the length of the resistor, and thus,

Vcb = −
ˆ c

b

Idl

σA
= −I

ˆ c

b

dl

σA
= −IR (1.24)

7



ECE 604, Lecture 24 Wed, Mar 6, 2019

and

R =

ˆ c

b

dl

σA
(1.25)

Again, for simplicity, we assume long wavelength or low frequency in the above
derivation.

2 Some Remarks

In this course, we have learnt that given the sources % and J of an electromag-
netic system, one can find Φ and A, from which we can find E and H. This is
even true at DC or statics. We have also looked at the definition of inductor
L and capacitor C. But clever engineering is driven by heuristics: it is better,
at times, to look at inductors and capacitors as energy storage devices, rather
than flux linkage and charge storage devices.

Another important remark is that even though circuit theory is simpler that
Maxwell’s equations in its full glory, not all the physics is lost in it. The physics
of the induction term in Faraday’s law and the displacement current term in
generalized Ampere’s law are still retained. In fact, wave physics is still retained
in circuit theory: one can make slow wave structure out a series of inductors and
capacitors. Since the wave is slow, it has a smaller wavelength, and resonators
can be made smaller: We see this in the LC tank circuit which is a much smaller
resonator in wavelength compared to a microwave cavity resonator for instance.
The only short coming is that inductors and capacitors generally have higher
losses than air or vacuum.

2.1 Energy Storage Method for Inductor and Capacitor

The energy stored in an inductor is due to its energy storage in the magnetic
field, and it is alternatively written, according to circuit theory, as

Wm =
1

2
LI2 (2.1)

Therefore, it is simpler to think that an inductance exists whenever there is stray
magnetic field to store magnetic energy. A piece of wire carries a current that
produces a magnetic field enabling energy storage in the magnetic field. Hence,
a piece of wire in fact behaves like a small inductor, and it is non-negligible at
high frequencies: Stray inductances occur whenever there are stray magnetic
fields.

By the same token, a capacitor can be thought of as an electric energy storage
device rather than a charge storage device. The energy stored in a capacitor,
from circuit theory, is

We =
1

2
CV 2 (2.2)
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Therefore, whenever stray electric field exists, one can think of stray capaci-
tances as we have seen in the case of fringing field capacitances in a microstrip
line.

Finding closed form solutions for inductors and capacitors is a difficult en-
deavor. Only certain geometries are amenable to closed form solutions. Even a
simple circular loop does not have a closed form solution for its inductance L.
If we assume a uniform current on a circular loop, in theory, the magnetic field
can be calculated using Bio-Savart law that we have learnt before, namely that

H(r) =

ˆ
I(r′)dl′ × R̂

4πR2
(2.3)

But the above cannot be evaluated in closed form save in terms of complicate
elliptic integrals.

However, if we have a solenoid as shown in Figure 6, an approximate formula
for the inductance L can be found if the fringing field at the end of the solenoid
can be ignored. The inductance can be found using the flux linkage method.
Figure 7 shows the schematic used to find the approximate inductance of this
inductor.

Figure 6: Courtesy of SolenoidSupplier.Com.
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Figure 7:

The capacitance of a parallel plate capacitor can be found by solving a
boundary value problem (BVP) for electrostatics, and also by the energy storage
method. The electrostatic BVP for capacitor involves Poisson’s equation and
Laplace equation which are scalar equations.

Figure 8:

Assume a geometry of two conductors charged to +V and −V volts as shown
in Figure 8. Surface charges will accumulate on the surfaces of the conductors.
Using Poisson’s equations, and Green’s function for Poisson’s equation, one can
express the potential in between the two conductors as due to the surface charges
density σ(r). It can be expressed as

Φ(r) =
1

ε

ˆ
S

dS′ σ(r′)

4π|r− r′|
(2.4)

where S is the union of two surfaces S1 and S2. Since Φ has values of +V and
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−V on the two conductors, we require that

Φ(r) =
1

ε

ˆ
S

dS′ σ(r′)

4π|r− r′|
=

{
+V, r ∈ S1

−V, r ∈ S2

(2.5)

In the above, σ(r′), the surface charge density, is the unknown yet to be sought
and it is embedded in an integral. But the right-hand side of the equation is
known. Hence, this equation is also known as an integral equation. The integral
equation can be solved by numerical methods.

Having found σ(r), then it can be integrated to find Q, the total charge on
one of the conductors. Since the voltage difference between the two conductors
is known, the capacitance can be found as C = Q/(2V ).

2.2 Importance of Circuit Theory in IC Design

The clock rate of computer circuits has peaked at about 3 GHz due to the
resistive loss, or the I2R loss. At this frequency, the wavelength is about 10 cm.
Since transistors and circuit components are shrinking due to the compounding
effect of Moore’s law, most components, which are of nanometer dimensions, are
much smaller than the wavelength. Thus, most of the physics of electromagnetic
signal in a circuit can be captured using circuit theory.

Figure 9 shows the schematic and the cross section of a computer chip at
different levels: the transistor level at the bottom-most. The signals are taken
out of a transistor by XY lines at the middle level that are linked to the ball-grid
array at the top-most level of the chip. And then, the signal leaves the chip
via a package. Since these nanometer-size structures are much smaller than
the wavelength, they are usually modeled by lumped R, L, and C elements. If
retardation effect is needed, it is usually modeled by a transmission line. This
is important at the package level where the dimensions of the components are
larger.

A process of parameter extraction where computer software or field solvers
(software that solve Maxwell’s equations numerically) are used to extract these
lumped parameters. Finally, a computer chip is modeled as a network involv-
ing a large number of transistors, diodes, and R, L, and C elements. Subse-
quently, a very useful commercial software called SPICE (Simulation Program
with Integrated-Circuit Emphasis), which is a computer-aided software, solves
for the voltages and currents in this network.
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Figure 9:

The SPICE software has many capabilities, including modeling of trans-
mission lines for microwave engineering. Figure 10 shows an interface of an
RF-SPICE that allows the modeling of transmission line with a Smith chart
interface.
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Figure 10:

2.3 Decoupling Capacitors and Spiral Inductors

Decoupling capacitors are an important part of modern computer chip design.
They can regulate voltage supply on the power delivery network of the chip as
they can remove high-frequency noise and voltage fluctuation from a circuit as
shown in Figure 11. Figure 12 shows a 3D IC computer chip where decoupling
capacitors are integrated into its design.

Figure 11: Courtesy of Learning About Electroncs.
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Figure 12: Modern computer chip design is 3D and is like a jungle. There are
different levels in the chip and they are connected by through silicon vias (TSV).
IMD stands for inter-metal dielectrics. One can see different XY lines serving
as power and ground lines. (Courtesy of Semantic Scholars.)

Inductors are also indispensable in IC design, as they can be used as a high
frequency choke. However, designing compact inductor is still a challenge. Spiral
inductors are used because of their planar structure and ease of fabrication.

Figure 13: Courtesy of Quan Yuan, Research Gate.
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